30.06.2014 Views

Conventional RTA Theory - Downloadable PDF

Conventional RTA Theory - Downloadable PDF

Conventional RTA Theory - Downloadable PDF

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Toll Free: 1.800.625.2488 :: Phone: 403.213.4200 :: Email: fast@fekete.com<br />

fekete.com


Modern Production Data Analysis<br />

Day 1 - <strong>Theory</strong><br />

1. Introduction to Well Performance Analysis<br />

2. Arps – <strong>Theory</strong><br />

a) Exponential<br />

b) Hyperbolic<br />

c) Harmonic<br />

3. Analytical Solutions<br />

a) Transient versus Boundary Dominated<br />

Flow<br />

b) Boundary Dominated Flow<br />

i. Material Balance Equation<br />

ii. Pseudo Steady-State Concept<br />

iii. Rate Equations<br />

c) Transient Flow<br />

i. Radius of Investigation Concept<br />

ii. Transient Equation (Radial Flow)<br />

4. <strong>Theory</strong> of Type Curves<br />

a) Dimensionless variables<br />

b) The log-log plot<br />

c) Type Curve matching<br />

5. Principle of Superposition<br />

a) Superposition<br />

b) Desuperposition<br />

c) Material Balance Time<br />

6. Gas Corrections<br />

a) Pseudo-Pressure<br />

b) Pseudo-Time


Modern Production Data Analysis<br />

Day 2 - Practice<br />

7. Arps – Practical Considerations<br />

a) Guidelines<br />

b) Advantages<br />

c) Limitations<br />

8. Analysis Using Type Curves<br />

a) Fetkovich<br />

b) Blasingame (Integrals)<br />

c) AG and NPI (Derivatives)<br />

d) Transient<br />

e) Wattenbarger<br />

9. Flowing Material Balance<br />

10. Specialized<br />

11. Modeling and History Matching<br />

12. A Systematic and Comprehensive<br />

Approach<br />

13. Practical Diagnostics<br />

a) Data validation<br />

b) Pressure support<br />

c) Interference<br />

d) Liquid loading<br />

e) Accumulating skin<br />

damage<br />

f) Transient flow regimes<br />

14. Tutorials<br />

15. Selected Topics and Examples


Introduction to Well<br />

Performance Analysis


Traditional<br />

- Production rate only<br />

- Using historical trends to predict future<br />

- Empirical (curve fitting)<br />

- Based on analogy<br />

- Deliverables:<br />

- Production forecast<br />

- Recoverable Reserves under current conditions


Modern<br />

- Rates AND Flowing Pressures<br />

- Based on physics, not empirical<br />

- Reservoir signal extraction and characterization<br />

- Deliverables:<br />

- OGIP / OOIP and Reserves<br />

- Permeability and skin<br />

- Drainage area and shape<br />

- Production optimization screening<br />

- Infill potential


Recommended Approach<br />

- Use BOTH Traditional and Modern together<br />

- Production Data Analysis should include a<br />

comparison of multiple methods<br />

- No single method always works<br />

- Production data is varied in frequency, quality<br />

and duration


Modern Production Analysis -<br />

Integration of Knowledge<br />

Welltest Analysis<br />

- High resolution<br />

early-time<br />

characterization<br />

- High resolution<br />

characterization<br />

of the nearwellbore<br />

-Point-in-time<br />

characterization<br />

of wellbore skin<br />

- Characterization<br />

of perm and skin<br />

-Estimation of<br />

contacted<br />

drainage area<br />

-Estimation of<br />

reservoir<br />

pressure<br />

Modern Production Analysis<br />

- Flow regime<br />

characterization over<br />

life of well<br />

- Estimation of fluidsin-place<br />

- Performance based<br />

recovery factor<br />

- Able to analyze<br />

transient production<br />

data (early-time<br />

production, tight gas<br />

etc)<br />

- Projection<br />

of recovery<br />

constrained<br />

by historical<br />

operating<br />

conditions<br />

Empirical Decline<br />

Analysis<br />

- Estimation of<br />

reserves when<br />

flowing pressure<br />

is unknown


Arps - Empirical


Traditional Decline Curves<br />

– J.J. Arps<br />

- Graphical – Curve fitting exercise<br />

- Empirical – No theoretical basis<br />

- Implicitly assumes constant operating conditions


Gas Rate, MMscfd<br />

Gas Rate, MMscfd<br />

Gas Rate, MMscfd<br />

The Exponential Decline Curve<br />

Unnamed Well<br />

Rate vs Time<br />

5.00<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

q<br />

<br />

Dit<br />

qie<br />

Slope<br />

Di<br />

<br />

q<br />

0.50<br />

0.00<br />

2001 2002 2003 2004 2005 2006<br />

Unnamed Well<br />

Rate vs Time<br />

Unnamed Well<br />

Rate vs. Cumulative Prod.<br />

10 1 7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1.0<br />

2<br />

log qlog<br />

q<br />

Di<br />

i<br />

Dt i<br />

<br />

2.302<br />

2.302* Slope<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

q qiDQ<br />

i<br />

Di<br />

Slope<br />

7<br />

2.00<br />

6<br />

5<br />

4<br />

1.50<br />

3<br />

1.00<br />

0.50<br />

10 -1<br />

2001 2002 2003 2004 2005 2006<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50<br />

Gas Cum. Prod., Bscf


Gas Rate, MMscfd<br />

The Hyperbolic Decline Curve<br />

Unnamed Well<br />

Rate vs. Cumulative Prod.<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

q<br />

( 1<br />

bD t)<br />

Di<br />

D<br />

q<br />

b<br />

qi<br />

i<br />

q <br />

1/<br />

b<br />

i<br />

b<br />

1.00<br />

0.50<br />

D<br />

<br />

f () t<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60<br />

Gas Cum. Prod., Bscf


Gas Rate, MMscfd<br />

Gas Rate, MMscfd<br />

Hyperbolic Exponent “b”<br />

Unnamed Well<br />

Rate vs. Cumulative Prod.<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

Mild Hyperbolic – b ~ 0<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60<br />

Gas Cum. Prod., Bscf<br />

NBU 921-22G<br />

Rate vs. Cumulative Prod.<br />

3.20<br />

3.00<br />

2.80<br />

2.60<br />

2.40<br />

Strong Hyperbolic – b ~ 1<br />

2.20<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05<br />

Gas Cumulative, Bscf


Analytical Solutions


Transient vs Boundary Dominated Flow


Transient Flow<br />

- Early-time OR Low Permeability<br />

- Flow that occurs while a pressure “pulse” is<br />

moving out into an infinite or semi-infinite acting<br />

reservoir<br />

- Like the “fingerprint” of the reservoir<br />

- Contains information about reservoir<br />

properties (permeability, drainage shape)


Boundary Dominated Flow<br />

- Late-time flow behavior<br />

- Typically dominates long-term production data<br />

- Reservoir is in a state of pseudo-equilibrium –<br />

physics reduces to a mass balance<br />

- Contains information about reservoir pore volume<br />

(OOIP and OGIP)


Boundary Dominated Flow


Definition of Compressibility<br />

p i<br />

p i -dp<br />

dV<br />

V<br />

V<br />

c <br />

1<br />

V<br />

V<br />

p


Compressibility Defines Material Balance of a<br />

Closed Oil Reservoir (above bubble point)<br />

Dp = p i - p<br />

DV = N p<br />

V=N<br />

1 Np<br />

c <br />

N p<br />

p pi<br />

<br />

i<br />

p<br />

N<br />

p<br />

cN t<br />

p p m N<br />

i pss p<br />

Note: only valid if c is constant


Single Phase Oil MB<br />

pi<br />

<br />

p<br />

y<br />

mx<br />

p<br />

i<br />

<br />

p<br />

<br />

m<br />

pss<br />

N<br />

p<br />

slope mpss<br />

Np


pressure<br />

Illustration of Pseudo-Steady-State<br />

1<br />

p1<br />

2<br />

3<br />

p wf1<br />

p wf2<br />

p wf3<br />

p2<br />

p3<br />

time<br />

Constant Rate q<br />

r w<br />

Distance<br />

r e


Flowing Material Balance<br />

pi pwf<br />

y mx b<br />

p<br />

i<br />

<br />

p<br />

wf<br />

<br />

m<br />

pss<br />

N<br />

p<br />

b<br />

slope mpss<br />

b<br />

Np


pressure<br />

Steady-State Inflow Equation<br />

p i<br />

p<br />

p wf<br />

p p<br />

b<br />

pss<br />

wf<br />

f<br />

<br />

qb<br />

pss<br />

( kh,<br />

s,<br />

area)<br />

Inflow (Darcy) pressure drop- Constant-<br />

Productivity Index<br />

r w<br />

Distance<br />

r e


Flowing Material Balance<br />

Variable Rate<br />

p<br />

i <br />

p<br />

q<br />

wf<br />

y mx<br />

b<br />

p<br />

i<br />

p<br />

q<br />

wf<br />

<br />

mpssN<br />

q<br />

p<br />

b<br />

pss<br />

slope mpss<br />

bpss<br />

Np<br />

q


The Three Most Important Equations<br />

in Modern Production Analysis<br />

p pi mpssNp<br />

p pwf<br />

qbpss<br />

p<br />

i<br />

<br />

p<br />

wf<br />

<br />

m<br />

pss<br />

N<br />

p<br />

<br />

qb<br />

pss


Operating Conditions - Simplified<br />

Constant Pressure<br />

=<br />

Production<br />

Constant Rate<br />

=<br />

Welltest<br />

q<br />

q<br />

p wf<br />

p wf


Constant Rate Solution<br />

Relate Back to Arps Harmonic<br />

- Invert the PSS equation<br />

q<br />

1 1<br />

<br />

<br />

p p () t mpssNp<br />

b<br />

m t b<br />

pss<br />

q<br />

i wf pss pss<br />

1<br />

q bpss<br />

<br />

pi<br />

pwf<br />

() t mpss<br />

t 1<br />

bpss


Constant Flowing Pressure Solution<br />

- Required: q(t), N pmax and N for constant pwf<br />

- Take derivative of both equations and solve for q<br />

- Integrate to find Np(t), as t goes to infinity Np goes to<br />

N pmax<br />

mpss<br />

pi<br />

pwf<br />

t<br />

bpss<br />

q()<br />

t e<br />

bpss<br />

pi<br />

pwf<br />

<br />

max <br />

Np pi pwf ctN<br />

mpss


Constant Flowing Pressure Solution<br />

Relate Back to Arps Exponential, Determine N<br />

pi<br />

pwf<br />

qi<br />

<br />

bpss<br />

mpss<br />

Di<br />

b pss<br />

qi<br />

Np<br />

max <br />

Di<br />

c ( p p ) c ( p p ) D<br />

N <br />

Np<br />

max qi<br />

t i wf t i wf i


Plot Constant p and Constant q together<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Constant rate q/Dp (Harmonic)<br />

q<br />

<br />

pi<br />

pwf<br />

() t<br />

1<br />

bpss<br />

mpss<br />

t 1<br />

bpss<br />

0.5<br />

0.4<br />

0.3<br />

Constant pressure q/Dp (Exponential)<br />

0.2<br />

0.1<br />

qt ( ) 1<br />

<br />

p p b<br />

i wf pss<br />

e<br />

m<br />

<br />

b<br />

pss<br />

pss<br />

t<br />

0<br />

0 5 10 15 20 25 30 35 40 45


Transient Flow


Pressure, psi<br />

Transient and Boundary Dominated Flow<br />

3600<br />

10<br />

Numerical Radial Model<br />

Cross Section Pressure Plot<br />

3400<br />

Cross Section<br />

3200<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

Transient Well<br />

Performance = f(k, skin,<br />

time)<br />

Boundary Dominated<br />

Well Performance =<br />

f(Volume, PI)<br />

1800<br />

1600<br />

1400<br />

1200<br />

Plan View<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-4000 -3600 -3200 -2800 -2400 -2000 -1600 -1200 -800 -400 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Radii, ft


Pressure, psi<br />

Radius (Region) of Investigation<br />

10<br />

Numerical Radial Model<br />

Cross Section Pressure Plot<br />

3600<br />

3400<br />

Cross Section<br />

3200<br />

3000<br />

2800<br />

r<br />

inv<br />

<br />

kt<br />

948c<br />

2600<br />

2400<br />

2200<br />

A<br />

inv<br />

<br />

kt<br />

948c<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

Plan View<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-4000 -3600 -3200 -2800 -2400 -2000 -1600 -1200 -800 -400 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Radii, ft


Transient Equation<br />

Describes radial flow in an infinite acting reservoir<br />

q kh<br />

1<br />

<br />

( pi<br />

pwf<br />

) 141.2B 1 0.0063kt<br />

<br />

ln 0.4045<br />

2<br />

<br />

c<br />

<br />

t <br />

s


q(t)’s compared<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

Transient flow: compares to Arps “super<br />

hyperbolic” (b>1)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 5 10 15 20 25 30 35 40 45


Type Curves


Blending of Transient into<br />

Boundary Dominated Flow<br />

3<br />

2.5<br />

Complete q(t) consists of:<br />

Transient q(t) from t=0 to tpss<br />

Depletion equation from t = tpss and higher<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25 30 35 40 45


qD and 1/pD<br />

Log-Log Plot: Adds a New<br />

Visual Dynamic<br />

Comparison of qD with 1/pD<br />

Cylindrical Reservoir with Vertical Well in Center<br />

1000<br />

100<br />

10<br />

Infinite Acting<br />

Boundary Dominated<br />

Constant Rate Solution<br />

Harmonic<br />

0.9<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

Constant Pressure Solution Exponential<br />

0.0001<br />

0.00001<br />

0.000001<br />

0.000001 0.0001 0.01 1 100 10000 1000000 100000000 1E+10 1E+12 1E+14<br />

tD


Type Curve<br />

- Dimensionless model for reservoir / well system<br />

- Log-log plot<br />

- Assumes constant operating conditions<br />

- Valuable tool for interpretation of production and<br />

pressure data


Rate,<br />

Type Curve Example - Fetkovich<br />

Fetkovich Typecurve Analysis<br />

1.0<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

q Dd<br />

q<br />

t<br />

Dd<br />

Dd<br />

q(<br />

t)<br />

<br />

qi<br />

Dit<br />

Harmonic<br />

q<br />

Dd<br />

1<br />

<br />

1 t<br />

Dd<br />

10 -1<br />

9<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Exponential<br />

tDd<br />

qDd e<br />

Hyperbolic<br />

q<br />

Dd<br />

1<br />

<br />

(1 btDd)<br />

1/ b<br />

2<br />

10 -2<br />

t Dd<br />

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -1 1.0 10 1<br />

Time


Rate (MMscfd)<br />

qDd<br />

Plotting Fetkovich Type Curves-<br />

Example<br />

Well 1 (exponential)<br />

q i = 2.5 MMscfd<br />

D i = 10 % per year<br />

Well 2 (exponential)<br />

q i = 10 MMscfd<br />

D i = 20 % per year<br />

Raw Data Plot<br />

Time (years) Rate (MMscfd) tDd qDd<br />

Well 1 Well 2 Well 1 Well 2 Well 1 Well 2<br />

0 2.50 10.00 0.00 0.00 1.00 1.00<br />

1 2.26 8.19 0.10 0.20 0.90 0.82<br />

2 2.05 6.70 0.20 0.40 0.82 0.67<br />

3 1.85 5.49 0.30 0.60 0.74 0.55<br />

4 1.68 4.49 0.40 0.80 0.67 0.45<br />

5 1.52 3.68 0.50 1.00 0.61 0.37<br />

6 1.37 3.01 0.60 1.20 0.55 0.30<br />

7 1.24 2.47 0.70 1.40 0.50 0.25<br />

8 1.12 2.02 0.80 1.60 0.45 0.20<br />

9 1.02 1.65 0.90 1.80 0.41 0.17<br />

10 0.92 1.35 1.00 2.00 0.37 0.14<br />

Dimensionless Plot<br />

12.00<br />

1.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

Well 1<br />

Well 2<br />

Well 1<br />

Well 2<br />

2.00<br />

0.00<br />

0 5 10 15<br />

0.10<br />

0.01 0.10 1.00 10.00<br />

Time (years)<br />

tDd


Rate,<br />

Fetkovich Typecurve Matching<br />

In most cases, we don’t know what “qi” and “Di” are ahead of time. Thus, qi and Di<br />

are calculated based on the typecurve match (ie. The typecurve is superimposed on<br />

the data set<br />

NBU 921-22G<br />

Fetkovich Typecurve Analysis<br />

q<br />

i<br />

D<br />

i<br />

q(<br />

t)<br />

<br />

qDd<br />

<br />

t<br />

t<br />

Dd<br />

1.0<br />

8<br />

q<br />

q Dd<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

10 -1<br />

9<br />

8<br />

7<br />

6<br />

t<br />

5<br />

t Dd<br />

3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2<br />

1.0 10 1<br />

Time<br />

Knowing qi and Di, EUR (expected ultimate recovery) can be calculated


Rate,<br />

Analytical Model Type Curve<br />

Fetkovich Typecurve Analysis<br />

10 1 2<br />

6<br />

4<br />

3<br />

2<br />

1.0<br />

9<br />

6<br />

4<br />

3<br />

Transient Flow<br />

2<br />

q Dd<br />

10 -1<br />

9<br />

6<br />

4<br />

3<br />

r e /r wa = 10 r e /r wa = 100 r e /r wa = 10,000<br />

2<br />

10 -2<br />

9<br />

6<br />

4<br />

3<br />

Boundary Dominated Flow<br />

Exponential<br />

2 3 4 5 6 7 9 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 7<br />

10 -4 10 -3 10 -2 10 -1 1.0 10 1<br />

Time<br />

t Dd


Modeling Skin using Apparent Wellbore<br />

Radius<br />

rwa (s)<br />

ΔP(s)<br />

r<br />

wa<br />

<br />

r<br />

w<br />

e<br />

s<br />

rwa(d)<br />

ΔP(d)<br />

rw<br />

re


Dimensionless Variable Definitions<br />

(Fetkovich)<br />

q<br />

Dd<br />

<br />

141.2qB<br />

re<br />

1 <br />

ln <br />

kh( pi pwf )<br />

<br />

rwa<br />

2<br />

<br />

<br />

t<br />

Dd<br />

<br />

0.00634kt<br />

2<br />

ctrwa<br />

2<br />

e e <br />

1 r 1 r <br />

ln 1<br />

2<br />

<br />

rwa<br />

2<br />

<br />

rwa


Type Curve Matching (Fetkovich)<br />

The Fetkovich analytical typecurves can be used to calculate three parameters:<br />

permeability, skin and reservoir radius<br />

141.2B re<br />

1 q<br />

k <br />

ln <br />

h( pi pwf )<br />

<br />

rwa 2<br />

<br />

qDd match<br />

0.00634k 1<br />

t rw<br />

<br />

rwa<br />

sln<br />

2<br />

<br />

ct 1 re<br />

1 re<br />

tDd rwa<br />

<br />

ln 1<br />

2<br />

<br />

rwa<br />

2<br />

<br />

rwa<br />

<br />

match<br />

141.2B 0.00634 q t<br />

re<br />

2<br />

h ( pi pwf ) ct qDd tDd match<br />

match


Rate,<br />

Type Curve Matching - Example<br />

10<br />

Fetkovich Typecurve Analysis<br />

8<br />

6<br />

4<br />

3<br />

2<br />

r eD = 50<br />

k = f(q/q Dd )<br />

s = f(q/q Dd * t/t Dd , r eD )<br />

r e = f(q/q Dd * t/t Dd )<br />

1.0<br />

8<br />

6<br />

4<br />

3<br />

2<br />

q<br />

Transient Flow<br />

10 -1<br />

8<br />

6<br />

q Dd<br />

4<br />

3<br />

10 1 2<br />

10 -2<br />

8<br />

6<br />

4<br />

3<br />

2<br />

t<br />

Boundary Dominated Flow<br />

Exponential<br />

10 -3<br />

2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78<br />

10 -4 10 -3 10 -2 10 -1 1.0 10 1<br />

Time<br />

t Dd


Superposition


What about Variable Rate / Variable Pressure<br />

Production? The Principle of Superposition<br />

Superposition in Time:<br />

1. Divide the production history into a series of constant rate periods<br />

2. The observed pressure response is a result of the additive effect of each rate<br />

change in the history<br />

Example: Two Rate History<br />

q<br />

p wf<br />

q 2<br />

q 1<br />

pi<br />

pwf<br />

q f t q q f t t<br />

Effect of (q 2 -q 1 )<br />

( ) ( ) ( )<br />

t 1<br />

1 2 1 1


The Principle of Superposition<br />

Two Rate History<br />

pi<br />

pwf<br />

q1 f ( t) ( q2 q1) f ( t t1)<br />

N - Rate History<br />

N<br />

i wf ( j j 1) ( j 1)<br />

p p q q f t t<br />

j1<br />

f(t) is the Unit Step Response


Superposition versus Desuperposition<br />

Simple<br />

- Unit step response f(t)<br />

- Type Curve<br />

- Superposition Time<br />

Superposition<br />

Complex<br />

- Real rate and pressure<br />

history<br />

- Modeling (history<br />

matching)<br />

q<br />

pwf<br />

Desuperposition<br />

q<br />

pwf


Superposition Time<br />

Convert multiple rate history into an equivalent single rate history by re-plotting<br />

data points at their “superposed” times<br />

p p q q<br />

<br />

qN<br />

qN<br />

N<br />

i wf ( j j 1)<br />

j1<br />

f t<br />

( tj<br />

1)


The Principle of Superposition –<br />

PSS Case<br />

p p q q<br />

<br />

qN<br />

qN<br />

N<br />

i wf ( j j 1)<br />

j1<br />

f t<br />

( tj<br />

1)<br />

pi pwf t 141.2B<br />

re<br />

3 <br />

f( t) ln<br />

<br />

q ctN kh rwa<br />

4 <br />

N<br />

pi pwf 1 ( qj qj 1) 141.2B<br />

re<br />

3 <br />

( t tj<br />

1) ln<br />

<br />

qN ctN j1<br />

qN kh rwa<br />

4 <br />

pi pwf 1 Np 141.2B<br />

re<br />

3 <br />

ln<br />

<br />

qN ctN qN kh rwa<br />

4 <br />

Superposition Time: Material Balance Time


Definition of Material Balance Time<br />

(Blasingame et al)<br />

Actual Rate Decline<br />

Equivalent Constant Rate<br />

q<br />

Q<br />

Q<br />

actual<br />

time (t)<br />

material<br />

balance<br />

time (t c )<br />

= Q/q


Features of Material Balance Time<br />

-MBT is a superposition time function<br />

- MBT converts VARIABLE RATE data into an<br />

EQUIVALENT CONSTANT RATE solution.<br />

- MBT is RIGOROUS for the BOUNDARY<br />

DOMINATED flow regime<br />

- MBT works very well for transient data also, but<br />

is only an approximation (errors can be up to 20%<br />

for linear flow)


qD and 1/pD<br />

Ratio 1/pD to qD<br />

MBT Shifts Constant Pressure to<br />

Equivalent Constant Rate<br />

Comparison of qD (Material Balance Time Corrected) with 1/pD<br />

Cylindrical Reservoir with Vertical Well in Center<br />

1000<br />

100<br />

10<br />

1<br />

Very early time radial flow<br />

Ratio (qD to 1/pD) ~ 90%<br />

Constant Rate Solution<br />

1/p D<br />

Harmonic<br />

1.2<br />

1<br />

0.97<br />

0.8<br />

0.1<br />

0.01<br />

Beginning of "semi-log" radial flow (tD=25)<br />

Ratio (qD to 1/pD) ~ 97%<br />

0.6<br />

0.001<br />

0.4<br />

0.0001<br />

0.00001<br />

Constant Pressure Solution q D<br />

Corrected to Harmonic<br />

0.2<br />

0.000001<br />

0<br />

0.000001 0.0001 0.01 1 100 10000 1000000 100000000 1E+10 1E+12 1E+14<br />

tD


Corrections for Gas Reservoirs


Corrections Required for Gas<br />

Reservoirs<br />

• Gas properties vary with pressure<br />

– Formation Volume Factor<br />

– Compressibility<br />

– Viscosity


Corrections Required for Gas<br />

Reservoirs<br />

Depletion Term<br />

Depends on<br />

compressibility<br />

Reservoir FlowTerm:<br />

Depends on “B” and<br />

Viscosity<br />

p<br />

i<br />

qt 141.2qBo re<br />

3<br />

pwf<br />

ln<br />

<br />

coN kh rwa<br />

4


Darcy’s Law Correction for Gas<br />

Reservoirs<br />

Darcy’s Law states :<br />

Dp <br />

q<br />

For Gas Flow, this is not true because<br />

viscosity () and Z-factor (Z) vary with pressure<br />

Solution: Pseudo-Pressure<br />

p<br />

p<br />

<br />

p<br />

pdp<br />

2<br />

Z<br />

0


Compressibility (1/psi)<br />

Depletion Correction for Gas<br />

Reservoirs<br />

Gas properties (compressibility and viscosity) vary<br />

significantly with pressure<br />

Gas Compressibility<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

cg<br />

<br />

1<br />

p<br />

0.002<br />

0<br />

0 1000 2000 3000 4000 5000 6000<br />

Pressure (psi)


Depletion Correction for Gas<br />

Reservoirs: Pseudo-Time<br />

Solution: Pseudo-Time<br />

t<br />

a<br />

<br />

,<br />

c<br />

<br />

g<br />

c<br />

<br />

g<br />

<br />

i<br />

<br />

t<br />

0<br />

dt<br />

c<br />

g<br />

Evaluated at average reservoir<br />

pressure<br />

Not to be confused with welltest pseudo-time which evaluates properties<br />

at well flowing pressure


Boundary Dominated Flow<br />

Equation for Gas<br />

Constant Rate Case<br />

Pseudo-pressure<br />

Pseudo-time<br />

Dp<br />

p<br />

<br />

p<br />

pi<br />

<br />

p<br />

pwf<br />

<br />

2 pi<br />

( cgZ<br />

) iG<br />

i<br />

qt<br />

a<br />

1.417e6*<br />

Tq<br />

<br />

kh<br />

<br />

ln<br />

<br />

r<br />

r<br />

e<br />

wa<br />

<br />

3 <br />

<br />

4 <br />

Variable Rate Case<br />

Dp<br />

q<br />

p<br />

G<br />

<br />

qGi<br />

pa<br />

b<br />

pss<br />

Pseudo-Cumulative Production


Overall time function - Material<br />

Balance Pseudo-time<br />

t<br />

t<br />

c<br />

ca<br />

1<br />

<br />

q<br />

1<br />

<br />

q<br />

<br />

t<br />

0<br />

<br />

ta<br />

0<br />

qdt<br />

qdt<br />

a<br />

<br />

<br />

c<br />

q<br />

g<br />

i<br />

<br />

t<br />

0<br />

qdt<br />

c<br />

g


Improved Material Balance<br />

Pseudo-time<br />

Overall material balance pseudo-time function (corrected for<br />

variable fluid saturations, water encroachment, in-situ fluids & formation expansion and<br />

desorption):<br />

t<br />

t ct<br />

i<br />

q(<br />

t)<br />

ca <br />

q<br />

ct1<br />

cf<br />

( pi<br />

<br />

0<br />

p)<br />

<br />

dt


Arps – Practical Consideration


Notes About Drive Mechanism and<br />

b Value (from Arps and Fetkovich)<br />

b value<br />

Reservoir Drive Mechanism<br />

0 Single phase liquid expansion (oil above bubble point)<br />

Single phase gas expansion at high pressure<br />

Water or gas breakthrough in an oil well<br />

0.1 - 0.4 Solution gas drive<br />

0.4 - 0.5 Single phase gas expansion<br />

0.5 Effective edge water drive<br />

0.5 - 1.0 Layered reservoirs<br />

> 1 Transient (Tight Gas)


Advantages of Traditional<br />

- Easy and convenient<br />

- No simplifying assumptions are required regarding the<br />

physics of fluid flow. Thus, can be used to model very<br />

complex systems<br />

- Very “Real” indication of well performance


Limitations of Traditional<br />

- Implicitly assumes constant operating conditions<br />

- Non-unique results, especially for tight gas (transient flow)<br />

- Provides limited information about the reservoir


Gas Rate, MMscfd<br />

Gas Rate, MMscfd<br />

Example 1: Decline Overpredicts<br />

Reserves<br />

Unnamed Well<br />

Rate vs Time<br />

4<br />

October November December January February March April<br />

2001 2002<br />

Unnamed Well<br />

Rate vs. Cumulative Prod.<br />

4<br />

EUR = 9.5 bcf<br />

3<br />

2<br />

1<br />

0<br />

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50<br />

Gas Cum. Prod., Bscf


Rate (MMscfd)<br />

Flowing Pressure (psia)<br />

Example 1 (cont’d)<br />

Flowing Pressure and Rate vs Cumulative Production<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

Rates<br />

Pressures<br />

True EUR does not<br />

exceed 4.5 bcf<br />

Forecast is not<br />

valid here<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

1<br />

0.5<br />

0<br />

200<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Cumulative Production (bcf)


Gas Rate, MMscfd<br />

Example 2: Decline Underpredicts<br />

Reserves<br />

8.50<br />

Unnamed Well<br />

Rate vs. Cumulative Prod.<br />

8.00<br />

7.50<br />

7.00<br />

6.50<br />

6.00<br />

5.50<br />

5.00<br />

EUR = 3.0 bcf<br />

4.50<br />

4.00<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20<br />

Gas Cum. Prod., Bscf


Normalized Rate, MMscfd/(10 6 psi 2 /cP)<br />

Example 2 (cont’d)<br />

0.085<br />

0.080<br />

Unnamed Well<br />

Flowing Material Balance<br />

Legend<br />

Decline FMB<br />

0.075<br />

0.070<br />

0.065<br />

0.060<br />

0.055<br />

0.050<br />

OGIP = 24 bcf<br />

0.045<br />

0.040<br />

0.035<br />

0.030<br />

0.025<br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

Original Gas In Place<br />

0.000<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25<br />

Normalized Cumulative Production, Bscf


Gas, MMscfd<br />

Pressure, psi<br />

Example 2 (cont’d)<br />

Unnamed Well<br />

Data Chart<br />

18<br />

17<br />

Legend<br />

Pressure<br />

Actual Gas Data<br />

1300<br />

1200<br />

16<br />

15<br />

1100<br />

14<br />

1000<br />

13<br />

12<br />

900<br />

11<br />

10<br />

9<br />

8<br />

Operating conditions: Low drawdown<br />

Increasing back pressure<br />

800<br />

700<br />

600<br />

7<br />

500<br />

6<br />

400<br />

5<br />

4<br />

300<br />

3<br />

200<br />

2<br />

1<br />

100<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720<br />

0<br />

Time, days


Gas Rate (MMscfd)<br />

Example 3 – Illustration of Non-<br />

Uniqueness<br />

Arps Production Forecast<br />

10<br />

1<br />

0.1<br />

Economic Limit =<br />

0.05 MMscfd b = 0.25,<br />

EUR = 2.0 bcf<br />

b = 0.50,<br />

EUR = 2.5 bcf<br />

b = 0.80,<br />

EUR = 3.6 bcf<br />

0.01<br />

Dec-00 May-06 Nov-11 May-17 Oct-22 Apr-28 Oct-33<br />

Time


Analysis using Type Curves


Blasingame Typecurve Analysis<br />

Blasingame typecurves have identical format to those of Fetkovich. However, there<br />

are three important differences in presentation:<br />

1. Models are based on constant RATE solution instead of<br />

constant pressure<br />

2. Exponential and Hyperbolic stems are absent, only<br />

HARMONIC stem is plotted<br />

3. Rate Integral and Rate Integral - Derivative typecurves are used<br />

(simultaneous typecurve match)<br />

Data plotted on Blasingame typecurves makes use of MODERN DECLINE ANALYSIS<br />

methods:<br />

- NORMALIZED RATE (q/Dp)<br />

- MATERIAL BALANCE TIME / PSEUDO TIME


Blasingame Typecurve Analysis-<br />

Comparison to Fetkovich<br />

Fetkovich<br />

Blasingame<br />

log(q)<br />

log(q/Dp)<br />

log(q Dd )<br />

log(q Dd )<br />

log(t)<br />

log(tca)<br />

log(t Dd )<br />

log(t Dd )<br />

- Usage of q/Dp and tca allow boundary dominated flow to be represented by harmonic<br />

stem only, regardless of flowing conditions<br />

- Blasingame harmonic stem offers an ANALYTICAL fluids-in-place solution<br />

- Transient stems (not shown) are similar to Fetkovich


Blasingame Typecurve Analysis-<br />

Definitions<br />

Normalized Rate<br />

q<br />

Dd<br />

Typecurves Data - Oil Data - Gas<br />

141.2q<br />

re<br />

1<br />

q<br />

q<br />

ln<br />

<br />

khDP<br />

<br />

rwa<br />

2<br />

DP<br />

DPp<br />

Rate Integral<br />

Rate Integral - Derivative<br />

q<br />

Ddi<br />

1<br />

<br />

t<br />

DA<br />

Ddid<br />

t DA<br />

<br />

0<br />

q<br />

q t<br />

Dd<br />

DA<br />

t<br />

dt<br />

dq<br />

dt<br />

Ddi<br />

DA<br />

<br />

<br />

<br />

q<br />

P<br />

D<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

q<br />

P<br />

D<br />

t c<br />

1 q<br />

dt<br />

t D P<br />

<br />

<br />

<br />

id<br />

c<br />

0<br />

t<br />

c<br />

q <br />

d<br />

<br />

DP<br />

<br />

dt<br />

c<br />

i<br />

<br />

<br />

q<br />

DP<br />

<br />

<br />

<br />

q<br />

DP<br />

p<br />

p<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

id<br />

1<br />

<br />

t<br />

<br />

t<br />

ca<br />

ca<br />

t ca<br />

q<br />

D P<br />

0<br />

ca<br />

p<br />

q<br />

d<br />

DP<br />

dt<br />

p<br />

dt<br />

<br />

<br />

<br />

i


Concept of Rate Integral<br />

(Blasingame et al)<br />

actual rate<br />

rate<br />

integral =<br />

Q/t<br />

Q<br />

Q<br />

actual<br />

time<br />

actual<br />

time


Rate Integral: Like a Cumulative<br />

Average<br />

Average rate over time period<br />

“0 to t 1 ”<br />

Average rate over time period<br />

“0 to t 2 ”<br />

q<br />

t 1<br />

t 2<br />

Effective way to remove noise


Rate Integral: Definition<br />

<br />

<br />

<br />

q<br />

Dp<br />

<br />

<br />

<br />

i<br />

<br />

1<br />

t<br />

c<br />

t c<br />

q<br />

D p<br />

0<br />

dt


Typecurve Interpretation Aids:<br />

Integrals, Derivatives<br />

Typecurve Most Useful For Drawback<br />

Used in Analysis<br />

Integral /<br />

Cumulative<br />

Removing the scatter from<br />

noisy data sets<br />

Dilutes the reservoir<br />

signal<br />

Fetkovich,<br />

Blasingame, NPI<br />

Derivative<br />

Amplifying the reservoir<br />

signal embedded in<br />

production data<br />

Amplifies noise -<br />

often unusable<br />

Agarwal-Gardner,<br />

PTA<br />

Integral-Derivative<br />

Maximizing the strengths<br />

of Integral and Derivative<br />

Can still be noisy<br />

Blasingame, NPI<br />

Other methods: Data filtering, Moving averages, Wavelet decomposition


Rate Integral and Rate Integral<br />

Derivative (Blasingame et al)<br />

Rate Integral<br />

Rate (Normalized)<br />

Rate Integral Derivative


Blasingame Typecurve Analysis-<br />

Transient Calculations<br />

Oil:<br />

k is obtained from rearranging the definition of<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

r<br />

r<br />

ln<br />

kh<br />

141.2<br />

p<br />

q<br />

q<br />

match<br />

wa<br />

e<br />

Dd<br />

<br />

D<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

r<br />

r<br />

ln<br />

h<br />

141.2<br />

q<br />

p<br />

q<br />

k<br />

match<br />

wa<br />

e<br />

match<br />

Dd<br />

<br />

D<br />

Solve for r wa from the definition of<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

r<br />

r<br />

ln<br />

1<br />

r<br />

r<br />

r<br />

c<br />

2<br />

1<br />

0.006328kt<br />

t<br />

match<br />

wa<br />

e<br />

2<br />

match<br />

wa<br />

e<br />

2<br />

wa<br />

t<br />

c<br />

Dd<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

1<br />

match<br />

wa<br />

r<br />

e<br />

r<br />

ln<br />

1<br />

2<br />

match<br />

wa<br />

r<br />

e<br />

r<br />

2<br />

1<br />

t<br />

c<br />

0.006328k<br />

match<br />

Dd<br />

t<br />

t<br />

wa<br />

r<br />

c<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

wa<br />

w<br />

r<br />

r<br />

ln<br />

s


Blasingame Typecurve Analysis-<br />

Boundary Dominated Calculations-Oil<br />

Oil-in-Place calculation is based on the harmonic stem of Fetkovich typecurves.<br />

In Blasingame typecurve analysis, q Dd and t Dd are defined as follows:<br />

q<br />

Dd<br />

<br />

<br />

<br />

q<br />

q<br />

/<br />

/<br />

Dp<br />

Dp<br />

<br />

i<br />

and<br />

t<br />

Dd<br />

Dit<br />

Recall the Fetkovich definition for the harmonic typecurve and the PSS equation for oil in<br />

harmonic form:<br />

q<br />

Dd<br />

1<br />

<br />

1<br />

t<br />

Dd<br />

From the above equations:<br />

Definition of Harmonic<br />

typecurve<br />

and<br />

q<br />

Dp<br />

<br />

c<br />

1<br />

b<br />

1<br />

t<br />

ctNb<br />

c<br />

1<br />

PSS equation for oil in<br />

harmonic form, using<br />

material balance time<br />

q<br />

Dp<br />

<br />

q <br />

<br />

<br />

<br />

Dp<br />

<br />

<br />

1<br />

Dit<br />

<br />

q<br />

<br />

<br />

Dp<br />

<br />

<br />

i<br />

1<br />

1<br />

where<br />

<br />

, and Di<br />

<br />

c<br />

b<br />

i<br />

ctNb


Blasingame Typecurve Analysis-<br />

Boundary Dominated Calculations-Oil<br />

Oil-in-Place (N) is calculated as follows:<br />

Rearranging the equation for Di:<br />

N<br />

<br />

1<br />

ctDib<br />

Now, substitute the definitions of q Dd and t Dd back into the above equation:<br />

N<br />

<br />

t<br />

ct<br />

<br />

t<br />

Dd<br />

c<br />

1<br />

<br />

qDd<br />

<br />

q<br />

/ Dp<br />

<br />

<br />

<br />

<br />

<br />

1<br />

ct<br />

t<br />

<br />

t<br />

c<br />

Dd<br />

<br />

<br />

<br />

<br />

q / Dp<br />

qDd<br />

<br />

X-axis “match-point from<br />

typecurve analysis<br />

Y-axis “match-point”<br />

from typecurve analysis


Blasingame Typecurve Analysis- Boundary<br />

Dominated Calculations- Gas<br />

Gas-in-Place calculation is similar to that of oil, with the additional complications of pseudotime<br />

and pseudo-pressure.<br />

In Blasingame typecurve analysis, q Dd and t Dd are defined as follows:<br />

q<br />

Dd<br />

<br />

<br />

<br />

q<br />

q<br />

/<br />

/<br />

Dp<br />

Dp<br />

p<br />

<br />

i<br />

p<br />

and<br />

t<br />

Dd<br />

Dit<br />

Recall the Fetkovich definition for the harmonic typecurve and the PSS equation for gas in<br />

harmonic form:<br />

q<br />

Dd<br />

1<br />

<br />

1<br />

t<br />

Dd<br />

From the above equations:<br />

Definition of Harmonic<br />

typecurve<br />

and<br />

q<br />

Dp<br />

p<br />

<br />

<br />

ca<br />

1<br />

b<br />

2 pi<br />

t<br />

Zct<br />

Gib<br />

i<br />

ca<br />

1<br />

PSS equation for gas in<br />

harmonic form, using<br />

material balance pseudotime<br />

q<br />

Dp<br />

<br />

q <br />

<br />

<br />

<br />

Dp<br />

i<br />

<br />

1<br />

Dit<br />

c<br />

where<br />

<br />

<br />

<br />

<br />

q<br />

Dp<br />

p<br />

<br />

<br />

<br />

<br />

i<br />

<br />

1<br />

b<br />

,<br />

and<br />

D<br />

i<br />

<br />

2 p<br />

ZctiG<br />

ib<br />

i


Blasingame Typecurve Analysis-<br />

Boundary Dominated Calculations- Gas<br />

Gas-in-Place (G i ) is calculated as follows:<br />

Rearranging the equation for Di:<br />

G<br />

i<br />

<br />

D<br />

i<br />

<br />

2 pi<br />

Zctb<br />

i<br />

Now, substitute the definitions of q Dd and t Dd back into the above equation:<br />

G<br />

i<br />

<br />

<br />

<br />

<br />

t<br />

t<br />

Dd<br />

ca<br />

<br />

<br />

<br />

<br />

2 p<br />

Zct<br />

i<br />

i<br />

<br />

<br />

<br />

<br />

<br />

qDd<br />

( q / Dpp)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 pi<br />

Zct<br />

i<br />

t<br />

<br />

t<br />

ca<br />

Dd<br />

<br />

<br />

<br />

<br />

q / Dp<br />

qDd<br />

p<br />

<br />

<br />

<br />

X-axis “match-point from<br />

typecurve analysis<br />

Y-axis “match-point”<br />

from typecurve analysis


Agarwal-Gardner Typecurve Analysis<br />

Agarwal and Gardner have developed several different diagnostic<br />

methods, each based on modern decline analysis theory. The AG<br />

typecurves are all derived using the WELLTESTING definitions of<br />

dimensionless rate and time (as opposed to the Fetkovich<br />

definitions). The models are all based on the constant RATE<br />

solution. The methods they present are as follows:<br />

1. Rate vs. Time typecurves (tD and tDA format)<br />

2. Cumulative Production vs. Time typecurves (tD and tDA<br />

format)<br />

3. Rate vs. Cumulative Production typecurves (tDA<br />

format)<br />

- linear format<br />

- logarithmic format


Agarwal-Gardner Typecurve Analysis


Agarwal-Gardner - Rate vs.<br />

Time Typecurves<br />

Agarwal and Gardner Rate vs. Time typecurves are the same as<br />

conventional drawdown typecurves, but are inverted and plotted in<br />

tDA (time based on area) format.<br />

qD vs tDA<br />

The AG derivative plot is not a rate derivative (as per Blasingame).<br />

Rather, it is an INVERSE PRESSURE DERIVATIVE.<br />

p D (der) = t(dp D /dt)<br />

q D (der) = t(dq D /dt)<br />

1/p D (der) = ( t(dp D /dt) ) -1


Agarwal-Gardner - Rate vs.<br />

Time Typecurves<br />

Comparison to Blasingame Typecurves<br />

Rate Integral-<br />

Derivative<br />

Inv. Pressure<br />

Integral-<br />

Derivative<br />

qDd and tDd<br />

plotting format<br />

qD and tDA<br />

plotting fomat


Agarwal-Gardner - Rate vs.<br />

Cumulative Typecurves<br />

Agarwal and Gardner Rate vs. Cumulative typecurves are different from<br />

conventional typecurves because they are plotted on LINEAR<br />

coordinates.<br />

They are designed to analyze BOUNDARY DOMINATED data only. Thus,<br />

they do not yield estimates of permeability and skin, only fluid-in-place.<br />

Plot: qD (1/pD) vs QDA<br />

Where (for oil):<br />

q<br />

D<br />

141.2B<br />

<br />

kh<br />

p<br />

i<br />

t<br />

<br />

q<br />

p<br />

wf<br />

t<br />

<br />

Q<br />

DA<br />

<br />

q<br />

D<br />

* t<br />

DA<br />

<br />

1<br />

2<br />

Q<br />

or alternativ<br />

ely<br />

ctN(<br />

pi<br />

pwf<br />

)<br />

2<br />

1<br />

pi<br />

p<br />

p p<br />

i<br />

wf


Agarwal-Gardner - Rate vs.<br />

Cumulative Typecurves<br />

Where (for gas):<br />

q<br />

D<br />

t<br />

<br />

1.417e6*<br />

T q<br />

<br />

kh <br />

i<br />

wf<br />

t<br />

<br />

Q<br />

DA<br />

<br />

q<br />

D<br />

* t<br />

DA<br />

<br />

1<br />

2<br />

2qt<br />

ca<br />

or alternativ<br />

ely<br />

<br />

ctZ<br />

iGi<br />

( <br />

i<br />

<br />

wf<br />

)<br />

<br />

i<br />

<br />

wf<br />

1<br />

2<br />

i


Agarwal-Gardner - Rate vs.<br />

Cumulative Typecurves<br />

qD vs QDA typecurves<br />

always converge to 1/2<br />

0.159)


NPI (Normalized Pressure Integral)<br />

NPI analysis plots a normalized PRESSURE rather than a normalized<br />

RATE. The analysis consists of three sets of typecurves:<br />

1. Normalized pressure vs. tc (material balance time)<br />

2. Pressure integral vs. tc<br />

3. Pressure integral - derivative vs. tc<br />

- Pressure integral methodology was developed by Tom Blasingame;<br />

originally used to interpret drawdown data with a lot of noise. (ie.<br />

conventional pressure derivative contains far too much scatter)<br />

- NPI utilizes a PRESSRE that is normalized using the current RATE.<br />

It also utilizes the concepts of material balance time and pseudotime.


NPI (Normalized Pressure Integral):<br />

Definitions<br />

Normalized Pressure<br />

<strong>Conventional</strong><br />

Pressure Derivative<br />

Pressure Integral<br />

Pressure Integral -<br />

Derivative<br />

P<br />

Di<br />

Typecurves Data - Oil Data - Gas<br />

khDP<br />

DP<br />

DP<br />

P D<br />

<br />

p<br />

141. 2q<br />

q<br />

q<br />

P<br />

Dd<br />

1<br />

<br />

t<br />

dPD<br />

<br />

d ln t<br />

DA<br />

t DA<br />

<br />

0<br />

P t<br />

Did<br />

<br />

P<br />

p<br />

DA<br />

DA<br />

t<br />

dt<br />

dP<br />

dt<br />

<br />

Di<br />

DA<br />

DP<br />

<br />

<br />

q <br />

DP<br />

<br />

<br />

q <br />

i<br />

DP<br />

<br />

<br />

q <br />

<br />

id<br />

DP<br />

<br />

d<br />

<br />

q<br />

<br />

<br />

d ln<br />

<br />

d<br />

t c<br />

1<br />

t<br />

c<br />

t c<br />

D P<br />

dt<br />

q<br />

0<br />

t<br />

c<br />

c<br />

<br />

DP<br />

<br />

d<br />

<br />

q <br />

dt<br />

i<br />

DP<br />

<br />

q<br />

DP<br />

<br />

q<br />

DP<br />

<br />

q<br />

p<br />

p<br />

p<br />

<br />

<br />

<br />

<br />

<br />

<br />

i<br />

id<br />

<br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

d DP<br />

p<br />

q<br />

<br />

d ln t<br />

1<br />

t<br />

t<br />

ca<br />

ca<br />

ca<br />

D P<br />

q<br />

tca<br />

0<br />

ca<br />

p<br />

<br />

DP<br />

d<br />

<br />

q<br />

dt<br />

<br />

p<br />

dt<br />

<br />

<br />

i


NPI (Normalized Pressure Integral):<br />

Diagnostics<br />

Transient<br />

Normalized<br />

Pressure<br />

Typecruve<br />

Integral - Derivative<br />

Typecurve<br />

Boundary<br />

Dominated


NPI (Normalized Pressure Integral):<br />

Calculation of Parameters- Oil<br />

Oil - Radial<br />

khDP<br />

P D<br />

141. 2q<br />

0.00634kt<br />

<br />

c<br />

DA<br />

2<br />

C tre<br />

t<br />

<br />

<br />

141.2 PD<br />

k <br />

h DP<br />

<br />

<br />

q <br />

match<br />

r<br />

r<br />

e<br />

wq<br />

<br />

<br />

<br />

<br />

<br />

0.00634k<br />

t<br />

C<br />

<br />

<br />

t t<br />

re<br />

r<br />

wa<br />

r<br />

e<br />

<br />

<br />

<br />

match<br />

c<br />

DA<br />

<br />

<br />

match<br />

S<br />

r<br />

ln<br />

<br />

r<br />

w<br />

wa<br />

<br />

<br />

N<br />

<br />

<br />

<br />

.00634 141.2S<br />

PD<br />

<br />

<br />

<br />

C<br />

DP<br />

<br />

t 5.615*1000 <br />

<br />

q <br />

0 0<br />

match<br />

t<br />

<br />

t<br />

c<br />

DA<br />

<br />

<br />

match<br />

(MBBIS)


NPI (Normalized Pressure Integral):<br />

Calculation of Parameters- Gas<br />

Gas – Radial<br />

P<br />

D<br />

khDP<br />

0.00634kt<br />

p<br />

ca<br />

t<br />

DA<br />

<br />

2<br />

1.4176Tq<br />

iC<br />

tire<br />

<br />

<br />

1.4176T<br />

PD<br />

k <br />

h DP<br />

<br />

q<br />

p<br />

<br />

<br />

<br />

<br />

<br />

<br />

match<br />

r<br />

e<br />

<br />

0.00634k<br />

t<br />

iC<br />

<br />

<br />

ti t<br />

ca<br />

DA<br />

<br />

<br />

match<br />

r<br />

wa<br />

G <br />

re<br />

<br />

re<br />

<br />

<br />

r<br />

<br />

wa <br />

match<br />

r<br />

S ln<br />

<br />

r<br />

0.006341.4176S<br />

g<br />

PT<br />

i sc t P<br />

9<br />

c z P<br />

i<br />

ti<br />

i<br />

sc<br />

<br />

t<br />

ca<br />

DA<br />

<br />

<br />

w<br />

wa<br />

<br />

<br />

match<br />

<br />

<br />

D<br />

DP<br />

<br />

q<br />

p<br />

<br />

<br />

<br />

<br />

<br />

<br />

match<br />

*10<br />

(bcf)


Transient (tD format) Typecurves<br />

Transient typecurves plot a normalized rate against material balance time<br />

(similar to other methods), but use a dimensionless time based on<br />

WELLBORE RADIUS (welltest definition of dimensionless time), rather<br />

than AREA. The analysis consists of two sets of typecurves:<br />

1. Normalized rate vs. tc (material balance time)<br />

2. Inverse pressure integral - derivative vs. tc<br />

- Transient typecurves are designed for analyzing EARLY-TIME data to<br />

estimate PERMEABILITY and SKIN. They should not be used (on their<br />

own) for estimating fluid-in-place<br />

- Because of the tD format, the typecurves blend together in the early-time<br />

and diverge during boundary dominated flow (opposite of tDA and tDd<br />

format typecurves)


Transient versus Boundary<br />

Scaling Formats<br />

log(q D )<br />

log(q Dd )<br />

log(t D )<br />

log(t Dd )


Transient (tD format) Typecurves:<br />

Definitions<br />

Normalized Rate<br />

Inverse Pressure<br />

Integral<br />

1/ P<br />

Di<br />

Typecurves Data - Oil Data - Gas<br />

141.2q<br />

q<br />

q<br />

<br />

khDP<br />

DP<br />

DP<br />

q D<br />

t<br />

1<br />

DA<br />

<br />

Pp<br />

t<br />

dt<br />

<br />

tDA<br />

0 <br />

1<br />

DP<br />

1<br />

Inv<br />

<br />

q i<br />

<br />

tc<br />

t<br />

c<br />

0<br />

DP<br />

<br />

dt<br />

q <br />

1<br />

DP<br />

Inv<br />

<br />

q<br />

p<br />

p<br />

1<br />

<br />

<br />

t<br />

i ca<br />

t ca<br />

0<br />

DP<br />

q<br />

p<br />

<br />

dt<br />

<br />

1<br />

Inverse Presssure<br />

Integral - Derivative<br />

1/ P<br />

Did<br />

<br />

t<br />

<br />

DA<br />

dP<br />

dt<br />

Di<br />

DA<br />

<br />

<br />

<br />

1<br />

DP<br />

<br />

Inv<br />

<br />

q <br />

id<br />

<br />

<br />

t<br />

<br />

<br />

<br />

c<br />

DP<br />

<br />

d<br />

<br />

q i<br />

<br />

dt <br />

c<br />

<br />

<br />

1<br />

DP<br />

Inv<br />

<br />

q<br />

p<br />

<br />

<br />

<br />

id<br />

<br />

t<br />

<br />

<br />

<br />

<br />

ca<br />

DP<br />

d<br />

q<br />

dt<br />

ca<br />

p<br />

<br />

<br />

i<br />

<br />

<br />

<br />

<br />

1


Transient (tD format) Typecurves:<br />

Diagnostics (Radial Model)<br />

Transient<br />

Inverse Integral -<br />

Derivative<br />

Typecurve<br />

Transition to Boundary<br />

Dominated occurs at<br />

different points for<br />

different typecurves<br />

Normalized Rate<br />

Typecurve


Transient (tD format) Typecurves:<br />

Finite Conductivity Fracture Model<br />

Increasing Fracture<br />

Conductivity (FCD<br />

stems)<br />

Increasing<br />

Reservoir Size<br />

(xe/xf stems)


Transient (tD format) Typecurves:<br />

Calculations (Radial Model)<br />

Oil Wells:<br />

Using the definition of q D ,<br />

q<br />

D<br />

141.2qB<br />

<br />

kh(<br />

pi<br />

pwf<br />

)<br />

permeability is calculated as follows:<br />

Gas Wells:<br />

For gas wells, q D is defined as follows:<br />

q<br />

D<br />

1.417E6T<br />

<br />

kh<br />

R<br />

q<br />

Dp<br />

p<br />

141.2B<br />

q/<br />

Dp<br />

<br />

k <br />

h qD <br />

From the definition of t D ,<br />

match<br />

The permeability is calculated from above, as follows:<br />

1.417E6TR<br />

q/<br />

Dpp<br />

<br />

k <br />

h qD<br />

<br />

match<br />

t<br />

D<br />

<br />

0.00634kt<br />

2<br />

ctrwa<br />

c<br />

From the definition of t D and k, r wa is calculated as follows<br />

r wa is calculated as follows:<br />

r<br />

wa<br />

<br />

0.00634 141.2B<br />

q/<br />

Dp<br />

<br />

<br />

ct<br />

h qD<br />

<br />

match<br />

tc<br />

<br />

<br />

tD<br />

<br />

match<br />

r<br />

wa<br />

<br />

0.00634 1.417E6T<br />

<br />

icti<br />

h<br />

Skin is calculated as follows:<br />

R<br />

<br />

t<br />

<br />

<br />

t<br />

ca<br />

D<br />

<br />

<br />

<br />

match<br />

q/<br />

Dpp<br />

<br />

<br />

qD<br />

<br />

match<br />

Skin is calculated as follows:<br />

rw <br />

s ln<br />

<br />

rwa<br />

s <br />

rw <br />

ln<br />

<br />

rwa


Flowing Material Balance


Flowing p/z Method for Gas –<br />

Constant Rate<br />

p<br />

z<br />

p<br />

zi<br />

wf<br />

wf<br />

i<br />

- Mattar L., McNeil, R., "The 'Flowing' Gas<br />

Material Balance", JCPT, Volume 37 #2, 1998<br />

Pressure loss due to flow<br />

in reservoir (Darcy’s Law)<br />

is constant with time<br />

p<br />

z<br />

<br />

<br />

<br />

<br />

p<br />

z<br />

<br />

<br />

<br />

wf<br />

constant<br />

Measured at well<br />

during flow<br />

Gi<br />

Gp


Graphical Flowing p/z Method<br />

for Gas – Variable Rate<br />

p<br />

z<br />

i<br />

i<br />

p<br />

z<br />

wf<br />

wf<br />

Graphical Method Doesn’t<br />

Work!<br />

G i ?<br />

Measured at well<br />

during flow<br />

Gp


Flowing p/z Method for Gas –<br />

Variable Rate<br />

p<br />

z<br />

p<br />

zi<br />

wf<br />

wf<br />

i<br />

Pressure loss due to flow<br />

in reservoir is NOT<br />

constant<br />

p<br />

z<br />

<br />

<br />

<br />

<br />

p<br />

z<br />

<br />

<br />

<br />

wf<br />

<br />

qb<br />

pss<br />

Unknown<br />

Measured at well<br />

during flow<br />

Gi<br />

Gp


Flowing Pressure, psi<br />

Variable Rate p/z – Procedure (1)<br />

Unnamed Well<br />

Flowing Material Balance<br />

Legend<br />

Static P/Z *<br />

P/Z Line<br />

Flow ing Pressure<br />

550<br />

500<br />

Step 1: Estimate OGIP and<br />

plot a straight line from pi/zi<br />

to OGIP. Include flowing<br />

pressures (p/z)wf on plot<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Original Gas In Place<br />

50<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70<br />

0<br />

Cumulative Production, Bscf


Productivity Index, MMscfd/(10 6 psi 2 /cP)<br />

Flowing Pressure, psi<br />

Variable Rate p/z – Procedure (2)<br />

Unnamed Well<br />

Flowing Material Balance<br />

4.40<br />

4.00<br />

3.60<br />

3.20<br />

2.80<br />

2.40<br />

2.00<br />

1.60<br />

Legend<br />

Static P/Z *<br />

P/Z Line<br />

Flow ing Pressure<br />

Productivity Index<br />

Step 2: Calculate bpss for<br />

each production point using<br />

the following formula:<br />

b<br />

pss<br />

p p<br />

<br />

z line<br />

z <br />

<br />

q<br />

wf<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

1.20<br />

0.80<br />

Plot 1/bpss as a function of<br />

Gp<br />

150<br />

100<br />

0.40<br />

Original Gas In Place<br />

50<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70<br />

0<br />

Cumulative Production, Bscf


Productivity Index, MMscfd/(10 6 psi 2 /cP)<br />

Flowing Pressure, psi<br />

Variable Rate p/z – Procedure (3)<br />

Unnamed Well<br />

Flowing Material Balance<br />

4.40<br />

4.00<br />

3.60<br />

3.20<br />

2.80<br />

Legend<br />

Static P/Z *<br />

P/Z Line<br />

Flow ing Pressure<br />

Productivity Index<br />

Step 3: 1/bpss should tend<br />

towards a flat line. Iterate on<br />

OGIP estimates until this<br />

happens<br />

550<br />

500<br />

450<br />

400<br />

350<br />

2.40<br />

300<br />

2.00<br />

250<br />

1.60<br />

200<br />

1.20<br />

150<br />

0.80<br />

100<br />

0.40<br />

Original Gas In Place 50<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70<br />

0<br />

Cumulative Production, Bscf


Productivity Index, MMscfd/(10 6 psi 2 /cP)<br />

P/Z * , Flowing Pressure, psi<br />

Variable Rate p/z – Procedure (4)<br />

Unnamed Well<br />

Flowing Material Balance<br />

4.40<br />

4.00<br />

3.60<br />

3.20<br />

2.80<br />

2.40<br />

2.00<br />

1.60<br />

Legend<br />

Static P/Z *<br />

P/Z Line<br />

Flow ing P/Z *<br />

Step 4: Plot p/z points on the<br />

p/z line using the following<br />

formula:<br />

p p<br />

qb<br />

z z <br />

data<br />

“Fine tune” the OGIP estimate<br />

wf<br />

Flow ing Pressure<br />

Productivity Index<br />

pss<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

1.20<br />

150<br />

0.80<br />

100<br />

0.40<br />

1/b pss<br />

Original Gas In Place 50<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70<br />

0<br />

Cumulative Production, Bscf


Specialized


Modeling and History Matching


Modeling and History Matching<br />

1. Pressure Constrained System:<br />

Constraint (Input)<br />

Well Pressure at Sandface<br />

Well / Reservoir<br />

Model<br />

Signal (Output)<br />

Production Volumes<br />

2. Rate Constrained System:<br />

Constraint (Input)<br />

Production Volumes<br />

Well / Reservoir<br />

Model<br />

Signal (Output)<br />

Well Pressure at Sandface


Modeling and History Matching<br />

Models - Radial<br />

Rectangular reservoir with a vertical well located anywhere inside.<br />

Models - Horizontal<br />

Rectangular reservoir with a horizontal well located anywhere inside.<br />

L<br />

Models - Fracture<br />

Rectangular reservoir with a vertical infinite conductivity fracture located anywhere inside.


A Systematic and Comprehensive<br />

Method for Analysis


Modern Production Analysis<br />

Methodology<br />

Diagnostics<br />

Interpretation and<br />

Analysis<br />

Modeling and<br />

History Matching<br />

Forecasting<br />

- Data Validation<br />

- Reservoir signal<br />

extraction<br />

- Identifying dominant<br />

flow regimes<br />

- Estimating reservoir<br />

characteristics<br />

- Identifying important<br />

system parameters<br />

- Qualifying<br />

uncertainty<br />

- Validating interpretation<br />

- Optimizing solution<br />

- Enabling additional<br />

flexibility and complexity<br />

- Reserves<br />

- Optimization scenarios<br />

- Data Chart<br />

- Typecurves<br />

- Traditional<br />

- Fetkovich<br />

- Blasingame<br />

- AG / NPI<br />

- Flowing p/z<br />

- Transient<br />

- Analytical Models<br />

- Numerical Models


Practical Diagnostics


What are diagnostics?<br />

• Qualitative investigation of data<br />

– Pre-analysis, pre-modeling<br />

– Must be quick and simple<br />

• A VITAL component of production data<br />

analysis (and reservoir engineering in<br />

general)


Pressure , psi<br />

Illustration- Typical Dataset<br />

Unnamed Well<br />

Data Chart<br />

28<br />

26<br />

5.50<br />

Legend<br />

Pressure<br />

Actual Gas Data<br />

1600<br />

1500<br />

24<br />

5.00<br />

1400<br />

22<br />

20<br />

18<br />

4.50<br />

4.00<br />

1300<br />

1200<br />

1100<br />

1000<br />

16<br />

3.50<br />

900<br />

Gas , MMcfd<br />

Liquid Rates , bbl/d<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540<br />

Time, days<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0


“Face Value” Analysis of Data<br />

OGIP = 90 bcf


Pressure , psi<br />

Go Back: Diagnostics<br />

Unnamed Well<br />

Data Chart<br />

28<br />

26<br />

5.50<br />

Legend<br />

Pressure<br />

Actual Gas Data<br />

1600<br />

1500<br />

24<br />

5.00<br />

1400<br />

22<br />

20<br />

4.50<br />

1300<br />

1200<br />

18<br />

4.00<br />

1100<br />

1000<br />

Liquid Rates , bbl/d<br />

16<br />

3.50<br />

Unnamed Well<br />

Data Chart<br />

900<br />

14<br />

3.00<br />

Legend<br />

Pressure<br />

Actual Gas Data<br />

800<br />

Gas , MMcfd<br />

12<br />

700<br />

10<br />

2.50<br />

600<br />

8<br />

6<br />

4<br />

2<br />

2.00<br />

1.50<br />

1.00<br />

Pressures are not<br />

representative of<br />

bh deliverability<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.50<br />

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540<br />

Time, days<br />

0


Liquid Rates , bbl/d<br />

Gas , MMcfd<br />

Pressure , psi<br />

Correct Data Used<br />

6.00<br />

5.50<br />

Unnamed Well<br />

5.50<br />

5.00<br />

Data Chart<br />

Legend<br />

Pressure<br />

Actual Gas Data<br />

Oil Production<br />

Water Production<br />

7400<br />

7200<br />

7000<br />

5.00<br />

4.50<br />

6800<br />

4.50<br />

6600<br />

4.00<br />

4.00<br />

6400<br />

3.50<br />

3.50<br />

6200<br />

3.00<br />

3.00<br />

6000<br />

2.50<br />

2.00<br />

2.50<br />

2.00<br />

5800<br />

5600<br />

5400<br />

OGIP = 19 bcf<br />

1.50<br />

1.00<br />

1.50<br />

5200<br />

5000<br />

0.50<br />

1.00<br />

4800<br />

0.00<br />

0.50<br />

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540<br />

Time, days<br />

4600


Diagnostics using Typecurves<br />

Radial Model<br />

Blasingame Typecurve Match<br />

2<br />

8<br />

5<br />

3<br />

2<br />

qDd<br />

10 -7<br />

10 -8<br />

8<br />

5<br />

3<br />

2<br />

10 -9<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

10 -10<br />

10 -11<br />

Transient<br />

(concave up)<br />

Base Model:<br />

- Vertical Well in Center of Circle<br />

- Homogeneous, Single Layer<br />

Boundary Dominated<br />

(concave down)<br />

tDd<br />

4 56 8 2 3 4 5 7 9 2 3 4 5 7 9 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 5 7 2 3 4 5 7<br />

10 -1 1.0 10 1 10 2 10 3 10 4 10 5 10 6 10 7


Diagnostics using Typecurves<br />

Material Balance Diagnostics<br />

Radial Model<br />

Blasingame Typecurve Match<br />

2<br />

10 -7 2<br />

10 -8<br />

qDd<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

Reservoir With<br />

Pressure Support<br />

10 -9<br />

10 -10<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

10 -11<br />

8<br />

5<br />

3<br />

Leaky Reservoir<br />

(interference)<br />

tDd<br />

4 56 8 2 3 4 5 7 9 2 3 4 5 7 9 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 5 7 2 3 4 5 7<br />

10 -1 1.0 10 1 10 2 10 3 10 4 10 5 10 6 10 7


Diagnostics using Typecurves<br />

Productivity Diagnostics<br />

Radial Model<br />

Blasingame Typecurve Match<br />

2<br />

8<br />

5<br />

3<br />

2<br />

Increasing Damage (difficult to identify)<br />

qDd<br />

10 -7 2<br />

10 -8<br />

10 -9<br />

10 -10<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

Well Cleaning Up<br />

Liquid Loading<br />

Productivity Shifts<br />

(workover,<br />

unreported tubing<br />

change)<br />

10 -11<br />

8<br />

5<br />

3<br />

tDd<br />

4 56 8 2 3 4 5 7 9 2 3 4 5 7 9 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 5 7 2 3 4 5 7<br />

10 -1 1.0 10 1 10 2 10 3 10 4 10 5 10 6 10 7


Diagnostics using Typecurves<br />

Transient Flow Diagnostics<br />

Radial Model<br />

Blasingame Typecurve Match<br />

qDd<br />

10 -8<br />

10 -9<br />

2<br />

10 -7 2<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

Radial Flow<br />

Damaged<br />

Fracture Linear Flow<br />

(Stimulated)<br />

Transitionally<br />

Dominated Flow (eg:<br />

Channel or Naturally<br />

Fractured)<br />

3<br />

2<br />

10 -10<br />

8<br />

5<br />

3<br />

2<br />

10 -11<br />

8<br />

5<br />

3<br />

tDd<br />

4 56 8 2 3 4 5 7 9 2 3 4 5 7 9 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 5 7 2 3 4 5 7<br />

10 -1 1.0 10 1 10 2 10 3 10 4 10 5 10 6 10 7


Diagnostics using Typecurves<br />

“Bad Data” Diagnostics<br />

Radial Model<br />

Blasingame Typecurve Match<br />

2<br />

10 -7 2<br />

qDd<br />

10 -8<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

Dp in reservoir is too low<br />

-Tubing size too small ?<br />

- Initial pressure too low ?<br />

- Wellbore correlations<br />

overestimate pressure loss ?<br />

10 -9<br />

10 -10<br />

8<br />

5<br />

3<br />

2<br />

8<br />

5<br />

3<br />

2<br />

Dp in reservoir is too high<br />

-Tubing size too large ?<br />

- Initial pressure too high ?<br />

- Wellbore correlations<br />

underestimate pressure loss ?<br />

10 -11<br />

8<br />

5<br />

3<br />

tDd<br />

4 56 8 2 3 4 5 7 9 2 3 4 5 7 9 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 56 8 2 3 4 5 7 2 3 4 5 7<br />

10 -1 1.0 10 1 10 2 10 3 10 4 10 5 10 6 10 7


Selected Topics and Examples


Tight Gas


Industry Migration to Tight Gas<br />

Reservoirs


Production Analysis – Tight Gas versus<br />

<strong>Conventional</strong> Gas<br />

‣ Analysis methods are no different from that<br />

of high permeability reservoirs<br />

‣ Transient effects tend to be more dominant<br />

– Establishing the region (volume) of<br />

influence is critical<br />

‣ Drainage shape becomes more important<br />

(Transitional effects)<br />

‣ Linear flow is more common<br />

‣ Layer effects are more common


qDd<br />

Tight Gas- Common Geometries<br />

Tight Gas Type Curves<br />

1.00E-05<br />

Infinite acting reservoir<br />

1.00E-06<br />

1.00E-07<br />

1/2<br />

1.00E-08<br />

1.00E-09<br />

1<br />

1.00E-10<br />

Linear flow<br />

dominated<br />

Limited, bounded<br />

drainage area<br />

1.00E-11<br />

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04<br />

tDd


Tight Gas Model 1<br />

‣ Extensive, continuous porous media; very low<br />

permeability<br />

Pi = 2000 psi<br />

1800 psi<br />

Pi = 1500 psi


qDd<br />

Infinite Acting System<br />

Tight Gas Type Curves<br />

1.00E-05<br />

1.00E-06<br />

1.00E-07<br />

1/2<br />

1.00E-08<br />

1.00E-09<br />

1.00E-10<br />

1.00E-11<br />

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04<br />

tDd


Normalized Rate<br />

Normalized Rate<br />

Example#1 – Infinite Acting System<br />

10<br />

Agarwal Gardner Rate vs Time Typecurve Analysis<br />

10<br />

Agarwal Gardner Rate vs Time Typecurve Analysis<br />

2<br />

2<br />

6<br />

6<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

10 1<br />

10 1<br />

7<br />

7<br />

5<br />

5<br />

3<br />

3<br />

2<br />

2<br />

1.0<br />

9<br />

1.0<br />

9<br />

6<br />

6<br />

4<br />

3<br />

4<br />

3<br />

2<br />

2<br />

10 -1<br />

10 -1<br />

7<br />

5<br />

7<br />

5<br />

3<br />

3<br />

2<br />

2<br />

10 2 2<br />

10 -2<br />

7<br />

5<br />

10 2 2<br />

10 -2<br />

7<br />

5<br />

3<br />

3<br />

2 3 4 5 6 7 8 2 3 4 5 6 78 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

Material Balance Pseudo Time<br />

2 3 4 5 6 7 8 2 3 4 5 6 78 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

Material Balance Pseudo Time<br />

k = 0.08 md<br />

xf = 53 ft<br />

OGIP = 10 bcf<br />

k = 0.08 md<br />

xf = 53 ft<br />

Minimum OGIP = 2.6 bcf


Tight Gas Model 2<br />

‣ No flow continuity across reservoir- Well only<br />

drains a limited bounded volume<br />

Example: Lenticular Sands


qDd<br />

Bounded Reservoir<br />

Tight Gas Type Curves<br />

1.00E-05<br />

1.00E-06<br />

1.00E-07<br />

1/2<br />

1.00E-08<br />

1.00E-09<br />

1.00E-10<br />

- Limited or no flow continuity in reservoir<br />

- Very small drainage areas<br />

- Very large effective fracture lengths<br />

1<br />

1.00E-11<br />

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04<br />

tDd<br />

Commonly observed in practice


OGIP (bcf) .<br />

Frequency .<br />

Normalized Rate<br />

Example #2- Bounded Drainage<br />

Areas<br />

10<br />

ROBINSON 11-1 ALT<br />

2<br />

Blasingame Typecurve Analysis<br />

9<br />

8<br />

- West Louisiana gas field<br />

- 80 acre average spacing<br />

- All wells in boundary dominated flow<br />

10 1 2<br />

1.0<br />

7<br />

5<br />

3<br />

2<br />

7<br />

5<br />

3<br />

2<br />

7<br />

10 -1<br />

7<br />

5<br />

3<br />

6<br />

10 -2<br />

2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78 2 3 4 5 6 78<br />

10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

5<br />

Material Balance Pseudo Time<br />

4<br />

3<br />

35<br />

30<br />

25<br />

120%<br />

100%<br />

80%<br />

20<br />

2<br />

15<br />

60%<br />

1<br />

10<br />

5<br />

40%<br />

20%<br />

0<br />

0 100 200 300 400 500 600<br />

xf (feet)<br />

0<br />

10 20 30 40 50 60 70 80 90 100 More<br />

Drainage Area (acres)<br />

Frequency Cumulative %<br />

0%


Tight Gas Model 3<br />

‣ Linear flow dominated system<br />

Example: Naturally fractured, tight reservoir<br />

ky<br />

kx


Infinite Systems versus Linear Flow<br />

Systems<br />

Establish<br />

permeability and<br />

xf independently<br />

Establish xf sqrt<br />

(k) product only


qDd<br />

Linear Flow Systems<br />

Tight Gas Type Curves<br />

1.00E-05<br />

1.00E-06<br />

1.00E-07<br />

1/2<br />

1.00E-08<br />

1.00E-09<br />

1.00E-10<br />

- Channel and faulted reservoirs<br />

- Naturally fractured (anisotropic) reservoirs<br />

- Very large effective fracture lengths<br />

- Very difficult to uniquely interpret<br />

1.00E-11<br />

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04<br />

tDd<br />

Commonly observed in practice


ye<br />

yw<br />

Example #3- Linear Flow System<br />

Fracture Model<br />

Blasingame Typecurve Match<br />

5<br />

4<br />

3<br />

2<br />

k = 1.1 md<br />

xf = 511 ft<br />

ye = 5,500 ft<br />

yw = 2,900 ft<br />

10 -7 5<br />

7<br />

5<br />

4<br />

3<br />

2<br />

2xf<br />

10 -8<br />

9<br />

7<br />

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8<br />

10 1 10 2 10 3


More Examples


Normalized Rate<br />

Example #3- Multiple Layers<br />

Blasingame Typecurve Analysis<br />

3<br />

Well<br />

Multi Layer Model<br />

Blasingame Typecurve Match<br />

10 -8 2<br />

1.0<br />

2<br />

7<br />

5<br />

4<br />

3<br />

8<br />

7<br />

2<br />

6<br />

5<br />

4<br />

3<br />

2<br />

10 -9<br />

8<br />

6<br />

4<br />

3<br />

10 -1<br />

9<br />

3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9<br />

10 -1 1.0<br />

Material Balance Pseudo Time<br />

10 -10<br />

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8<br />

1.0 10 1 10 2 10 3 10 4<br />

- Blasingame typecurve match, using Fracture Model<br />

- Pressure support indicated<br />

- Three-Layer Model (one layer with very low<br />

permeability) used, late-time match improved


Normalized Rate<br />

Example #4- Shale Gas<br />

Well<br />

Agarwal Gardner Rate vs Time Typecurve Analysis<br />

5<br />

4<br />

3<br />

2<br />

- Multi-stage fractures, horizontal well<br />

- Analyzed as a vertical well in a circle<br />

1.0<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

10 -1<br />

9<br />

7<br />

6<br />

5<br />

4<br />

3<br />

k = 0.02 md<br />

s = -4<br />

OGIP = 4.5 bcf<br />

6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9<br />

10 -3 10 -2 10 -1 1.0<br />

Material Balance Pseudo Time


Tight Gas: Assessing Reserve Potential<br />

– Recovery Plots<br />

‣ Objectives<br />

‣ Determine incremental reserves that are added as the<br />

ROI expands into the reservoir (only relevant for<br />

infinite or semi-infinite systems)<br />

‣ To establish a practical range of Expected Ultimate<br />

Recovery


EUR (bcf)<br />

Typical Recovery Profile<br />

Recovery Curves for k = 1 md<br />

10<br />

9<br />

8<br />

7<br />

1 md reservoir, unfractured<br />

(~10 bcf / section)<br />

100% Recovery<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)


EUR (bcf)<br />

Typical Recovery Profile<br />

Recovery Curves for k = 1 md<br />

10<br />

9<br />

8<br />

7<br />

1 md reservoir, unfractured<br />

(~10 bcf / section)<br />

100% Recovery<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Actual EUR (qab = 0.05 MMscfd)<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)<br />

EUR- unlimited time


EUR (bcf)<br />

Typical Recovery Profile<br />

Recovery Curves for k = 1 md<br />

10<br />

9<br />

8<br />

7<br />

1 md reservoir, unfractured<br />

(~10 bcf / section)<br />

100% Recovery<br />

6<br />

5<br />

30 Year Limited<br />

4<br />

3<br />

Actual EUR (qab = 0.05 MMscfd)<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)<br />

EUR- 30 year<br />

EUR- unlimited time


EUR (bcf)<br />

Typical Recovery Profile<br />

Recovery Curves for k = 1 md<br />

10<br />

9<br />

8<br />

7<br />

1 md reservoir, unfractured<br />

(~10 bcf / section)<br />

100% Recovery<br />

6<br />

5<br />

30 Year Limited<br />

4<br />

3<br />

2<br />

20 Year Limited<br />

Actual EUR (qab = 0.05 MMscfd)<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)<br />

EUR- 30 year EUR- 20 year EUR- unlimited time


EUR (bcf)<br />

Tight Gas Recovery Profile<br />

Recovery Curves for k = 0.02 md<br />

10<br />

9<br />

8<br />

7<br />

6<br />

0.02 md reservoir,<br />

fractured<br />

(~10 bcf / section)<br />

Actual EUR (qab = 0.05 MMscfd)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)<br />

EUR- unlimited time


EUR (bcf)<br />

Tight Gas Recovery Profile<br />

Recovery Curves for k = 0.02 md<br />

10<br />

9<br />

8<br />

7<br />

6<br />

0.02 md reservoir,<br />

fractured<br />

(~10 bcf / section)<br />

Actual EUR (qab = 0.05 MMscfd)<br />

5<br />

4<br />

30 Year<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)<br />

EUR- 30 year<br />

EUR- unlimited time


EUR (bcf)<br />

Tight Gas Recovery Profile<br />

Recovery Curves for k = 0.02 md<br />

10<br />

9<br />

8<br />

7<br />

0.02 md reservoir, fractured<br />

(~10 bcf / section)<br />

Actual EUR (qab = 0.05 MMscfd)<br />

6<br />

5<br />

4<br />

3<br />

20 Year<br />

30 Year<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)<br />

EUR- 30 year EUR- 20 year EUR- unlimited time


EUR (bcf)<br />

Tight Gas Recovery Profile<br />

Recovery Curves for k = 0.02 md<br />

10<br />

9<br />

8<br />

7<br />

6<br />

0.02 md reservoir,<br />

fractured<br />

(~10 bcf / section)<br />

Actual EUR (qab = 0.05 MMscfd)<br />

Max EUR (30 y) = 2 bcf<br />

5<br />

4<br />

3<br />

20 Year<br />

30 Year<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Original Gas in Place (bcf)<br />

EUR- 30 year EUR- 20 year EUR- unlimited time


Example – South Texas, Deep<br />

Gas Well<br />

Fracture Model<br />

AG Typecurve Match<br />

3<br />

2<br />

10 -8 7<br />

7<br />

5<br />

4<br />

3<br />

Sqrt k X xf = 155<br />

Min OGIP = 4.2 bcf<br />

2<br />

10 -9<br />

9<br />

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8<br />

1.0 10 1 10 2 10 3


EUR (bcf)<br />

Example – South Texas, Deep<br />

Gas Well<br />

Recovery Plot - Linear System<br />

7<br />

6<br />

Maximum EUR = 6.7 bcf<br />

5<br />

4<br />

Minimum EUR = 3.5 bcf<br />

Recovery period = 30 years<br />

sqrt k X xf = 155<br />

pi = 6971 psia<br />

3<br />

2<br />

1<br />

0<br />

0 100 200 300 400 500 600<br />

ROI (acres)


Water Drive Models


Water Drive (Aquifer) Models:<br />

Models for reservoirs under the influence of active water encroachment can<br />

be categorized as follows:<br />

1. Steady State Models (inaccurate for finite reservoir sizes)<br />

- Schilthuis<br />

2. Pseudo Steady-State Models (geometry independent,<br />

time discretized)<br />

- Fetkovich<br />

3. Single Phase Transient Models (geometry dependent)<br />

- infinite aquifer (linear, radial or layer geometry)<br />

- finite aquifer (linear, radial or layer geometry)<br />

4. Modified Transient Models<br />

- Moving saturation front approximations<br />

- Two phase flow approximations


Water Drive (Aquifer) Models:<br />

Pseudo Steady-State Models<br />

PSS models (such as that of Fetkovich) use a TRANSFER<br />

COEFFICIENT (similar to a well productivity index) to describe the<br />

PSS rate of water influx into the reservoir, in conjunction with a<br />

MATERIAL BALANCE model that predicts the decline in reservoir<br />

boundary pressure over time.<br />

The Fetkovich model is generally used to determine reservoir fluidin-place<br />

by history matching the CUMULATIVE PRODUCTION and<br />

AVERAGE RESERVOIR PRESSURE.


Water Drive (Aquifer) Models:<br />

Pseudo Steady-State Models<br />

Advantages:<br />

- Geometry independent (applicable to aquifers of any shape, size or<br />

connectivity to the reservoir)<br />

- Works well for finite sized aquifers of medium to high mobility<br />

- Computationally efficient<br />

Disadvantages:<br />

- Does not provide a full time solution (transient effects are ignored)<br />

- Does not work well for infinite acting or very low mobility aquifers


Water Drive (Aquifer) Models:<br />

Pseudo Steady-State Model- Equations<br />

The Fetkovich water influx equation for a finite aquifer is:<br />

W<br />

W<br />

p<br />

pi-p<br />

/<br />

1 Jpit<br />

We<br />

e <br />

<br />

<br />

<br />

e <br />

ei<br />

i<br />

i<br />

Aquifer transfer coefficient<br />

Initial encroachable water<br />

Reservoir boundary pressure<br />

The above equation applies to the water influx due to a constant pressure difference between aquifer and<br />

reservoir. In practice, the reservoir pressure “p” will be declining with time. Thus, the equation must be<br />

discretized as follows:<br />

D W<br />

e<br />

n<br />

W <br />

p<br />

ei<br />

i<br />

pa<br />

- p <br />

n<br />

/<br />

1<br />

1 <br />

Jpit<br />

Wei<br />

<br />

<br />

n<br />

e<br />

<br />

<br />

The average aquifer pressure at the previous timestep (n-1) is evaluated explicitly, as follows:<br />

(1)<br />

n 1<br />

<br />

DWej<br />

<br />

j1<br />

pa<br />

n<br />

pi<br />

1<br />

ei<br />

<br />

<br />

<br />

<br />

1<br />

<br />

<br />

W


Water Drive (Aquifer) Models:<br />

Pseudo Steady-State Model- Equations<br />

Now, we have one equation with two unknowns (water influx “W e ” and reservoir boundary<br />

pressure “p”)<br />

But there is another equation that relates the average reservoir pressure to the amount of water<br />

influx: the material balance equation for a gas reservoir under water drive.<br />

p<br />

z<br />

<br />

pi<br />

zi<br />

G<br />

1<br />

<br />

G<br />

p<br />

i<br />

<br />

<br />

<br />

WeB<br />

1<br />

<br />

Gi<br />

i<br />

<br />

<br />

<br />

-1<br />

Cumulative Production<br />

FVF at initial conditions<br />

Gas-in-place<br />

As with the water influx equation, the material balance equation can be discretized in time:<br />

<br />

<br />

<br />

p<br />

z<br />

<br />

<br />

<br />

n<br />

<br />

pi<br />

zi<br />

Gp<br />

1<br />

<br />

Gi<br />

n<br />

<br />

<br />

<br />

We<br />

B<br />

1<br />

<br />

n<br />

Gi<br />

i<br />

<br />

<br />

<br />

-1<br />

(2)<br />

Equations 1 and 2 are now solved simultaneously at each timestep, to obtain a discretized<br />

reservoir pressure and water influx profile through time.


Water Drive (Aquifer) Models:<br />

Transient Models<br />

Transient models use the full solution to the hydraulic DIFFUSIVITY EQUATION to<br />

model rates and pressures.<br />

The transient equations can be used to model either FINITE or INFINITE acting<br />

aquifers. There are a number of different transient models available for analyzing<br />

a reservoir under active water drive:<br />

- Radial Composite (edge water drive)<br />

- Linear (edge water drive)<br />

- Layered (bottom water drive)<br />

Advantages:<br />

- Offers full continuous pressure solution in the reservoir<br />

- Includes early time effects<br />

Disadvantages:<br />

- Geometry dependent (only a disadvantage if aquifer properties are unknown)<br />

- Limited to assumption of single phase flow<br />

- Does not account for water influx


Water Drive (Aquifer) Typecurves:<br />

Radial Composite Model<br />

Blasingame, AG and NPI dimensionless formats can be used to plot<br />

typecurves for SINGLE PHASE production (oil or gas) from a reservoir under<br />

the influence of an EDGE WATER DRIVE. A typecurve match using this<br />

model can be used to predict<br />

1. Reservoir fluid-in-place<br />

2. Aquifer mobility<br />

- These typecurves are designed to estimate fluid-in-place by<br />

detecting the shift in fluid mobility as the transient passes the reservoir<br />

boundaries, into the aquifer.<br />

- Their usefulness is limited to single phase flow (ie: the transition from<br />

reservoir fluid to aquifer is assumed to be abrupt)


Water Drive (Aquifer) Typecurves:<br />

Definitions<br />

Model Type: Radial Composite (two zones);<br />

outer zone is of infinite extent<br />

Reservoir<br />

Aquifer<br />

Mobility Ratio (M):<br />

M<br />

<br />

M<br />

M<br />

aq<br />

res<br />

<br />

k<br />

k<br />

aq<br />

res<br />

<br />

<br />

res<br />

aq


Water Drive (Aquifer) Typecurves:<br />

Diagnostics<br />

M=10 (Constant Pressure System<br />

(approx))<br />

Decreasing reD value<br />

Increasing Aquifer Mobility<br />

(M)<br />

M=0 (Volumetric Depletion)


Water Drive (Aquifer) Typecurves:<br />

Diagnostics<br />

M=10 (Constant Pressure System<br />

(approx))<br />

Increasing Aquifer Mobility<br />

(M)<br />

Decreasing reD value<br />

M=0 (Volumetric Depletion)


Water Drive (Aquifer) Models:<br />

Modified Transient Models<br />

1. Moving aquifer front (reservoir boundary)<br />

The radial composite model previously discussed can be enhanced to<br />

accommodate a shrinking reservoir boundary, caused by water influx.<br />

This is achieved by discretizing the transient solution in time and using<br />

the PSS water influx equations to predict the advancement of the aquifer<br />

front. The solution still assumes single phase flow, but can now more<br />

accurately estimate the time to water breakthrough.<br />

2. Two phase flow (after M. Abbaszadeh et al)<br />

The previously discussed model can also be modified to accommodate a<br />

region of two-phase flow (located between the inner region - hydrocarbon<br />

phase and outer region - water phase). Thus, geometrically, the overall<br />

model is three zone composite. The pressure transient solution for the<br />

two-phase zone is calculated by superimposing the single phase<br />

pressure solution on a saturation profile determined using the Buckley-<br />

Leverett equations.


Gas, MMscfd<br />

Normalized Rate, Derivative<br />

Pressure, psi<br />

Normalized Rate<br />

Normalized Rate<br />

Water Drive (Aquifer) Models: Example<br />

Example F<br />

Data Chart<br />

Example F<br />

Blasingame Typecurve Analysis<br />

22<br />

14000<br />

Legend<br />

Pressure<br />

Actual Gas Data 13000<br />

8<br />

6<br />

5<br />

20<br />

12000<br />

4<br />

3<br />

18<br />

11000<br />

2<br />

16<br />

10000<br />

1.0<br />

9000<br />

8<br />

14<br />

8000<br />

6<br />

5<br />

2<br />

10 1 2<br />

12<br />

7000<br />

4<br />

3<br />

10<br />

6000<br />

8<br />

6<br />

4<br />

2<br />

-Gulf coast gas<br />

condensate reservoir<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

10 -1<br />

8<br />

6<br />

5<br />

4<br />

3<br />

-Boundary dominated<br />

-Pressure support evident<br />

0<br />

0<br />

10 -2<br />

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct<br />

2002 2003<br />

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10-3 10-2 10-1 1.0 101 102<br />

Material Balance Pseudo Time<br />

Example F<br />

Agarwal Gardner Rate vs Time Typecurve Analysis<br />

Example F<br />

Blasingame Typecurve Analysis<br />

1.0<br />

8<br />

6<br />

5<br />

Transient Water Drive<br />

Model<br />

8<br />

6<br />

5<br />

4<br />

3<br />

PSS Water Drive Model<br />

4<br />

2<br />

3<br />

2<br />

1.0<br />

8<br />

10 -1<br />

8<br />

6<br />

5<br />

4<br />

3<br />

2<br />

10 -2<br />

8<br />

6<br />

5<br />

4<br />

k = 8.5 md<br />

s = 0<br />

OGIP = 12 bcf<br />

M = 0.001<br />

10 1 6<br />

5<br />

4<br />

3<br />

2<br />

10 -1<br />

8<br />

6<br />

5<br />

4<br />

3<br />

2<br />

k = 3.1 md<br />

s = -4<br />

OGIP = 13.5 bcf<br />

IWIP = 47 MMbbl<br />

PI (aq) = 0.59 bbl/d/psi<br />

3<br />

10 -2<br />

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 2 3 4<br />

10-1 1.0 101 102<br />

Material Balance Pseudo Time<br />

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10-3 10-2 10-1 1.0 101 102<br />

Material Balance Pseudo Time


Multiple Well Analysis


Multi-well / Reservoir-based Analysis-<br />

Available Methods<br />

1. Empirical- Group production decline plots<br />

2. Material Balance Analysis- Shut-in data only<br />

3. Reservoir Simulation<br />

4. Semi-analytic production data analysis methods<br />

- Blasingame approach


Multi-Well Analysis- When is it<br />

required?<br />

1. Situations where high efficiency is required<br />

- Scoping studies / A & D<br />

- Reserves auditing<br />

2. Single well methods sometimes don’t apply<br />

- Interference effects evident in production / pressure<br />

data- Wells producing and shutting in at different times<br />

- Predictive tool for entire reservoir is required<br />

- Complex reservoir behavior in the presence of<br />

multiple wells (multi-phase flow, reservoir<br />

heterogeneities)


Multi-Well Analysis- When is it not<br />

required?<br />

The vast majority of production data can be analyzed<br />

effectively without using multi-well methods<br />

1. Single well reservoirs<br />

2. Low permeability reservoirs<br />

- Pressure transients from different wells in reservoir<br />

do not interfere over the production life of the well<br />

3. Cases where “outer boundary conditions” do not change<br />

too much over the production life of the well<br />

- Wide range of reservoir types


Identifying Interference<br />

Well A<br />

Well B<br />

Rate is adjusted at Well A<br />

Response at Well B<br />

q<br />

Q<br />

Q


Correcting Interference Using<br />

Blasingame et al Method<br />

Define a “total material balance time” function<br />

t<br />

ce<br />

<br />

Q<br />

q<br />

tot<br />

<br />

Q<br />

A<br />

Q<br />

qA<br />

B<br />

(for analyzing Well A)<br />

t ce is used in place of t c to plot the data in the typecurve match


Multi-Well Analysis as a<br />

Typecurve Plot<br />

Analysis of Well A:<br />

log(q/Dp)<br />

MBT is corrected for<br />

interference caused<br />

by production from<br />

Well B<br />

log(tc) t cA t ce<br />

t ce = (Q B +Q A )/q A<br />

Also applies to Agarwal-Gardner, NPI and FMB


Oil / Water Rates, bbl/d<br />

Gas, MMscfd<br />

Pressure, psi<br />

Multi-Well Analysis- Example<br />

Well 1<br />

Data Chart<br />

6.00<br />

5.50<br />

5.00<br />

4.50<br />

2.80<br />

2.60<br />

2.40<br />

2.20<br />

-Three well system<br />

-“Staggered” on-stream dates<br />

-High permeability reservoir<br />

Legend<br />

Pressure<br />

Actual Gas Data<br />

Pool Production<br />

Water Production<br />

36000<br />

34000<br />

32000<br />

30000<br />

28000<br />

26000<br />

4.00<br />

3.50<br />

2.00<br />

1.80<br />

1.60<br />

Aggregate production of well group<br />

24000<br />

22000<br />

20000<br />

3.00<br />

1.40<br />

18000<br />

16000<br />

2.50<br />

1.20<br />

14000<br />

2.00<br />

1.00<br />

12000<br />

0.80<br />

10000<br />

1.50<br />

0.60<br />

8000<br />

1.00<br />

0.50<br />

0.40<br />

0.20<br />

Production history of well to be analyzed<br />

6000<br />

4000<br />

2000<br />

0.00<br />

0.00<br />

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

0


Normalized Rate<br />

Normalized Rate<br />

Multi-Well Analysis- Example<br />

Well 1<br />

Blasingame Typecurve Analysis<br />

10 1 2<br />

7<br />

5<br />

4<br />

3<br />

2<br />

Well 1<br />

Blasingame Typecurve Analysis<br />

10 1 2<br />

1.0<br />

7<br />

5<br />

4<br />

3<br />

2<br />

7<br />

5<br />

4<br />

3<br />

2<br />

10 -1<br />

7<br />

5<br />

4<br />

3<br />

“Leaky reservoir” diagnostic<br />

1.0<br />

7<br />

5<br />

4<br />

3<br />

2<br />

10 -2<br />

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

Material Balance Pseudo Time<br />

10 -1<br />

7<br />

5<br />

4<br />

3<br />

Corrected using multi-well model<br />

Total OGIP = 7 bcf<br />

10 -2<br />

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

Material Balance Pseudo Time


P/Z *, psi<br />

P/Z *, psi<br />

Multi-Well Analysis- Example<br />

Well 1<br />

Flowing Material Balance<br />

Legend<br />

P/Z Line<br />

Flow ing P/Z *<br />

1900<br />

1800<br />

1700<br />

1600<br />

OGIP for subject well = 3.5 bcf<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

Well 1<br />

Flowing Material Balance<br />

Legend<br />

P/Z Line<br />

Flow ing P/Z *<br />

2000<br />

1800<br />

700<br />

600<br />

500<br />

400<br />

Total OGIP = 7.0 bcf<br />

1600<br />

1400<br />

300<br />

1200<br />

Original Gas In Place<br />

200<br />

100<br />

1000<br />

0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00 6.40 6.80 7.20 7.60<br />

Cumulative Production, Bscf<br />

0<br />

800<br />

600<br />

400<br />

Original Gas In Place<br />

200<br />

0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60 6.00 6.40 6.80 7.20 7.60 8.00<br />

0<br />

Cumulative Production, Bscf


Overpressured Reservoirs


Compressibility (1/psi)<br />

Compresibilities of Gas and Rock<br />

Compressibility vs. Pressure (Typical Gas Reservoir)<br />

3.00E-04<br />

gas<br />

2.50E-04<br />

2.00E-04<br />

Formation<br />

energy is<br />

negligible in<br />

this region<br />

Formation<br />

energy may<br />

be influencial<br />

in this region<br />

Formation energy is critical in this region<br />

1.50E-04<br />

1.00E-04<br />

5.00E-05<br />

formation<br />

0.00E+00<br />

0 2000 4000 6000 8000 10000 12000<br />

Reservoir Pressure (psi)


p/z* Model – Corrects Material<br />

Balance<br />

p 1<br />

<br />

p<br />

<br />

Gp<br />

1<br />

z 1 cf( pi<br />

p)<br />

z <br />

<br />

i OGIP<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

*<br />

p<br />

<br />

p<br />

<br />

Gp<br />

1<br />

z z<br />

i OGIP<br />

<br />

<br />

<br />

<br />

<br />

Flowing MB<br />

t<br />

ca<br />

<br />

<br />

<br />

t<br />

ct<br />

i qt ()<br />

q<br />

<br />

ct 1 cf ( pi<br />

p)<br />

0<br />

<br />

<br />

dt<br />

Typecurves


Geomechanical Model – Corrects<br />

Well Productivity<br />

In the standard pressure transient equations, permeability is usually considered to be<br />

constant. There are several situations where this may not be a valid assumption:<br />

1. Compaction in overpressured reservoirs<br />

2. Very low permeability reservoirs in general<br />

3. Unconsolidated and/or fractured formations<br />

One way to account for a variable permeability over time is to modify the definition of<br />

pseudo-pressure and pseudo-time.<br />

Dp<br />

*<br />

p<br />

<br />

where<br />

qpi<br />

( ctZ<br />

) iG<br />

2 *<br />

ta<br />

i<br />

1.417e6*<br />

Tq <br />

<br />

ln<br />

kih<br />

<br />

r<br />

r<br />

e<br />

wa<br />

<br />

3 <br />

<br />

4 <br />

Dp<br />

t<br />

*<br />

p<br />

2<br />

<br />

ki<br />

<br />

pi<br />

pwf<br />

* ( ct)<br />

i<br />

a <br />

i<br />

k<br />

k(<br />

p)<br />

pdp<br />

z<br />

<br />

t<br />

0<br />

kdt<br />

<br />

c<br />

t<br />

Pressure dependent<br />

permeability included in<br />

pseudo-pressure and pseudotime


Normalized Rate<br />

Overpressured Reservoirs -<br />

Example<br />

Blasingame Typecurve Analysis<br />

8<br />

6<br />

5<br />

4<br />

Gulf Coast, deep gas condensate reservoir<br />

3<br />

2<br />

10 1<br />

1.0<br />

8<br />

6<br />

5<br />

4<br />

2<br />

3<br />

2<br />

10 -1<br />

8<br />

6<br />

5<br />

4<br />

3<br />

Boundary dominated flow<br />

OGIP = 17 bcf<br />

10 -2<br />

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

Material Balance Pseudo Time


Rate, MMscfd<br />

Pressure, psi<br />

Overpressured Reservoirs -<br />

Example<br />

80<br />

218 Prod and Pressure Data<br />

Radial Model<br />

History Match<br />

18000<br />

70<br />

16000<br />

60<br />

14000<br />

50<br />

40<br />

Good flowing pressure match,<br />

Poor shut-in pressure match<br />

OGIP = 17 bcf<br />

12000<br />

10000<br />

30<br />

8000<br />

20<br />

6000<br />

10<br />

4000<br />

0<br />

June July August September October<br />

2003<br />

2000


Rate, MMscfd<br />

Pressure, psi<br />

Overpressured Reservoirs -<br />

Example<br />

80<br />

218 Prod and Pressure Data<br />

Radial Model<br />

History Match<br />

18000<br />

70<br />

16000<br />

60<br />

50<br />

40<br />

Good flowing pressure match,<br />

Good shut-in pressure match<br />

OGIP = 29 bcf<br />

14000<br />

12000<br />

10000<br />

30<br />

8000<br />

20<br />

6000<br />

10<br />

4000<br />

0<br />

June July August September October<br />

2003<br />

2000


k / ki<br />

Overpressured Reservoirs -<br />

Example<br />

1.05<br />

1.00<br />

0.95<br />

218 Prod and Pressure Data<br />

Legend<br />

Default<br />

Custom<br />

Interpolation<br />

k (p) Permeability<br />

k (p)<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

Assumed permeability profile<br />

0.60<br />

0.55<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

0 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000<br />

Pressure, psi(a)


Horizontal Wells


Horizontal Wells<br />

Horizontal wells may be analyzed in any of three different<br />

ways, depending on completion and petrophysical details:<br />

1. As a vertical well,<br />

• if lateral length is small compared to drainage area<br />

2. As a fractured well,<br />

• if the formation is very thin<br />

• if the vertical permeability is high<br />

• if the lateral is cased hole with single or multiple stage<br />

fractures<br />

• to get an idea about the contributing lateral length<br />

3. As a horizontal well (Blasingame model)<br />

• all others


Horizontal Wells – Blasingame<br />

Typecurves<br />

The horizontal well typecurve matching procedure is based on a square shaped reservoir with uniform thickness (h).<br />

The well is assumed to penetrate the center of the pay zone.<br />

The procedure for matching horizontal wells is similar to that of vertical wells. However, for horizontal wells, there is<br />

more than one choice of model. Each model presents a suite of typecurves representing a different penetration ratio<br />

(L/2xe) and dimensionless wellbore radius (rwD). The definition of the penetration ratio is illustrated in the following<br />

diagram:<br />

Plan<br />

Cross Section<br />

L<br />

h<br />

L<br />

r wa<br />

2x e<br />

The characteristic dimensionless parameter for each suite of horizontal typecurves is defined as follows:<br />

2x e<br />

2rwa<br />

rwD<br />

<br />

L<br />

Where is the square root of the anisotropic ratio: For an input value of “L”,<br />

<br />

L D<br />

L<br />

2<br />

h<br />

<br />

k<br />

k<br />

h<br />

v


Normalized Rate<br />

Horizontal Wells – Example<br />

Unnamed Well<br />

Blasingame Typecurve Analysis<br />

8<br />

10 2 6<br />

4<br />

3<br />

2<br />

10 1<br />

8<br />

6<br />

2<br />

L/2xe = 1<br />

rwD = 2e-3<br />

Ld = 5<br />

Le = 1,968 ft<br />

4<br />

3<br />

2<br />

1.0<br />

8<br />

6<br />

k (hz) = 0.18 md<br />

k (v) = 0.011 md<br />

OGIP = 1.1 bcf<br />

4<br />

3<br />

2<br />

10 -1<br />

8<br />

6<br />

4<br />

3<br />

10 -2<br />

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

Material Balance Pseudo Time


Oil Wells


Oil Wells<br />

‣ Analysis methods are no different from that<br />

of gas reservoirs (in fact they are simpler)<br />

provided that the reservoir is above the<br />

bubble point<br />

‣ If below bubble point, a multi-phase<br />

capable model (Numerical) must be used<br />

‣Include relative permeability effects<br />

‣Include variable oil and gas properties


Liquid Rates, bbl/d<br />

Gas, MMscfd<br />

Pressure, psi<br />

Oil Wells – Example<br />

example7<br />

Data Chart<br />

190<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

0.11<br />

0.10<br />

0.09<br />

0.08<br />

- Pumping oil well<br />

- Assumed to be pumped off<br />

Producing GOR ~ constant<br />

(indicates reservoir pressure is above<br />

bubble point<br />

Legend<br />

Pressure<br />

Actual Gas Data<br />

Oil Production<br />

Water Production<br />

4000<br />

3800<br />

3600<br />

3400<br />

3200<br />

3000<br />

2800<br />

2600<br />

120<br />

0.07<br />

2400<br />

110<br />

100<br />

0.06<br />

2200<br />

2000<br />

90<br />

80<br />

0.05<br />

1800<br />

1600<br />

70<br />

0.04<br />

1400<br />

60<br />

1200<br />

50<br />

0.03<br />

1000<br />

40<br />

30<br />

0.02<br />

800<br />

600<br />

20<br />

0.01<br />

400<br />

10<br />

200<br />

0<br />

0.00<br />

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct<br />

0<br />

2001 2002


Oil Wells – Example<br />

Rs input from production data,<br />

P bp and c o calculated using<br />

Vasquez and Beggs


Normalized Rate<br />

Oil Wells – Example<br />

example7<br />

Blasingame Typecurve Analysis<br />

8<br />

10 1 6<br />

5<br />

4<br />

3<br />

2<br />

1.0<br />

8<br />

2<br />

k = 1.4 md<br />

s = -3<br />

OOIP = 2.4 million<br />

bbls<br />

6<br />

5<br />

4<br />

3<br />

2<br />

10 -1<br />

8<br />

6<br />

5<br />

4<br />

3<br />

10 -2<br />

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8<br />

10 -3 10 -2 10 -1 1.0 10 1 10 2<br />

Material Balance Time


Oil Rate, bbl/d<br />

Pressure, psi<br />

Oil Wells – Example<br />

example7<br />

Numerical Radial Model - Production Forecast<br />

300<br />

4000<br />

280<br />

260<br />

240<br />

220<br />

240 month forecast<br />

EUR = 265 Mbbls<br />

Legend<br />

History Oil Rate<br />

Flow Press<br />

Syn Rate<br />

History Reservoir Press<br />

Forecasted Press<br />

Forecasted Reservoir Press<br />

Forecasted Rate<br />

3800<br />

3600<br />

3400<br />

3200<br />

3000<br />

2800<br />

200<br />

2600<br />

180<br />

2400<br />

160<br />

140<br />

2200<br />

2000<br />

1800<br />

120<br />

1600<br />

100<br />

80<br />

1400<br />

1200<br />

1000<br />

60<br />

800<br />

40<br />

20<br />

600<br />

400<br />

200<br />

0<br />

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!