30.06.2014 Views

Nanocrystalline silver dressings in wound management - Seal Shield

Nanocrystalline silver dressings in wound management - Seal Shield

Nanocrystalline silver dressings in wound management - Seal Shield

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R e v i e w<br />

<strong>Nanocrystall<strong>in</strong>e</strong> <strong>silver</strong> <strong>dress<strong>in</strong>gs</strong> <strong>in</strong> <strong>wound</strong><br />

<strong>management</strong>: a review<br />

Joy Fong 1<br />

Fiona Wood 2<br />

1<br />

Burns Unit, Burns Service,<br />

Royal Perth Hospital, West Australia<br />

2<br />

Burns Service, Royal Perth<br />

Hospital/Pr<strong>in</strong>cess Margaret Hospital,<br />

West Australia<br />

Abstract: This paper describes the properties of nanocrystall<strong>in</strong>e <strong>silver</strong> products (Acticoat ) and<br />

their applications and exam<strong>in</strong>es available evidence support<strong>in</strong>g their use <strong>in</strong> <strong>wound</strong> <strong>management</strong>.<br />

Acticoat utilizes nanotechnology to release nanocrystall<strong>in</strong>e <strong>silver</strong> crystals. Acticoat releases 30<br />

times less <strong>silver</strong> cations than <strong>silver</strong>sulfadiaz<strong>in</strong>e cream or 0.5% <strong>silver</strong> nitrate solution but more<br />

of the <strong>silver</strong> released (by Acticoat). Silver-impregnated slow-release <strong>dress<strong>in</strong>gs</strong> release m<strong>in</strong>ute<br />

concentrations of <strong>silver</strong> which are quickly bound up by the chloride <strong>in</strong> the <strong>wound</strong> exudate.<br />

While extrapolations from <strong>in</strong> vitro and animal studies are cautious, evidence from these studies<br />

suggests Acticoat is: effective aga<strong>in</strong>st most common stra<strong>in</strong>s of <strong>wound</strong> pathogens; can be used<br />

as a protective cover<strong>in</strong>g over sk<strong>in</strong> grafts; has a broader antibiotic spectrum activity; and is<br />

toxic to kerat<strong>in</strong>ocytes and fibroblasts. Animal studies suggest a role for nanocrystall<strong>in</strong>e <strong>silver</strong><br />

<strong>in</strong> alter<strong>in</strong>g <strong>wound</strong> <strong>in</strong>flammatory events and facilitation of the early phase of <strong>wound</strong> heal<strong>in</strong>g.<br />

Quality human cl<strong>in</strong>ical trials <strong>in</strong>to nanocrystall<strong>in</strong>e <strong>silver</strong> are few. However, evidence suggests<br />

us<strong>in</strong>g Acticoat <strong>in</strong> <strong>wound</strong> <strong>management</strong> is cost effective, reduces <strong>wound</strong> <strong>in</strong>fection, decreases the<br />

frequency of dress<strong>in</strong>g changes and pa<strong>in</strong> levels, decreases matrix metalloprote<strong>in</strong>ase activity,<br />

<strong>wound</strong> exudate and bioburden levels, and promotes <strong>wound</strong> heal<strong>in</strong>g <strong>in</strong> chronic <strong>wound</strong>s. Although<br />

there is no <strong>in</strong> vivo evidence to suggest nanocrystall<strong>in</strong>e <strong>silver</strong> is toxic to human kerat<strong>in</strong>ocytes<br />

and fibroblasts, there is <strong>in</strong> vitro evidence to suggest so; thus these <strong>dress<strong>in</strong>gs</strong> should be used<br />

cautiously over epithelializ<strong>in</strong>g and proliferat<strong>in</strong>g <strong>wound</strong>s. Future cl<strong>in</strong>ical research, preferably<br />

randomized controlled trials <strong>in</strong>to nanocrystall<strong>in</strong>e <strong>silver</strong> technology, may provide cl<strong>in</strong>icians a<br />

better understand<strong>in</strong>g of its applications <strong>in</strong> <strong>wound</strong> <strong>management</strong>.<br />

Keywords: nanocrystall<strong>in</strong>e, <strong>silver</strong>, burns, chronic, <strong>wound</strong>s, <strong>dress<strong>in</strong>gs</strong><br />

Introduction<br />

Silver has been used as an antimicrobial s<strong>in</strong>ce the 1800s. But s<strong>in</strong>ce the discovery of<br />

systemic antibiotics <strong>in</strong> the early 20th century, the use of <strong>silver</strong> has decl<strong>in</strong>ed. In the last<br />

two decades <strong>in</strong>terest <strong>in</strong> <strong>silver</strong> for <strong>wound</strong> treatment resurged. The purpose of this paper is<br />

two-fold: to describe the properties of recently <strong>in</strong>troduced nanocrystall<strong>in</strong>e <strong>silver</strong> products<br />

and their applications <strong>in</strong> <strong>wound</strong> care; and to exam<strong>in</strong>e available evidence to support the<br />

use of nanocrystall<strong>in</strong>e <strong>in</strong> <strong>wound</strong> care.<br />

Correspondence: Joy Fong<br />

Burns Unit, Royal Perth Hospital, Perth,<br />

Box X2213 GPO, Perth 6847,<br />

Western Australia<br />

Tel + 61 08 9224 3578<br />

Email joy.fong@health.wa.gov.au<br />

History of <strong>silver</strong><br />

S<strong>in</strong>ce ancient times <strong>silver</strong> was used for dis<strong>in</strong>fect<strong>in</strong>g stored water and liquids. The ancient<br />

Greeks and early Americans used <strong>silver</strong> co<strong>in</strong>s for this purpose (Fong 2005). Historical<br />

review reveals <strong>silver</strong> be<strong>in</strong>g used to treat maladies. Prior to the 1800s, <strong>silver</strong> was used for<br />

treat<strong>in</strong>g epilepsy, venereal <strong>in</strong>fections, acne, and leg ulcers. Silver foil applied to surgical<br />

<strong>wound</strong>s were known to improve <strong>wound</strong> heal<strong>in</strong>g and reduce post operative <strong>in</strong>fections, and<br />

<strong>silver</strong> pencils were used to remove warts and to debride ulcers (Deml<strong>in</strong>g and DeSanti<br />

2001; Dunn and Edwards-Jones 2004; Fong 2005).<br />

In the late 19th century, 1% <strong>silver</strong> nitrate solution was <strong>in</strong>stilled <strong>in</strong>to conjuntiva sacs to<br />

reduce post-partum eye <strong>in</strong>fections. In the late 1960s Moyer and Monafo <strong>in</strong>troduced <strong>silver</strong><br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4) 441–449<br />

© 2006 Dove Medical Press. All rights reserved<br />

441


Fong and Wood<br />

nitrate 0.5% solution for burn <strong>wound</strong> treatment (Deml<strong>in</strong>g and<br />

DeSanti 2001; Dunn and Edwards-Jones 2004; Fong 2005).<br />

However, <strong>silver</strong> nitrate <strong>dress<strong>in</strong>gs</strong> are labour <strong>in</strong>tensive as they<br />

needed to be applied several times a day or re-moistened<br />

2 hourly. The potency of <strong>silver</strong> as an antimicrobial was<br />

found to be related to the amount and rate of free <strong>silver</strong><br />

released onto the <strong>wound</strong>bed (Lansdown 2002). In the late<br />

1960s, Fox <strong>in</strong>troduced <strong>silver</strong>sulfadiaz<strong>in</strong>e cream for burn<br />

<strong>wound</strong> <strong>management</strong>. This dramatically revolutionized the<br />

<strong>management</strong> of burn <strong>wound</strong>s by reduc<strong>in</strong>g the <strong>in</strong>cidence<br />

of burn <strong>wound</strong> <strong>in</strong>fections. Silversulfadiaz<strong>in</strong>e cream has a<br />

relatively short action, its penetration of the burn eschar<br />

is poor and it forms a pseudo-eschar. Both <strong>silver</strong> nitrate<br />

<strong>dress<strong>in</strong>gs</strong> and <strong>silver</strong>sulfadiaz<strong>in</strong>e cream require a high<br />

frequency of dress<strong>in</strong>g changes.<br />

Action of <strong>silver</strong><br />

Silver has antiseptic, antimicrobial, anti-<strong>in</strong>flammatory<br />

properties and is a broad spectrum antibiotic (Hoffman 1984;<br />

Klasen 2000; Deml<strong>in</strong>g and DeSanti 2001; Lansdown 2002;<br />

Dunn and Edwards-Jones 2004; Orv<strong>in</strong>gton 2004; Fong 2005).<br />

Silver is biologically active when it is <strong>in</strong> soluble form ie, as<br />

Ag + or Ag 0 clusters. Ag + is the ionic form present <strong>in</strong> <strong>silver</strong><br />

nitrate, <strong>silver</strong>sulfadiaz<strong>in</strong>e, or other ionic <strong>silver</strong> compounds.<br />

Ag 0 is the uncharged form of metallic <strong>silver</strong> present <strong>in</strong><br />

nanocrystall<strong>in</strong>e <strong>silver</strong> (Dunn 2004). Free <strong>silver</strong> cations<br />

have a potent antimicrobial effect which destroys microorganisms<br />

immediately by block<strong>in</strong>g the cellular respiration<br />

and disrupt<strong>in</strong>g the function of bacterial cell membranes. This<br />

occurs when <strong>silver</strong> cations b<strong>in</strong>d to tissue prote<strong>in</strong>s, caus<strong>in</strong>g<br />

structural changes <strong>in</strong> the bacterial cell membranes which <strong>in</strong><br />

turn cause cell death. Silver cations also b<strong>in</strong>d and denature<br />

the bacterial DNA and RNA, thus <strong>in</strong>hibit<strong>in</strong>g cell replication<br />

(Tredget et al 1998; Wright and Lam 1998; Y<strong>in</strong> et al 1999;<br />

Deml<strong>in</strong>g and DeSanti 2001; Lansdown 2002; Thomas 2003a,<br />

b; Dunn and Edwards-Jones 2004).<br />

Properties and action of<br />

nanocrystall<strong>in</strong>e <strong>silver</strong><br />

There are three types of nanocrystall<strong>in</strong>e <strong>wound</strong> products:<br />

Acticoat TM , Acticoat 7, and Acticoat Absorbent TM . Acticoat<br />

(Acticoat TM and Acticoat 7) are three or five layered dress<strong>in</strong>g<br />

constructs of a <strong>silver</strong> mesh conta<strong>in</strong><strong>in</strong>g <strong>silver</strong> nanocrystals<br />

applied to either side of a rayon/polyester core. <strong>Nanocrystall<strong>in</strong>e</strong><br />

<strong>silver</strong> utilizes nanotechnology to release clusters of extremely<br />

small and highly reactive <strong>silver</strong> particles (Smith and Nephew<br />

2003). The smaller the particles of <strong>silver</strong>, the greater the <strong>wound</strong><br />

surface area that will be <strong>in</strong> contact with <strong>silver</strong>, thus <strong>in</strong>creas<strong>in</strong>g<br />

bioactivity and <strong>silver</strong> solubility. Acticoat is made by a process<br />

called physical vapour deposition. Argon gas is <strong>in</strong>troduced<br />

<strong>in</strong>to a vacuum chamber act<strong>in</strong>g as an anode. When an electric<br />

current is passed <strong>in</strong>to the chamber, the argon ions knock out<br />

the <strong>silver</strong> atoms travell<strong>in</strong>g towards the substrate to be coated,<br />

deposit<strong>in</strong>g and develop<strong>in</strong>g nanocrystals each measur<strong>in</strong>g 15<br />

nanometres across and are between 30 and 50 atoms. These<br />

changes to the lattice structure of the crystal result <strong>in</strong> a high<br />

energy, meta-stable form of elemental <strong>silver</strong> (Dunn 2004).<br />

Acticoat when moistened with sterile water and placed<br />

on the <strong>wound</strong> releases clusters of highly reactive <strong>silver</strong><br />

cations up to 100 parts per million, caus<strong>in</strong>g electron transport,<br />

<strong>in</strong>activation of bacterial cell DNA, cell membrane damage<br />

and b<strong>in</strong>d<strong>in</strong>g of <strong>in</strong>soluble complexes <strong>in</strong> micro-organisms<br />

(Deitch et al 1987; Orv<strong>in</strong>gton 2001; Heggers et al 2002;<br />

Lansdown 2002; Dunn 2004). Acticoat releases 30 times less<br />

<strong>silver</strong> cations than other forms of <strong>silver</strong> such as 0.5% <strong>silver</strong><br />

nitrate or <strong>silver</strong>sulfadiaz<strong>in</strong>e. However, more of the <strong>silver</strong><br />

released is effective and release is susta<strong>in</strong>ed (Dunn 2004).<br />

If re-moistened, Acticoat produces a controlled release of<br />

clusters of <strong>silver</strong> cations onto the <strong>wound</strong>, for up to 3 days (if<br />

us<strong>in</strong>g Acticoat TM ) or 7 days (if us<strong>in</strong>g Acticoat 7). Research<br />

has demonstrated that susta<strong>in</strong>ed-release <strong>silver</strong> products<br />

have a bactericidal action provid<strong>in</strong>g effective <strong>management</strong><br />

of odor and exudate, thus reduc<strong>in</strong>g the risk for colonization<br />

and prevent<strong>in</strong>g <strong>in</strong>fection (Deitch et al 1987; Orv<strong>in</strong>gton 2001;<br />

Heggers et al 2002; Lansdown 2002; Smith and Nephew<br />

2003).<br />

Moisten<strong>in</strong>g Acticoat has a two-fold benefit: it unleashes<br />

the antimicrobial power of nanocrystall<strong>in</strong>e <strong>silver</strong> and assists<br />

<strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a moist environment to promote <strong>wound</strong><br />

heal<strong>in</strong>g (Smith and Nephew 2003).<br />

Acticoat Absorbent TM is an alg<strong>in</strong>ate dress<strong>in</strong>g impregnated<br />

with nanocrystall<strong>in</strong>e <strong>silver</strong> crystals. It has an absorbent<br />

property when <strong>in</strong> contact with <strong>wound</strong> exudate and forms a<br />

gel and releases nanocrystall<strong>in</strong>e <strong>silver</strong> cations onto the <strong>wound</strong><br />

bed. Its antibacterial action is similar to that of Acticoat TM<br />

(Smith and Nephew 2004).<br />

Wound environment<br />

Controll<strong>in</strong>g micro-organisms with<strong>in</strong> a <strong>wound</strong> environment<br />

promotes <strong>wound</strong> heal<strong>in</strong>g. Micro-organisms, ie, bacteria or<br />

fungi are found <strong>in</strong> chronic <strong>wound</strong>s and if present <strong>in</strong> an acute<br />

<strong>wound</strong> can rapidly contam<strong>in</strong>ate and <strong>in</strong>fect, seriously imped<strong>in</strong>g<br />

<strong>wound</strong> heal<strong>in</strong>g. High levels of bacteria, multi-resistant<br />

organisms, and bacterial biofilms can impact on the <strong>wound</strong>-<br />

442<br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4)


<strong>Nanocrystall<strong>in</strong>e</strong> <strong>silver</strong><br />

heal<strong>in</strong>g process especially <strong>in</strong> chronic <strong>wound</strong>s (Templeton<br />

2005). Bacteria delay <strong>wound</strong> heal<strong>in</strong>g by compet<strong>in</strong>g with<br />

host cells for nutrients and oxygen, their waste products are<br />

also toxic to host cells. Bacterial <strong>wound</strong> <strong>in</strong>fection causes<br />

raised blood cytok<strong>in</strong>es, raised matrix metalloprote<strong>in</strong>ase, and<br />

decreased growth factors which can have adverse effects on<br />

<strong>wound</strong> heal<strong>in</strong>g. Local <strong>wound</strong> <strong>in</strong>fection causes tissue death,<br />

<strong>in</strong>crease <strong>in</strong> <strong>wound</strong> size, <strong>wound</strong> hypoxia, and vessels occlusion<br />

which all further delay the <strong>wound</strong> heal<strong>in</strong>g process (Woodward<br />

2005).<br />

Biofilms are complex communities of bacteria found on<br />

<strong>wound</strong> surfaces. They are embedded <strong>in</strong> a polysaccharide<br />

matrix and a biofilm functions as one organism <strong>in</strong> its own<br />

environment (Templeton 2005; Woodward 2005). A bacterial<br />

biofilm can have up to 1000 times more resistance to<br />

conventional antibiotics. Biofilms are prevalent <strong>in</strong> critically<br />

colonized <strong>wound</strong>s which can progress to <strong>wound</strong> <strong>in</strong>fection<br />

(Templeton 2005; Woodward 2005).<br />

A <strong>wound</strong> bioburden is when bacterial cells produce and<br />

secrete a variety of enzymes and tox<strong>in</strong>s onto the <strong>wound</strong>. A<br />

bacterial population size of 10 5 colony form<strong>in</strong>g units (cfu)/g<br />

or cm 2 <strong>in</strong>dicates an <strong>in</strong>fected <strong>wound</strong> and 10 4 cfu/g or cm 2 <strong>in</strong><br />

complex <strong>wound</strong>s (White 2002). This bacterial load can be<br />

reduced by the removal of non-viable tissue with debridement<br />

or by us<strong>in</strong>g an antimicrobial dress<strong>in</strong>g such as a susta<strong>in</strong>ed<br />

released <strong>silver</strong> dress<strong>in</strong>g. In recent years, susta<strong>in</strong>ed released<br />

<strong>silver</strong> <strong>dress<strong>in</strong>gs</strong> has <strong>in</strong>creas<strong>in</strong>gly been used to treat both<br />

chronic and acute <strong>wound</strong>s <strong>in</strong> an effort to provide a more<br />

conducive <strong>wound</strong> heal<strong>in</strong>g environment by decreas<strong>in</strong>g the<br />

<strong>wound</strong> bioburden level (Wright et al 2003).<br />

Chronic <strong>wound</strong>s<br />

Wounds that are slow or <strong>in</strong>terrupted <strong>in</strong> their progress through<br />

the stages of <strong>wound</strong> heal<strong>in</strong>g are referred as chronic <strong>wound</strong>s<br />

(Wright et al 2002; Templeton 2005). They differ from acute<br />

<strong>wound</strong>s which heal <strong>in</strong> a timely and orderly sequential manner.<br />

Signs of chronic <strong>wound</strong>s are: presence of necrotic or nonviable<br />

tissue, lack of healthy granulations, recurrent <strong>wound</strong><br />

breakdown, <strong>in</strong>creas<strong>in</strong>g <strong>wound</strong> size, and a stasis <strong>in</strong> <strong>wound</strong><br />

improvement. The chronic <strong>wound</strong> environment has molecular<br />

and biochemical imbalance. There are elevated levels of matrix<br />

metalloprote<strong>in</strong>ase and <strong>in</strong>flammatory cytok<strong>in</strong>es, decreased<br />

levels of metalloprote<strong>in</strong>ase tissue <strong>in</strong>hibitors, and growth<br />

factors <strong>in</strong> the chronic <strong>wound</strong> environment (Templeton 2005;<br />

Wright et al 2003). One of the major factors to delayed <strong>wound</strong><br />

heal<strong>in</strong>g is prolonged <strong>in</strong>flammatory response with<strong>in</strong> the <strong>wound</strong><br />

environment which results <strong>in</strong> tissue destruction. A high<br />

level of <strong>wound</strong> bioburden will also prolong <strong>in</strong>flammatory<br />

processes with<strong>in</strong> the <strong>wound</strong>. Poorly controlled diabetes,<br />

avascularity, rheumatoid conditions, heart failure, smok<strong>in</strong>g,<br />

poor nutrition, or cont<strong>in</strong>ued pressure on the <strong>wound</strong> are some<br />

host factors which may impact on and delay <strong>wound</strong> heal<strong>in</strong>g<br />

caus<strong>in</strong>g an acute <strong>wound</strong> to become a chronic <strong>wound</strong> (Wright<br />

et al 2002; Templeton 2005).<br />

Burn <strong>wound</strong>s and sepsis<br />

Burn <strong>wound</strong>s are highly susceptible to <strong>in</strong>fection due to the<br />

impairment of sk<strong>in</strong> <strong>in</strong>tegrity and reduction <strong>in</strong> cell mediated<br />

immunity (Ayton 1985; Miller 1998; Tredget et al 1998;<br />

Heggers et al 2002; Fong 2005; Fong et al 2005). Once<br />

sk<strong>in</strong> <strong>in</strong>tegrity is breached, <strong>wound</strong> colonization and bacterial<br />

<strong>in</strong>vasion occur. Infection or sepsis is present <strong>in</strong> a burn <strong>wound</strong><br />

when deposition and multiplication of bacteria <strong>in</strong> the tissue is<br />

associated with host reaction or <strong>in</strong>vasion of nearby tissue and<br />

a bacterial count of 10 5 cfu/g of tissue (Ayton 1985; Heggers<br />

et al 1998; White 2002; Fong 2005; Fong et al 2005). Burn<br />

<strong>in</strong>jury results <strong>in</strong> tissue destruction and the presence of<br />

avascular burn eschar provides an environment for <strong>in</strong>fection<br />

that can progress to septicemia (Kumar et al 1999; Deml<strong>in</strong>g<br />

and DeSanti 2001). Infection is exacerbated by immunosuppression<br />

often associated with the burn <strong>in</strong>jury (Cook<br />

1998; Fong 2005). The rate of <strong>in</strong>fection depends on the<br />

extent of the burn <strong>in</strong>jury, general <strong>wound</strong> care and various<br />

host factors such as nutritional status, age, immune status,<br />

and co-morbidity conditions. The emergence of methicill<strong>in</strong><br />

resistant Staphylococcus aureus (MRSA) and mMultiresistant<br />

Pseudomonas aerug<strong>in</strong>osa concerns cl<strong>in</strong>icians, as<br />

the control of burn <strong>wound</strong> sepsis is vital to the survival of<br />

the patient (Cook 1998; Kumar et al 1999; Y<strong>in</strong> et al 1999;<br />

Heggers et al 2002; Fong 2005). Burn <strong>wound</strong> <strong>in</strong>fection<br />

rema<strong>in</strong>s as the ma<strong>in</strong> cause of morbidity and mortality for<br />

patients with burn <strong>in</strong>juries.<br />

Evidence to support best practices<br />

<strong>in</strong> <strong>wound</strong> <strong>management</strong><br />

Research should be available to direct cl<strong>in</strong>icians towards<br />

best practice. The efficacy, cost benefits and justification for<br />

us<strong>in</strong>g new technology such as nanocrystall<strong>in</strong>e <strong>silver</strong> products<br />

should be thoroughly evaluated and tested prior to changes<br />

<strong>in</strong> practice. Randomized controlled trials are the highest level<br />

of evidence and their f<strong>in</strong>d<strong>in</strong>gs should be used to <strong>in</strong>fluence<br />

the decision mak<strong>in</strong>g process <strong>in</strong> the selection of appropriate<br />

<strong>wound</strong> products and to support any changes <strong>in</strong> practice. The<br />

body of research falls <strong>in</strong>to three categories: pre-cl<strong>in</strong>ical or<br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4) 443


Fong and Wood<br />

<strong>in</strong> vitro studies, animal studies, and human cl<strong>in</strong>ical trials<br />

(Woodward 2005).<br />

In vitro evidence <strong>in</strong>to nanocrystall<strong>in</strong>e <strong>silver</strong><br />

In vitro studies are often the first steps to validate the efficacy<br />

of a <strong>wound</strong> product. Extrapolation of <strong>in</strong> vitro f<strong>in</strong>d<strong>in</strong>gs to<br />

the human environment must be cautious as laboratory test<br />

conditions are significantly different from the human <strong>wound</strong><br />

environment (Woodward 2005).<br />

Wright et al <strong>in</strong> 1998 compared 3 types of topical <strong>silver</strong><br />

applications: <strong>silver</strong> nitrate solution, <strong>silver</strong> sulfadiaz<strong>in</strong>e cream,<br />

and Acticoat TM aga<strong>in</strong>st a control dress<strong>in</strong>g to determ<strong>in</strong>e their<br />

bactericidal efficacies aga<strong>in</strong>st 11 cl<strong>in</strong>ical isolates of antibiotic<br />

resistant organisms. The organisms were <strong>in</strong>oculated onto each<br />

of the dress<strong>in</strong>g, <strong>in</strong>cubated for 30 m<strong>in</strong>utes then washed with<br />

a recovery solution which then was cultured for organism<br />

survival rate. All the trial <strong>dress<strong>in</strong>gs</strong> demonstrated an ability<br />

to reduce the number of viable bacteria. The nanocrystall<strong>in</strong>e<br />

dress<strong>in</strong>g was the most efficacious and <strong>silver</strong> nitrate solution<br />

the least efficacious. The researchers concluded <strong>silver</strong> was<br />

efficacious for kill<strong>in</strong>g the antibiotic resistant bacteria stra<strong>in</strong>s<br />

that were tested. Acticoat TM was found to be particularly rapid<br />

at kill<strong>in</strong>g the tested bacteria and effective aga<strong>in</strong>st a broader<br />

range of bacteria than the other trial <strong>dress<strong>in</strong>gs</strong> (Wright et<br />

al 1998).<br />

Y<strong>in</strong> et al <strong>in</strong> 1999 compared the antibacterial activity of<br />

Acticoat TM with <strong>silver</strong> nitrate solution, <strong>silver</strong> sulfadiaz<strong>in</strong>e<br />

cream, and mafenide acetate aga<strong>in</strong>st 5 cl<strong>in</strong>ically relevant<br />

bacteria. Acticoat TM was found to be more rapid <strong>in</strong> the<br />

delivery of <strong>silver</strong> cations and achieved a faster reduction<br />

of bacteria than the other experimental <strong>dress<strong>in</strong>gs</strong>. The<br />

mechanism of kill<strong>in</strong>g is similar <strong>in</strong> all forms of <strong>silver</strong> products<br />

but Acticoat TM killed faster as the bacteria take up <strong>silver</strong><br />

faster <strong>in</strong> Acticoat TM samples (Y<strong>in</strong> et al 1999). Wright et al <strong>in</strong><br />

1999 exam<strong>in</strong>ed the <strong>in</strong> vitro fungicidal efficacy of a variety of<br />

topical agents. Fungal isolates were <strong>in</strong>oculated onto mafenide<br />

acetate, <strong>silver</strong> nitrate, <strong>silver</strong>sulfadiaz<strong>in</strong>e cream and Acticoat TM<br />

<strong>dress<strong>in</strong>gs</strong>, then <strong>in</strong>cubated, and the fungi survival rate was<br />

evaluated. All the antimicrobial <strong>dress<strong>in</strong>gs</strong> were found to be<br />

effective aga<strong>in</strong>st fungi. The nanocrystall<strong>in</strong>e dress<strong>in</strong>g provided<br />

the fastest kill rate and the broadest spectrum activity aga<strong>in</strong>st<br />

fungi (Wright et al 1999).<br />

Thomas et al <strong>in</strong> 2003 compared 4 <strong>silver</strong> conta<strong>in</strong><strong>in</strong>g<br />

<strong>dress<strong>in</strong>gs</strong>: Acticoat TM , Actisorb TM , Silver220 TM , Avance TM ,<br />

and Contreet-H TM <strong>in</strong> another <strong>in</strong> vitro experiment. They<br />

showed that antimicrobial activity was more rapid with<br />

nanocrystall<strong>in</strong>e <strong>silver</strong> aga<strong>in</strong>st Gram positive and Gram<br />

negative bacteria and a yeast. The <strong>silver</strong> foam (Contreet-H TM )<br />

product was shown not to release <strong>silver</strong> ions but will absorb<br />

the microbes (Thomas 2003a).<br />

Another experiment was conducted by the same<br />

researchers <strong>in</strong> the same year us<strong>in</strong>g a larger variety of <strong>silver</strong><br />

products. Aga<strong>in</strong> they demonstrated that <strong>silver</strong> products varied<br />

<strong>in</strong> their antimicrobial activity – some had little or no effect<br />

on the microbes tested. Acticoat 7 killed 99.9% methicill<strong>in</strong><br />

resistant Staphylococcus aureus at all the <strong>in</strong>tervals the<br />

samples were read (Thomas 2003b).<br />

Wright et al <strong>in</strong> the same year questioned if antimicrobial<br />

efficacy alone is sufficient to justify their use. Acticoat TM<br />

was compared with a gauze dress<strong>in</strong>g impregnated with<br />

hexamethylene biguanide aga<strong>in</strong>st cl<strong>in</strong>ical <strong>in</strong>noculates of<br />

bacteria. Both <strong>dress<strong>in</strong>gs</strong> were demonstrated to have potent<br />

<strong>in</strong> vitro antibacterial effect. Acticoat activity diffused <strong>in</strong>to the<br />

surround<strong>in</strong>g environment, whereas the activity of the gauze<br />

dress<strong>in</strong>g with hexamethylene biguanide was conf<strong>in</strong>ed with<strong>in</strong><br />

its borders (Wright et al 2003).<br />

Holder et al <strong>in</strong> 2003 tested Acticoat TM and N Terface TM<br />

with filter paper as control dress<strong>in</strong>g <strong>in</strong> 3 <strong>in</strong> vitro assays.<br />

Acticoat TM served as an impenetrable barrier for all<br />

organisms tested. They concluded that Acticoat TM was<br />

suitable for protection aga<strong>in</strong>st environmental organisms<br />

for use with sk<strong>in</strong> grafts on excised burns (Holder et al<br />

2003). Fraser <strong>in</strong> 2003 conducted an <strong>in</strong> vitro study to test the<br />

efficacy of <strong>silver</strong>sulfadiaz<strong>in</strong>e cream and Acticoat TM aga<strong>in</strong>st<br />

8 common burn <strong>wound</strong> pathogens. They demonstrated that<br />

<strong>silver</strong>sulfadiaz<strong>in</strong>e cream was more efficacious aga<strong>in</strong>st kill<strong>in</strong>g<br />

all tested organisms than Acticoat TM (Fraser 2003).<br />

The same researcher conducted another <strong>in</strong> vitro study<br />

<strong>in</strong> the follow<strong>in</strong>g year to determ<strong>in</strong>e the cytotoxicity of<br />

<strong>silver</strong>sulfadiaz<strong>in</strong>e cream and Acticoat TM applied to the<br />

centres of culture plates seeded with kerat<strong>in</strong>ocytes, then<br />

<strong>in</strong>cubated for 7 hours and the culture medium plates were<br />

read for kerat<strong>in</strong>ocyte survival rates. Silversulfadiaz<strong>in</strong>e<br />

cream was found to be more cytotoxic to kerat<strong>in</strong>ocytes than<br />

Acticoat TM (Fraser 2004). Poon et al <strong>in</strong> 2004 exam<strong>in</strong>ed the<br />

effects of <strong>silver</strong> on kerat<strong>in</strong>ocytes and fibroblasts <strong>in</strong> another<br />

<strong>in</strong> vitro study. Silver nitrate solution and Acticoat TM were<br />

the two experimental <strong>dress<strong>in</strong>gs</strong>. They demonstrated that<br />

<strong>silver</strong> was toxic to sk<strong>in</strong> cells, fibroblasts and kerat<strong>in</strong>ocytes as<br />

well as to bacteria. They cautioned the use of <strong>silver</strong> products<br />

where rapidly proliferat<strong>in</strong>g kerat<strong>in</strong>ocytes are exposed such<br />

as <strong>in</strong> donor sites, superficial partial thickness <strong>wound</strong>s and<br />

undifferentiated cultured kerat<strong>in</strong>ocyte applications (Poon and<br />

Burd 2004).<br />

444<br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4)


<strong>Nanocrystall<strong>in</strong>e</strong> <strong>silver</strong><br />

In summary, the literature <strong>in</strong>dicates there is <strong>in</strong> vitro<br />

evidence to support the efficacy of us<strong>in</strong>g nanocrystall<strong>in</strong>e<br />

<strong>silver</strong> for <strong>wound</strong> <strong>management</strong>. <strong>Nanocrystall<strong>in</strong>e</strong> <strong>silver</strong> as an<br />

antimicrobial is effective aga<strong>in</strong>st most common stra<strong>in</strong>s of<br />

bacteria, <strong>in</strong>clud<strong>in</strong>g multi-resistant stra<strong>in</strong>s and fungi spores. In<br />

vitro evidence <strong>in</strong>dicates that nanocrystall<strong>in</strong>e <strong>silver</strong> achieved<br />

the best kill<strong>in</strong>g rates for numerous mico-organisms, can be<br />

used as a protective cover<strong>in</strong>g over sk<strong>in</strong> grafts, has a broader<br />

antibiotic spectrum activity, and is toxic to kerat<strong>in</strong>ocytes and<br />

fibroblasts.<br />

Evidence from animal studies <strong>in</strong>to<br />

nanocrystall<strong>in</strong>e <strong>silver</strong><br />

Wright et al <strong>in</strong> 2002 exam<strong>in</strong>ed early heal<strong>in</strong>g events and the<br />

efficacy of nanocrystall<strong>in</strong>e <strong>silver</strong> on the levels of matrix<br />

metalloprote<strong>in</strong>ase, cell apoptosis and heal<strong>in</strong>g <strong>in</strong> a porc<strong>in</strong>e<br />

model of contam<strong>in</strong>ated <strong>wound</strong>s. Full thickness <strong>wound</strong>s were<br />

created on the backs of pigs, contam<strong>in</strong>ated with experimental<br />

<strong>in</strong>oculum of Pseudomonas, Fusobacterium species, and<br />

coagulative negative stra<strong>in</strong>s of Staphlyococci, and covered<br />

with dress<strong>in</strong>g products with or without nanocrystall<strong>in</strong>e<br />

<strong>silver</strong>. They found the nanocrystall<strong>in</strong>e <strong>silver</strong> product<br />

promoted rapid <strong>wound</strong> heal<strong>in</strong>g <strong>in</strong> the first few days post<br />

<strong>in</strong>jury and the proteolytic environment of <strong>wound</strong>s treated<br />

with nanocrystall<strong>in</strong>e <strong>silver</strong> was changed by the reduction<br />

of levels of matrix metalloprote<strong>in</strong>ase. In chronic ulcers,<br />

matrix metalloprote<strong>in</strong>ase levels have been shown to be pro<strong>in</strong>flammatory<br />

and at abnormally high levels compared with<br />

acute <strong>wound</strong>s. This may contribute to the non-heal<strong>in</strong>g nature<br />

of these <strong>wound</strong>s. Cellular apoptosis occurred at a higher rate<br />

<strong>in</strong> non-nanocrystall<strong>in</strong>e <strong>silver</strong>-treated <strong>wound</strong>s. This suggested<br />

nanocrystall<strong>in</strong>e <strong>silver</strong> has a role <strong>in</strong> alter<strong>in</strong>g the <strong>in</strong>flammatory<br />

events <strong>in</strong> <strong>wound</strong>s and facilitate the early phase of <strong>wound</strong><br />

heal<strong>in</strong>g (Wright et al 2002).<br />

The same authors <strong>in</strong> 2003 questioned the antimicrobial<br />

efficacy of new <strong>silver</strong> <strong>dress<strong>in</strong>gs</strong> <strong>in</strong> reduc<strong>in</strong>g the bacterial bioburden<br />

<strong>in</strong> acute and chronic <strong>wound</strong>s. They compared nanocrystall<strong>in</strong>e<br />

<strong>silver</strong> and a gauze dress<strong>in</strong>g impregnated with polyhexamethylene<br />

biguanide <strong>in</strong> an animal model of <strong>wound</strong> heal<strong>in</strong>g. They found the<br />

<strong>wound</strong> dressed with nanocrystall<strong>in</strong>e <strong>silver</strong> product progressed<br />

to full granulation faster and had lower bacterial bioburden<br />

levels than the <strong>wound</strong> dressed with non-nanocrystall<strong>in</strong>e <strong>silver</strong><br />

product. The authors concluded that be<strong>in</strong>g an antimicrobial is not<br />

sufficient, the dress<strong>in</strong>g needed to promote <strong>wound</strong> heal<strong>in</strong>g. The<br />

gauze dress<strong>in</strong>g with polyhexamethlyene biguanide prolonged<br />

<strong>in</strong>flammatory response and had a negative effect on <strong>wound</strong><br />

heal<strong>in</strong>g (Wright et al 2003).<br />

The therapeutic efficacy of 3 <strong>silver</strong> <strong>dress<strong>in</strong>gs</strong> <strong>in</strong> an <strong>in</strong>fected<br />

animal model were exam<strong>in</strong>ed by Heggers et al <strong>in</strong> 2005.<br />

Acticoat TM , Silverlon TM , Silvasorb TM , and a control dress<strong>in</strong>g<br />

were applied to 4 groups of rats. The rats received contact<br />

burns and were surgically <strong>in</strong>fected with Pseudomonas<br />

aerug<strong>in</strong>osa and Staphylococcus aureus on day 3 post burns.<br />

The <strong>dress<strong>in</strong>gs</strong> were evaluated and quantitatively assessed<br />

<strong>in</strong> 10 days. Acticoat TM and Silvasorb TM treated <strong>wound</strong>s had<br />

significantly lower bacterial counts than the Silverlon TM<br />

treated <strong>wound</strong>s. They demonstrated that weekly dress<strong>in</strong>g<br />

changes were feasible when treat<strong>in</strong>g <strong>wound</strong>s with Acticoat TM<br />

or Silvasorb TM (Heggers et al 2005).<br />

Ulkur et al <strong>in</strong> 2004 compared Acticoat TM , chlorhexid<strong>in</strong>e<br />

acetate, and <strong>silver</strong>sulfadiaz<strong>in</strong>e cream as topical antibacterial <strong>in</strong><br />

pseudomonas contam<strong>in</strong>ated full thickness burn <strong>wound</strong>s <strong>in</strong> rats.<br />

All the experimental <strong>dress<strong>in</strong>gs</strong> were effective; however they<br />

concluded that Acticoat TM may be the dress<strong>in</strong>g of choice due to<br />

the limited frequency of dress<strong>in</strong>g changes (Ulkur et al 2005a).<br />

The same authors <strong>in</strong> the follow<strong>in</strong>g year compared<br />

Acticoat TM , chlorhexid<strong>in</strong>e acetate 0.5%, and fusidic acid<br />

2% for topical antibacterial effect <strong>in</strong> methicill<strong>in</strong> resistant<br />

Staphylococci-contam<strong>in</strong>ated full thickness rat burn <strong>wound</strong>s.<br />

Thirty-two male Wistar rats received full thickness dorsal<br />

scald burns to 15% of their body surface area, resuscitated<br />

and then <strong>in</strong>fected with the experimental micro-organism,<br />

methicill<strong>in</strong> resistant Staphylococcus aureus, and placed <strong>in</strong><br />

separate cages to recover. After 24 hours they were randomly<br />

assigned to topical applications of the experimental <strong>dress<strong>in</strong>gs</strong><br />

and one group with no <strong>dress<strong>in</strong>gs</strong> applied to act as control. All<br />

animals were killed on day 7 and measurements of weight<br />

obta<strong>in</strong>ed. Cultures were obta<strong>in</strong>ed from punch biopsies of<br />

the eschars and tested for the test microbe. They found that<br />

fusidic acid was the most effective agent <strong>in</strong> treat<strong>in</strong>g methicill<strong>in</strong><br />

resistant Staphylococcus aureus-contam<strong>in</strong>ated burn <strong>wound</strong>s,<br />

but Acticoat TM was the preferred treatment due to its ability to<br />

limit the frequency of dress<strong>in</strong>g changes (Ulkur et al 2005b).<br />

Supp et al <strong>in</strong> 2005 evaluated the cytoxicity and<br />

antimicrobial activity of Acticoat TM for <strong>management</strong> of<br />

microbial contam<strong>in</strong>ation <strong>in</strong> cultured sk<strong>in</strong> substitutes grafted<br />

to anthymic mice. The cytoxocity of Acticoat TM was assessed<br />

after 1, 2, 3, and 4 weeks of graft<strong>in</strong>g with cultured sk<strong>in</strong><br />

substitutes. They found contam<strong>in</strong>ated <strong>wound</strong>s treated with<br />

Acticoat TM healed similarly to control treatments. These<br />

results suggested that Acticoat TM could be used as a protective<br />

dress<strong>in</strong>g to reduce environmental contam<strong>in</strong>ation of cultured<br />

sk<strong>in</strong> substitutes to control organisms present <strong>in</strong> the <strong>wound</strong><br />

(Supp et al 2005).<br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4) 445


Fong and Wood<br />

In summary, there is a lack of animal studies on<br />

nanocrystall<strong>in</strong>e <strong>silver</strong>, but the available literature reviewed<br />

suggested that nanocrystall<strong>in</strong>e <strong>silver</strong> has a role <strong>in</strong> alter<strong>in</strong>g the<br />

<strong>in</strong>flammatory events <strong>in</strong> <strong>wound</strong>s and also facilitate the early<br />

phase of <strong>wound</strong> heal<strong>in</strong>g. There is evidence to suggest that<br />

Acticoat TM is an effective antimicrobial and is the dress<strong>in</strong>g of<br />

choice <strong>in</strong> several cases as it limits the frequency of dress<strong>in</strong>g<br />

changes. Acticoat TM may be suitable as a protection for<br />

contam<strong>in</strong>ation on cultured sk<strong>in</strong> substitutes used for <strong>wound</strong><br />

closure. Animals and humans differ <strong>in</strong> structure and function.<br />

Therefore extrapolations of f<strong>in</strong>d<strong>in</strong>gs from animal models to<br />

the human environment must be done with caution.<br />

Evidence from human studies <strong>in</strong>to<br />

nanocrystall<strong>in</strong>e <strong>silver</strong><br />

There is a lack of high quality designed research such as<br />

randomized control trials <strong>in</strong> human studies <strong>in</strong>to nanocrystall<strong>in</strong>e<br />

<strong>silver</strong> <strong>dress<strong>in</strong>gs</strong>. However a search of the literature revealed<br />

many human comparative studies, case series, and <strong>in</strong>dividual<br />

reports of the applications of nanocrystall<strong>in</strong>e <strong>silver</strong> <strong>in</strong> <strong>wound</strong><br />

<strong>management</strong>.<br />

In an earlier study <strong>in</strong> 1998 Tredget conducted a matched<br />

paired randomized study to evaluate the efficacy and safety<br />

of Acticoat TM for burn <strong>wound</strong> treatment. Thirty patients with<br />

symmetrical burns were randomly assigned to be dressed with<br />

Acticoat TM or <strong>silver</strong> nitrate solution <strong>dress<strong>in</strong>gs</strong>. They found that<br />

the Acticoat TM -treated patients had less pa<strong>in</strong> levels <strong>in</strong>itially<br />

but the pa<strong>in</strong> levels were comparable with that of the <strong>silver</strong><br />

nitrate group of patients after 2 hours. They also found that<br />

the frequency of dress<strong>in</strong>g changes and <strong>in</strong>cidence of <strong>wound</strong><br />

sepsis were less <strong>in</strong> the Acticoat TM -treated group (Tredget<br />

et al 1998).<br />

Voight presented case presentations of 6 patients with<br />

venous ulcers treated with Acticoat TM . They reported <strong>wound</strong><br />

heal<strong>in</strong>g <strong>in</strong> these patients, one patient with a 5 month old ulcer<br />

was healed with Acticoat TM <strong>in</strong> 194 days and another with a<br />

5-week-old ulcer which healed <strong>in</strong> 27 days. In another case<br />

series, Voight demonstrated the effects of Acticoat TM on 4<br />

patients with debicutus ulcers, one with a 24-month-old ulcer<br />

healed <strong>in</strong> 27 days and another 2-week-old ulcer healed <strong>in</strong><br />

14 days with Acticoat TM . They demonstrated a reduction <strong>in</strong><br />

exudate fluid volumes <strong>in</strong> all cases treated with Acticoat TM . The<br />

same authors conducted a multi-centered (41 centers) survey<br />

for the use of Acticoat TM dress<strong>in</strong>g. They reported that 61% of<br />

the centres surveyed used Acticoat TM and up to 52% of these<br />

used Acticoat TM as a cover for Integra, a dermal regeneration<br />

template for full thickness burns reconstruction. They also<br />

reported that 4.8% of those surveyed used Acticoat TM as their<br />

pr<strong>in</strong>cipal dress<strong>in</strong>g. They concluded that Acticoat TM is cost<br />

effective, improved <strong>wound</strong> heal<strong>in</strong>g and able to be applied to<br />

all types of <strong>wound</strong>s (Voight and Paul 2001).<br />

Innes <strong>in</strong> 2001 <strong>in</strong>vestigated the use of Acticoat TM and<br />

Allevyn foam on donor sites <strong>in</strong> a prospective controlled<br />

matched pair study on 15 patients with bilateral donor sites.<br />

They found that donors treated with Allevyn foam were<br />

more than 90% re-epitheliased at a mean 9.1 days, whereas<br />

the Acticoat TM -treated donor sites were more than 90%<br />

re-epitheliased at 14.5 days. They concluded Allevyn was<br />

significantly better than Acticoat TM for treat<strong>in</strong>g donor sites<br />

and the Acticoat TM -treated donor sites had worse scars at 2<br />

weeks than Allevyn-treated donors but showed no difference<br />

at 3 months (Innes et al 2001).<br />

The role of <strong>silver</strong> <strong>in</strong> <strong>wound</strong> heal<strong>in</strong>g was exam<strong>in</strong>ed <strong>in</strong><br />

a s<strong>in</strong>gle center, open-label, unbl<strong>in</strong>ded pilot study of 11<br />

extended-care facility outpatients or residents with chronic<br />

<strong>wound</strong>s of mixed etiology by Kirshner et al <strong>in</strong> 2002. All<br />

<strong>wound</strong>s had a history of at least 3 months and had no<br />

decrease <strong>in</strong> <strong>wound</strong> size <strong>in</strong> the 3 weeks preced<strong>in</strong>g the study.<br />

The patients were all treated with Acticoat TM and had their<br />

<strong>dress<strong>in</strong>gs</strong> changed daily <strong>in</strong> the first week and on alternate<br />

days therafter. All used <strong>dress<strong>in</strong>gs</strong> were reserved for analyses<br />

and fluid collection. Eight patients completed the study, the<br />

authors found a decrease <strong>in</strong> matrix metalloprote<strong>in</strong>ase activity<br />

<strong>in</strong> the first 2 days of treatment. This suggested that once<br />

matrix metalloprote<strong>in</strong>ase activity is altered it can rema<strong>in</strong> so<br />

with the cont<strong>in</strong>ued use of the nanocrystall<strong>in</strong>e <strong>silver</strong> dress<strong>in</strong>g<br />

(Kirshner 2002).<br />

Deml<strong>in</strong>g and DeSanti <strong>in</strong> 2002 exam<strong>in</strong>ed the effects of<br />

Acticoat TM and Xeroform TM as <strong>dress<strong>in</strong>gs</strong> over meshed sk<strong>in</strong><br />

grafts. Twenty patients, each hav<strong>in</strong>g 2 areas of meshed sk<strong>in</strong><br />

grafts were treated with Acticoat TM <strong>in</strong> one and Xeroform TM<br />

with 0.01% neomyc<strong>in</strong> and polymyx<strong>in</strong> on the other <strong>wound</strong>.<br />

Wounds were evaluated every 3 days and <strong>wound</strong> swabs<br />

obta<strong>in</strong>ed. They found that Acticoat TM greatly <strong>in</strong>creased the<br />

rate of <strong>wound</strong> closure than the standard Xeroform TM <strong>dress<strong>in</strong>gs</strong><br />

(Deml<strong>in</strong>g and DeSanti 2002).<br />

Dunn <strong>in</strong> 2004 presented reports from the 2003 European<br />

Burns Association meet<strong>in</strong>g of success with the use of<br />

Acticoat TM on burn patients by several cl<strong>in</strong>icians across<br />

Europe. Acticoat TM <strong>dress<strong>in</strong>gs</strong> were applied to children with<br />

partial to full thickness burns. Besides the antimicrobial<br />

effects Acticoat TM -treated <strong>wound</strong>s generally improved and<br />

healed naturally or <strong>in</strong> conjunction with surgical <strong>in</strong>terventions.<br />

There were reports of improved pa<strong>in</strong> levels, reduction <strong>in</strong> the<br />

446<br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4)


<strong>Nanocrystall<strong>in</strong>e</strong> <strong>silver</strong><br />

frequency of dress<strong>in</strong>g changes, <strong>wound</strong> exudate and number<br />

of surgical procedures (Dunn 2004).<br />

Lansdown <strong>in</strong> 2005 conducted a sequential microbiology<br />

exam<strong>in</strong>ation of <strong>wound</strong> swabs from 7 patients with chronic<br />

<strong>wound</strong>s and sampl<strong>in</strong>g <strong>wound</strong> exudates and <strong>wound</strong> scale.<br />

They compared Acticoat 7, Actisorb Silver, Contreet-H TM ,<br />

Aquacel Ag , and Flamaz<strong>in</strong>e TM . They found <strong>in</strong> all cases the<br />

bacterial bioburden to be reduced but not completely<br />

elim<strong>in</strong>ated (Lansdown et al 2005).<br />

In a randomized control study Varas et al <strong>in</strong> 2005<br />

exam<strong>in</strong>ed 14 burn patients pa<strong>in</strong> levels after dress<strong>in</strong>g changes.<br />

Patients had 2 areas of burns and were randomly assigned<br />

to Acticoat TM or <strong>silver</strong>sulfadiaz<strong>in</strong>e cream <strong>dress<strong>in</strong>gs</strong>. Patients<br />

were used as their own control. They found that Acticoat TM -<br />

treated <strong>wound</strong>s were less pa<strong>in</strong>ful than the <strong>silver</strong>sulfadiaz<strong>in</strong>e<br />

cream treated <strong>wound</strong>s (Varas et al 2005).<br />

Fong et al <strong>in</strong> 2005 conducted 2 comparative patient<br />

care audits and a historically controlled matched paired<br />

comparision to exam<strong>in</strong>e the use of Acticoat TM <strong>in</strong> decreas<strong>in</strong>g<br />

the <strong>in</strong>cidence of early burn <strong>wound</strong> <strong>in</strong>fection and its cost<br />

effectiveness. Patient care audits demonstrated that the<br />

Acticoat TM treated group (treatment group) had a significantly<br />

lower <strong>in</strong>fection rate (5.2%) than the <strong>silver</strong>sulfadiaz<strong>in</strong>e cream<br />

treated group(control group) with 55% <strong>in</strong>fection rate. They<br />

demonstrated cost sav<strong>in</strong>gs for the matched paired sample<br />

(4 pairs of patients) comparison of the two treatments, the<br />

Acticoat TM treated sample saved AU$7612 per patient. They<br />

also reported lower pa<strong>in</strong> levels <strong>in</strong> the Acticoat TM patients<br />

and subjective observations made by staff who looked<br />

after both the Acticoat TM and <strong>silver</strong>sulfadiaz<strong>in</strong>e cream<br />

groups of patients suggested that the Acticoat TM group of<br />

patients had higher levels of feel<strong>in</strong>gs of wellbe<strong>in</strong>g due to<br />

lower pa<strong>in</strong> levels and less frequent dress<strong>in</strong>g changes (Fong<br />

et al 2005). Sibbald <strong>in</strong> 2005 <strong>in</strong> an open pilot study of prolonged<br />

release nanocrystall<strong>in</strong>e <strong>silver</strong> dress<strong>in</strong>g (Acticoat 7): reduction<br />

of bacterial burden treatment <strong>in</strong> the treatment of chronic<br />

venous leg ulcers reported a case series of 15 patients. Patients<br />

were treated with Acticoat 7 under a four layer of Profore<br />

compression bandages for a 12-week period or until healed.<br />

Results demonstrated an ionized <strong>silver</strong> dress<strong>in</strong>g with prolonged<br />

release of nanocrystall<strong>in</strong>e <strong>silver</strong> (Acticoat 7) can decrease<br />

bacterial burden and accelerate <strong>wound</strong> heal<strong>in</strong>g <strong>in</strong> venous ulcers<br />

not heal<strong>in</strong>g at the expected rate (Sibbald et al 2005a).<br />

The same authors reported <strong>in</strong> the same study the anti<strong>in</strong>flammatory<br />

activity of prolonged released nanocrystall<strong>in</strong>e<br />

<strong>silver</strong> (Acticoat 7) <strong>in</strong> the treatment of chronic venous leg<br />

ulcers, nanocrystall<strong>in</strong>e <strong>silver</strong> dress<strong>in</strong>g has an antibacterial and<br />

permissive but selective anti-<strong>in</strong>flammatory action <strong>in</strong> reduc<strong>in</strong>g<br />

the size of venous ulcers (Sibbald et al 2005b).<br />

Rustogi et al <strong>in</strong> 2005 evaluated the safety and efficacy<br />

of Acticoat TM use <strong>in</strong> primary burn <strong>in</strong>juries and other sk<strong>in</strong><br />

<strong>in</strong>juries <strong>in</strong> premature neonates. An audit of eight premature<br />

neonates who susta<strong>in</strong>ed burn <strong>in</strong>juries and other cutaneous<br />

<strong>in</strong>juries from various agents were treated with Acticoat TM .<br />

The percentage of sk<strong>in</strong> loss was from 1 to 30%. The <strong>wound</strong>s<br />

were assessed for <strong>in</strong>fection and blood cultures were taken to<br />

exclude sepsis.<br />

Four neonates went on to heal with<strong>in</strong> 28 days, the<br />

other four neonates died, secondary to problems from<br />

extreme prematurity. They reported no <strong>wound</strong> <strong>in</strong>fections<br />

or positive blood cultures <strong>in</strong> the trial period and concluded<br />

that Acticoat TM is suitable for use as a dress<strong>in</strong>g for neonates<br />

(Rustogi et al 2005).<br />

In summary, the literature review of nanocrystall<strong>in</strong>e<br />

<strong>silver</strong> used on humans for <strong>wound</strong> <strong>management</strong> suggested<br />

nanocrystal<strong>in</strong>e <strong>silver</strong> is: cost effective, reduces burn <strong>wound</strong><br />

<strong>in</strong>cidence, decreases pa<strong>in</strong> levels dur<strong>in</strong>g dress<strong>in</strong>g changes,<br />

decreases the frequency of dress<strong>in</strong>g changes, decreases<br />

the matrix metalloprote<strong>in</strong>ase activity, reduces the <strong>wound</strong><br />

exudate and bioburden levels, and promotes <strong>wound</strong> heal<strong>in</strong>g<br />

<strong>in</strong> chronic <strong>wound</strong>s. There is no <strong>in</strong> vivo evidence to suggest<br />

that nanocrystall<strong>in</strong>e <strong>silver</strong> is toxic to sk<strong>in</strong> cells such as<br />

kerat<strong>in</strong>ocytes and fibroblasts.<br />

Conclusion<br />

Research <strong>in</strong>dicates nanocrystall<strong>in</strong>e <strong>silver</strong> dress<strong>in</strong>g is an<br />

effective antimicrobial for treat<strong>in</strong>g <strong>wound</strong>s especially burns<br />

and chronic <strong>wound</strong>s. Acticoat TM reduces the <strong>in</strong>flammatory<br />

processes and promotes <strong>wound</strong> heal<strong>in</strong>g and is less toxic than<br />

other forms of <strong>silver</strong> <strong>dress<strong>in</strong>gs</strong> due to the prolonged release<br />

of <strong>silver</strong> onto the <strong>wound</strong>. There has been no <strong>in</strong> vivo reports<br />

of toxicity of nanocrystall<strong>in</strong>e <strong>silver</strong> on kerat<strong>in</strong>ocytes or<br />

fibroblasts, but there is <strong>in</strong> vitro evidence to suggest so. Thus,<br />

cl<strong>in</strong>icians should be cautious <strong>in</strong> the use of nanocrystall<strong>in</strong>e<br />

<strong>dress<strong>in</strong>gs</strong> over epitheliaz<strong>in</strong>g and proliferat<strong>in</strong>g <strong>wound</strong>s.<br />

Evidence from cl<strong>in</strong>ical trials, various case presentations, and<br />

reports suggests that the use of Acticoat TM is cost effective,<br />

reduces pa<strong>in</strong> levels, and has a longer wear time, thus limit<strong>in</strong>g<br />

the frequency of dress<strong>in</strong>g changes. There has been no reports<br />

of resistance to Acticoat <strong>dress<strong>in</strong>gs</strong>; however, cl<strong>in</strong>icians should<br />

use Acticoat <strong>dress<strong>in</strong>gs</strong> judiciously, apply<strong>in</strong>g the <strong>dress<strong>in</strong>gs</strong> to<br />

the appropriate <strong>wound</strong>s and ceas<strong>in</strong>g their use appropriately<br />

to prevent the development of bacterial resistance. Cl<strong>in</strong>icians<br />

are <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> their use of nanocrystall<strong>in</strong>e <strong>silver</strong> <strong>dress<strong>in</strong>gs</strong><br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4) 447


Fong and Wood<br />

for <strong>wound</strong> <strong>management</strong> either for their antimicrobial or<br />

anti-<strong>in</strong>flammatory properties. More quality cl<strong>in</strong>ical research<br />

should be conducted <strong>in</strong> order to direct cl<strong>in</strong>icians <strong>in</strong> their<br />

decision mak<strong>in</strong>g process <strong>in</strong> choice of <strong>dress<strong>in</strong>gs</strong> and to provide<br />

more evidence for best practices <strong>in</strong> <strong>wound</strong> <strong>management</strong>.<br />

References<br />

Ayton M.1985.Wounds that won’t heal. Nurs<strong>in</strong>g Times, 81:16-19.<br />

Cook N. 1998. Methicill<strong>in</strong> resistant staphylococcus aureus versus the burned<br />

patient. Burns, 24:91–8.<br />

Deitch E, Mar<strong>in</strong> A, Malakanov V, et al. 1987. Silver nylon cloth: <strong>in</strong> vivo and <strong>in</strong><br />

vitro evaluation of antimicrobial activity. J Trauma, 27:301–4.<br />

Deml<strong>in</strong>g R, DeSanti L. 2001. The role of <strong>silver</strong> technology <strong>in</strong> <strong>wound</strong><br />

heal<strong>in</strong>g: Part 1: Effects of <strong>silver</strong> on <strong>wound</strong> <strong>management</strong>. Wounds:<br />

A Compendium of Cl<strong>in</strong>ical Research and Practice, 13(Suppl A):<br />

4–15.<br />

Deml<strong>in</strong>g R, DeSanti L. 2002. The rate of re-epithelialization across meshed<br />

sk<strong>in</strong> grafts is <strong>in</strong>creased with exposure to <strong>silver</strong>. Burns, 28:264–6.<br />

Dunn K, Edwards-Jones V. 2004. The role of Acticoat TM with nanocrystall<strong>in</strong>e<br />

<strong>silver</strong> <strong>in</strong> the <strong>management</strong> of burns. Burns, 30(Supp 1):S1–9.<br />

Fong J. 2005. The use of <strong>silver</strong> products <strong>in</strong> the <strong>management</strong> of burn <strong>wound</strong>s:<br />

change <strong>in</strong> practice for the burn unit at Royal Perth Hospital. Primary<br />

Intention, 13:S16–22.<br />

Fong J, Wood F, Fowler B. 2005. A <strong>silver</strong> coated dress<strong>in</strong>g reduces the<br />

<strong>in</strong>cidence of early burn <strong>wound</strong> cellulitis and associated costs of <strong>in</strong>patient<br />

treatment: Comparative patient care audits. Burns, 31:562–7.<br />

Fraser J, Bodman J, Sturgess R, et al. 2003. An <strong>in</strong> vitro study of the antimicrobial<br />

efficacy of a 1% <strong>silver</strong> sulphadiaz<strong>in</strong>e and 0.2% chlorhexid<strong>in</strong>e<br />

diglugonate cream, 1% <strong>silver</strong> sulphadiaz<strong>in</strong>e cream and a <strong>silver</strong> coated<br />

dress<strong>in</strong>g. Burns, 30:1–7<br />

Fraser J, Cuttle L, Kemp M, et al. 2004. Cytoxicity of topical antimicrobial<br />

agents used <strong>in</strong> burn <strong>wound</strong>s <strong>in</strong> Australasia. ANZ J Surg, 74:139–42.<br />

Heggers J, Goodheart R, Wash<strong>in</strong>gton J, et al. 2005. Therapeutic Efficacy of<br />

three <strong>silver</strong> <strong>dress<strong>in</strong>gs</strong> <strong>in</strong> an <strong>in</strong>fected animal model. J Burn Care Rehabil,<br />

26:53–6.<br />

Heggers J, Hawk<strong>in</strong>s H, Edgar P, et al. 2002. Treatment of <strong>in</strong>fection <strong>in</strong> burns.<br />

In Herndon DN, ed. Total burn cCare. 2nd ed. London: Saunders.<br />

p120–69.<br />

Hoffman S. 1984. Silver sulfadiaz<strong>in</strong>e: an antibacterial agent for topical use<br />

<strong>in</strong> burns. Scand J Plast Reconstr Surgery, 18:119–26.<br />

Holder I, Durkee P, Supp A, et al. 2003. Assessment of a <strong>silver</strong>-coated<br />

barrier dress<strong>in</strong>g for potential use with sk<strong>in</strong> grafts on excised burns.<br />

Burns, 29:445–8.<br />

Innes M, Umraw N, Fish J, et al. 2001. The use of <strong>silver</strong> coated <strong>dress<strong>in</strong>gs</strong><br />

on donor site <strong>wound</strong>s: a prospective, controlled matched pair study.<br />

Burns, 27:621–7.<br />

Kirshner R. 2002. Matrix metalloprote<strong>in</strong>ases <strong>in</strong> normal and impaired<br />

<strong>wound</strong> heal<strong>in</strong>g: A potential role of nanocrystall<strong>in</strong>e <strong>silver</strong>. Wounds: A<br />

Compendium of Cl<strong>in</strong>ical Research and Practice, 13:4–14.<br />

Klasen H. 2000. A historical review of the use of <strong>silver</strong> <strong>in</strong> the treatment of<br />

burns. II. Renewed <strong>in</strong>terest for <strong>silver</strong>. Burns, 26:131–8.<br />

Kumar G, Rameshwar L, Suhas C et al. 1999. Pseudomonas aerug<strong>in</strong>osa<br />

septicaemia <strong>in</strong> burns. Burns, 25:611–16.<br />

Lansdown A. 2002. Silver 1: its antibacterial properties and mechanism of<br />

action. J Wound Care, 11:125–13.<br />

Lansdown A, Williams A, Chandler S, et al. 2005. Silver absorption and<br />

antibacterial efficacy of <strong>silver</strong> <strong>dress<strong>in</strong>gs</strong>. J Wound Care, 14:155–60.<br />

Miller M, 1998. How do I diagnose and treat <strong>wound</strong> <strong>in</strong>fection. Br J Nurs,<br />

7:335–8.<br />

Orv<strong>in</strong>gton L. 2001. The role of <strong>silver</strong> technology <strong>in</strong> <strong>wound</strong> heal<strong>in</strong>g:<br />

Part 2. why is nanocrystall<strong>in</strong>e <strong>silver</strong> superior? Wounds. A<br />

Compendium of Cl<strong>in</strong>ical Research and Practice, 13(Suppl B):<br />

5–10.<br />

Orv<strong>in</strong>gton L. 2004. The truth about <strong>silver</strong>. Ostomy Wound Manage, 50(Suppl<br />

9A):1S–10S.<br />

Poon V, Burd A. 2004. In vitro cytotoxicity of <strong>silver</strong>: implication for cl<strong>in</strong>ical<br />

<strong>wound</strong> care. Burns, 30:140–7.<br />

Rustogi R, Mill J, Fraser J, et al. 2005. The use of Acticoat TM <strong>in</strong> neonatal<br />

burns. Burns, 31:878–82.<br />

Sibbald R, Contreras-Ruiz J, Coutts P, et al. 2005. Open label pilot study of<br />

prolonged release nanocrystall<strong>in</strong>e <strong>silver</strong> dress<strong>in</strong>g (Acticoat 7): reduction<br />

of bacterial burden treatment <strong>in</strong> the treatment of chronic venous leg<br />

ulcers [abstract]. Wound Repair Regen, 13:35.<br />

Sibbald R, Raphael S, Rothman A, et al. 2005. The selective anti-<strong>in</strong>flammatory<br />

activity of prolonged release nanocrystall<strong>in</strong>e <strong>silver</strong> dress<strong>in</strong>g (Acticoat 7)<br />

<strong>in</strong> the treatment of chronic venous leg ulcers [abstract]. Wound Repair<br />

Regen, 13:40.<br />

Smith and Nephew. 2003. Dynamic <strong>silver</strong> release rapid destruction, susta<strong>in</strong>ed<br />

protection, Acticoat with <strong>silver</strong>cryst. Smith and Nephew Pty. Ltd. Product<br />

<strong>in</strong>formation.<br />

Smith and Nephew. 2004.Together at last. Dynamic <strong>silver</strong> and super-powered<br />

absorbency, Acticoat absorbent. Smith and Nephew Pty. Ltd. Product<br />

<strong>in</strong>formation.<br />

Supp A, Needy A, Supp D, et al. 2005. Evaluation of cytotoxicity and<br />

antimicrobial activity of Acticoat burn dress<strong>in</strong>g for <strong>management</strong> of<br />

microbial contam<strong>in</strong>ation <strong>in</strong> cultured sk<strong>in</strong> substitutes grafted to anthymic<br />

mice. J Burn Care Rehabil, 26(3):238–46.<br />

Thomas S. 2003a. A comparison of the antimicrobial effects of four <strong>silver</strong>conta<strong>in</strong><strong>in</strong>g<br />

<strong>dress<strong>in</strong>gs</strong> on three organisms. J Wound Care, 12:101–7.<br />

Thomas S. 2003b. An <strong>in</strong> vitro analysis of the antimicrobial properties of 10<br />

<strong>silver</strong>-conta<strong>in</strong><strong>in</strong>g <strong>dress<strong>in</strong>gs</strong>. J Wound Care, 12:305–9.<br />

Tredget E, Shankovsky R, Groenveld A, et al. 1998. A matched-pair,<br />

randomised study evaluat<strong>in</strong>g the efficacy and safety of Acticoat<br />

<strong>silver</strong>-coated dress<strong>in</strong>g for the treatment of burn <strong>wound</strong>s. J Burn Care<br />

Rehabil, 19:531–7.<br />

Templeton S. 2005. Management of chronic <strong>wound</strong>s:the role of <strong>silver</strong>conta<strong>in</strong><strong>in</strong>g<br />

<strong>dress<strong>in</strong>gs</strong>. Primary Intention, 13:170–9.<br />

Ulkur U, Oncul O, Karagoz H, et al. 2005a. Comparison of <strong>silver</strong>-coated dress<strong>in</strong>g<br />

(Acticoat TM ), chlorhexid<strong>in</strong>e acetate 0.5% (Bactigrass R ), and fusidic acid<br />

2% (Fucid<strong>in</strong>) for topical antibacterial effect <strong>in</strong> methicill<strong>in</strong> resistant<br />

Staphlococci-contam<strong>in</strong>ated, full thickness rat burn <strong>wound</strong>s. Burns,<br />

31:874–7.<br />

Ulkur U, Oncul O, Karagoz H, et al. 2005b. Comparison of <strong>silver</strong>-coated<br />

dress<strong>in</strong>g (Acticoat TM ), chlorhexid<strong>in</strong>e acetate 0.5% (Bactigrass R ),<br />

and sulfadiaz<strong>in</strong>e 1% (Silverd<strong>in</strong>) for topical antibacterial effect <strong>in</strong><br />

Pseudomonas aerug<strong>in</strong>osa contam<strong>in</strong>ated, full thickness burn <strong>wound</strong> <strong>in</strong><br />

rats. J Burn Care Rehabil, 26:430–3.<br />

Varas R, O’Keefe T, Namia N, et al. 2005. A prospective, randomized<br />

trial of Acticoat versus <strong>silver</strong> sulfadiaz<strong>in</strong>e <strong>in</strong> the treatment of partial<br />

thickness burns: which method is less pa<strong>in</strong>ful? J Burn Care and Rehabil,<br />

26:344–7.<br />

Voight D, Paul C. 2001. The use of Acticoat as <strong>silver</strong> impregnated Telfa<br />

<strong>dress<strong>in</strong>gs</strong> <strong>in</strong> a Regional burn and <strong>wound</strong> care center: the cl<strong>in</strong>icians<br />

view. Wounds: A Compendium of Cl<strong>in</strong>ical Research and Practice,<br />

13:11–23.<br />

Wright J, Lam K, Burrell R. 1998. Wound <strong>management</strong> <strong>in</strong> an era of <strong>in</strong>creas<strong>in</strong>g<br />

bacterial antibiotic resistance: a role for topical <strong>silver</strong> treatment. Am J<br />

Infect Control, 26:572–7.<br />

White R, Cooper R, K<strong>in</strong>gsley A. 2002. A topical issue: the use of antibacterials<br />

<strong>in</strong> <strong>wound</strong> pathogen control. In White R, ed. Trends <strong>in</strong> <strong>wound</strong> care. UK:<br />

Bath Press. p16–17.<br />

Woodward M. 2005. Silver <strong>dress<strong>in</strong>gs</strong> <strong>in</strong> <strong>wound</strong> heal<strong>in</strong>g: what is the evidence?<br />

Primary Intention, 13:153–60.<br />

Wright B, Lam K, Hansen D, et al. 1999. Efficacy of topical <strong>silver</strong> aga<strong>in</strong>st<br />

fungal burn <strong>wound</strong> pathogens. Am J of Infect Control, 27:344–50.<br />

Wright B, Lam K, Buret A, et al. 2002. Early heal<strong>in</strong>g events <strong>in</strong> a porc<strong>in</strong>e<br />

model of contam<strong>in</strong>ated <strong>wound</strong>s: effects of nanocrystall<strong>in</strong>e <strong>silver</strong> on<br />

matrix metalloprote<strong>in</strong>ases, cell apoptosis, and heal<strong>in</strong>g. Wound Repair<br />

Regen, 10:141–51.<br />

448<br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4)


<strong>Nanocrystall<strong>in</strong>e</strong> <strong>silver</strong><br />

Wright B, Lam K, Olsen M, et al. 2003. Is antimicrobial efficacy sufficient?<br />

A question concern<strong>in</strong>g the benefits of new <strong>dress<strong>in</strong>gs</strong>. Wounds: A<br />

Compendium of Cl<strong>in</strong>ical Research and Practice, 15:133–14.<br />

Y<strong>in</strong> H, Langford R, Burrell R. 1999. Comparative evaluation of the<br />

antimicrobial action of Acticoat: antimicrobial barrier dress<strong>in</strong>g. J Burn<br />

Care Rehabil, 20:195–9.<br />

International Journal of Nanomedic<strong>in</strong>e 2006:1(4) 449

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!