01.07.2014 Views

Reproductive Biology and Embryology of the ... - Seaturtle.org

Reproductive Biology and Embryology of the ... - Seaturtle.org

Reproductive Biology and Embryology of the ... - Seaturtle.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

32B<br />

EMBRYOLOGY OF MARINE TURTLEB<br />

bei den Seeschildkrbten, untersucht an Embryonen von Chelonia viridis. Anat. Anz, 8,<br />

801-803.<br />

Voeltzkow, A. (1903). Beitrage zur Entwicklungsgeschichte der Reptilien. VI. Gesichtsbildung<br />

und Entwicklung der ausseren Kbrperform bei Chelone imbricala Schweigg. Abh. senckenb.<br />

naturf. Ges. 27, 179-190.<br />

Wassersug, R. J. (1976). A procedure for differential staining <strong>of</strong> cartilage <strong>and</strong> bone in whole<br />

formalin-fixed vertebrates. Stain Tech. 51, 131-134.<br />

Wiedersheim, R. (1890a). Uber die Entwicklung des Urogenitalapparates bei Krokodilen und<br />

Schildkrbten. Anal. Anz. 5, 337-344.<br />

Wiedersheim, R. (1890b). Uber die Entwicklung des Urogenitalapparates bei Krokodilen und<br />

Schildkrbten. Arch. mikr. Anal. 36, 410-468.<br />

Will, L. (1893). Beitrage zur Entwicklungsgeschichte der Reptilien. 2. Die Anlage der Keirnblatter<br />

bei der menorquinischen Sumpfschildkrbte (Cistudo lutaria Gesn.). Zool. Jahrb ..<br />

Abt. Anal. 6, 529-615.<br />

Witzell, W. N. (1983). Synopsis <strong>of</strong> biological data on <strong>the</strong> hawksbill turtle, Erelmochelys imbricata<br />

(Linnaeus, 1766). FAD Fish. Synop. 137, 1-78.<br />

Wood, J. R. <strong>and</strong> Wood, F. E. (1980). <strong>Reproductive</strong> biology <strong>of</strong> captive green sea turtles CIlelonia<br />

mydas. Amer. Zool. 20, 499-505.<br />

Yamamoto, Y. (1960). Comparative histological studies <strong>of</strong> <strong>the</strong> thyroid gl<strong>and</strong> <strong>of</strong> lower vertebrates.<br />

Folia anat. jap. 34, 353-387.<br />

Yntema, C. L. (1964). Procurement <strong>and</strong> use <strong>of</strong> turtle embryos for experimental procedures.<br />

Anal. Rec. 149, 577-586.<br />

Yntema, C. L. (1968). A series <strong>of</strong> stages in <strong>the</strong> embryonic development <strong>of</strong> Chelydra serpentina. f.<br />

Morph. 125, 219-251.<br />

Yntema, C. L. (1976). Effects <strong>of</strong> incubation temperatures on sexual differentiation in <strong>the</strong> turtle,<br />

Chelydra serpentina. J. Morph. 150, 453-462.<br />

Yntema, C. L. (1979). Temperature levels <strong>and</strong> periods <strong>of</strong> sex determination during incubation<br />

<strong>of</strong> eggs <strong>of</strong> Chelydra serpentina. f. Morph. 159, 17-28.<br />

Yntema, C. <strong>and</strong> Mrosovsky, N. (1979). Incubation temperature <strong>and</strong> sex ratio in hatchling<br />

loggerhead turtles: a preliminary report. Mar. Turtle Newslet. 11, 9-10.<br />

Yntema, C. <strong>and</strong> Mrosovsky, N. (1980). Sexual differentiation in hatchling loggerheads (Caretta<br />

caretta) incubated at different controlled temperatures. Herpetologica 36, 33-36.<br />

Yntema, C. L. <strong>and</strong> Mrosovsky, N. (1982). Critical periods <strong>and</strong> pivotal temperatures for sexual<br />

differentiation in loggerhead sea turtles. Can. f. Zool. 60, 1012-1016.<br />

Yoshie, S. <strong>and</strong> Honma, Y. (1976). Light <strong>and</strong> scanning electron microscopic studies on <strong>the</strong><br />

esophageal spines in <strong>the</strong> Pacific Ridley turtle, Lepidochelys olivacea. Archs. Hislol. Jap. 38,<br />

339-346.<br />

Zanger!, R. (1969). The turtle shell. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans, A. d'A. Bellairs, <strong>and</strong> T.<br />

Parsons, eds.). Volume 1, Academic Press, London <strong>and</strong> New York, pp. 311-339.<br />

Zanger!, R. (1980). Patterns <strong>of</strong> phylogenetic differentiation in <strong>the</strong> toxochelyid <strong>and</strong> cheloniid<br />

sea turtles. Amer. Zool. 20, 585-596.<br />

Zeleny, C. (1901). The ear!y development <strong>of</strong> <strong>the</strong> hypophysis in Chelonia. BioI. Bull., Stockh 2,<br />

267-281.<br />

Zwinenberg, A. J. (1976). The olive ridley, Lepidochelys olivacea (Eschscholtz, 1829): probablY<br />

<strong>the</strong> most numerous marine turtle today. Bull. Maryl<strong>and</strong> herp. Soc. 12, 75-95.<br />

Zwinenberg, A. J. (1977). Kemp's Ridley, Lepidochelys kempii (Garman, 1880), undoubtedly <strong>the</strong><br />

most endangered marine turtle today (with notes on <strong>the</strong> current status <strong>of</strong> Lepidochel.'l'<br />

olivacea). Bull. Maryl<strong>and</strong> herp. Soc. 13, 170-192.<br />

CHAPTER<br />

5<br />

<strong>Reproductive</strong> <strong>Biology</strong> <strong>and</strong><br />

<strong>Embryology</strong> <strong>of</strong> <strong>the</strong><br />

Crocodilians<br />

MARK W. 0. FERGUSON<br />

Department <strong>of</strong> Basic Dental Sciences, Turner Dental School, University <strong>of</strong><br />

Manchester, Higher Cambridge Street, Manchester, M 1 5 6FH Engl<strong>and</strong>


INTRODUCTION<br />

331<br />

I. INTROOUCTION<br />

II.<br />

REPRODUCTIVE BIOLOGY<br />

A. General, 333<br />

B.<br />

C.<br />

CONTENTS<br />

Sexual Maturity <strong>and</strong> Adult Sex Ratios, 333<br />

Courtship, Spermatogenesis, Ovulation, Copulation,<br />

<strong>the</strong> Breeding Season, Fertilization, <strong>and</strong> Egg Laying, 336<br />

D. Nesting <strong>Biology</strong>, 349<br />

E. Maternal Behavior, 355<br />

F.<br />

Captive Breeding, Egg Collection, <strong>and</strong> Artificial<br />

Incubation, 356<br />

G. Hatching, 360<br />

331<br />

333<br />

P. Endocrine Gl<strong>and</strong>s, 445<br />

Q. Thymus <strong>and</strong> Immune System, 446<br />

R, Limbs <strong>and</strong> Tail, 446<br />

S, Integument <strong>and</strong> Its Gl<strong>and</strong>s, 450<br />

T. Caruncle, 450<br />

VIII. DEVELOPMENTAL ABNORMALITIES<br />

451<br />

IX. SHELL·LESS, SEMI.SHELL.LESS, AND IN VITRO<br />

CULTURE TECHNIGUES 460<br />

X. CONCLUSIONS 462<br />

REFERENCES 464<br />

III.<br />

THE EGGSHELL AND SHELL MEMBRANES<br />

A. General, 363<br />

363<br />

B. Egg B<strong>and</strong>ing, 363<br />

C. Structure, 367<br />

D. Chemical Composition, 374<br />

E.<br />

Water <strong>and</strong> Gas Conductance <strong>and</strong> Embryonic<br />

Metabolism, 376<br />

I. INTRODUCTION<br />

IV.<br />

V.<br />

VI.<br />

VII.<br />

THE EGG CONTENTS AND EXTRA.EMBRYONIC<br />

MEMBRANES<br />

EARLY EMBRYONIC DEVELOPMENT [BEFORE EGG<br />

LAYING)<br />

STAGES OF EMBRYONIC DEVELOPMENT [AFTER EGG<br />

LAYING)<br />

ORGANOGENESIS<br />

A. Branchial Arches, 41 6<br />

B. Face <strong>and</strong> Nose, 41 9<br />

C.<br />

Palate <strong>and</strong> Nasopharyngeal Duct, 421<br />

D. Tongue, 427<br />

E. Ear, 428<br />

F. Eye, 428<br />

G.<br />

Chondrocranium <strong>and</strong> Osteocranium, 431<br />

H. Teeth, 431<br />

I. Central Nervous System, 432<br />

..J. Vertebrae <strong>and</strong> Ribs, 435<br />

K. Respiratory System, 436<br />

L. Cardiovascular System, 436<br />

M. Diaphragm, 438<br />

N. Gastrointestinal System, 438<br />

O.<br />

Urogenital System <strong>and</strong> Sex Determination, 440<br />

377<br />

381<br />

390<br />

416<br />

I"<br />

t<br />

I'<br />

The living crocodilians, represented by 26 living species placed in three<br />

subfamilies (see Table III later in chapter), are <strong>the</strong> end products <strong>of</strong> a relatively<br />

conservative lineage, which arose from <strong>the</strong>codont ancestors approximately<br />

230 million years ago (Carroll, 1969; Walker, 1972). The evolution<br />

<strong>and</strong> taxonomy <strong>of</strong> <strong>the</strong> order have been <strong>the</strong> subject <strong>of</strong> considerable debate<br />

involving paleontological (Steel, 1973), neontological (Wermuth <strong>and</strong> Mertens,<br />

1977; Groombridge, 1982), immunological, <strong>and</strong> biochemical approaches<br />

(Perutz et al., 1981; Le Clercq et al., 1981; Densmore, 1981; Coulson<br />

<strong>and</strong> Hern<strong>and</strong>ez, 1983). Densmore's <strong>and</strong> Groombridge's classifications<br />

are used here. All types <strong>of</strong> data indicate that birds are <strong>the</strong> closest living<br />

relatives <strong>of</strong> crocodilians. However, several aspects <strong>of</strong> crocodilian embryogenesis,<br />

for example, palatogenesis (Section VII, VIII), resemble mammalian<br />

phenomena, <strong>and</strong> variations in hemoglobin amino acid sequences place<br />

crocodilians closer to mammals than to snakes (Perutz et al., 1981; Le<br />

Clercq et al., 1981; Densmore, 1981). Thus, fur<strong>the</strong>r studies <strong>of</strong> crocodilian<br />

embryogenesis not only may shed light on fundamental aspects <strong>of</strong> <strong>org</strong>anogenesis,<br />

but also exploit <strong>the</strong> potential <strong>of</strong> <strong>the</strong>se vertebrates as models<br />

for experimental investigations, which are difficult or impossible to perform<br />

in o<strong>the</strong>r amniotes (Ferguson, 1981a, b, 1984a).<br />

Crocodilian embryology has received very little attention. Some general<br />

accounts are available for Crocodylus niloticus (Rathke, 1866; Voeltzkow,<br />

1899, 1901, 1903a), Alligator mississippiensis (Clarke, 1891; Reese, 1908,<br />

1910a-c, 1912, 1915a, b, 1921, 1936), C. palustris, <strong>and</strong> C. porosus (Derani­<br />

330


332 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

REPRODUCTIVE BIOLOGY<br />

333<br />

yagala, 1934, 1936, 1939), whereas Wettstein (1937, 1954) included some<br />

embryological data in his general review <strong>of</strong> crocodilian biology. The present<br />

chapter reviews <strong>the</strong> older, incomplete data <strong>and</strong> a special effort is made<br />

to correct ambiguous or misleading statements or concepts. My studies on<br />

shell structure (Ferguson, 1981c, 1982a), sex determination (Ferguson <strong>and</strong><br />

Joanen, 1982, 1983), <strong>and</strong> crani<strong>of</strong>acial development (Ferguson, 1979a, b,<br />

1981a, b, 1982b, 1984a) tend to give <strong>the</strong> chapter a bias, but an attempt has<br />

been made to review all available data in <strong>the</strong> hope that neglected topics will<br />

be pursued by o<strong>the</strong>rs.<br />

Many <strong>of</strong> <strong>the</strong> studies on which <strong>the</strong> present chapter is based have been<br />

carried out on <strong>the</strong> population <strong>of</strong> Alligator mississippiensis at <strong>the</strong> Rockefeller<br />

Wildlife Refuge in Louisiana, <strong>and</strong> it might be argued that <strong>the</strong>se animals are<br />

not representative <strong>of</strong> all alligator populations nor <strong>of</strong> crocodilians in general.<br />

However, observations on o<strong>the</strong>r populations have revealed no significant<br />

differences with respect to basic reproductive biology <strong>and</strong> embryology.<br />

Fur<strong>the</strong>rmore, analyses <strong>of</strong> protein electrophoretic patterns have shown that<br />

A. mississippiensis is one <strong>of</strong> <strong>the</strong> most genetically homogeneous vertebrate<br />

species; protein variations are so low that animals from populations separated<br />

by more than 1000 miles cannot be identified as to <strong>the</strong>ir geographic<br />

source (Gartside et al. 1977; Menzies et al. 1979; Adams et al. 1980). In<br />

addition, I have made limited observations on some aspects <strong>of</strong> <strong>the</strong> embryology<br />

<strong>of</strong> Crocodylus johnsoni, C. porosus, C. niloticus, C. cataphractus, <strong>and</strong> C.<br />

novaeguineae (Ferguson, 1984a). The basic events during <strong>the</strong> period <strong>of</strong> <strong>org</strong>anogenesis<br />

(first half <strong>of</strong> development) are remarkably similar <strong>and</strong> may be<br />

regarded as crocodilian, whereas species-specific differences are more<br />

geometrical, for example, variations in <strong>the</strong> relative sizes <strong>and</strong> proportions <strong>of</strong><br />

structures such as <strong>the</strong> tail, limbs, snout, <strong>and</strong> pigmentation pattern, <strong>and</strong><br />

<strong>the</strong>y appear principally during <strong>the</strong> second half <strong>of</strong> development. Therefore<br />

this account is likely to be representative <strong>of</strong> crocodilians in general.<br />

A recent, dramatic increase in <strong>the</strong> literature on ecology, behavior, natural<br />

history, management, <strong>and</strong> farming <strong>of</strong> crocodilians across <strong>the</strong> world<br />

<strong>of</strong>fers hope not only for <strong>the</strong> survival <strong>of</strong> <strong>the</strong>se reptiles, but also for <strong>the</strong> future<br />

availability <strong>of</strong> embryonic study material. Such are particularly exciting<br />

prospects not only for <strong>the</strong> study <strong>of</strong> neglected species such as <strong>the</strong> gharial,<br />

but also for determining general principles pertaining to crocodilians, <strong>and</strong><br />

for establishing species-specific variations.<br />

Much <strong>of</strong> this natural history <strong>and</strong> farming literature is relevant to embrylogical<br />

studies. Because it is extremely unlikely that investigations on <strong>the</strong><br />

"T stages <strong>of</strong> embryogenesis can be conducted on anything but captive<br />

1


TABLE I<br />

The Size <strong>and</strong> Age at Sexual Maturity for Some Crocodilian Species, Including Data for <strong>the</strong> Same Species Inhabiting Different<br />

Geographical Locations<br />

Sex<br />

Age at<br />

(M = male Age at Sexual<br />

F = female Size Sexual Maturity<br />

grouped = no at Sexual Maturity in<br />

distinction Maturity in Wild Captivity<br />

III<br />

III<br />

" Species reported)<br />

(meters) (years) (years)<br />

Alligator mississippiensis<br />

M<br />

1.8<br />

9-10<br />

6<br />

Louisiana<br />

F<br />

1.8<br />

9-10<br />

6<br />

Alligator mississippiensis<br />

North Carolina<br />

Caiman crocodilus crocodilus<br />

Caiman crocodilus fuscus<br />

Gavialis gangeticlIs<br />

M<br />

F<br />

1.8<br />

1.8<br />

15<br />

18<br />

References<br />

Joanen (1969), Joanen <strong>and</strong><br />

McNease (1973, 1975a, b,<br />

1978, 1979a, 1980)<br />

Klause et al. (1984a, b)<br />

~}<br />

1.3 4 Staton <strong>and</strong> Dixon (1977)<br />

~}<br />

1.08 Staton <strong>and</strong> Dixon (1977)<br />

~}<br />

3 8-12 Acharjyo et al. (1975),<br />

Bustard (1979, 1980c,<br />

1984), Singh <strong>and</strong> Bustard<br />

(1977), Singh (1979)


­<br />

138 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCOOILIANB<br />

tains <strong>and</strong> with its normal growth rate. Forms that mature at smaller sizes,<br />

r example, Caiman crocodilus fuscus, are obviously well suited for captive<br />

eeding <strong>and</strong> developmental study.<br />

Although sexual maturity may be reached at <strong>the</strong> sizes specified in Table<br />

fIl<br />

social order favors <strong>the</strong> mating <strong>of</strong> larger animals, for example, male Al- r:<br />

.8<br />

Igator mississippiensis that are longer than 2.7 m (McIlhenny, 1935; Giles r;<br />

<<br />

(lj<br />

(/'J<br />

trong evidence that for maximum reproductive success (i.e., total number<br />

-0<br />

(lj<br />

f viable hatchlings produced) in captive breeding, <strong>the</strong> sex ratio ought to 1::<br />

o<br />

ary according to <strong>the</strong> age/size <strong>of</strong> <strong>the</strong> animals (Ferguson, unpublished).<br />

l:lo<br />

(lj<br />

ounger (smaller) animals should be stocked in ratios approaching 1: 1 ~<br />

(lj<br />

particularly if <strong>the</strong> males are young) <strong>and</strong> as <strong>the</strong>y mature so <strong>the</strong> percentage<br />

o:S<br />

f females should be increased.<br />

oS<br />

fIl<br />

r:<br />

C. CourtBhip. Spermatogenesis. Ovulation. Copulation. .8<br />

<strong>the</strong> Breeding Season, Fertilization, <strong>and</strong> Egg Laying o~- ...<br />

III<br />

;><br />

here is detailed information on <strong>the</strong> reproductive biology <strong>of</strong> Alligator mis­<br />

,issippiensis Goanen, 1969; Joanen <strong>and</strong> McNease, 1970, 1973, 1975a, b, 1978,<br />

979a, 1980; Lance, 1983, 1984) <strong>and</strong> Crocodylus niloticus (Cott, 1961;<br />

raham, 1968) with fragmentary information available for o<strong>the</strong>r species,<br />

~ ..>


338<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

15J6'fl<br />

JANUARY<br />

~.\\ 15 I !": (J~I'F<br />

,~I><br />

f"s. )<br />

~""~<br />

Q""(,""~<br />

~<br />

/<br />

" ~ ~.:<br />

,.;:- $" '; - ~ ~&<br />

~ $5 '"<br />

'6'~ '9. '"<br />

./<br />

~!(J i­<br />

~<br />

/<br />

t.\l~~\~'t.\'I:i<br />

----.........."<br />

.0'"<br />

'i\ ~,t~ \l'l:i''''<br />

Femele Inhabits r:.f;\~ ~\l\t \ ~ tl'<br />

Ir Isolated den-type \ ...~o\t ~,,-.j, ..V:l~~"'0<br />

Light<br />

-.J<br />

w<br />

.oleroreos, \ 0(\0">' 0'>1. 0 \\"" bellowing LOCi'<br />

0:' ~LO mole prefers<br />

~o \'0<br />

U<br />

deep open<br />

-a- =<br />

- f-­<br />

« '"<br />

o .oler arees "<br />

-r,O\c'\I\lI'1QS II'I\\\O\! IttQlflq<br />

..... ',.<br />

,,~,t.~\\"'~~<br />

\l\'i- ~i -- ~~~ "<br />

\l~ ~~~ i _.-~\ '.,~ / ;,,;.<br />

~<br />

't-'rjiJ~,,+\\\l"'/ /' / '1..- ' ~~ ('q,~-& ~J'" 4.0'<br />

ff<br />

~<br />

'0 Y', t'; J'~v('~o~ ~...,,;<br />

g ~ 0""-%",;<br />

~ ~~<br />

~o" ~I' ~<br />

~0'::>,<br />

+~"- §~ \ ':i:, ,~ ~~~ "';\<br />

-~<br />

\\ \~<br />

-


340<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCDDILIANS<br />

mone biosyn<strong>the</strong>sis) are present (Lance, 1983, 1984). However, mature<br />

sperm do not appear in <strong>the</strong> seminiferous tubules until late April/early May.<br />

Living sperm first appear in <strong>the</strong> penial groove in early May <strong>and</strong> are present<br />

for only a 6-week period, with maximum output (coincident with female<br />

ovulation) during a 2-week period in late May/early June (Joanen <strong>and</strong><br />

McNease, 1970, 1972, 1973, 1975a, b, 1979a, 1980). Jenkinson (1913) states<br />

that crocodilian sperm are small (20-30 jJ-m), but Lance (1983) reported a<br />

mean length <strong>of</strong> 60 to 70 jJ-m for alligators. Mature males have sperm concentrations<br />

<strong>of</strong> 0.5 to 1 billion per ml <strong>of</strong> semen (Larsen, 1981). Sperm storage<br />

occurs principally in <strong>the</strong> ductus deferens as <strong>the</strong> epididymis is poorly developed<br />

(Lance, 1983). Dead, immotile sperm were first noted in mid-June,<br />

<strong>and</strong> by June 20th, 90% <strong>of</strong> spermatozoa were dead (Joanen <strong>and</strong> McNease,<br />

1970, 1973, 1975a, b, 1980). Sperm production varies significantly amongst<br />

reproductive size classes (i.e., 1.8 m <strong>and</strong> above), <strong>and</strong> large males (over 2.7<br />

m) produce living spermatozoa for a longer time period than do smaller<br />

males (Joanen <strong>and</strong> McNease, 1980). This may explain <strong>the</strong> reproductive<br />

superiority <strong>of</strong> <strong>the</strong> large bulls, <strong>and</strong> why social order favors breeding by<br />

males over 2.8 m in length. During testicular regression, <strong>the</strong> diameter <strong>of</strong><br />

<strong>the</strong> seminiferous tubules decreases, <strong>the</strong>y contain progressively fewer spermatozoa,<br />

~5-3J3-HSD activity is minimal <strong>and</strong> <strong>the</strong> interstitium is composed<br />

<strong>of</strong> connective tissue (Lance, 1983). There is no evidence for over winter<br />

sperm storage in <strong>the</strong> males; indeed, <strong>the</strong> epididymides (<strong>the</strong> usual site <strong>of</strong><br />

sperm storage in postnuptial reptiles, L<strong>of</strong>ts, 1977; Moll, 1979) are not enlarged<br />

even at <strong>the</strong> height <strong>of</strong> <strong>the</strong> breeding season (Lance, 1983).<br />

Plasma testosterone levels show a similar seasonal fluctuation to that<br />

observed for testicular weight (Fig. 2) with a peak <strong>of</strong> 90 ng/ml in April/May<br />

(Lance, 1983, 1984) <strong>and</strong> rapidly decreasing <strong>the</strong>reafter. The association <strong>of</strong><br />

elevated testosterone levels with <strong>the</strong> peak <strong>of</strong> testicular weight, spermatogenic<br />

activity, bellowing intensity, <strong>and</strong> mating behavior (Fig. 2) suggests<br />

that <strong>the</strong>se functions are <strong>and</strong>rogen dependent, although this remains to be<br />

tested experimentally. The mechanism initiating gonadal regression is unknown<br />

although Lance (1983) discusses several possibilities. Clearly <strong>the</strong><br />

topic is worthy <strong>of</strong> investigation not only for its biological interest, as it<br />

occurs at a time when temperature <strong>and</strong> photoperiod appear to be optimal,<br />

but also for its importance in alligator farming. The plasma testosterone<br />

rises slightly in September, when <strong>the</strong> alligator testes are fully regressed<br />

(Lance, 1983). This is difficult to explain, but it does not coincide with<br />

mating behavior, spermiogenesis or renewed spermatogenesis. The pr<strong>of</strong>ile<br />

is, however, typical <strong>of</strong> postnuptial spermatogenic cycles (Lance, 1983) <strong>and</strong><br />

may represent <strong>the</strong> curtailing <strong>of</strong> ano<strong>the</strong>r breeding cycle imposed by <strong>the</strong><br />

climatic habitat <strong>of</strong> Alligator mississippiensis, <strong>the</strong> most nor<strong>the</strong>rly ranging<br />

crocodilian. In this regard, comparison between annual testosterone levels<br />

in this species with those in more tropically located crocodilians (particularly<br />

those suspected <strong>of</strong> having two breeding seasons, e.g., Crocodylus<br />

niloticus, C. palustris, C. porosus, <strong>and</strong> C. johnsoni) would be pr<strong>of</strong>itable.<br />

REPRODUCTIVE BIOLOGY<br />

The reproductive system <strong>of</strong> females shows seasonal variation. Each<br />

ovary contains at least three size classes <strong>of</strong> follicles:


342<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

taken up by <strong>the</strong> follicles (Lance, 1983). Immature alligators <strong>of</strong> ei<strong>the</strong>r sex can<br />

be induced to produce vitellogenin by injection <strong>of</strong> estradiol (Dessauer,<br />

1974; Lance, 1983). The oviduct is also stimulated by ovarian oestrogen <strong>and</strong><br />

hypertrophies during <strong>the</strong> follicular growth phase (Lance, 1983). After<br />

oviposition, plasma estradiol levels remain low to nondetectable, <strong>and</strong> <strong>the</strong>re<br />

is no evidence for a prehibernation onset <strong>of</strong> vitellogenesis (Lance, 1983).<br />

Nonbreeding females have low to nondetectable estradiol levels (Lance,<br />

1983) <strong>and</strong> show nO evidence <strong>of</strong> follicular growth (Joane n <strong>and</strong> McNease,<br />

1980). Likewise, immature females have low estradiol levels <strong>and</strong> small<br />

ovaries that consist <strong>of</strong> clear cortical tissue with numerous clusters <strong>of</strong> 00­<br />

cytes distributed evenly throughout <strong>the</strong> <strong>org</strong>an. <strong>Reproductive</strong>ly senescent<br />

or "barren" females (usually over 2.7 m in length) have few growing 00­<br />

cytes, no corpora lutea, black hemoglobin deposits, <strong>and</strong> <strong>the</strong>ir ovaries frequently<br />

contain medium-sized resorbing ovarian follicles <strong>and</strong> retained<br />

oviducal eggs undergoing resorption (both in Alligator mississippiensis,<br />

Joanen <strong>and</strong> McNease, 1980; Lance, 1983 <strong>and</strong> in Crocodylus niloticus,<br />

Graham, 1968). The occurrence <strong>of</strong> senescence in <strong>the</strong> Crocodilia suggests<br />

that <strong>the</strong>re is a limit on <strong>the</strong> number <strong>of</strong> oocytes a female can produce, despite<br />

<strong>the</strong> fact that oogonial proliferation continues throughout much <strong>of</strong> adulthood.<br />

Macroscopic changes similar to those detailed above have been described<br />

in <strong>the</strong> male <strong>and</strong> female reproductive systems <strong>of</strong> Crocodylus niloticus<br />

(Cott, 1961; Graham, 1968). However, <strong>the</strong> breeding season <strong>of</strong> Alligator<br />

mississippiensis is shorter <strong>and</strong> more clearly defined than is that <strong>of</strong> <strong>the</strong> more<br />

tropical C. niloticus (Graham, 1968), C. porosuS (Webb et al., 1983b), <strong>and</strong> C.<br />

palustris (R. Whitaker, personal communication). This may reflect environmental<br />

temperature; <strong>the</strong> cold winters in Louisiana make <strong>the</strong> alligator inactive<br />

from October through February, <strong>and</strong> it must complete its reproductive<br />

cycle within a restricted time frame. ThuS for C. niloticus in Kenya, sperm<br />

production extends from April through December, <strong>and</strong> although <strong>the</strong>re is a<br />

peak breeding season (October-December), follicular development <strong>and</strong><br />

some reproduction occur throughout <strong>the</strong> year (Graham, 1968). Moreover,<br />

15% <strong>of</strong> <strong>the</strong> sexually active females <strong>of</strong> C. niloticus have two sets <strong>of</strong> follicles<br />

developing concurrently (Graham, 1968). This means that maturation <strong>of</strong><br />

one batch <strong>of</strong> ova may be accompanied by development <strong>of</strong> a younger batch<br />

that will near maturity soon after oviposition <strong>of</strong> <strong>the</strong> first; <strong>the</strong> second set can<br />

<strong>the</strong>n be fertilized <strong>and</strong> two clutches <strong>of</strong> eggs may be produced in one season.<br />

This "double clutching" has also been reported for some C. palustris (in<br />

captivity, R. Whitaker, personal communication) <strong>and</strong> is suspected in some<br />

C. porosus (Webb et al., 1983b). The controlling mechanism remains uninvestigated.<br />

However, given <strong>the</strong> amount <strong>of</strong> yolk protein necessary to produce<br />

two clutches <strong>of</strong> approximately 40 eggs weighing apprOXimately 60­<br />

70 g each, not to mention <strong>the</strong> energy expended in mating behavior, nest<br />

building, <strong>and</strong> maternal care, it may be assumed that only females in an<br />

REPROOUCTIVE BIOLOGY<br />

343<br />

optimal environment (in terms <strong>of</strong> temperature <strong>and</strong> food) may pursue this<br />

strategy.<br />

The data on <strong>the</strong> peak nesting times <strong>of</strong> various species presented in Table<br />

III generate many unanswered questions: What environmental factors trigger<br />

ovulation, spermatogenesis, reproductive behavior, <strong>and</strong> egg laying,<br />

<strong>and</strong> how do <strong>the</strong>y operate?<br />

Numerous reports for various species imply a possible correlation<br />

among breeding times <strong>and</strong> changing water levels in <strong>the</strong> various habitats.<br />

The data do not reveal consistent trends across all species <strong>and</strong> <strong>the</strong> interested<br />

reader is referred to <strong>the</strong> original publications (Cott, 1961, 1975;<br />

Modha, 1967; Graham, 1968; Pooley, 1969a; Staton <strong>and</strong> Dixon, 1977; Deraniyagala,<br />

1939; Webb et al., 1977, 1983e; Joanen, 1969; Joanen <strong>and</strong><br />

McNease, 1975a, 1979b, 1980; Kushlan <strong>and</strong> Kushlan, 1979).<br />

A strong relationship exists between peak nesting times in Alligator<br />

mississippiensis <strong>and</strong> average air temperatures. An analysis <strong>of</strong> nesting data<br />

for ten years reveals a highly significant correlation between <strong>the</strong> time <strong>of</strong><br />

nesting <strong>and</strong> <strong>the</strong> ambient temperatures for March-May (Joanen <strong>and</strong><br />

McNease, 1979b). Nesting occurs earliest when <strong>the</strong>se temperatures are<br />

highest. Rainfall is significant only when nesting effort is reduced during<br />

extremes <strong>of</strong> accrued surface water levels; females apparently respond to<br />

higher water levels by laying eggs at higher levels within <strong>the</strong> nest (Kushlan<br />

<strong>and</strong> Kushlan, 1979). Oviposition occurs on <strong>the</strong> longest days <strong>of</strong> <strong>the</strong> year<br />

(Joanen <strong>and</strong> McNease, 1979b). Temperature appears to be <strong>the</strong> major regulator<br />

<strong>of</strong> male <strong>and</strong> female reproductive cycles (Lance, 1983); as in o<strong>the</strong>r<br />

reptiles photoperiod plays only a minor, or at best synergistic, role (Fischer,<br />

1974; Crews <strong>and</strong> Garrick, 1980). It is known that males in an<br />

artificially heated pond in Ge<strong>org</strong>ia had spermatozoa in <strong>the</strong> penial groove<br />

one month earlier than <strong>the</strong>ir counterparts inhabiting ponds at ambient<br />

temperatures (Murphy, 1980). Moreover, motile sperm have been recovered<br />

in January from males kept in artificial hot houses (Cardeilhac,<br />

1981). Whereas adult A. mississippiensis do respond to experimentally altered<br />

photoperiods (Lang, 1976), such experiments have not been conducted<br />

in relation to <strong>the</strong> cueing <strong>of</strong> reproductive events. Experiments involving<br />

altered photoperiods at constant high temperatures would be<br />

interesting, especially for tropical species in regions with minimal annual<br />

variations <strong>of</strong> temperature.<br />

It is currently impossible to state categorically which <strong>of</strong> <strong>the</strong> potential<br />

extrinsic regulating factors, such as drought, temperature, water level,<br />

photoperiod, or <strong>the</strong> psychological effect <strong>of</strong> available breeding grounds,<br />

stimulate ovulation <strong>and</strong> spermatogenesis, <strong>and</strong> whe<strong>the</strong>r <strong>the</strong>se factors are<br />

similar in all crocodilians. Clearly more information is required, not only<br />

on <strong>the</strong> stimuli <strong>the</strong>mselves, but also on <strong>the</strong>ir perception <strong>and</strong> <strong>the</strong> way in<br />

which <strong>the</strong>y achieve <strong>the</strong>ir effects.<br />

The hormonal regulation <strong>of</strong> <strong>the</strong> reproductive cycle is poorly understood.


TABLE III<br />

Comparative Data on <strong>the</strong> Nests, Eggs, <strong>and</strong> Hatchlings <strong>of</strong> <strong>the</strong> Crocodilians"'C<br />

~cies<br />

ligator lineage<br />

Type <strong>of</strong> Nest<br />

(from Greer<br />

1970, 1971;<br />

Campbell 1972)<br />

Average SizC'<br />

<strong>of</strong> Nest<br />

(Breadth x<br />

Height/<br />

Dep'h) (em)<br />

Peak Times<br />

<strong>of</strong> Egg<br />

Laying<br />

Incubation<br />

Period<br />

(days)<br />

Average<br />

Number<br />

<strong>of</strong> Eggs<br />

per Clutch<br />

Range <strong>of</strong><br />

Egg<br />

Numbers<br />

per Clutch<br />

Average<br />

Length<br />

<strong>of</strong> Egg<br />

(em)<br />

Range <strong>of</strong><br />

Egg<br />

Lengths<br />

(em)<br />

Average<br />

Breadth<br />

<strong>of</strong> Egg<br />

(em)<br />

Range<br />

<strong>of</strong> Egg<br />

Breadths<br />

(em)<br />

Average<br />

Weight<br />

<strong>of</strong> Egg<br />

(g)<br />

Range<br />

<strong>of</strong> Egg<br />

Weights<br />

(g)<br />

Average<br />

Temperature<br />

<strong>of</strong> Egg<br />

Cavity in<br />

Nest ('C)<br />

Range<br />

<strong>of</strong> Egg<br />

Cavity<br />

Temperatures<br />

(0C)<br />

Average<br />

Humidity <strong>of</strong><br />

Egg Cavity in<br />

Nest (c/o ReI.<br />

Humidity)<br />

Alligator mississippiensis<br />

d 972<br />

Mound Av = 181.6 June 63-65 38.9 2-68 7.4 6.1-88 4.3 3.1-5.0 84 51-108 30 233-35.7<br />

x 60.2<br />

(45-799,<br />

Range =<br />

moisture<br />

112-304.8 content)<br />

x 33-121.9<br />

Range <strong>of</strong><br />

Humidities<br />

(% Rel.<br />

Humidity)<br />

Average<br />

Total<br />

Length <strong>of</strong><br />

Hatchling<br />

(em)<br />

Range<br />

<strong>of</strong> Total<br />

Hatchling<br />

Lengths<br />

(cm)<br />

Average<br />

Weight <strong>of</strong><br />

Hatchling<br />

(g)<br />

Range <strong>of</strong><br />

Hatchling<br />

Weights<br />

Ig)<br />

94-99.8 26.4 22-29 676 58-77<br />

A. sinensis e Mound 106 x 29.2 June-Aug 70-80 26 10-40 68 5.6-75 3.4 3.1-3.6 51.7 40.3-56 21 30.2<br />

Caiman CTOCQdi/us Mound ? x 30 75-90 30 20-50 6.2 3.8<br />

apapoTjen~·s-f<br />

C. cTocodilus<br />

rrocodilus g Mound 117 x 44 Aug.-Oct 73 28 17-40 6.5 4.3-7.2 4.0 2.5-43 59 48.7-774 30 28-32 90 85-95 21.5 191-23.8 41.5 31-51.2<br />

C. crocodilus<br />

yacare"<br />

Mound 150 x 40 Dec.-April 84 31 21-40 6.8 5.6-7.5 4.2 3.3-4.7 75.3 59-83 28 25-32 24 20-25 492 46-62<br />

C. CTocodilus }<br />

fusnd <strong>and</strong><br />

C. crocodilus<br />

Mound April-July 75-80 15-30<br />

chiapasius '<br />

C. 1oliTastris} Mound 163 x 41 Aug.-Mar. 63-86 40 20-60 6.6 4.6 84<br />

.\Vlanosucnus Mound 210 x 100 Sept.-Jan. 40-90 40 18-75 8.0 4.4-9.7 5.0 3.5-5.6 100+<br />

nigeri:<br />

Pa/eosuchu5<br />

palpebrosus l Mound 125 x 39 Aug 90-92 13 6.6 6.1-7.1 4.2 4.1-5.1 687 66.1-74.5 28-31 95 90-96 23.6 202-24.5 45.5 39.8-50.0<br />

p, trigonafus Mound<br />

aviallineage<br />

Gavialis<br />

gangt'ficus m Hole ? x 5.1 April 71-94 40 16-61 8.6 8.5-10.2 6.7 6.5-7.0 31 25-37 35 32-40 75<br />

Tomistoma<br />

St'hlegelii!f<br />

rocodHe lineage<br />

Osteolaemus tetraspis<br />

osborn;<br />

Osteolaemus tetraspis<br />

tetraspiso<br />

Crocodylus<br />

acutusP<br />

Mound ? x 60 75-90 20-60 10.1 9.7-12.0 7.6 6.4-8.0 30 28-33<br />

Mound<br />

Mound 75 x 41 June 82-120 13 6-19 6.3 5.5-8.0 3.7 3.4-4.4 51.9 38.5-70.7 28.8 22.6 19.7-25 34.3 262-445<br />

Hole/mound<br />

<strong>of</strong> s<strong>and</strong><br />

230 x 33 April-May 85-111 44 19-81 72 6.3-·7.6 4.4 4.2-5.1 30 265-341 24.1<br />

C. cataphracfu;;q Mound 50-80 x Mar.-July 90-98 19 13-27 8.3 8.1-8.5 5.2<br />

305 27-34 100<br />

120-220<br />

(37% mois­<br />

303 28.3-35.6<br />

ture content)<br />

C. intermedius r Hole Jan.-Feb. 60 1.5-70<br />

C. ;ohnsoni s Hole<br />

19 x 13 August 63-98 13 10-24 6.6 6.1-7.3 4.2<br />

3.7-4.6<br />

C. mindormsis 1 Mound 150 x 40 April-July 85 12<br />

7-14 6.5 61-7.2 4.0<br />

3.6-42<br />

68.2 498-85.8 29.4 28-34 24.4 21-26 42 36-54<br />

30<br />

26-31<br />

87 85-90 21.5 16-23<br />

C niloticus F Hole<br />

60 x 40 Jan.-Dec. 84-98 55 25-95 7.5 5.5-9.0 4.8 40-5.5 110 85-125 31<br />

22-34<br />

depending<br />

28 27-37 80<br />

C. moreletii U<br />

Mound 300 x 100 July<br />

78-89<br />

20-45 10<br />

on rains,<br />

sometimes<br />

two seasons<br />

C. Hovaeguineae Mound<br />

novaeguineaei.l'<br />

122 x 61 Nov.-Jan. 83-87 26 12-40 7.6 6.4-8.8 4.3 3.6-5.8 85 63-111 32 30-38 77% H20 28 24-33<br />

C pa/ustri~<br />

by weight<br />

Hole;n s<strong>and</strong> 30 x 50 Feb.-Aug. 60-80 26 6-41 7.5 60-8.8 4.6 3.7-5.2 83.7 47-120 32<br />

or? mound<br />

26-41<br />

70 25 22-30 70 60-110<br />

C. porosus Ceylon; Mound 170 x 53 Dry season 70-90 42 25-72 8.2 61-9.6 5.1 4.2-5.7 113 105-135 32 25-37<br />

July-Aug.<br />

30 28-32 61.7 82-95<br />

C. porosus<br />

AustraliaY<br />

Mound<br />

200-350 x<br />

80-100<br />

Wet season<br />

Nov.-Mar.<br />

C. rhomb~rerz Hole/mound April 68 20 7.6 51<br />

C. siLlmensis llll Mound April-July 68-80 20-48 7.6 5.1<br />

~able Footnotes: see page 346.<br />

80-98 50 16-71 7.7 6.6-89 5.2 4.2-5.7 113 65-143 30.1 25-37 32 31-33 92 82-95<br />

344<br />

346


348<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY DF CRDCODILIANS<br />

No available data indicate that <strong>the</strong> hypothalamus can respond to changing<br />

blood temperatures by <strong>the</strong> secretion <strong>of</strong> releasing hormones. However, two<br />

distinct glycoproteins similar in molecular weight <strong>and</strong> amino acid composition<br />

to mammalian follicle stimulating hormone (FSH) <strong>and</strong> luteinizing hormone<br />

(LH) have been isolated from <strong>the</strong> pituitaries <strong>of</strong> Alligator mississippiensis<br />

(Licht et al., 1974, 1976). Both <strong>of</strong> <strong>the</strong>se gonadotropins stimulate<br />

testosterone production by ovarian <strong>and</strong> testicular tissues, with LH being<br />

slightly more effective (Licht <strong>and</strong> Crews, 1976; Tsui <strong>and</strong> Licht, 1977). There<br />

are no data on circulating gonadotropin levels in any crocodilian. Follicular<br />

development can be stimulated artificially with pregnant mare serum<br />

gonadotropin, but artificial induction <strong>of</strong> ovulation has not been achieved<br />

(Cardeilhac et al., 1982). Alligators (unlike turtles) show a marked response<br />

to <strong>the</strong> syn<strong>the</strong>tic decapeptide luteinizing hormone releasing hormone (LH­<br />

RH) (Lance, 1983, 1984). Alligator LH-RH is similar to that <strong>of</strong> mammals but<br />

differs from it in having at least one amino acid substitution in <strong>the</strong> 8­<br />

position <strong>of</strong> <strong>the</strong> molecule (Lance, 1983, 1984). This is similar, if not identical,<br />

to avian LH-RH (King <strong>and</strong> Millar, 1982). Tissue levels <strong>of</strong> between 816 <strong>and</strong><br />

2780 pg/mg protein have been estimated for <strong>the</strong> alligator hypothalamus<br />

(Lance, 1983, 1984).<br />

Footnotes for Table IfI<br />

UThc figures quoted are poolt'd maximum, minimum, ilnd i'l\Trage villul's frpm Ihe \'i1riou~ publications cited Older accounts \,",'ith<br />

obViously exaggerated figures, e.g., Boake 11870) have been omitted.<br />

'Species classification b.:lscc! on Densmore (1981) <strong>and</strong> Groombridge (1982)<br />

dClarke (I88Ba, b, 1891); Reese (1915b); McIlhenny 0934, 1935); Giles <strong>and</strong> Childs (1949): POpt> (1956); Jnolnen (196'J\; Ch,lDred< (197:3,<br />

19(5); Joanen dlHj McNease (1975a, 1978, 1979f, :980); GoodWin .'lnd :\1anon (1978).<br />

loanen (personal communication); Chu (1957); Chu-Chcn (1982); Behler dnd Joanen (19tl2).<br />

tCasas <strong>and</strong> Guzman (1970); Del Toro (l974).<br />

gHagmdnn (1906, 1909); Schmidt (1928); Del Taro (1969); Hunt (1969); Neill (1971); Staton dnd Dixon (1977); Corzula (197R)<br />

hFort Worth Zoo (personal communication); Mcdem (1960); Cuy;gisber~ (l\i72); Crawshay.,' <strong>and</strong> Schaller (980).<br />

'Neill (1971); Del Taro (1974)<br />

'Neill (l q 71); Groombridge (1982).<br />

kHagmann (1902a, h, 1909); Recse (1923); Mellem (1963); Croornbridge (19~2).<br />

IRec5e (1931 a); Medcm (1971, 1972).<br />

m Ander50n (lB7S); Butler (1905); Werner (1933); Singh <strong>and</strong> Bustard (1977); Singh (1979); Bu"tard (1lJ79, 1980a, 1984); Acharjyo et cd<br />

(1975).<br />

TlMiil1er (1838); De Rooij (1915); Butler (1905): Sudharfna (1976)<br />

°Guib(' (19701); Neill (1971); Tr"'on (980)<br />

PDescourtilz (1809); Schmidt (1924); Werner (143.1); R<strong>and</strong> (196H); Neill (1971); Carrick <strong>and</strong> Lln/; (1977); Ogden (1978); CasaS' .'lnd Cuzrn,1n<br />

(1970).<br />

QWaitkuwail (1982).<br />

TBlohm (1982); Medem (1976).<br />

'Dunn (1977); Webb (1977); Webb e, al. (1983e).<br />

I Croombridge (1982).<br />

UHunt (1973,1975); Del Toro (1975); Pcrcz-IJigdredd (1%0).<br />

l'VoeHzkow (1899); Bigalke (1931); Cott (1961, 1969, 1(75); Pooley 0962, 19fil}il, 1971. 1977); Modh


348 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

lay in August. Thus <strong>the</strong> interval between copulation <strong>and</strong> egg laying could<br />

be as short as one month. Detailed autopsies to check for <strong>the</strong> state <strong>of</strong><br />

ovarian development in different species are required to determine<br />

whe<strong>the</strong>r <strong>the</strong> interval between copulation/ovulation <strong>and</strong> egg laying varies<br />

as widely as <strong>the</strong> present data suggest.<br />

Because crocodilians range over wide areas with drastically varying<br />

climatic conditions, a prolonged interval between copulation <strong>and</strong> egg laying<br />

may <strong>of</strong>fer some advantages (Webb et aI., 1983e). During <strong>the</strong>se time<br />

intervals, <strong>the</strong>re may be (1) sperm storage in <strong>the</strong> female <strong>and</strong> delayed fertilization<br />

or (2) a very slow rate <strong>of</strong> embryonic development while <strong>the</strong> eggs are<br />

in <strong>the</strong> oviducts (embryonic hibernation). Sperm storage occurs in birds (R.<br />

Bellairs, 1971), in many lizards <strong>and</strong> snakes (Saint Girons, 1962; Cuellar,<br />

1966; R. Bellairs, 1971), <strong>and</strong> in some turtles (Barney, 1922; Ewing, 1943;<br />

Smith, 1956). In artificial insemination experiments, sperm from Alligator<br />

mississippiensis has been stored successfully for many days (Joanen <strong>and</strong><br />

McNease, 1973, 1975b; Larsen, 1981; Larsen et aI., 1982). The length <strong>of</strong> time<br />

that sperm remain viable within <strong>the</strong> female reproductive tract is unknown.<br />

No sperm storage structures can be identified in <strong>the</strong> female reproductive<br />

tracts <strong>of</strong> A. mississippiensis or Crocodylus Iziloticus from Zimbabwe.<br />

Embryos are stored in some turtles (Oliver, 1955; Ewert, 1979) <strong>and</strong> in <strong>the</strong><br />

tuatara (Sharell, 1966), but this phenomenon is undocumented for crocodilians.<br />

Embryos <strong>of</strong> Alligator mississippiensis cannot be arrested experimentally<br />

(or naturally) in <strong>the</strong>ir development at any time after fertilization. It is<br />

possible to slow development by cooling <strong>the</strong> eggs but temperatures below<br />

26°C for prolonged periods are usually lethal (Ferguson, unpublished<br />

data). Likewise, freshly laid eggs <strong>of</strong> Crocodylus niloticus from Zimbabwe<br />

apparently die at temperatures below 26°C (Hutton, personal communication).<br />

Embryos <strong>of</strong> A. mississippiensis, C. johnsoni, C. niloticus, <strong>and</strong> C. porosus<br />

are laid at <strong>the</strong> same stage <strong>of</strong> development (Ferguson, 1984a), which is<br />

considerably advanced (see Section VI) as compared to avian or turtle eggs,<br />

which are laid at <strong>the</strong> late blastula <strong>and</strong> late gastula stages, respectively<br />

(Ewert, 1979). The stage <strong>of</strong> embryonic development at laying is not invariant,<br />

<strong>and</strong> egg retention within <strong>the</strong> body <strong>of</strong> females faced with adverse<br />

environmental conditions (e.g., drought, flooding, temperature variations)<br />

at <strong>the</strong> time <strong>of</strong> normal egg laying has been reported (McIlhenny, 1934, 1935;<br />

Reese, 1907, 1915a, 1931a). Females kept in artificial pens at high stocking<br />

densities exhibit elevated plasma levels <strong>of</strong> corticosteroids. These levels<br />

inhibit ovulation <strong>and</strong> hence delay egg laying; however, stressed females<br />

also retain eggs within <strong>the</strong>ir oviducts for abnormally long times. Such<br />

freshly laid eggs may contain embryos that are considerably advanced <strong>and</strong><br />

have already become attached to <strong>the</strong> inner aspect <strong>of</strong> <strong>the</strong> shell membrane,<br />

so that <strong>the</strong>re is an opaque b<strong>and</strong>, or it develops shortly <strong>the</strong>reafter (see<br />

Section III). Such eggs are frequently deposited with <strong>the</strong> embryo on <strong>the</strong><br />

underside which causes death (see Section II.F.). How long crocodilians<br />

can retain <strong>the</strong>ir eggs, <strong>the</strong> rate <strong>of</strong> development during this period as com-<br />

REPRODUCTIVE BIOLOGY<br />

349<br />

pared to <strong>the</strong> "normal" rate within <strong>the</strong> nest, <strong>and</strong> whe<strong>the</strong>r egg retention<br />

affects <strong>the</strong> viability <strong>of</strong> <strong>the</strong> embryo are all unknown.<br />

The stimuli for egg laying are presumably extrinsic factors, such as temperature,<br />

humidity, water levels, <strong>and</strong> photoperiod. Precisely how <strong>the</strong>y are<br />

involved, how <strong>the</strong>y are detected <strong>and</strong> how <strong>the</strong>y produce <strong>the</strong>ir effects are all<br />

unknown. Turtles may be induced to deposit eggs prematurely by injections<br />

<strong>of</strong> one to three units <strong>of</strong> syn<strong>the</strong>tic oxytocin per 100 g body weight<br />

(Ewert, 1979). An analysis <strong>of</strong> <strong>the</strong> circulating levels <strong>of</strong> this hormone in<br />

crocodilians around <strong>the</strong> time <strong>of</strong> egg laying would be useful, as would<br />

similar experimental injections into gravid females. If this technique were<br />

successful in "forcing" premature egg laying, it would facilitate obtaining<br />

<strong>the</strong> earlier stages <strong>of</strong> embryonic development, particularly in <strong>the</strong> rarer, endangered<br />

species <strong>of</strong> crocodilians.<br />

D. Nesting <strong>Biology</strong><br />

An extensive literature on crocodilian nesting biology has accumulated,<br />

<strong>and</strong> detailed accounts are available for Alligator mississippiensis (Feilden,<br />

1810, Clarke, 1888a, 1891; Reese, 1915a, 1931a; McIlhenny, 1934, 1935;<br />

Pope, 1956; Joanen, 1969; Joanen <strong>and</strong> McNease, 1971, 1973, 1975a, b, 1980;<br />

Neill, 1971; Fogarty, 1972, 1974; Goodwin <strong>and</strong> Marion 1978; Deitz <strong>and</strong><br />

Hines, 1980), Crocodylus acutus (Ogden, 1978), C. cataphractus (Waitkuwait,<br />

1982), C. jolmsOlzi (Webb, 1977a, b; Webb et aI., 1983e; Compton 1981). C.<br />

novaeguineae (Graham, 1981), C. niloticus (Voeltzkow, 1891, 1892, 1893,<br />

1899; Cott, 1961, Guggisberg, 1972; Modha, 1967, 1968; Graham, 1968;<br />

Graham <strong>and</strong> Beard, 1973; Graham et aI., 1976), C. palustris (Symons, 1918;<br />

Deraniyagala, 1939; Whitaker <strong>and</strong> Whitaker, 1976a,b, 1977a, b, c; Yadav,<br />

1969, 1979), C. porosus (Deraniyagala, 1936, 1939; Webb, 1977a, b; Webb<br />

et aI., 1977, 1983b; Magnusson et aI., 1978; Magnusson, 1980), Caiman<br />

crocodilus crocodilus (Del Toro, 1969; Hunt, 1969; Staton <strong>and</strong> Dixon, 1975,<br />

1977), <strong>and</strong> Osteolaemus tetraspis (Tryon, 1980). The present account only<br />

highlights areas <strong>of</strong> embryological interest; strictly ecological data are<br />

omitted.<br />

Some crocodilians construct mound-like nests out <strong>of</strong> vegetation,<br />

whereas o<strong>the</strong>rs dig holes in <strong>the</strong> ground (Table Ill). The phylogenetic (Greer<br />

1970, 1971; Campbell, 1972) <strong>and</strong> ecological (Webb et aI., 1983e) implications<br />

<strong>of</strong> <strong>the</strong>se two strategies have been debated. There is no well-documented<br />

example <strong>of</strong> both strategies occurring naturally in <strong>the</strong> same species; <strong>the</strong><br />

behavior is maintained even in sympatric species (such as Crocodylus johnsoni<br />

<strong>and</strong> C. porosus in which a change <strong>of</strong> strategy from hole to mound by C.<br />

jolmsoni might decrease its embryonic mortality due to flooding).<br />

Eggs normally are laid during <strong>the</strong> night or early morning (Voeltzko w ,<br />

1899; Cott, 1961). The female positions her cloaca over <strong>the</strong> egg cavity <strong>and</strong><br />

deposits <strong>the</strong> entire clutch at one time. Presumably, <strong>the</strong> eggs move down<br />

<strong>the</strong> oviducts <strong>and</strong> through a shell gl<strong>and</strong> one at a time, so that <strong>the</strong> first


350 REPROOUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

b!l<br />

OJ I-<<br />

shelled eggs are stored longer than <strong>the</strong> last. However, <strong>the</strong>y all appear to be ..c OJ<br />

'O.S .... 0 ~ ~<br />

c"1:S III en<br />

Lf) N c OJ<br />

at comparable stages <strong>of</strong> development at <strong>the</strong> time <strong>of</strong> laying (see Section VI).<br />

If': .- III 0...<br />

0'"-<<br />

£! 6 '" .-< .-< o .-<<br />

When first laid, <strong>the</strong> eggs are coated with a slimy gel (Goodwin <strong>and</strong> Marion, i3b c .... 0 +1<br />

~<br />

"' N<br />

..... 1<br />

'y; til 00» +1 +1 +1 500<br />

1978). On average, 3 to 15% <strong>of</strong> eggshells are cracked during <strong>the</strong> laying ""<br />

t ~u::;a15..c: o Lf) Lf)<br />

.-< Ei x<br />

.~<br />

o<br />

OJ 0<br />

>"'~6.B I-< I-<<br />

process (Joanen, 1969; Pooley, 1969a; Webb et al., 1977; Goodwin <strong>and</strong><br />

-< ~ ~..2<br />

::l D­<br />

.~ ~ u D­<br />

Marion, 1978). Cracked eggs develop normally if <strong>the</strong> shell membrane re­ 'J><br />

'J> OJ~<br />

'" '"<br />

'y;<br />

mains intact, but if it is torn, <strong>the</strong> eggs rot or are eaten by ants (Joanen, 1969;<br />

Ei '"<br />

'J><br />

OJ<br />

.~ '"<br />

Ei..c<br />

Goodwin <strong>and</strong> Marion, 1978). The number <strong>of</strong> eggs present in each nest<br />

If)<br />

r--.. o ~<br />

If':<br />

..<br />

~ {3 0 ọ I-< ::l<br />

-< c:i o '"--l III ~ 0 ~en -- '"d .......<br />

I:Q Ei<br />

;; > "8 '[ Ei<br />

_ ("lj lr)<br />

maternal age <strong>and</strong> clutch size, egg size, <strong>and</strong> egg quality in Alligator mississip­ ., -<<br />

piensis (Table IV). "Middle-aged" females are obViously <strong>the</strong> most "success­ QI<br />

~~~<br />

00<br />

'w;:n "0<br />

ONe<br />

ful" breeders in terms <strong>of</strong> both quantity, size, <strong>and</strong> quality <strong>of</strong> <strong>the</strong> eggs pro­<br />

00 6<br />

~<br />

-O~00 '"<br />

;::J CJ<br />

duced. Interestingly, old females are nearly as successful, although <strong>the</strong>ir '1:l 6..c: C· ..... -£<br />

~ ..0<br />

C .- 'w<br />

Lf)<br />

clutch size is usually smaller <strong>and</strong> more malformed embryos result, whereas III Ei § c<br />

~ 6 0 N ;:l ..... "O"'~ ~<br />

-<<br />

'"<br />

Z 0 ~ +1<br />

'D o<br />

.5 N ~ N OJ OJ '"<br />

males (which may mate with ei<strong>the</strong>r large or small males). Similar relation­ 0...<br />

'" c w<br />

""<br />

a ~ '"<br />

I:I.. til W"'"O<br />

season. 15 ~ '" ~ I ;:l 6"1:S ~ gg c<br />

o~ bO~~_'""Ol-log<br />

OJ OJ '"<br />

For several species, weight <strong>of</strong> eggs correlates positively with that <strong>of</strong> §~:g~8..8:;c ~ &3<br />

~:<<br />

eno<br />

.- ro 0-,; bJ ........ rc<br />

hatchlings (Staton <strong>and</strong> Dixon, 1977; Deitz <strong>and</strong> Hines, 1980; Webb et al.,<br />

E5 gg<br />

>


3152<br />

REPROOUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

1983b, e). In mammals, fetuses with a low birth weight are frequently<br />

malformed, <strong>and</strong> <strong>the</strong> same is true <strong>of</strong> <strong>the</strong> small light eggs laid by young<br />

female alligators (Table IV). The alligator is an excellent animal model in<br />

which to study such malformations. The eggs <strong>of</strong> middle-aged females are<br />

also useful for teratogenic studies as <strong>the</strong>y show a lower basal incidence <strong>of</strong><br />

spontaneous malformations than avian eggs (Ferguson, 1981a).<br />

Possible factors that determine <strong>the</strong> relationships <strong>of</strong> egg fertility <strong>and</strong> rate<br />

<strong>of</strong> embryonic malformation with maternal age include <strong>the</strong> following: (1)<br />

reduced ovulation <strong>of</strong> young <strong>and</strong> old females, (2) <strong>the</strong> immaturity <strong>of</strong> young<br />

ova, (3) slight asynchrony between <strong>the</strong> times <strong>of</strong> ovulation <strong>and</strong> copulation<br />

in young females, (4) <strong>the</strong> lower sperm numbers <strong>and</strong> quality in males near<br />

<strong>the</strong> end <strong>of</strong> <strong>the</strong> breeding cycle (when young females mate), <strong>and</strong> (5) <strong>the</strong><br />

poorer quality <strong>of</strong> <strong>the</strong> large ova released by old females. There is some<br />

evidence that prior to senescence old females ei<strong>the</strong>r resorb <strong>the</strong>ir ova or<br />

<strong>the</strong>ir eggs, or both. Possibly, young <strong>and</strong> very old females contribute little to<br />

population recruitment.<br />

Nest temperature <strong>and</strong> humidity are important factors for embryonic<br />

survival, development, growth, <strong>and</strong> sex determination (Table III). Only<br />

Alligator mississippiensis (McIlhenny, 1934, 1935; Joanen, 1969; Chabreck,<br />

1973), Crocodylus porosus (Webb, 1977a; Webb et a1., 1977, 1983b; Magnusson,<br />

1979c), Caiman crocodilus (Staton <strong>and</strong> Dixon, 1977) <strong>and</strong> Crocodylus<br />

acutus (Lutz <strong>and</strong> Dunbar Cooper, 1982, 1984) have been studied in detail.<br />

In general, <strong>the</strong> positioning <strong>and</strong> construction <strong>of</strong> nests ensure fairly stable<br />

<strong>the</strong>rmal <strong>and</strong> humidity conditions within <strong>the</strong> egg cavity.<br />

Crocodilian nests may obtain three sources <strong>of</strong> heat: solar heating, decomposition,<br />

<strong>and</strong> metabolism. The temperature <strong>of</strong> <strong>the</strong> nest cavity is<br />

equilibrated; <strong>the</strong> outer layers <strong>of</strong> <strong>the</strong> nest absorb solar heat at times <strong>of</strong><br />

maximum incidence, but slow its passage to <strong>the</strong> central cavity; some <strong>of</strong> this<br />

heat later dissipates to <strong>the</strong> central cavity. However, solar energy is unlikely<br />

to be <strong>the</strong> sole source <strong>of</strong> heat, as crocodilian mean nest temperatures are<br />

<strong>of</strong>ten 1° to 5°C above <strong>the</strong> mean air temperature (McIlhenny, 1935; Joanen,<br />

1969; Chabreck, 1973; Modha, 1967; Webb et a1., 1977, 1983b; Staton <strong>and</strong><br />

Dixon, 1977).<br />

The temperature <strong>of</strong> mound nests may be raised by <strong>the</strong> decomposition <strong>of</strong><br />

<strong>the</strong> nesting vegetation, particularly during <strong>the</strong> early stages <strong>of</strong> incubation<br />

(McIlhenny, 1935; Joanen, 1969; Chabreck, 1973; Webb et a1., 1977a, 1983b;<br />

Staton <strong>and</strong> Dixon, 1977; Magnusson, 1979c). Such decomposition may be<br />

enhanced by females urinating onto <strong>the</strong> nest during <strong>and</strong> after its construction<br />

(Pooley, 1962, 1969a, b; Chabreck, 1975; McIlhenny, 1934, 1935; Reese,<br />

1915a; Deraniyagala, 1936, 1939; Whitaker <strong>and</strong> Whitaker, 1976b, 1977b;<br />

Tryon, 1980; Webb et a1., 1983b). However, decomposition should be<br />

minimal during <strong>the</strong> latter stages <strong>of</strong> incubation in mound nests <strong>and</strong> nonexistent<br />

in hole nests. Embryonic metabolism has also been postulated to represent<br />

a source <strong>of</strong> heat (Modha, 1967; Magnusson, 1979c; Webb et a1.,<br />

1983b). Clearly, <strong>the</strong> extent <strong>of</strong> such heating varies with <strong>the</strong> proportion <strong>of</strong> <strong>the</strong><br />

REPRODUCTIVE BIOLOGY<br />

3153<br />

dutch containing living embryos. The assumption (Staton <strong>and</strong> Dixon, 1977;<br />

Webb et a1., 1983b) that <strong>the</strong> rate <strong>of</strong> heating increases up to <strong>the</strong> end <strong>of</strong><br />

incubation implies that heating relates more closely to <strong>the</strong> size <strong>of</strong> <strong>the</strong> embryo<br />

(Drent, 1967) than to its metabolic rate. Indeed, <strong>the</strong> peak weightspecific<br />

metabolic rate in C. porosus occurs during <strong>the</strong> period <strong>of</strong> <strong>org</strong>anogenesis<br />

(i.e., during early/middle incubation; G. Grigg, personal<br />

communication). This assumption correlates with <strong>the</strong> fact that nests <strong>of</strong> A.<br />

mississippiensis are <strong>of</strong>ten warmer during <strong>the</strong> second to fourth week <strong>of</strong> incubation<br />

than later in <strong>the</strong>ir 9-week incubation period (Chabreck, 1973). Moreover<br />

<strong>the</strong> hole nests <strong>of</strong> C. acutus (Lutz <strong>and</strong> Dunbar Cooper, 1982, 1983) <strong>and</strong><br />

C. joJmsoni (Webb <strong>and</strong> Smith, 1984) become progressively warmer during<br />

incubation, <strong>and</strong> this temperature rise may accelerate development <strong>and</strong><br />

improve survivorship (Webb <strong>and</strong> Smith, 1984).<br />

Although critical for successful embryonic development, nest humidity<br />

<strong>and</strong> <strong>the</strong> water relations <strong>of</strong> crocodilian eggs are poorly understood. ,All<br />

crocodilian nests studied to date have exhibited very high humidities<br />

(Table III). Precise data on <strong>the</strong> mechanisms <strong>of</strong> humidity maintenance are<br />

lacking, but <strong>the</strong>re have been reports <strong>of</strong> maternal behavior involving urination<br />

<strong>and</strong> splashing <strong>of</strong> <strong>the</strong> nest (e.g., Whitaker <strong>and</strong> Whitaker, 1976b, 1977b).<br />

If this is deliberate, it would imply that <strong>the</strong> mo<strong>the</strong>r can monitor nest temperature<br />

<strong>and</strong>/or humidity, <strong>and</strong> it has been suggested that this might be <strong>the</strong><br />

function <strong>of</strong> sensory receptors on <strong>the</strong> jaws (Ferguson, 1979b, 1981b, 1982b;<br />

see also Section II.E). However, during abnormally hot dry years, <strong>the</strong><br />

humidity within nests <strong>of</strong> A. mississippiensis decreases, <strong>and</strong> <strong>the</strong> eggs begin to<br />

form abnormal air spaces (Ferguson <strong>and</strong> Joanen, 1983) due to cleavage <strong>of</strong><br />

<strong>the</strong> shell membrane away from <strong>the</strong> calcified eggshell. If <strong>the</strong> air space is<br />

large, it causes embryonic death, representing a significant source <strong>of</strong> mortality,<br />

particularly among eggs near <strong>the</strong> top <strong>of</strong> alligator nests during hot dry<br />

years.<br />

Nest temperatures <strong>and</strong> humidities outside <strong>the</strong> normal range lead to<br />

malformed or dead embryos (Modha, 1967; Bustard, 1969, 1980a, c; Pooley,<br />

1962, 1969a, h; Whitaker <strong>and</strong> Whitaker, 1976a, b, 1977b; Joanen <strong>and</strong><br />

McNease, 1975a, b, 1977, 1979a, 1980, 1981; Staton <strong>and</strong> Dixon, 1977; Ogden,<br />

1978; Ferguson <strong>and</strong> Joanen, 1983; Webb et a1., 1983a,b,e). Within <strong>the</strong><br />

range <strong>of</strong> viable temperatures, temperature <strong>and</strong> incubation time are inversely<br />

correlated (Reese, 1915a; McIlhenny, 1934, 1935; Pooley, 1962,<br />

1969a,b; Joanen <strong>and</strong> McNease, 1975a, b, 1977, 1979a, 1980; Packard et a1.,<br />

1977; Webb et a1., 1977, 1983a,b,e; Ferguson, 1982b; Ferguson <strong>and</strong> Joanen,<br />

1982, 1983). Thus, <strong>the</strong>re are only mean incubation periods (Table III), <strong>and</strong><br />

field incubation times are difficult to interpret even with scant information<br />

on nest temperatures. Consequently, developmental stages must be related<br />

to an arbitrary (normal) time scale calculated for controlled environmental<br />

conditions (Ferguson, 1982b; Webb et a1., 1983a).<br />

The gaseous conditions within crocodilian nests have been assayed<br />

twice, once for <strong>the</strong> hole nests <strong>of</strong> Crocodylus acutus (Lutz <strong>and</strong> Dunbar


354 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCODILIANS<br />

REPROOUCTIVE BIOLOGY<br />

355<br />

Cooper, 1982, 1984) <strong>and</strong> again for mound nests <strong>of</strong> C. porosus (Grigg, unpublished<br />

data). The data do not differ significantly. Shortly after egg<br />

laying, <strong>the</strong> pOz in <strong>the</strong> nest is 147 torr (ambient =: 150), <strong>and</strong> <strong>the</strong> pC02is 5.0<br />

torr (ambient =: 0.3). These values reflect <strong>the</strong> properties <strong>of</strong> <strong>the</strong> nest as <strong>the</strong><br />

same values are obtained whe<strong>the</strong>r or not eggs are present (Grigg, unpublished<br />

data). Embryonic arterial blood is approximately 86% saturated <strong>and</strong><br />

venous blood about 40%: arterial pOz is 52 torr (range 42-57), arterial pC02<br />

is 12 torr (range 8-14), <strong>and</strong> venous pOz is 22 torr (Grigg, unpublished<br />

data). Clearly, <strong>the</strong> eggshell <strong>and</strong> shell membrane represent a significant<br />

barrier to gaseous diffusion (see Section III.E). As incubation proceeds,<br />

nest p02 falls <strong>and</strong> pCOz rises (Lutz <strong>and</strong> Dunbar Cooper, 1982, 1984; Grigg,<br />

unpublished data). Crocodilian embryos can tolerate extremely low p02<br />

levels <strong>and</strong> recover; fur<strong>the</strong>rmore, <strong>the</strong>y are very resistant to raised pC02<br />

levels. Even pCOz levels as high as 60 torr do not inhibit <strong>the</strong> embryonic<br />

metabolic rate (Grigg, unpublished data).<br />

Flooding <strong>of</strong> crocodilian nests has long been known to cause embryonic<br />

death (Reese, 1915a; McIlhenny, 1935; Joanen, 1969; Joanen et aI., 1977;<br />

Fleming et aI., 1976; Hines et aI., 1968; Goodwin <strong>and</strong> Marion, 1978; Nichols<br />

et aI., 1976; Voeltzkow, 1891, 1892, 1893, 1899; Webb, 1977a; Webb et al.,<br />

1977, 1983b <strong>and</strong> e; Magnusson, 1982; Deraniyagala, 1939; Cott, 1961, 1969;<br />

Pooley, 1962, 1969a). Joanen et al. (1977) tested <strong>the</strong> effects <strong>of</strong> simulated<br />

flooding on hatchability by immersing <strong>the</strong> eggs <strong>of</strong> Alligator mississippiensis<br />

for single periods <strong>of</strong> two, six, 12, <strong>and</strong> 48 hours at different stages <strong>of</strong> development.<br />

Immersing eggs <strong>of</strong> any age for two to six hours had little effect on<br />

subsequent hatchability, nor did submerging eggs for 12 hours if done<br />

before day 30 (after laying). Thereafter, 12 hour submergence killed all<br />

embryos. Submergence <strong>of</strong> <strong>the</strong> eggs for 48 hours killed all <strong>the</strong> embryos at all<br />

ages. Similar results are recorded for experiments on Crocodylus porosus<br />

eggs (Magnusson, 1982). Any moisture on <strong>the</strong> surfaces <strong>of</strong> crocodilian<br />

eggshells drastically reduces <strong>the</strong>ir gas conductance <strong>and</strong> may totally inhibit<br />

oxygen diffusion. It <strong>the</strong>refore seems likely that flooding inhibits gaseous<br />

diffusion, <strong>and</strong> thus causes embryonic death: a similar mechanism operates<br />

in chicken eggs (Kutchai <strong>and</strong> Stean, 1971). All embryos could utilize air<br />

within <strong>the</strong> eggshell <strong>and</strong> so withst<strong>and</strong> short periods <strong>of</strong> flooding; whereas<br />

younger embryos would have a lower O 2 requirement <strong>and</strong> relatively more<br />

air within <strong>the</strong> eggshell, so that <strong>the</strong>y could withst<strong>and</strong> longer periods <strong>of</strong><br />

flooding than older embryos.<br />

Factors that influence <strong>the</strong> site selected by females for nest construction<br />

are complex <strong>and</strong> incompletely understood but probably include social interactions<br />

with o<strong>the</strong>r animals, vegetation type at site, proximity <strong>of</strong> <strong>the</strong> site<br />

to water, its temperature, degree <strong>of</strong> exposure to sunlight, <strong>and</strong> height above<br />

water level. Whereas investigations <strong>of</strong> <strong>the</strong>se parameters are, by definition,<br />

ecological <strong>and</strong> behavioral, <strong>the</strong>re can be no doubt that <strong>the</strong>se factors affect<br />

fecundity within a population. Fur<strong>the</strong>r studies are likely to contribute not<br />

onlv to our underst<strong>and</strong>ing <strong>of</strong> crocodilian reproductive strategies, but may<br />

shed light on <strong>the</strong> role <strong>of</strong> incubation temperature in determining <strong>the</strong> sex<br />

ratios <strong>of</strong> hatchlings (Section VILO).<br />

E. Maternal Behavior<br />

Those behavioral repertoires <strong>of</strong> female crocodilians that improve reproductive<br />

efficiency are not restricted to nest selection <strong>and</strong> construction (Section<br />

11.0), but include subsequent nest protection <strong>and</strong> opening, egg opening,<br />

transport <strong>of</strong> hatchlings, <strong>and</strong> parental care. They have been described for<br />

Crocodylus acutus (Campbell, 1973; Garrick <strong>and</strong> Lang, 1977), C. cataphractus<br />

(Waitkuwait, 1982), C. johnsoni (Dunn, 1981; Webb et aI., 1983e), C.<br />

moreletii (Hunt, 1975, 1980), C. niloticus (Cott, 1961, 1909, 1971, 1975; Garrick<br />

<strong>and</strong> Lang, 1977; Pooley, 1962, 1969a, 1974a, b, 1976, 1977; Pooley <strong>and</strong><br />

Gans, 1976; Voeltzkow, 1891, 1892, 1893, 1899; Bohme, 1977; Guggisberg,<br />

1972; Neill, 1971), C. novaeguineae (Neill, 1971), C. palustris (Symons, 1918;<br />

Deraniyagala, 1939; Whitaker <strong>and</strong> Whitaker, 1977a, b), C. porosus (Deraniyagala,<br />

1936, 1939; Webb, 1977a; Webb et aI., 1977; Magnusson, 1980;<br />

Bustard <strong>and</strong> Kar, 1981), Alligator mississippiensis (Reese, 1915a, 1931a;<br />

McIlhenny, 1935; Giles <strong>and</strong> Childs, 1949; Lee, 1968; Joanen, 1969; Campbell,<br />

1973; Kushlan, 1973; Herzog, 1975; Garrick <strong>and</strong> Lang, 1977; Garrick et<br />

aI., 1978; Kushlan <strong>and</strong> Kushlan, 1980; Kushlan <strong>and</strong> Simon, 1981; Deitz <strong>and</strong><br />

Hines, 1980; Hunt <strong>and</strong> Watanabe, 1982), Caiman crocodilus crocodilus (Del<br />

Toro, 1969; Campbell, 1973; Garrick <strong>and</strong> Garrick, 1978; Staton <strong>and</strong> Dixon,<br />

1975, 1977), Osteolaemus tetraspis (Tryon, 1980), <strong>and</strong> Cavialis gangeticus<br />

(Singh <strong>and</strong> Bustard, 1977; Bustard, 1980b,c,d; Bosu <strong>and</strong> Bustard, 1981).<br />

Maternal <strong>and</strong> prehatching vocalization <strong>of</strong> crocodilians are reminiscent <strong>of</strong><br />

avian behavior (Vince, 1969, 1973; Gottlieb, 1973; Oppenheim, 1973). In<br />

birds, <strong>the</strong>y are supposed to accelerate <strong>and</strong> synchronize late embryonic<br />

development in <strong>the</strong> clutch <strong>of</strong> eggs. The same effects have been suggested<br />

for crocodilians (Lee, 1968). However, a single experimental study (Magnusson,<br />

1980) showed that advanced embryos <strong>of</strong> Crocodylus porosus called<br />

in response to a tape recording <strong>of</strong> wild hatchling vocalizations, but nei<strong>the</strong>r<br />

developed faster nor hatched more nearly synchronously than did control<br />

eggs. How embryos, enclosed within <strong>the</strong> fluid environment <strong>of</strong> an egg, emit<br />

such sounds is unknown. Vocalizations are also involved whenever <strong>the</strong><br />

females excavate nests, open eggs, or transport hatchlings in <strong>the</strong>ir cavernous<br />

jaws. All <strong>the</strong>se activities require a high degree <strong>of</strong> oral sensitivity <strong>and</strong><br />

muscular control. Numerous domed sensory receptors on <strong>the</strong> palate <strong>and</strong><br />

jaw margins (Figs. 3A <strong>and</strong> B) may facilitate <strong>the</strong>se <strong>and</strong> o<strong>the</strong>r (e.g., courtship<br />

<strong>and</strong> feeding) behaviors (Ferguson, 1981b, 1982b). All available reports are<br />

phenomenologic, but it is obvious that fur<strong>the</strong>r investigations <strong>of</strong> <strong>the</strong> neuralendocrine<br />

mechanisms underlying <strong>the</strong>se complex behaviors are warranted,<br />

not merely for <strong>the</strong>ir intrinsic interest, but also for <strong>the</strong>ir potential<br />

contribution to our underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> evolution <strong>of</strong> parental care in<br />

birds <strong>and</strong> mammals.


356<br />

I<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS REPRODUCTIVE alOLOGY 357<br />

--:-""J;:;;iF'P:'"<br />

Fig. 3. Alligator mississippiellsis. (A) The palate <strong>of</strong> an adult photographed under oblique<br />

incident illumination to highlight <strong>the</strong> numerous low sensory papillae. (B) Histological section<br />

<strong>of</strong> <strong>the</strong> sensory papillae on <strong>the</strong> palate. Note <strong>the</strong> highly specialized sensory nerve ending <strong>and</strong><br />

dermal Merkel cells. 292 x.<br />

F. Captive Breeding, Egg Collection, <strong>and</strong><br />

Artificial Incubation<br />

Data pertaining to egg collection, artificial incubation, hatchling culture,<br />

<strong>and</strong> captive breeding are available for several species (Bustard, 1980c), but<br />

principally for Alligator mississippiensis (Joanen <strong>and</strong> McNease, 1971, 1973,<br />

1974a, b, 1975a, b, 1976, 1977, 1979a, b, 1980, 1981; Chabreck, 1977, 1978;<br />

Nichols et al., 1976), <strong>and</strong> Crocodylus niloticus (Pooley, 1969a, b, 1971; Blake,<br />

1974; Blake <strong>and</strong> Loveridge, 1975). O<strong>the</strong>r reports describe laboratory maintenance<br />

<strong>of</strong> alligators (Coulson et al., 1973, Coulson <strong>and</strong> Hern<strong>and</strong>ez, 1964)<br />

<strong>and</strong> give detailed information on <strong>the</strong> construction <strong>of</strong> egg incubators, controlled<br />

environmental chambers <strong>and</strong> suitable breeding enclosures (Joanen<br />

<strong>and</strong> McNease, 1974a, b, 1976, 1979a; Pooley, 1971). Successful reprOduction<br />

has now been achieved for many species (Chaffee, 1969; Del Toro,<br />

1969; Hunt, 1969, 1973, 1975; Legge, 1969; Yadav, 1969, 1979; David, 1970;<br />

Yangprapakorn et al., 1971; Joanen <strong>and</strong> McNease, 1971, 1975a, 1979a, 1980,<br />

1981; Honegger, 1971, 1975; King <strong>and</strong> Dobbs, 1975; Dunn, 1977, 1981;<br />

Whitaker, 1979; Whitaker <strong>and</strong> Basu, 1983; Bustard, 1980c, 1984). Thus far,<br />

artificial insemination has proved difficult (Joanen <strong>and</strong> McNease, 1973,<br />

1975b) <strong>and</strong> has only once been achieved, <strong>the</strong> major problem being induction<br />

<strong>of</strong> ovulation in <strong>the</strong> female (Cardeilhac et al., 1982).<br />

In most management (<strong>and</strong> embryological) programs, eggs are collected<br />

from wild nests <strong>and</strong> artificially incubated. Documentation <strong>of</strong> recommended<br />

collecting methods <strong>and</strong> <strong>the</strong>ir effect on embryonic viability is available<br />

for several species (Blake <strong>and</strong> Loveridge, 1975; Chabreck, 1977, 1978;<br />

Joanen <strong>and</strong> McNease, 1977, 1979a, 1980, 1981; Pooley, 1969a, b, 1971;<br />

Whitaker <strong>and</strong> Whitaker, 1976a). The exact time <strong>of</strong> collection <strong>and</strong> possible<br />

deleterious effects <strong>of</strong> inversion are particularly important; similar problems<br />

have been reported with respect to testudinian eggs (Ewert, 1979; Parmenter,<br />

1980; Blanck <strong>and</strong> Sawyer, 1981).<br />

At oviposition, <strong>the</strong> embryonic disk, covered by a thin layer <strong>of</strong> albumen,<br />

floats freely on top <strong>of</strong> <strong>the</strong> yolk. Its precise location depends upon <strong>the</strong><br />

position <strong>of</strong> <strong>the</strong> egg in <strong>the</strong> nest. If <strong>the</strong> egg is moved during <strong>the</strong> first 24 hours<br />

after laying, <strong>the</strong> embryoniC disk moves to <strong>the</strong> new highest point <strong>of</strong> <strong>the</strong> yolk<br />

without detrimental effects. However, after 24 hours, <strong>the</strong> disk attaches to<br />

<strong>the</strong> inner aspect <strong>of</strong> <strong>the</strong> shell membrane, <strong>and</strong> <strong>the</strong> egg shows an opaque spot<br />

in this area (see Section III. B). The embryo remains attached, hence movement<br />

or turning may kill it. After inversion, attachment to <strong>the</strong> shell keeps<br />

<strong>the</strong> embryos from rising above <strong>the</strong> yolk maSSi <strong>the</strong>y may be crushed or<br />

drowned by <strong>the</strong> superjacent heavy yolk. Moreover, in <strong>the</strong> first few days<br />

after laying, <strong>the</strong> embryo has not undergone torsion (Section VI) <strong>and</strong> so lies<br />

at apprOXimately right angles to <strong>the</strong> shell surface, whereas small blood<br />

vessels proliferate within both it <strong>and</strong> <strong>the</strong> extraembryonic membranes,<br />

which are also attached to <strong>the</strong> shell membrane. Any movement tends to<br />

shear <strong>the</strong> embryo <strong>of</strong>f <strong>the</strong> embryonic disk <strong>and</strong> rupture <strong>the</strong>se delicate blood<br />

vessels, <strong>the</strong>reby causing death. Thus eggs should be collected before <strong>the</strong><br />

embryo attaches to <strong>the</strong> shell membrane (within 24 hours after laying) or<br />

much later, after <strong>the</strong> fourth week <strong>of</strong> incubation, by which time <strong>the</strong> embryo<br />

<strong>and</strong> extraembryonic membranes are less susceptible to damage. Similar<br />

considerations apply to turtles (Blanck <strong>and</strong> Sawyer, 1981). Always mark<br />

<strong>the</strong> top surface <strong>of</strong> <strong>the</strong> egg prior to removal <strong>and</strong> transport <strong>and</strong> incubate eggs<br />

in <strong>the</strong>ir original nest orientation or <strong>the</strong> nearest horizontal position.<br />

O<strong>the</strong>r reasons for collecting eggs within 24 hours <strong>of</strong> laying include <strong>the</strong>


35B<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF' CROCODILIANS<br />

REPRODUCTIVE BIOLOGY<br />

3551<br />

following: (1) Reduction <strong>of</strong> losses from predation, flooding, or physical<br />

damage to <strong>the</strong> nest (e.g., by ano<strong>the</strong>r nesting crocodile); (2) control <strong>and</strong><br />

optimization <strong>of</strong> <strong>the</strong> incubation environment; (3) control <strong>of</strong> <strong>the</strong> sex <strong>and</strong><br />

possibly <strong>the</strong> future growth <strong>of</strong> hatchlings (Ferguson <strong>and</strong> Joanen, 1982,<br />

1983); (4) monitoring development by observing changes in eggshell b<strong>and</strong>ing<br />

(see Section III. B) <strong>and</strong> detecting (in order to discard) infertile,<br />

malformed, dead, or infected eggs; (5) acceleration or delay <strong>of</strong> development<br />

by altering <strong>the</strong> incubation temperature <strong>and</strong> synchronization <strong>of</strong> hatchling<br />

emergence; (6) correction <strong>of</strong> <strong>the</strong> orientation <strong>of</strong> eggs laid in a detrimental<br />

position. Thus embryos <strong>of</strong> eggs laid upright (i.e., with <strong>the</strong>ir long axes at<br />

right angles to <strong>the</strong> nest base) frequently die or are malformed; <strong>the</strong>y develop<br />

normally if <strong>the</strong> eggs are reoriented so that <strong>the</strong> embryonic disk becomes<br />

positioned beneath <strong>the</strong> top center <strong>of</strong> <strong>the</strong> egg.<br />

The death <strong>of</strong> embryos following egg inversion may explain why viviparity<br />

never evolved in <strong>the</strong> Crocodilia or Testudines. During <strong>the</strong> evolution <strong>of</strong><br />

viviparity, <strong>the</strong>re is usually an intermediate stage in which <strong>the</strong> embryo<br />

develops inside an egg retained within <strong>the</strong> oviducts <strong>of</strong> <strong>the</strong> female. However,<br />

in taxa in which <strong>the</strong> embryo attaches to <strong>the</strong> shell membrane <strong>and</strong><br />

turning or inversion result in embryonic death, this intermediate stage is<br />

unlikely to be achieved. The absence <strong>of</strong> crocodilian viviparity may also be<br />

related to increased dependence <strong>of</strong> embryos on eggshell calcium as compared<br />

to <strong>the</strong> very slight dependence <strong>of</strong> snakes <strong>and</strong> lizards (Packard et aI.,<br />

1977), <strong>the</strong> absence <strong>of</strong> biological advantages for prolonged egg retention,<br />

<strong>and</strong> <strong>the</strong> evolution <strong>of</strong> nest guarding (Tinkle <strong>and</strong> Gibbons, 1977).<br />

Artificial incubation <strong>of</strong> <strong>the</strong> eggs <strong>of</strong> "hole nesters" has been effected by<br />

reburying <strong>the</strong> eggs in suitable sites (Pooley, 1969a, b, 1971; Blake <strong>and</strong><br />

Loveridge, 1975; Bustard, 1980c). Earlier attempts at incubating <strong>the</strong> eggs <strong>of</strong><br />

mound nesters, e.g., Alligator mississippiensis, involved placing <strong>the</strong>m in<br />

buckets <strong>of</strong> nesting material maintained at <strong>the</strong> appropriate temperature <strong>and</strong><br />

humidity (Reese, 1901a, 1931a; Table III). Currently eggs are incubated<br />

ei<strong>the</strong>r in incubators or in environmental chambers (Joanen <strong>and</strong> McNease,<br />

1974a,b, 1976, 1977, 1979a, 1980, 1981). Tests relating to <strong>the</strong> incubation <strong>of</strong><br />

alligator eggs, including stacked versus nonstacked, wild eggs versus eggs<br />

from captive breeding programs, oxygenated chambers versus nonoxygenated<br />

chambers, washed eggs versus nonwashed eggs, exposed eggs<br />

versus eggs covered with nesting material, <strong>and</strong> eggs set over water versus<br />

eggs set over dry concrete (Joanen <strong>and</strong> McNease, 1977) showed no appreciable<br />

effects, except for a 13% decrease in hatching success from stacked<br />

eggs, <strong>and</strong> a lower hatching rate (72%) for captive produced eggs than for<br />

those <strong>of</strong> wild animals (94%). About 15% <strong>of</strong> embryos from captive produced<br />

eggs died around hatching, <strong>and</strong> o<strong>the</strong>rs had to be assisted from <strong>the</strong> shell<br />

(Joanen <strong>and</strong> McNease, 1975a, 1977). This may indicate weakness <strong>of</strong> <strong>the</strong><br />

hatchling (compacted yolks are more common in this group) or abnormal<br />

toughness <strong>of</strong> <strong>the</strong> eggshell <strong>and</strong> its membranes. Decreased hatching success<br />

in farmed turtles may be associated with replacement <strong>of</strong> <strong>the</strong> normal arago-<br />

nite crystals <strong>of</strong> calcium carbonate by calcite crystals (Solomon <strong>and</strong> Baird,<br />

1979; Baird <strong>and</strong> Solomon, 1979). Although <strong>the</strong> eggshells <strong>of</strong> farmed crocodilians<br />

may be defective, it seems more likely that decreased fecundity <strong>and</strong><br />

increased abnormality may result from maternal dietary deficiencies, e.g.,<br />

that <strong>of</strong> vitamin E (Lance, 1982; Lance et a!., 1983; Elsey <strong>and</strong> Lance, 1983) or<br />

inappropriate husb<strong>and</strong>ry (Joanen <strong>and</strong> McNease, 1981; Lance, 1984).<br />

Incubation <strong>of</strong> alligator eggs at temperatures ranging from 26° to 34°C,<br />

produces <strong>the</strong> best hatching success at 30° to 32°C (Joanen <strong>and</strong> McNease,<br />

1977, 1979a, 1980, 1981; Ferguson <strong>and</strong> Joanen, 1982, 1983). Hatchlings from<br />

eggs incubated below 28°C <strong>of</strong>ten twitch, have balance difficulties <strong>and</strong> swim<br />

with <strong>the</strong>ir heads constantly under water; eventually <strong>the</strong>y drown. Eggs <strong>of</strong><br />

Crocodylus novaeguineae incubated at 23°, 26°, <strong>and</strong> 38°C (normal approximately<br />

32°C) have a low hatching success (Bustard, 1969, 1971). All survivors<br />

<strong>of</strong> <strong>the</strong> high temperature group showed tail <strong>and</strong> o<strong>the</strong>r abnormalities<br />

<strong>and</strong> had to be helped from <strong>the</strong>ir shell. Hatchlings <strong>of</strong> C. palustris recovered<br />

from overheated nests also showed tail abnormalities (Whitaker <strong>and</strong><br />

Whitaker, 1976a,b).<br />

Crocodilian eggs are susceptible to changes in humidity; at low levels<br />

<strong>the</strong> shell membrane dries out <strong>and</strong> shrivels, <strong>the</strong>reby killing <strong>the</strong> embryo<br />

(McIlhenny, 1935; Deraniyagala, 1939; Pooley, 1962, 1969a, b, 1971; Joanen,<br />

1969; Staton <strong>and</strong> Dixon, 1977). The optimum relative humidities for incubating<br />

Alligator mississippiensis eggs is 90 to 92% (Joanen <strong>and</strong> McNease,<br />

1977, 1979a; Chabreck, 1975). Abnormal air spaces form in alligator eggs<br />

incubated at suboptimal humidities (Ferguson <strong>and</strong> Joanen, 1983); large air<br />

spaces are lethal. Intact eggs <strong>of</strong> Crocodylus acutus are resistant to desiccation,<br />

losing water at a rate comparable to <strong>the</strong> eggs <strong>of</strong> birds (Rahn <strong>and</strong> Ar,<br />

1974; Rahn et aI., 1979; Ar <strong>and</strong> Rahn, 1980; Diamond, 1982), but at a rate<br />

much lower than that <strong>of</strong> <strong>the</strong> lea<strong>the</strong>ry-shelled eggs <strong>of</strong> Iguana iguana (R<strong>and</strong>,<br />

1968). Removal <strong>of</strong> a 3 x 3 cm piece <strong>of</strong> shell (leaving <strong>the</strong> shell membrane<br />

intact) from <strong>the</strong> eggs <strong>of</strong> C. acutus greatly increases <strong>the</strong> desiccation rate<br />

(R<strong>and</strong>, 1968). The eggs <strong>of</strong> C. novaeguineae apparently could ei<strong>the</strong>r lose or<br />

gain up to 25% water with no adverse effects on <strong>the</strong> embryos (Bustard,<br />

1971). The s<strong>of</strong>t-shelled eggs <strong>of</strong> many squamates <strong>and</strong> turtles can adsorb<br />

(<strong>and</strong> <strong>the</strong>n lose) water up to 300% <strong>of</strong> <strong>the</strong>ir initial weight (Bustard, 1971;<br />

Packard et aI., 1977); unlike <strong>the</strong> eggs <strong>of</strong> crocodilians (<strong>and</strong> certain o<strong>the</strong>r<br />

turtles) <strong>the</strong>y lack large quantities <strong>of</strong> hydrophilic albumen, which are likely<br />

to reduce <strong>the</strong> rate <strong>of</strong> water loss under adverse conditions.<br />

Bustard (1971) has suggested that water uptake is unessential in crocodilian<br />

eggs, but represents an insurance against lethal levels <strong>of</strong> water stress<br />

caused by possible adverse environmental conditions later in development.<br />

However, Packard et al. (1977) reported that water uptake was critical<br />

for normal reptilian embryonic development; prevention <strong>of</strong> water uptake,<br />

particularly in <strong>the</strong> early stages <strong>of</strong> incubation, leads to high rates <strong>of</strong><br />

mortality <strong>and</strong> developmental abnormalities. Indeed, Tracy et a!. (1978)<br />

suggested that <strong>the</strong> only major difference between <strong>the</strong> eggs <strong>of</strong> birds <strong>and</strong>


360 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

REPRODUCTIVE BIOLOGY<br />

361<br />

those <strong>of</strong> crocodilians (<strong>and</strong> certain turtles) is <strong>the</strong> site where <strong>the</strong>y are laid;<br />

avian nests favor water loss <strong>and</strong> crocodilian nests favor water gain. However,<br />

<strong>the</strong>se authors assume that cracks in <strong>the</strong> alligator eggshell under natural<br />

nesting conditions indicate water uptake <strong>and</strong> egg swelling. Alternative<br />

explanations for such cracks are enlargement <strong>and</strong> movement <strong>of</strong> <strong>the</strong> embryo<br />

<strong>and</strong> weakening <strong>of</strong> <strong>the</strong> shell to facilitate hatching (Ferguson, 1981c, 1982a).<br />

Indeed, Lutz <strong>and</strong> Dunbar Cooper (1982, 1984) reported a net water loss<br />

from eggs <strong>of</strong> Crocodyllis aClltlls; <strong>the</strong> birth weights <strong>of</strong> hatchlings were 0.64 ±<br />

0.01 those <strong>of</strong> <strong>the</strong> initial egg masses, a value almost identical to that <strong>of</strong> many<br />

birds (0.65), (Rahn, 1982; Diamond, 1982). During incubation <strong>of</strong> avian<br />

eggs, dry matter is metabolized <strong>and</strong> metabolic water produced, but water<br />

concentration is maintained by losing a fixed portion <strong>of</strong> <strong>the</strong> water (Ar <strong>and</strong><br />

Rahn, 1980). The fractional loss (F = total weight loss/initial weight) for<br />

eggs <strong>of</strong> 81 species <strong>of</strong> birds was remarkably constant (F = 0.150 ± 0.02580)<br />

<strong>and</strong> similar to that <strong>of</strong> C. aClltlis (F = 0.154) (Lutz <strong>and</strong> Dunbar Cooper, 1982,<br />

1984). Preliminary data <strong>the</strong>refore indicate that crocodilian eggs are structurally<br />

(Ferguson, 1982a) <strong>and</strong> functionally (Lutz et al., 1980; Lutz <strong>and</strong> Dunbar<br />

Cooper, 1984) similar to avian eggs but dissimilar to those <strong>of</strong> squamates<br />

<strong>and</strong> some testudines (Packard et al., 1977). Their water vapor conductance<br />

is treated below (Section ULE).<br />

The water relations <strong>of</strong> crocodilian eggs require fur<strong>the</strong>r investigations<br />

both in <strong>the</strong> wild <strong>and</strong> experimentally. In some turtles, <strong>the</strong> size <strong>of</strong> hatchlings<br />

(<strong>and</strong> hence <strong>the</strong>ir survivorship) <strong>and</strong> <strong>the</strong> length <strong>of</strong> egg incubation are both<br />

related to <strong>the</strong> hydric environments <strong>of</strong> egg incubation (Packard et al., 1981,<br />

1982, 1983). Moreover, eggs <strong>of</strong> Chrysemys picta exhibit normal embryonic<br />

metabolism until <strong>the</strong> pool <strong>of</strong> egg water is reduced to a threshold level, at<br />

which time death occurs (in unfavorable hydric conditions) or hatching<br />

ensues (in favorable conditions), depending on <strong>the</strong> stage <strong>of</strong> embryonic<br />

development (Packard et al., 1983). Thus <strong>the</strong> water potential <strong>of</strong> eggs may<br />

provide <strong>the</strong> cue for hatching <strong>and</strong> an explanation <strong>of</strong> late embryonic deaths<br />

(<strong>of</strong>ten during <strong>the</strong> week <strong>of</strong> expected hatching). Moreover, preliminary data<br />

indicate that <strong>the</strong> hydric environment <strong>of</strong> Chrysemys picta eggs influences<br />

sexual differentiation (Gutzke <strong>and</strong> Paukstis, 1983); this may also be true for<br />

crocodilians.<br />

31<br />

G. Hatching<br />

The mechanics <strong>of</strong> hatching have been described for Alligator mississippiensis<br />

(McIlhenny, 1934, 1935; ]oanen, 1969), CrocodylliS niloticliS (Voeltzkow,<br />

1891, 1892, 1893, 1899; Pooley, 1962, 1969a), C. POroSliS (Deraniyagala, 1936,<br />

1939; Webb, 1977a), <strong>and</strong> C. pailistris (Deraniyagala, 1939); <strong>the</strong>y appear to be<br />

similar in all crocodilians (Neill, 1971). The growing <strong>and</strong> moving embryo<br />

strains <strong>the</strong> eggshell, which has already been weakened by mobilization <strong>of</strong><br />

calcium <strong>and</strong> extrinsic degradation (see Section lII.C), so that it eventually<br />

cracks. In A. mississippiensis, longitudinal cracks develop about <strong>the</strong> seventh<br />

Fig. 4.<br />

Alligator mississippiensis. Sequence <strong>of</strong> photographs illustrati]l~ hatching.<br />

week <strong>of</strong> incubation (Joanen, 1969), diagonal cracks begin several days later,<br />

<strong>and</strong> shell flaking begins prior to hatching. The embryo is thuS surrounded<br />

by extraembryonic <strong>and</strong> shell membranes. These membranes are later punc­<br />

T<br />

tured by <strong>the</strong> sharp "caruncle" located at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> snout (Section vn. ,<br />

Figs. 26A to H<strong>and</strong> 36A to D), <strong>the</strong>reby pippipg <strong>the</strong> egg (Fig. 4). ) 8za<br />

Because crocodilian eggs normally lack an airspace (Ferguson, 19 ,<br />

It ~


3SE!<br />

REPRODUCTIVE alOLOGY ANO EMBRYOLOGY OF CROCODILIANS<br />

<strong>the</strong>re is no internal pipping, as seen in birds (Rahn et a1., 1979). Hence,<br />

crocodilian hatchlings are unlikely to brea<strong>the</strong> until <strong>the</strong> shell <strong>and</strong> membranes<br />

are broken <strong>and</strong> <strong>the</strong> flUids are drained from around <strong>the</strong> head. The<br />

time interval between this event <strong>and</strong> emergence from <strong>the</strong> egg is relatively<br />

short (ranging from a few minutes to 24 hours), so that <strong>the</strong> transition from<br />

chorioallantoic to pulmonary respiration must be rapid, as in mammals<br />

<strong>and</strong> megapode birds (Seymour <strong>and</strong> Ackerman, 1980), but it is contrary to<br />

<strong>the</strong> slow transition in o<strong>the</strong>r birds (Rahn et a1., 1979). Details <strong>of</strong> this transition<br />

(e.g., <strong>the</strong> extent <strong>of</strong> chorioallantoic perfusion during <strong>the</strong> time between<br />

first breathing <strong>and</strong> hatching) are unknown but <strong>of</strong> considerable interest.<br />

The problem is even more intriguing when one recalls that for many hours<br />

prior to pipping embryos vocalize in response to certain stimuli (see Section<br />

11.E); this suggests that <strong>the</strong> lungs are functional during this period. As<br />

alligator eggs progressively lose water during incubation, an air bubble<br />

forms beneath <strong>the</strong> shell membrane <strong>and</strong> this moves around in <strong>the</strong> albumen,<br />

so as to always lie beneath <strong>the</strong> uppermost surface <strong>of</strong> <strong>the</strong> egg (Ferguson,<br />

1982a): similar events OCCur in megapode eggs (Seymour <strong>and</strong> Ackerman,<br />

1980). Perhaps this air is used prior to pipping (analogous to <strong>the</strong> internal<br />

pipping <strong>of</strong> avian embryos). This area is significant because late embryonic<br />

death is common (during both natural <strong>and</strong> artificial incubation) <strong>and</strong> could<br />

be caused by improper hydric conditions. Thus, high humidity may be<br />

required during <strong>the</strong> early stages <strong>of</strong> incubation, but lower humidity may be<br />

reqUired during <strong>the</strong> later stages to facilitate water loss <strong>and</strong> <strong>the</strong> formation <strong>of</strong><br />

intra-egg air. This in turn may enable internal breathing, <strong>the</strong> maturation <strong>of</strong><br />

<strong>the</strong> respiratory system, <strong>and</strong> provide <strong>the</strong> extra oxygen required for pipping.<br />

Indeed, Vocalization may represent a signal that <strong>the</strong> embryo is mature<br />

enough to survive outside <strong>the</strong> egg, <strong>and</strong> it remains to be determined<br />

whe<strong>the</strong>r it occurs in eggs incubated under conditions <strong>of</strong> continuous high<br />

humidity. The changing hydric conditions are likely to be most critical in<br />

species with long incubation periods (e.g., Crocodylus porosus).<br />

During <strong>the</strong> hatching process, <strong>the</strong> embryo first widens <strong>the</strong> slit in <strong>the</strong> shell<br />

membrane (frequently by pushing its snout into <strong>the</strong> slit <strong>and</strong> <strong>the</strong>n opening<br />

its jaws). Second, it pUShes out <strong>the</strong> entire head <strong>and</strong> neck; after a couple <strong>of</strong><br />

minutes, one quick forceful thrust forces <strong>the</strong> whole bOdy out <strong>of</strong> <strong>the</strong> egg<br />

(Fig. 4). The claws may be used in <strong>the</strong> hatching process. The ruptured<br />

extraembryonic membranes progressively detach from <strong>the</strong> shell membrane<br />

but remain attached to <strong>the</strong> umbilical region <strong>of</strong> <strong>the</strong> hatchling for about a day;<br />

<strong>the</strong>y eventually shrivel, dry up, <strong>and</strong> break (Fig. 21). Hatchlings are COvered<br />

with slime, presumably derived from <strong>the</strong> ruptured allantois, <strong>and</strong> <strong>the</strong>y<br />

smell <strong>of</strong> ammonia. This slime dries after about 24 hours. At <strong>the</strong> time <strong>of</strong><br />

hatching, <strong>the</strong> abdomen is distended by absorbed yolk <strong>and</strong> <strong>the</strong> umbilical<br />

car is evident (Fig. 21). The yolk serves as a food supply for a few weeks<br />

ntil <strong>the</strong> hatchlings begin feeding so that <strong>the</strong> abdomen becomes less dis­<br />

~ended <strong>and</strong> <strong>the</strong> umbilicus closes. In hatchlings kept below 210C, <strong>the</strong> umilicus<br />

does not heal correctly, yolk is not utilized, <strong>and</strong> <strong>the</strong> animals usually<br />

e (King <strong>and</strong> Dobbs, 1975).<br />

THE EGGSHELL AND SHELL MEMBRANES<br />

363<br />

The precise hatching trigger remains unknown. Mechanical stimuli <strong>and</strong><br />

vocalizations may playa role (see Section II.E). Growth <strong>and</strong> movement <strong>of</strong><br />

<strong>the</strong> embryo may burst <strong>the</strong> shell. Increasing levels <strong>of</strong> waste products, decreasing<br />

egg water, <strong>and</strong> <strong>the</strong> progressive inadequacy <strong>of</strong> gas exchange may<br />

also stimulate hatching. Temperature seems to be important; field reports<br />

note that an inadvertent rise in egg temperature stimulates premature<br />

hatching, <strong>and</strong>, conversely, decreases in egg temperature delay hatching<br />

(McIlhenny, 1934, 1935; Deraniyagala, 1936, 1939; Pooley, 1962, 1969a,<br />

1971). Hatchlings are sufficiently well developed to be viable if <strong>the</strong>y hatch<br />

several days prematurely (McIlhenny, 1934, 1935) so that completion <strong>of</strong><br />

development is not <strong>the</strong> final trigger for hatching. Lengths <strong>and</strong> weights <strong>of</strong><br />

<strong>the</strong> hatchlings from different species are summarized in Table III.<br />

III.<br />

THE EGGSHELL AND SHELL MEMBRANES<br />

A. General<br />

Most crocodilian eggs are elliptical with approximately equivalent ends<br />

(Figs. 5A to 1). They vary considerably in size <strong>and</strong> shape, even within<br />

species (Tables III <strong>and</strong> IV). Normally <strong>the</strong>re is little variation in size <strong>and</strong><br />

shape within an individual clutch. However, occasional large, infertile,<br />

double-yolked eggs or very small eggs are seen; <strong>the</strong>se abnormal eggs are<br />

usually laid at <strong>the</strong> beginning <strong>and</strong> end <strong>of</strong> oviposition <strong>and</strong> are common in<br />

clutches laid by young females (Ferguson <strong>and</strong> Joanen, 1983). Ferguson<br />

(1982a) described <strong>the</strong> structure <strong>and</strong> composition <strong>of</strong> <strong>the</strong> eggshell <strong>and</strong> shell<br />

membranes <strong>of</strong> Alligator mississippiensis <strong>and</strong> provided a comprehensive review<br />

<strong>of</strong> <strong>the</strong> literature.<br />

B. Egg B<strong>and</strong>ing<br />

The gradual development <strong>of</strong> a transverse white b<strong>and</strong> across fertile crocodilian<br />

eggs has been known for nearly a century (Clarke, 1888a,b, 1891),<br />

<strong>and</strong> reports are now available for several species (Ferguson, 1982a; Reese,<br />

1908, 1912, 1915a, 1931a; McIlhenny, 1935; Deraniyagala, 1936, 1939; Webb<br />

et aI., 1977, 1983a, b, e; Webb, 1977a; Beck, 1978; Hara <strong>and</strong> Kikuchi, 1978;<br />

Deitz <strong>and</strong> Hines, 1980; Tryon, 1980).<br />

Within 24 hours <strong>of</strong> egg laying, <strong>the</strong> eggs <strong>of</strong> Alligator mississippiensis show<br />

a small opaque, chalky white, oval patch on <strong>the</strong>ir top surface (Figs. 5A <strong>and</strong><br />

6). The small embryo has attached itself to <strong>the</strong> innermost surface <strong>of</strong> <strong>the</strong><br />

shell membrane immediately below this opaque patch. At this <strong>and</strong> all<br />

subsequent stages, <strong>the</strong> white color is associated with changes both <strong>of</strong> <strong>the</strong><br />

eggshell <strong>and</strong> shell membrane (which itself appears chalky white in this<br />

area). Initially <strong>the</strong> oval opaque patch exp<strong>and</strong>s in width around <strong>the</strong> shell,<br />

extending approximately half-way around <strong>the</strong> shell on days 3 to 4, threequarters<br />

way around <strong>the</strong> shell on days 5 <strong>and</strong> 6, <strong>and</strong> completely around <strong>the</strong>


1<br />

micro<strong>org</strong>anisms in <strong>the</strong> pores <strong>of</strong> <strong>the</strong> eggshell <strong>and</strong> on <strong>the</strong> surface <strong>of</strong> <strong>the</strong> shell membrane. (D) A<br />

completely opaque, cracked, 58-day egg. (E) Attachment <strong>of</strong> <strong>the</strong> embryo <strong>and</strong> chorioallantois to<br />

<strong>the</strong> superior inner surface <strong>of</strong> <strong>the</strong> shell membrane in an I8-day egg. Note <strong>the</strong> two poles <strong>of</strong><br />

albumen (A) at <strong>the</strong> ends <strong>of</strong> <strong>the</strong> egg. The yolk has been removed. (F) Expansion <strong>of</strong> <strong>the</strong><br />

chorioallantois <strong>and</strong> <strong>the</strong> regression <strong>of</strong> albumen seen in <strong>the</strong> superior inner surface <strong>of</strong> a 25-day<br />

egg. (G) Lateral view. Opaque b<strong>and</strong> in a transilluminated 7-day egg. The b<strong>and</strong> appears black<br />

by this technique <strong>and</strong> appears longer toward <strong>the</strong> top (right) than <strong>the</strong> bottom (left) <strong>of</strong> <strong>the</strong> egg.<br />

Fig. 5. Alligator mississippiensis. (A) Opaque spot on <strong>the</strong> eggshell <strong>and</strong> shell membrane <strong>of</strong> an (H) View <strong>of</strong> <strong>the</strong> opaque b<strong>and</strong> in a I2-day egg. (I) View <strong>of</strong> <strong>the</strong> opaque b<strong>and</strong> in a 20-day egg. (J)<br />

egg 24 hours after deposition. (8) Opaque b<strong>and</strong> on a ten-day eggshell. (C) Opaque b<strong>and</strong> in <strong>the</strong><br />

View <strong>of</strong> a 40-day egg, which is almost completely opaque.<br />

eggshell (partIy removed) <strong>and</strong> shell membrane <strong>of</strong> a 20-day egg. Note <strong>the</strong> specks <strong>of</strong> debris <strong>and</strong><br />

3615


...,...<br />

366 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

o 8<br />

TO T1 T3 T5<br />

T7 87 T30 T52<br />

Fig. 6. Alligator mississippiensis. Diagram depicting <strong>the</strong> development <strong>of</strong> <strong>the</strong> opaque b<strong>and</strong> in<br />

eggs viewed in transmitted light. T, top <strong>of</strong> egg; B, bottom <strong>of</strong> egg; numbers, days after <strong>the</strong> time<br />

<strong>the</strong> egg was laid.<br />

shell after day 7 (Figs. SA to C, G to J, <strong>and</strong> 6). This extension in width is not<br />

matched by a uniform expansion in length, so that <strong>the</strong> opaque b<strong>and</strong> tapers<br />

from a maximum length at <strong>the</strong> top surface <strong>of</strong> <strong>the</strong> shell to a minimum length<br />

on its bottom surface (Figs. 5 <strong>and</strong> 6). The embryo always lies beneath <strong>the</strong><br />

upper exp<strong>and</strong>ed part <strong>of</strong> <strong>the</strong> fusiform opaque ring (Figs. 5B, E, F, G-J, <strong>and</strong><br />

6). The opaque b<strong>and</strong> <strong>the</strong>n exp<strong>and</strong>s rapidly in length so that it extends over<br />

approximately 60% <strong>of</strong> <strong>the</strong> top surface <strong>and</strong> 50% <strong>of</strong> <strong>the</strong> lower surface <strong>of</strong> <strong>the</strong><br />

shell between days 8 <strong>and</strong> 30 (Figs. 5B to 0, G to J, <strong>and</strong> 6). The top part <strong>of</strong><br />

<strong>the</strong> b<strong>and</strong> reaches <strong>the</strong> ends <strong>of</strong> <strong>the</strong> egg around day 40 <strong>and</strong> <strong>the</strong> bottom part<br />

around day 50; <strong>the</strong>reafter <strong>the</strong> egg is completely opaque <strong>and</strong> so appears<br />

unb<strong>and</strong>ed (Figs. 50, J, <strong>and</strong> 6). The opaque part <strong>of</strong> <strong>the</strong> egg never transmits<br />

light as well as <strong>the</strong> adjacent translucent regions <strong>and</strong> is clearly demonstrated<br />

as a dark zone if <strong>the</strong> eggs are transiIIuminated (Figs. 5G to J, <strong>and</strong> 6).<br />

Eggshell b<strong>and</strong>ing represents a useful, external indicator for estimating<br />

<strong>the</strong> age <strong>of</strong> alligator eggs (Ferguson, 1982a) up to approximately day 50;<br />

subsequently <strong>the</strong> eggs are completely opaque. The normal expansion <strong>of</strong><br />

<strong>the</strong> opaque b<strong>and</strong> may be retarded in eggs containing malformed or developmentally<br />

retarded embryos. Usually, <strong>the</strong> expansion <strong>of</strong> <strong>the</strong> "minimum<br />

b<strong>and</strong> length" at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> egg is <strong>the</strong> most sensitive indicator<br />

(Ferguson, 1982a, b). Eggs containing embryos that have died but<br />

that are not infected show an arrest <strong>of</strong> b<strong>and</strong> development at <strong>the</strong> stage <strong>of</strong><br />

embryonic death. This may be followed by regression <strong>of</strong> <strong>the</strong> b<strong>and</strong> as <strong>the</strong><br />

embryo autolyzes. Infected eggs have <strong>the</strong> opaque b<strong>and</strong>s vaguely defined;<br />

opaque blotchy patches may appear <strong>and</strong> disappear all over <strong>the</strong> eggshell,<br />

usually in an erratic fashion. Infertile eggs never become b<strong>and</strong>ed <strong>and</strong> never<br />

become infected (unless <strong>the</strong> eggshell or eggshell membrane is damaged or<br />

THE EGGSHELL AND SHELL MEMBRANES<br />

367<br />

malformed), but remain uniformly translucent white (egg contents yellow)<br />

throughout incubation. They can easily be distinguished from normal,<br />

completely opaque, post day 50 eggs by transillumination (Figs. 5G to J,<br />

<strong>and</strong> 6). Eggs laid at advanced stages <strong>of</strong> embryonic development, for example,<br />

by stressed females (see Section II.C), are ei<strong>the</strong>r b<strong>and</strong>ed at <strong>the</strong> time<br />

<strong>of</strong> laying or become so very rapidly. B<strong>and</strong> expansion is also more rapid, but<br />

<strong>the</strong> embryos usually die, at which time <strong>the</strong> formation ceases. Failure to<br />

distinguish between unb<strong>and</strong>ed infertile eggs <strong>and</strong> ei<strong>the</strong>r those in which <strong>the</strong><br />

embryo has died early <strong>and</strong> become autolyzed or post day 50 normal unb<strong>and</strong>ed<br />

eggs has given rise to erroneous accounts <strong>of</strong> <strong>the</strong> relationship between<br />

b<strong>and</strong>ing <strong>and</strong> fertility (Deitz <strong>and</strong> Hines, 1980; Tryon, 1980).<br />

That <strong>the</strong> appearance <strong>and</strong> regular development <strong>of</strong> <strong>the</strong> opaque b<strong>and</strong> indicate<br />

normal, healthy development <strong>of</strong> <strong>the</strong> embryo is <strong>of</strong> value not only in<br />

aging eggs but also in identifying abnormal development <strong>and</strong> monitoring<br />

teratogenic experiments (Ferguson, 1981a, 1982b). The relationship between<br />

<strong>the</strong> development <strong>of</strong> this b<strong>and</strong> <strong>and</strong> eggshell hydration, albumen<br />

metabolism, <strong>the</strong> formation <strong>of</strong> <strong>the</strong> extraembryonic membranes, structural<br />

changes in <strong>the</strong> eggshell <strong>and</strong> changes in <strong>the</strong> composition <strong>of</strong> <strong>the</strong> shell membrane<br />

is discussed in Sections III.C through E <strong>and</strong> IV.<br />

C. Structure<br />

1. GENERAL<br />

The combined thickness <strong>of</strong> <strong>the</strong> eggshell <strong>and</strong> shell membrane <strong>of</strong> Alligator<br />

mississippiensis is approximately 0.5 to 1.0 mm <strong>and</strong> consists <strong>of</strong> five layers<br />

(Fig. 7). From <strong>the</strong> surface inwards, <strong>the</strong>re is an outer, densely calcified layer<br />

(100-200-f.Lm thick), a honeycomb layer (300-400-f.Lm thick), an <strong>org</strong>anic<br />

layer (8-12-f.Lm thick), a mammillary layer (20-29-f.Lm thick), <strong>and</strong> <strong>the</strong> shell<br />

membrane (150-250-f.Lm thick). Pores run from <strong>the</strong> egg surface through <strong>the</strong><br />

calcified layers <strong>and</strong> end in <strong>the</strong> shell membrane (Fig. 7). The outer openings<br />

<strong>of</strong> <strong>the</strong> pores become modified <strong>and</strong> numerous erosion craters develop as<br />

incubation progresses (Figs. 7 <strong>and</strong> 8). The different layers <strong>of</strong> <strong>the</strong> eggshell<br />

consist <strong>of</strong> varying amounts <strong>of</strong> calcite crystals <strong>and</strong> <strong>org</strong>anic matrix. The<br />

freshly laid egg is coated with slimy oviducal secretions, which dry <strong>and</strong><br />

<strong>the</strong>n disappear.<br />

2. OUTER DENSELY CALCIFIED LAYER<br />

At low magnification (Fig. 9A), <strong>the</strong> egg surface appears smooth, but at<br />

higher magnification (Fig. 9B), <strong>the</strong> granular nature <strong>of</strong> <strong>the</strong> numerous calcite<br />

crystals is evident. There is no detectable <strong>org</strong>anic matrix between <strong>the</strong><br />

rhombohedral crystals in this layer; <strong>the</strong>ir form, size, <strong>and</strong> orientation are<br />

shown in Figs. 8 <strong>and</strong> 9, <strong>and</strong> fur<strong>the</strong>r details are given in Ferguson (1981c,<br />

1982a). The calcite crystals are stacked on <strong>the</strong>ir ends (or faces) in this layer.


368 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

OPAQUE<br />

NON<br />

EC<br />

1r1:\1<br />

lltJ] ®a c __ b -<br />

~<br />

00-400f"=<br />

Fig. 7. Alligator mississippiensis. Diagram <strong>of</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> eggshell in both <strong>the</strong> opaque<br />

<strong>and</strong> nonopaque zones as seen in cross section. Ee, Erosion crater; ESM, shell membrane; H,<br />

honeycomb layer (crystals oriented with <strong>the</strong>ir c-axis horizontal <strong>and</strong> containing numerous<br />

vesicular holes); M, mammillary layer (<strong>the</strong> mammillary knobs are common in <strong>the</strong> opaque<br />

zone, but not so frequent in <strong>the</strong> nonopaque zone; <strong>the</strong> eggshell membrane fibers <strong>of</strong> <strong>the</strong> latter<br />

attach directly to a layer <strong>of</strong> large calcite crystals ra<strong>the</strong>r than <strong>the</strong> mammillary knobs); 0, <strong>org</strong>anic<br />

layer (a layer immediately superficial to <strong>the</strong> mammillae containing a higher percentage <strong>of</strong><br />

<strong>org</strong>anic matrix); ODe, outer densely calcified layer (crystals oriented. with <strong>the</strong>ir c-axis at right<br />

angles to <strong>the</strong> shell surface); P, small pore in <strong>the</strong> shell membrane; PO, pore (more frequent in<br />

opaque zone); PP, pore plug (falling out). (From Ferguson 1981c, 1982a.)<br />

3. HONEYCOMB LAYER<br />

The honeycomb layer is porous <strong>and</strong> contains a high percentage <strong>of</strong> fibrous<br />

<strong>org</strong>anic matrix (Figs. 9C <strong>and</strong> E). When compared to those in <strong>the</strong> outer<br />

densely calcified layer, <strong>the</strong> different (horizontal) stacking <strong>of</strong> <strong>the</strong> calcite<br />

crystals in this layer is important in <strong>the</strong> formation <strong>of</strong> erosion craters (see<br />

Figs. 7 to 9 <strong>and</strong> text below). The numerous matrix-lined holes make <strong>the</strong><br />

honeycomb layer similar to <strong>the</strong> palisade layer <strong>of</strong> <strong>the</strong> eggshells <strong>of</strong> tropical<br />

birds (Schmidt, 1957, 1964; Tyler, 1969; Becking, 1975). These holes interconnect<br />

extensively with each o<strong>the</strong>r <strong>and</strong> with <strong>the</strong> intermammillary air<br />

spaces (Fig. 7).<br />

II iii .OOC.... IIbiId<br />

CD ® CD CD ® ®<br />

SD<br />

.t,<br />

SD<br />

ODC<br />

® CD<br />

H<br />

D C C<br />

C<br />

·6' .<br />

o~ dill<br />

-::) ~~L. c_~<br />

H<br />

0)<br />

J FillA II<br />

'~..<br />

'r t<br />

: lB;<br />


.,...........­<br />

i<br />

calcified layer (0), <strong>the</strong> honeycomb layer (H) beneath it, <strong>and</strong> <strong>the</strong> mammillae. (B) Higher power<br />

SEM <strong>of</strong> <strong>the</strong> boxed edge seen in (A). Note <strong>the</strong> granular appearance <strong>of</strong> <strong>the</strong> densely packed<br />

vertical calcite crystals (<strong>the</strong> diameter <strong>of</strong> which is 0.5-1 f.Lm) <strong>and</strong> <strong>the</strong> absence <strong>of</strong> any <strong>org</strong>anic<br />

matrix. (C) Erosion crater in <strong>the</strong> nonopaque zone <strong>of</strong> an IS-day egg. Note <strong>the</strong> stepped concentric<br />

outline <strong>of</strong> dissolved crystal layers in <strong>the</strong> outer densely calcified zone, <strong>and</strong> <strong>the</strong> openings <strong>of</strong><br />

numerous vesicular holes in <strong>the</strong> exposed porous honeycomb layer at <strong>the</strong> crater base. (D) Pore<br />

in <strong>the</strong> central opaque zone <strong>of</strong> a 40-day eggshell. Note <strong>the</strong> crater-like concentric stepping <strong>of</strong> <strong>the</strong><br />

outer densely calcified layers at <strong>the</strong> pore orifice, remnants <strong>of</strong> <strong>the</strong> pore plug <strong>and</strong> micro<strong>org</strong>anisms<br />

(bacterial cocci, rods <strong>and</strong> filamentous fungae). Outer pore diameter approx. 550 f.Lm,<br />

inner pore diameter approx. 100 f.Lm. (E) Fractured edge <strong>of</strong> a 4-day eggshell. Note <strong>the</strong> shell<br />

membrane (E), mammillary layer (M), <strong>and</strong> honeycomb layer (H). (F) Innermost (egg content<br />

side) layer <strong>of</strong> <strong>the</strong> shell membrane depicting <strong>the</strong> numerous blebs caused by <strong>the</strong> projecting<br />

mammillary knobs <strong>of</strong> <strong>the</strong> mammillary layer. (G) View <strong>of</strong> <strong>the</strong> transversely fractured <strong>org</strong>anic<br />

layer in <strong>the</strong> nonopaque zone <strong>of</strong> a 2-day egg. Note <strong>the</strong> smooth fibers <strong>of</strong> <strong>org</strong>anic matrix interspersed<br />

with numerous small calcite crystals. (H) View <strong>of</strong> <strong>the</strong> transversely fractured <strong>org</strong>anic<br />

layer in <strong>the</strong> opaque central zone <strong>of</strong> a 56-day egg. Note <strong>the</strong> scarcity <strong>of</strong> small calcite crystals (see<br />

Fig. G) <strong>and</strong> <strong>the</strong> blebbing on <strong>the</strong> fibers <strong>of</strong> <strong>org</strong>anic matrix. (I) High power view <strong>of</strong> <strong>the</strong> fibers in<br />

<strong>the</strong> shell membrane <strong>of</strong> a 3D-day egg. Note <strong>the</strong> interweaving <strong>of</strong> <strong>the</strong> fibers, <strong>the</strong> numerous blebs<br />

on <strong>the</strong> surfaces <strong>of</strong> <strong>the</strong> fibers, <strong>and</strong> <strong>the</strong> porous nature <strong>of</strong> <strong>the</strong> membrane.<br />

Fig. 9. Alligator mississippiensis. Scanning electron micrographs (SEM). (A) Surface <strong>and</strong> fractured<br />

edge <strong>of</strong> an IS-day eggshell. Note <strong>the</strong> smooth shell surface (5), <strong>the</strong> outer, densely


372<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCODILIANS<br />

ment for <strong>the</strong> calcite crystals, but may be <strong>the</strong> templates for crystal growth.<br />

Beginning about <strong>the</strong> third week <strong>of</strong> incubation, <strong>the</strong> number <strong>of</strong> small calcite<br />

crystals in <strong>the</strong> <strong>org</strong>anic layer beneath <strong>the</strong> opaque b<strong>and</strong> decreases (compare<br />

Fig. 9G with 9H), <strong>and</strong> this process continues as <strong>the</strong> b<strong>and</strong> exp<strong>and</strong>s. It<br />

appears that <strong>the</strong>se crystals, in preference to <strong>the</strong> larger units in <strong>the</strong> mammillary<br />

layer, are mobilized for embryonic calcification. This process steadily<br />

weakens <strong>the</strong> calcified shell, <strong>and</strong> horizontal separation usually begins a few<br />

days before hatching, so that only <strong>the</strong> shell membrane <strong>and</strong> parts <strong>of</strong> <strong>the</strong><br />

mammillary <strong>and</strong> <strong>org</strong>anic layers surround <strong>the</strong> embryo, with <strong>the</strong> rest <strong>of</strong> <strong>the</strong><br />

shell ei<strong>the</strong>r cleaved <strong>of</strong>f or intact (but weakened).<br />

5. MAMMILLARY LAYER<br />

The mammillary layer (Figs. 7, 9E, <strong>and</strong> 9F) comprises numerous cones<br />

("mammillary knobs") with <strong>the</strong>ir bases on <strong>the</strong> <strong>org</strong>anic layer <strong>and</strong> <strong>the</strong>ir tips<br />

continuous with <strong>the</strong> shell membrane at <strong>the</strong> core <strong>of</strong> <strong>the</strong> knobs. The calcite<br />

crystals <strong>of</strong> <strong>the</strong> mammillary knobs are larger than those elsewhere <strong>and</strong> are<br />

arranged into regular prism-like subunits, which are clearly evident in<br />

radial sections <strong>of</strong> <strong>the</strong> shell (Fig. 9E). In tangential section, <strong>the</strong> mammillae<br />

appear as irregular hexagons. Pores (Fig. 7) occur wherever <strong>the</strong> irregular<br />

faces <strong>of</strong> one or more mammillae fail to contact each o<strong>the</strong>r in <strong>the</strong> horizontal<br />

plane as has been described for <strong>the</strong> avian egg (Tullett, 1975). Pores are most<br />

numerous in <strong>the</strong> central opaque region <strong>of</strong> <strong>the</strong> eggshell. Mammillary outlines<br />

are much easier to distinguish in <strong>the</strong> central opaque region than in <strong>the</strong><br />

terminal nonopaque ends, where <strong>the</strong> shell membrane has flat areas <strong>of</strong><br />

attachment. Shell membrane fibers attach to <strong>the</strong> central <strong>org</strong>anic core <strong>of</strong> <strong>the</strong><br />

mammillary knobs.<br />

6. SHELL MEMBRANE<br />

The shell membrane consists <strong>of</strong> r<strong>and</strong>omly oriented fibers (Fig. 7) that interweave<br />

extensively in a criss-cross pattern, enclosing air spaces (Fig. 91).<br />

The fibers are approximately 2 j..Lm in diameter <strong>and</strong> show <strong>the</strong> characteristic<br />

surface blebbing <strong>of</strong> glycosaminoglycans (Fig. 91). The innermost surface <strong>of</strong><br />

<strong>the</strong> membrane has a thin, amorphous, nonfibrous, surface-limiting layer <strong>of</strong><br />

unknown composition (Fig. 9F). Pores in <strong>the</strong> latter (Figs. 7 <strong>and</strong> 9F) are <strong>the</strong><br />

innermost end <strong>of</strong> a complex system <strong>of</strong> spaces in <strong>the</strong> more superficial layers,<br />

which connect <strong>the</strong> contents <strong>of</strong> <strong>the</strong> egg (e.g., <strong>the</strong> chorioallantoic membrane)<br />

to <strong>the</strong> external environment <strong>and</strong> are probably important in respiration <strong>and</strong><br />

water regulation. Contrary to some reports (Bigalke, 1931; Pooley, 1962,<br />

1969a; Bellairs, 1969; Guibe, 1970), crocodilian eggs, unlike those <strong>of</strong> birds,<br />

do not have an air space (Reese, 1915a, 1931a; McIlhenny, 1935; Packard et<br />

al., 1977; Ferguson, 1982a). Abnormal air spaces may form in dehydrated<br />

eggs where shrinkage <strong>of</strong> <strong>the</strong> shell membrane cleaves it from <strong>the</strong> shell<br />

through <strong>the</strong> <strong>org</strong>anic layer (Ferguson, 1982a,b; Ferguson <strong>and</strong> Joanen, 1983).<br />

(Also see Section I.G.)<br />

THE EGGSHELL AND SHELL MEMBRANES<br />

7. EROSION CRATERS<br />

373<br />

Throughout incubation, <strong>the</strong> egg surface develops erosion craters, which<br />

appear as stepped concentric rings each corresponding to one crystal layer<br />

<strong>of</strong> <strong>the</strong> outer densely calcified zone (Figs. 7, 8, <strong>and</strong> 9C). They are caused by<br />

crystal dissolution, possibly caused by acidic metabolites <strong>of</strong> nesting micro<strong>org</strong>anisms<br />

<strong>and</strong>/or by <strong>the</strong> hydration <strong>of</strong> expired carbon dioxide. These<br />

craters appear to be present in <strong>the</strong> eggshells <strong>of</strong> numerous species (Ferguson,<br />

unpublished data), including fossil crocodilians (Hirsch, 1984). Details<br />

on <strong>the</strong>ir mode <strong>of</strong> formation are summarized in Fig. 8 (Ferguson, 1981c,<br />

1982a). Their development confers possible advantages to <strong>the</strong> embryo in<br />

terms <strong>of</strong> enhanced exchanges <strong>of</strong> respiratory gases <strong>and</strong> water vapor across<br />

<strong>the</strong> shell as well as <strong>the</strong> facilitation <strong>of</strong> hatching through eggshell weakening.<br />

The occurrence <strong>of</strong> extrinsic degradation is <strong>of</strong> importance to those incubating<br />

eggs in embryological, farming, management, or conservation<br />

projects. Normally eggs should be left in <strong>the</strong>ir natural dirty state <strong>and</strong> incubated<br />

completely surrounded by damp nesting media in order to facilitate<br />

<strong>the</strong> production <strong>of</strong> bacterial acids. However, clean eggs can be successfully<br />

incubated without nesting media by maintaining very high<br />

humidities (circa 90-100%). The high humidity ensures that all <strong>of</strong> <strong>the</strong> expired<br />

carbon dioxide produces carbonic acid, which degrades <strong>the</strong> shell.<br />

Presumably, this hydration, possibly in combination with mineral acids<br />

from <strong>the</strong> moist nest s<strong>and</strong>, forms <strong>the</strong> erosion craters in hole-nesting crocodilians<br />

(Ferguson, 1981c). The relative importance <strong>of</strong> humidity, or acids produced<br />

by microbial fermentation <strong>of</strong> nesting vegetation, in normal degradation<br />

<strong>of</strong> <strong>the</strong> eggs <strong>of</strong> mound nesters has not been adequately determined<br />

(Ferguson, 1981c, 1982a). However, embryos from eggs incubated at<br />

humidities below 90% without nesting media, frequently die (probably<br />

from asphyxia or <strong>the</strong> toxic effects <strong>of</strong> waste products), whereas <strong>the</strong> remaining<br />

living hatchlings usually have to be manually helped out <strong>of</strong> <strong>the</strong> tough<br />

eggshell (Ferguson, 1981c, 1982a). Fur<strong>the</strong>r investigations are also required<br />

into which specific micro<strong>org</strong>anisms are involved, whe<strong>the</strong>r <strong>the</strong>y derive any<br />

benefit (e.g., calcium) from <strong>the</strong> process, <strong>the</strong> changing pH <strong>of</strong> <strong>the</strong> eggshell<br />

surface in <strong>the</strong> nest, which acids are involved, <strong>and</strong> how <strong>the</strong> system evolved.<br />

In o<strong>the</strong>r systems, various fungi penetrate <strong>and</strong> degrade calcareous substances<br />

such as mollusk shells (Kohlmeyer, 1969, 1972). Although <strong>the</strong>rmophilic<br />

fungi have been isolated from alligator nests (Tansey, 1973), <strong>the</strong>ir<br />

role in eggshell degradation is unknown.<br />

8. PORES<br />

Single, unbranched pores run vertically upwards from spaces between <strong>the</strong><br />

mammillae to end at <strong>the</strong> shell surface (Figs. 7 <strong>and</strong> 90). They are more<br />

numerous in <strong>the</strong> central opaque region <strong>of</strong> <strong>the</strong> eggshell, <strong>and</strong> in freshly laid<br />

eggs, <strong>the</strong>ir openings are capped by an <strong>org</strong>anic plug (Figs. 7 <strong>and</strong> 90).<br />

During incubation, <strong>the</strong> openings <strong>of</strong> <strong>the</strong> pores are widened by extrinsic


374 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

THE EGGSHELL ANO SHELL MEMBRANES<br />

375<br />

acidic dissolution (Figs. 7, 8, <strong>and</strong> 90), <strong>and</strong> <strong>the</strong> plug becomes dislodged.<br />

Presumably, this widening <strong>of</strong> <strong>the</strong> pore orifices facilitates respiratory <strong>and</strong><br />

metabolic exchanges; it also progressively weakens <strong>the</strong> eggshell, as longitudinal<br />

cracks <strong>of</strong>ten pass through <strong>the</strong> pores <strong>and</strong> <strong>the</strong> erosion craters.<br />

8. CONCLUDING COMMENTS<br />

The complex structure <strong>of</strong> <strong>the</strong> eggshell reflects its adaptation to crocodilian<br />

nesting biology. At laying, <strong>the</strong> eggs are strong <strong>and</strong> not very porous;<br />

<strong>the</strong>y are thus protected from physical damage at <strong>the</strong> time when <strong>the</strong>y are<br />

deposited one upon ano<strong>the</strong>r <strong>and</strong> whenever <strong>the</strong> mo<strong>the</strong>r treads nesting material<br />

on top <strong>of</strong> <strong>the</strong>m, as well as from dehydration during early development.<br />

The complex sequence <strong>of</strong> changes in <strong>the</strong> in<strong>org</strong>anic constituents<br />

weakens <strong>the</strong> shell <strong>and</strong> makes it more porous throughout incubation, so<br />

that <strong>the</strong> prehatchling has merely to slit <strong>the</strong> <strong>org</strong>anic materials with its caruncle.<br />

Antimicrobial properties <strong>of</strong> shell or albumen components, known for<br />

birds (Board <strong>and</strong> Fuller, 1974) <strong>and</strong> turtles (Movchan, 1964, 1966, 1967) have<br />

not been reported in crocodilian eggs but may be related to <strong>the</strong> development<br />

<strong>of</strong> erosion craters <strong>and</strong> <strong>the</strong> filter bed arrangement <strong>of</strong> <strong>the</strong> porous shell<br />

<strong>and</strong> shell membrane. Data on such properties would be valuable, not only<br />

for <strong>the</strong>ir intrinsic interest, but also in view <strong>of</strong> <strong>the</strong> practical problems associated<br />

with artificial egg incubation.<br />

C. Chemical Composition<br />

Relatively little is known about <strong>the</strong> chemical composition <strong>of</strong> crocodilian<br />

eggs. The 6 g <strong>of</strong> calcium carbonate in <strong>the</strong> eggs is 99% calcite <strong>and</strong> less than<br />

1% aragonite (Erben, 1970; Jenkins, 1975), a ratio far closer to that reported<br />

for birds (Roman<strong>of</strong>f <strong>and</strong> Roman<strong>of</strong>f, 1949; Simkiss, 1967; Rol'nick, 1970)<br />

than <strong>the</strong> reported predominance <strong>of</strong> aragonite in <strong>the</strong> eggshells <strong>of</strong> turtles<br />

(Young, 1950; Erben, 1970; Packard et al., 1977; Solomon <strong>and</strong> Baird, 1979).<br />

Eggshells <strong>of</strong> Crocodylus novaeguineae contain 82.6% calcium carbonate,<br />

2.82% magnesium, 0.37% phosphorus, <strong>and</strong> 3.36% <strong>org</strong>anic protein (Jenkins,<br />

1975). The total protein content <strong>of</strong> <strong>the</strong> eggshell is approximately twice<br />

that for <strong>the</strong> domestic fowl (Jenkins, 1975). The eggshell <strong>of</strong> Alligator mississippiensis<br />

also contains calcium, magnesium, <strong>and</strong> phosphorus, as well as<br />

traces <strong>of</strong> copper, silicon, sodium, aluminum, iron, zinc, <strong>and</strong> manganese<br />

(Ferguson, 1982a).<br />

The thickness <strong>of</strong> <strong>the</strong> shell membranes is reflected in <strong>the</strong> fact that <strong>the</strong>y<br />

comprise 21.39% <strong>of</strong> <strong>the</strong> total weight <strong>of</strong> dry shell <strong>and</strong> membrane (Jenkins,<br />

1975), whereas <strong>the</strong>y only comprise 0.3% in <strong>the</strong> domestic fowl (Roman<strong>of</strong>f<br />

<strong>and</strong> Roman<strong>of</strong>f, 1949). The shell membrane acts as an intermediary calcium<br />

store between that <strong>of</strong> <strong>the</strong> eggshell <strong>and</strong> <strong>the</strong> calcium in <strong>the</strong> blood <strong>of</strong> <strong>the</strong><br />

chorioallantoic vessels (Ferguson, 1982a), a factor which contributes to its<br />

chalky white coloring beneath <strong>the</strong> opaque b<strong>and</strong>s. Whe<strong>the</strong>r <strong>the</strong> yolk, albu-<br />

TABLE V<br />

Calcium Contents <strong>of</strong> <strong>the</strong> Egg <strong>and</strong> Hatchlings <strong>of</strong> Various Species"<br />

Snake Crocodile Turtle Bird<br />

(Vipera (Crocodylus (Dermocllelys (Gallus<br />

berus) nouaeguineae) coriacea) domesticus)<br />

Calcium in 25 124 34 23<br />

egg contents, mg<br />

Calcium in 12-16 280 138 120<br />

hatchlings, mg<br />

lncrease b 0.8x 2.4x 4x 5.2x<br />

"From Jenkins, 1975.<br />

blndex <strong>of</strong> a mount <strong>of</strong> shell calcium used by embryo.<br />

men <strong>and</strong> extraembryonic membranes also store calcium is unknown for<br />

crocodilians, but such storage does occur in birds (Simkiss, 1967, 1980).<br />

The mechanisms <strong>of</strong> eggshell decalcification <strong>and</strong> calcium transport are<br />

unknown; however, carbonic acid, formed from respiratory carbon dioxide,<br />

apparently attacks <strong>the</strong> shell <strong>of</strong> birds (Buckner et al., 1925; Roman<strong>of</strong>f<br />

<strong>and</strong> Roman<strong>of</strong>f, 1949; Simkiss, 1967, 1980; Rol'nick, 1970). This mechanism<br />

is in accord with <strong>the</strong> assumed respiratory function <strong>of</strong> <strong>the</strong> opaque zone in<br />

crocodilian eggs. The levels <strong>of</strong> calcium in egg contents <strong>and</strong> hatchlings <strong>of</strong><br />

Crocodylus novaeguineae given in Table V are uncertain due to poor preservation<br />

<strong>and</strong> large numbers <strong>of</strong> infertile eggs (Jenkins, 1975). Because hatchling<br />

crocodiles contain 2.4 times more calcium than <strong>the</strong> egg contents, <strong>the</strong><br />

additional calcium must derive from <strong>the</strong> eggshell. Apparently, <strong>the</strong> yolk <strong>and</strong><br />

albumen <strong>of</strong> crocodilians contain more calcium than those <strong>of</strong> turtles (which<br />

obtain four times as much calcium from <strong>the</strong> shell as from <strong>the</strong> egg contents)<br />

or birds (which obtain five times as much calcium from <strong>the</strong> shell), but much<br />

less than those <strong>of</strong> snakes, which obtain no calcium from <strong>the</strong> eggshell (Jenkins<br />

<strong>and</strong> Simkiss, 1968). This decreased dependence <strong>of</strong> crocodilian embryos<br />

on eggshell calcium permits experimental embryological studies using<br />

shell-less <strong>and</strong> semi-sheIl-less culture <strong>of</strong> alligator embryos; <strong>the</strong>se survive<br />

to later developmental stages than <strong>the</strong>ir avian counterparts (Ferguson,<br />

1981a, 1982b, 1984a; Fig. 38).<br />

Available reports on <strong>the</strong> biochemical constituents indicate general agreement<br />

on <strong>the</strong> occurrence <strong>of</strong> various mucopolysaccharides (Neumeister,<br />

1895; Simkiss <strong>and</strong> Tyler, 1959; Kriesten, 1975), but fibrous proteins are less<br />

well-known. A survey <strong>of</strong> <strong>the</strong> amino-acid composition <strong>of</strong> <strong>the</strong> material <strong>of</strong><br />

<strong>the</strong> shell <strong>and</strong> shell membranes indicated that <strong>the</strong> former contained sequences<br />

characteristic <strong>of</strong> collagen (in contrast to turtles), whereas <strong>the</strong> latter<br />

contained sequences reminiscent <strong>of</strong> a keratin-like protein (Kramptiz et al.,<br />

1974), similar to that suspected for birds <strong>and</strong> turtles (Roman<strong>of</strong>f <strong>and</strong>


37B<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANB<br />

THE EGG CONTENTB ANO EXTRAEMBRYONIC MEMBRANEB<br />

377<br />

Roman<strong>of</strong>f, 1949; Young, 1950; Simkiss <strong>and</strong> Tyler, 1959; Terepka, 1963a, b;<br />

Massh<strong>of</strong>f <strong>and</strong> Stolpmann, 1961; Simons <strong>and</strong> Wiertz, 1963; Simkiss, 1967; R.<br />

Bellairs <strong>and</strong> Boyde, 1969; Board <strong>and</strong> Fuller, 1974; Kriesten, 1975).<br />

The kinetics <strong>of</strong> calcium metabolism <strong>of</strong> gravid females remains to be<br />

studied. Whereas <strong>the</strong> calcium might be mobilized from specialized medullary<br />

limb bones as in birds (Sturkie, 1965; Simkiss, 1967), from <strong>the</strong> skeleton<br />

in general as in turtles (Simkiss, 1967), from specialized stores as in some<br />

lizards (Simkiss, 1967), <strong>and</strong> from <strong>the</strong> diet (Roman<strong>of</strong>f <strong>and</strong> Roman<strong>of</strong>f, 1949),<br />

it appears to be mobilized from <strong>the</strong> osteoderms (Ferguson, 1984a, ms) <strong>and</strong><br />

from <strong>the</strong> diet. There is no medullary bone.<br />

E. WBter <strong>and</strong> Gas Conductance <strong>and</strong> Embryonic<br />

Metabolism<br />

We know far less about <strong>the</strong> water <strong>and</strong> gas conductance <strong>of</strong> crocodilian eggs<br />

(Harrison et al., 1978; Packard et al., 1979; Lutz et al., 1980; Lutz <strong>and</strong><br />

Dunbar Cooper, 1982, 1983), than about those <strong>of</strong> turtles (Packard et al.,<br />

1977, 1981, 1983; Ewert, 1979; Ackerman, 1980, 1981a, b; Seymour <strong>and</strong><br />

Ackerman, 1980) <strong>and</strong> birds (Roman<strong>of</strong>f, 1967; Rol'nick, 1970; Rahn et al.,<br />

1979; Simkiss, 1980; Diamond, 1982). However, <strong>the</strong>se parameters are im­<br />

, portant for embryonic survivorship, metabolic rate, incubation period, sex<br />

determination (see Section VII.O), <strong>and</strong> for speculations regarding <strong>the</strong> evolutionary<br />

constraints on clutch size <strong>and</strong> nesting ecology (Seymour, 1979;<br />

Seymour <strong>and</strong> Ackerman, 1980). The gas-water relations are also dealt with<br />

under Section II. F.<br />

The vapor conductance <strong>of</strong> <strong>the</strong> eggs <strong>of</strong> Crocodylus acutus is 21.0 mg H 0<br />

1 2<br />

day-l torr- H 20. This value is approximately two times that for an avian<br />

egg <strong>of</strong> equivalent weight (Lutz et al., 1980), even though <strong>the</strong> shell <strong>of</strong> <strong>the</strong><br />

crocodilian egg is two times <strong>and</strong> <strong>the</strong> shell membrane ten times as thick. The<br />

low resistance <strong>of</strong> crocodilian eggs probably represents an adaptation to an<br />

environment <strong>of</strong> high humidity (Lutz et al., 1980; Seymour <strong>and</strong> Ackerman,<br />

1980; Lutz <strong>and</strong> Dunbar Cooper, 1982, 1983). At 70% relative humidity, <strong>the</strong><br />

eggsheIl contains 0.92% <strong>of</strong> its wet weight as water, <strong>and</strong> <strong>the</strong> membrane<br />

contains 22.2%; at saturation, <strong>the</strong>se values increase to 6.8 <strong>and</strong> 58.6%, respectively<br />

(Lutz et al., 1980). Permeability to oxygen drops tenfold as<br />

humidity rises from 70 to 100%. The oxygen diffusion coefficients (K0 )<br />

2<br />

vary between 1.2 x 10- 6 cm 3 STP sec- 1 cm -2 torr- 1 at desiccation to 2.3 x<br />

7 3<br />

1<br />

10- cm STP sec- 1 cm -2 torr- at saturation (Lutz et al., 1980). Apparently<br />

drying <strong>of</strong> <strong>the</strong> sheIl during <strong>the</strong> expansion <strong>of</strong> <strong>the</strong> opaque b<strong>and</strong> facilitates gas<br />

exchange (Ferguson, 1982a).<br />

Metabolic rate is maximal during <strong>org</strong>anogenesis at which time it is directly<br />

proportional to <strong>the</strong> incubation temperature (G. Grigg, personal communication).<br />

During <strong>the</strong> first two months <strong>of</strong> development, alligator embryos<br />

produce about 15.3 mg waste nitrogen (0.35 mg per g <strong>of</strong> embryo<br />

formed). Throughout development, <strong>the</strong> proportions are approximately<br />

46.5% ammonium salts, 46.2% urea, <strong>and</strong> 7.3% uric acid (Clark et al., 1957).<br />

The yolk sac functions as an excretory <strong>org</strong>an before <strong>the</strong> allantois develops;<br />

<strong>the</strong>reafter <strong>the</strong> urea shifts to <strong>the</strong> latter. Protein is <strong>the</strong> preferred energy<br />

source in early development (Clark et al., 1957).<br />

IV.<br />

THE EGG CONTENTS AND EXTRA·EMBRYONIC<br />

MEMBRANES<br />

For nearly a century, it has been known that crocodilian albumen is more<br />

gelatinous than that <strong>of</strong> birds (Clarke, 1888a, b, 1891; Voeltzkow, 1892, 1899,<br />

1901). In Alligator mississippiensis, <strong>the</strong> albumen is ei<strong>the</strong>r clear <strong>and</strong> transparent<br />

or slightly opaque (Clarke, 1888a, b, 1891; Reese, 1915a, 1931a;<br />

McIlhenny, 1935; Ferguson, 1982a). That <strong>of</strong> Crocodylus niloticus, C. porosus<br />

<strong>and</strong> Paleosuchus palpebrosus has been reported to be green (Voeltzkow, 1892,<br />

1899; Reese, 1915a, 1931a; Bigalke, 1931; Deraniyagala, 1936, 1939; Wettstein,<br />

1954), but <strong>the</strong>se observations may have dealt with abnormal (infected)<br />

eggs. Initially, <strong>the</strong> albumen completely surrounds <strong>the</strong> centrally<br />

positioned yolk, but, as <strong>the</strong> volume <strong>of</strong> albumen decreases during development,<br />

it is increasingly isolated at <strong>the</strong> poles <strong>of</strong> <strong>the</strong> egg (Fig. 10).<br />

Throughout incubation, as water is assimilated in <strong>the</strong> yolk sac <strong>and</strong> embryonic<br />

body (Agassiz, 1857), <strong>the</strong> viscosity <strong>of</strong> <strong>the</strong> albumen increases so that it<br />

attains a rubbery consistency. Crocodilian eggs lack chalazae (Clarke,<br />

1888a, b, 1891; Voeltzkow, 1899; Reese, 1915a; Deraniyagala, 1939; Guibe,<br />

1970m; Ferguson, 1982a). The detailed chemical constitution <strong>of</strong> crocodilian<br />

albumen is unknown, as is its precise fate during development, although<br />

such information is available for birds (Roman<strong>of</strong>f <strong>and</strong> Roman<strong>of</strong>f, 1949;<br />

Roman<strong>of</strong>f, 1967; Rol'nick, 1970). Recently a protease inhibitor, closely resembling<br />

both <strong>the</strong> alpha-2 macroglobulin <strong>of</strong> mammalian serum <strong>and</strong> avian<br />

ovomacroglobulin, has been isolated from <strong>the</strong> albumen <strong>of</strong> C. rhombijer, C.<br />

siamensis, <strong>and</strong> Caiman crocodilus apaporiensis (Ikai et al., 1983).<br />

The spherical yolk, presumably held in position by <strong>the</strong> viscous albumen,<br />

is pale amber/yellow in color <strong>and</strong> so large that it almost touches <strong>the</strong> shell<br />

membrane at <strong>the</strong> midline (Clarke, 1888a, b, 1891; Reese, 1915a). In <strong>the</strong><br />

freshly laid egg, <strong>the</strong> yolk is very fluid; it becomes increasingly viscous as<br />

development proceeds. It is enclosed within a yolk sac in which numerous<br />

blood vessels develop (Fig. 10). The composition <strong>of</strong> crocodilian yolk is<br />

unknown, but it can accumulate <strong>org</strong>anochlorine residues (Hall et al., 1979).<br />

The yolk is <strong>the</strong> major nutritional source for <strong>the</strong> embryo <strong>and</strong> hatchling, <strong>and</strong><br />

it probably consists <strong>of</strong> spherical droplets <strong>of</strong> lipoprotein as does avian yolk<br />

(Roman<strong>of</strong>f <strong>and</strong> Roman<strong>of</strong>f, 1949; Roman<strong>of</strong>f, 1967; Rol'nick, 1970). Nothing<br />

is known <strong>of</strong> <strong>the</strong> microscopical, ultrastructural, <strong>and</strong> biochemical <strong>org</strong>anization<br />

<strong>of</strong> <strong>the</strong> crocodilian yolk <strong>and</strong> yolk sac, or how <strong>the</strong>se change during<br />

development (see A. d'A. Bellairs, 1969, <strong>and</strong> R. Bellairs, 1971, for data on<br />

o<strong>the</strong>r reptiles <strong>and</strong> birds).


378<br />

IlA<br />

OlA<br />

If. I<br />

J I",<br />

ALB \ 7./////,<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

BV FZ YS vav Y EEC BV<br />

' ..<br />

'\.<br />

'111.'.'....'<br />

A<br />

ALB<br />

( / I - J I SAC<br />

Fig. 10. Alligator mississippiensis. Diagrammatic longitudinal section through a 40-day egg.<br />

At this age <strong>the</strong> chorion <strong>and</strong> related blood vessels extend over <strong>the</strong> entire inner aspect <strong>of</strong> <strong>the</strong><br />

egg, <strong>and</strong> <strong>the</strong> eggshell is entirely opaque. The disposition <strong>of</strong> <strong>the</strong> chorionic blood vessels <strong>and</strong><br />

opaque eggshell b<strong>and</strong> illustrated are from an earlier age <strong>and</strong> for diagrammatic purposes only.<br />

(A) Amnion (solid black); AC, amniotic cavity; ALC, allantoic cavity; ALB, albumen; BV,<br />

chorio-allantoic blood vessels; C, chorion (dotted); CE, calcified eggshell (opaque b<strong>and</strong> in<br />

cross hatched area); EEC, extraembryonic coelom (potential space between yolk sac membrane<br />

<strong>and</strong> <strong>the</strong> chorion, largely occupied by <strong>the</strong> allantois); ESM, shell membrane (opaque in<br />

cross hatched area); FZ, fusion zone (fusion <strong>of</strong> chorion, outer <strong>and</strong> inner layers <strong>of</strong> allantois <strong>and</strong><br />

amnion, all <strong>of</strong> which have a firm attachment to <strong>the</strong> shell membrane); GL, gut loop (herniated<br />

out <strong>of</strong> embryo); ILA, inner layer <strong>of</strong> <strong>the</strong> allantois (fused to <strong>the</strong> amnion); OLA, outer layer <strong>of</strong> <strong>the</strong><br />

allantois (fused to <strong>the</strong> chorion); SAC, seroamniotic caVity (potential space between amniun<br />

<strong>and</strong> chorion, largely occupied by <strong>the</strong> allantois); VBV, vitelline blood vessels; Y, yulk; YS, yolk<br />

sac membrane.<br />

At <strong>the</strong> time <strong>of</strong> laying, eggs have approximately equal volumes <strong>of</strong> yolk<br />

<strong>and</strong> albumen, with <strong>the</strong> yolk being significantly denser than <strong>the</strong> albumen.<br />

Within <strong>the</strong> first day, <strong>the</strong>se ratios change as water passes across <strong>the</strong> vitelline<br />

membrane from <strong>the</strong> albumen. The vitelline fluid accounts for approximately<br />

3% <strong>of</strong> <strong>the</strong> total egg content weight at day 1, 40/0 at day 2, 7% at day<br />

3, 15% at day 6, <strong>and</strong> 27% at day 10. During this period, <strong>the</strong> volume <strong>and</strong><br />

weight <strong>of</strong> albumen decreases from 50% <strong>of</strong> <strong>the</strong> total egg content weight at<br />

day 1, to 45% at day 2, 37% at day 3, 31 % at day 6, <strong>and</strong> finally to 18% at day<br />

10. Concurrently, <strong>the</strong> volume <strong>and</strong> weight <strong>of</strong> yolk remains fairly constant at<br />

around 45 to 55%, <strong>and</strong> <strong>the</strong> total egg weight changes by only 0.5% (G.<br />

Webb, personal communication). The most aqueous vitelline fluid, being<br />

appreciably less dense than <strong>the</strong> yolk granules, remains separated from<br />

THE EBB CONTENTS AND EXTRAEMBRYONIC MEMBRANES<br />

379<br />

<strong>the</strong>m. Thus <strong>the</strong> yolk rotates, bringing <strong>the</strong> embryo up toward <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

egg regardless <strong>of</strong> its original position. The vitelline fluid remains beneath<br />

<strong>the</strong> embryo, <strong>and</strong> its assimilation is responsible for dispersing <strong>the</strong> albumen<br />

to <strong>the</strong> poles <strong>of</strong> <strong>the</strong> egg <strong>and</strong> also for increasing its viscosity. As a result, <strong>the</strong><br />

vitelline membrane adheres to <strong>the</strong> inner surfaces <strong>of</strong> <strong>the</strong> shell membrane<br />

<strong>and</strong> produces <strong>the</strong> opaque spot. The latter keeps exp<strong>and</strong>ing as more <strong>and</strong><br />

more fluid crosses <strong>the</strong> vitelline membrane (Webb, personal communication).<br />

Assimilation <strong>of</strong> vitelline fluid is an active process, which explains<br />

why infertile eggs never become opaquely b<strong>and</strong>ed. The opacity reflects<br />

dehydration <strong>of</strong> shell <strong>and</strong> shell membranes, caused by <strong>the</strong> loss <strong>of</strong> <strong>the</strong> central<br />

layer <strong>of</strong> albumen. Chemical changes occur later <strong>and</strong> include a more permanent<br />

opacity (Ferguson, 1982a). Thus, <strong>the</strong> length <strong>of</strong> <strong>the</strong> opaque b<strong>and</strong> parallels<br />

<strong>the</strong> regression <strong>of</strong> albumen early in incubation; later it also reflects <strong>the</strong><br />

expansion <strong>of</strong> <strong>the</strong> chorioallantois <strong>and</strong> <strong>the</strong> movement <strong>of</strong> minerals from <strong>the</strong><br />

shell to <strong>the</strong> embryo. Dehydrated or infected eggs (whe<strong>the</strong>r fertile or not)<br />

may become erratically b<strong>and</strong>ed or blotchy as albumen regresses <strong>and</strong> <strong>the</strong><br />

yolk sticks to <strong>the</strong> shell membrane.<br />

If an alligator egg is placed with its top surface (as laid in <strong>the</strong> nest)<br />

uppermost <strong>and</strong> <strong>the</strong> widest (blunt) end <strong>of</strong> <strong>the</strong> egg pointing toward <strong>the</strong><br />

investigator, <strong>the</strong>n <strong>the</strong> head <strong>of</strong> <strong>the</strong> embryo lies distally <strong>and</strong> its snout points<br />

to <strong>the</strong> right in 98% <strong>of</strong> cases. This predictable relationship permits eggs to be<br />

windowed with accuracy. Because <strong>of</strong> <strong>the</strong> advanced stage <strong>of</strong> development<br />

at oviposition, it is unknown whe<strong>the</strong>r <strong>the</strong> early embryonic axis <strong>of</strong> crocodilians<br />

is formed in a constant fashion relative to egg position in <strong>the</strong> oviduct<br />

as in birds (R. Bellairs, 1971).<br />

After Stage 11, <strong>the</strong> embryonic gut projects through <strong>the</strong> body wall into<br />

<strong>the</strong> umbilical stalk <strong>and</strong> contacts <strong>the</strong> yolk (Figs. 10, 20, 21, <strong>and</strong> 341) <strong>and</strong> <strong>the</strong><br />

paired vitelline blood vessels (Figs. 20, 21, <strong>and</strong> 341). Presumably, <strong>the</strong>se<br />

structures participate in <strong>the</strong> breakdown <strong>of</strong> <strong>the</strong> yolk <strong>and</strong> its transport to <strong>the</strong><br />

embryo. The yolk sac encloses <strong>the</strong> yolk; <strong>the</strong> paired vitelline vessels are<br />

continuous with <strong>the</strong> paired intestinal omphalomesenteric vessels at <strong>the</strong><br />

yolk stalk (Figs. 10, 21, <strong>and</strong> 341). It is unknown whe<strong>the</strong>r <strong>the</strong>re are yolk sac<br />

septae as in birds (Patten, 1925; Huettner, 1949), or if <strong>the</strong>re are superficial<br />

<strong>and</strong> deep layers <strong>of</strong> yolk as in o<strong>the</strong>r reptiles (R. Bellairs, 1971). Between <strong>the</strong><br />

yolk sac <strong>and</strong> <strong>the</strong> chorion lies <strong>the</strong> extra-embryonic coelom, <strong>and</strong> between <strong>the</strong><br />

amnion <strong>and</strong> chorion lies <strong>the</strong> sero-amniotic cavity (Fig. 10). Both are occupied<br />

eventually by <strong>the</strong> enlarging allantois. The alligator has two b<strong>and</strong>s <strong>of</strong><br />

firm fusion between <strong>the</strong> shell membrane, chorion, outer <strong>and</strong> inner layers <strong>of</strong><br />

allantois, <strong>and</strong> <strong>the</strong> amnion (where present) (Fig. 10). These two b<strong>and</strong>s are<br />

opposite each o<strong>the</strong>r <strong>and</strong> <strong>the</strong> lower fusion zone adheres less strongly to <strong>the</strong><br />

yolk sac (Fig. 10) than does <strong>the</strong> upper fusion zone to <strong>the</strong> amnion. The two<br />

fusion zones hold <strong>the</strong> embryo in a fairly constant position <strong>and</strong> must be cut<br />

to remove an embryo or yolk from a fixed egg (Ferguson, 1982a).<br />

Several days before hatching, <strong>the</strong> embryonic intestines <strong>and</strong> <strong>the</strong> small<br />

yolk sac are withdrawn into <strong>the</strong> body cavity through <strong>the</strong> umbilicus (Fig.


380 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS EARLY EMBRYONIC DEVELOPMENT [BEFORE EGG LAYINGJ 381<br />

Ectoderm<br />

fibers in <strong>the</strong> amniotic mesoderm <strong>of</strong> Alligator mississippiensis may rock <strong>the</strong><br />

embryo <strong>and</strong> circulate <strong>the</strong> amniotic fluid (Schroder <strong>and</strong> Bautzmann, 1956).<br />

Entoderm<br />

Fig. 11. Alligator mississippiensis. Diagrammatic cross section through <strong>the</strong> yolk (speckled),<br />

early embryo <strong>and</strong> forming extraembryonic membranes to show <strong>the</strong>ir composition <strong>and</strong> <strong>the</strong><br />

layers which with fur<strong>the</strong>r development exp<strong>and</strong> <strong>and</strong> fuse to produce <strong>the</strong> arrangements shown<br />

in Fig. 10. (After Huettner, 1949, in <strong>the</strong> chick.) AL, Allantois; AM, amnion; C, chorion.<br />

21). At <strong>the</strong> time <strong>of</strong> hatching, <strong>the</strong> abdomen is considerably distended by<br />

absorbed yolk <strong>and</strong> yolk sac (Fig. 21), <strong>and</strong> <strong>the</strong> umbilicus is <strong>of</strong>ten open. The<br />

absorbed yolk is used as a food supply over <strong>the</strong> next couple <strong>of</strong> weeks<br />

(traces remain 6 months after hatching, Cott, 1961), <strong>and</strong> <strong>the</strong> umbilicus <strong>the</strong>n<br />

closes. The mechanisms <strong>of</strong> yolk digestion <strong>and</strong> utilization are unknown.<br />

The arrangement <strong>of</strong> <strong>the</strong> extra-embryonic membranes has been described<br />

in Alligator mississippiensis (Ferguson, 1982a), <strong>and</strong> o<strong>the</strong>r data are available<br />

on <strong>the</strong>ir development in this <strong>and</strong> o<strong>the</strong>r species (Rathke, 1866; Clarke, 1891;<br />

Voeltzkow, 1899, 1901; Reese, 1908, 1912, 1915a; Fisk <strong>and</strong> Tribe, 1949;<br />

Ferguson, unpublished). The relevant stages are difficult to obtain as eggs<br />

are laid at a fairly advanced stage <strong>of</strong> development (Fig. 18). The development<br />

<strong>of</strong> crocodilian extra-embryonic membranes (Fig. 11) is probably similar<br />

to that <strong>of</strong> <strong>the</strong> chick (Patten, 1925; Huettner, 1949).<br />

Alligators, like o<strong>the</strong>r amniotes, have three extra-embryonic membranes:<br />

<strong>the</strong> chorion, amnion <strong>and</strong> allantois, <strong>and</strong> a yolk sac (Fig. 10). The chorion<br />

lines <strong>the</strong> inner aspect <strong>of</strong> <strong>the</strong> shell membrane, except in <strong>the</strong> region <strong>of</strong> <strong>the</strong><br />

albumen. As development proceeds, <strong>the</strong> volume <strong>of</strong> albumen decreases <strong>and</strong><br />

<strong>the</strong> chorion increases in size. The general <strong>org</strong>anization <strong>and</strong> relative relations<br />

<strong>of</strong> <strong>the</strong> amnion, chorion <strong>and</strong> allantois, <strong>and</strong> <strong>the</strong> vitelline <strong>and</strong> chorioallantoic<br />

circulations (Figs. 10 <strong>and</strong> 11) are essentially similar to <strong>the</strong> avian<br />

condition. No detailed studies are available on <strong>the</strong> ultrastructure <strong>of</strong><br />

crocodilian extra-embryonic membranes or on <strong>the</strong> mechanisms <strong>of</strong> yolk<br />

mobilization, embryonic excretion, <strong>and</strong> respiration. The smooth muscle<br />

V. EARLV EMBRVONIC DEVELOPMENT [BEFORE<br />

EGG LAVING]<br />

Little is known about <strong>the</strong> early development, <strong>and</strong> we must rely upon<br />

descriptions nearly 100 years old; Clarke (1891), Voeltzkow (1899) <strong>and</strong><br />

Reese (1908, 1915a). In <strong>the</strong>se studies, early stages were obtained from <strong>the</strong><br />

oviducts after killing gravid females because crocodilian eggs are laid at an<br />

advanced stage <strong>of</strong> development (Ferguson, 1984a; see Fig. 18). The earliest<br />

stage described for any crocodilian is after <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> embryonic<br />

body folds, neural medullary groove, primitive streak, embryonic shield,<br />

area opaca, area pellucida, <strong>and</strong> <strong>the</strong> early gut (Figs. 12A <strong>and</strong> B) in Crocodylus<br />

niloticus (Voeltzkow, 1899). Currently, it is impossible to describe or discuss<br />

<strong>the</strong> events that precede this stage. Except for investigations <strong>of</strong> neural<br />

crest, palatal, <strong>and</strong> m<strong>and</strong>ibular development (Ferguson, 1981a, 1982b; Ferguson<br />

et al., 1982, 1983a, b; Ferguson <strong>and</strong> Honig, 1984), no experimental or<br />

in vitro studies have been performed on crocodilians; this description relies<br />

entirely on old morphological data.<br />

The present report <strong>of</strong>fers a concise account <strong>of</strong> <strong>the</strong> major events; for<br />

detailed "catalogue type" descriptions <strong>of</strong> sectioned materials, <strong>the</strong> reader is<br />

referred to earlier references. The st<strong>and</strong>ardized terminology used here<br />

does not imply homology with synonymous terms for birds <strong>and</strong> mammals.<br />

Shortly after <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> neural folds (Figs. 13A <strong>and</strong> B), after<br />

<strong>the</strong> head fold has begun to sink into <strong>the</strong> underlying yolk, an anterior<br />

blastodermic fold forms <strong>the</strong> amniotic head fold (Clarke, 1891; Voeltzkow,<br />

1899, 1901; Reese, 1915a). Initially <strong>the</strong> head fold is crescent-shaped, its free<br />

edges pointing toward <strong>the</strong> tail region <strong>of</strong> <strong>the</strong> embryo (Figs. 13A, B, 14A, B);<br />

as development proceeds, <strong>the</strong> head fold extends craniocaudally. The amniotic<br />

primordium, derived from somatopleure around <strong>the</strong> trunk (Fig. 11),<br />

arises in continuity with that <strong>of</strong> <strong>the</strong> head; whe<strong>the</strong>r it does so as a posterior<br />

extension <strong>of</strong> <strong>the</strong> head fold or as paired lateral amniotic folds (as in <strong>the</strong><br />

chick, Patten, 1925; Huettner, 1949) is unknown. This combined headtrunk<br />

amnion reaches <strong>the</strong> level <strong>of</strong> <strong>the</strong> blastopore about <strong>the</strong> time <strong>of</strong> egg<br />

laying (Stage I, Fig. 18).<br />

Voeltzkow (1899, 1901) recognizes <strong>the</strong> development <strong>of</strong> a tail fold (tube)<br />

<strong>of</strong> amnion (his Figs. 28A <strong>and</strong> B), whereas Clarke (1891, 1901), Reese (1908,<br />

1912, 1915a), <strong>and</strong> Fisk <strong>and</strong> Tribe (1949) claim that such never develops.<br />

Voeltzkow (1899, 1901) also describes a posterior "amniotic duct," but Fisk<br />

<strong>and</strong> Tribe (1949) state that this does not resemble <strong>the</strong> posterior amniotic<br />

tube <strong>of</strong> turtles. Attachment <strong>of</strong> <strong>the</strong> amnion to <strong>the</strong> caudal region between<br />

Stages 1 <strong>and</strong> 2 (Fig. 18) seems to be effected by extension <strong>of</strong> <strong>the</strong> trunk folds,<br />

as <strong>the</strong> membrane becomes well developed laterally <strong>and</strong> caudally between


' ..<br />

'<br />

•<br />

ES<br />

A " B ~<br />

1 ... " EG MG ES<br />

2<br />

PH<br />

". , "'~ I<br />

.. .. ..,IllJlIWl1l!llWllIlII\Q'- Y<br />

-~ '"<br />

3 ~. -­<br />

4<br />

5<br />

6<br />

7<br />

8<br />

."'." MG E.G . .:<br />

~VXQP!Ui~<br />

IUWI'JI]! IlJlplltJtP-<br />

- .... _ ..~ .& _..<br />

:, ·"~~·.~1\:~. ". .. h<br />

.."'.<br />

":."1:~.' • " J .......~. ".~..<br />

".;:~.:•.:~.<br />

·:~:''''~1t.··<br />

,,,<br />

•!e•• .t'.<br />

.'"<br />

.~ ••:~.,<br />

BP .. ·-1~<br />

BP<br />

'~;:;."'i/<br />

.-. ...<br />

.<br />

... i-~7 •<br />

. '.<br />

~ ~":' :.<br />

." -"..... '~ .'. ~~. -..<br />

.<br />

'/'<br />

(, ". .. ~ ."<br />

f / ..<br />

E E y~"<br />

'ig. 12. CrocodylllS niloticllS. (A, B) Dorsal <strong>and</strong> ventral views respectively <strong>of</strong> an early embryo.<br />

After Voeltzkow, 1899.) (C, D) Dorsal <strong>and</strong> ventral views respectively <strong>of</strong> an embryo <strong>of</strong> Crocody­<br />

~'i ,.,....c~{;.~~:.~,~<br />

\ I ..'t "·.r,"~",,,'1·~J\'<br />

/ifjt~c~r:§J~"~i .~' ~ ~jO~:f,~{~~.<br />

~':f'- ~':'m--.'~-,-<br />

tC'~1;,< " ~ ~.lr~,~" .'


.y<br />

A<br />

c<br />

D<br />

r<br />

~•• _.'-';;~~;l'.:!"-.<br />

"J~l!'.~h""4'


386 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

Stages 1 <strong>and</strong> 10 (Figs. 18-20). Development <strong>of</strong> <strong>the</strong> dorsal amniotic fold<br />

facilitates craniocaudal separation <strong>of</strong> <strong>the</strong> embryo from <strong>the</strong> blastoderm<br />

(Figs. 15B, 16B, 17A-E, <strong>and</strong> 18), but <strong>the</strong> process is not completed caudally<br />

until Stage 3 (Fig. 18). With fur<strong>the</strong>r development <strong>of</strong> <strong>the</strong> blastoderm consisting<br />

<strong>of</strong> ectoderm <strong>and</strong> endoderm (Fig. 12E), <strong>the</strong> neural groove <strong>and</strong> blastopore<br />

become clearly demarcated (Figs. 12C-E). The endoderm may form<br />

"tails" that extend outward <strong>and</strong> downward into <strong>the</strong> underlying yolk<br />

(Voeltzkow, 1899, 1901; Figs. 12C-E), which probably represent presumptive<br />

extra-embryonic endoderm. The blastopore is relatively large <strong>and</strong> penetrates<br />

<strong>the</strong> entire blastoderm (Figs. 12C-E), <strong>and</strong> <strong>the</strong> primitive streak lies<br />

posterior to <strong>the</strong> blastopore (Figs. 12C-E).<br />

With <strong>the</strong> rapid delineation <strong>of</strong> <strong>the</strong> body folds (Figs. 13A <strong>and</strong> B), <strong>the</strong><br />

boundary between embryonic <strong>and</strong> extra-embryonic tissues becomes discernible.<br />

Figures 13A-D show <strong>the</strong> well-defined head fold bounded anteriorly<br />

by <strong>the</strong> proamnion. The beginning <strong>of</strong> <strong>the</strong> foregut is evident. The<br />

notochord extends along <strong>the</strong> midline from <strong>the</strong> head fold to <strong>the</strong> anterior<br />

edge <strong>of</strong> <strong>the</strong> blastopore (Fig. 13C). Earlier explanations (Reese, 1908, 1912,<br />

1915a, 1926) <strong>of</strong> <strong>the</strong> origin <strong>of</strong> <strong>the</strong> notochord are dubious in <strong>the</strong> light <strong>of</strong><br />

current data from o<strong>the</strong>r vertebrates. The primitive streak <strong>and</strong> primitive<br />

groove lie posterior to <strong>the</strong> blastopore (Figs. 13A-D); <strong>the</strong> primitive groove<br />

[Fig. 14C (6)-(7)] is continuous with its posterior end. The ectoderm bordering<br />

this groove is thickened, <strong>and</strong> its two elevations constitute <strong>the</strong> primitive<br />

streak (Figs. 13A-C, 14A, B, C (6)-(7)). The primitive streak extends<br />

about one-third <strong>the</strong> distance between <strong>the</strong> head fold <strong>and</strong> <strong>the</strong> blastopore<br />

(Reese, 1908, 1915a). The posterior end <strong>of</strong> <strong>the</strong> neural groove is said to be<br />

continuous with <strong>the</strong> primitive groove, <strong>and</strong> <strong>the</strong> posterior ends <strong>of</strong> <strong>the</strong> neural<br />

folds continuous with <strong>the</strong> edges <strong>of</strong> <strong>the</strong> primitive streak; <strong>the</strong>se structures<br />

can only be demarcated arbitrarily from <strong>the</strong> dorsal opening <strong>of</strong> <strong>the</strong> blastopore<br />

(Reese, 1908, 1912, 1915a). This type <strong>of</strong> gastrulation (blastoporal<br />

canal, etc.) is found in all reptiles, although specific details may differ.<br />

Neural folds have a double origin in Alligator mississippiensis (Clarke,<br />

1891; Reese, 1908, 1912, 1915a) <strong>and</strong> Crocodlflus niloticus (Voeltzkow, 1899,<br />

1901). The posterior folds arise as ectode~mal ridges extending forward<br />

from <strong>the</strong> blastopore <strong>and</strong> bounding <strong>the</strong> neural groove (Figs. 13A,B, <strong>and</strong><br />

14A, B). However, a secondary fold occurs anteriorly in <strong>the</strong> head region<br />

(Figs. 13A,B, <strong>and</strong> 14A,B) <strong>and</strong> grows posteriorly along <strong>the</strong> median dorsal<br />

r;"F<br />

,)<br />

1',1<br />

l~<br />

..... ~<br />

'.;yJJ<br />

~'" ,.3<br />

. vA)<br />

/'~' \" .. ,_.... .\~.' F::.) l... jl;<br />

P5 ti:..0~\ ~r JifJ27<br />

IJ:$ ;,.~<br />

.• •)!'Y J~J<br />

;[~rY<br />

loJ<br />

50<br />

MG<br />

,r'h,J 1 .:..1<br />

A ,)j.:'J.r' ~ " ~ B<br />

MG EC<br />

/~i$~,r"l .<br />

.,;"J(JC'o~Q·\ /~<br />

Qot::"J~ \ Oo.!, r~<br />

o,,~~ig~QO"<br />

6 oQo\f}oat:~ -v.- .<br />

EN..;l.{.'1 )o/


3BB<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

v<br />

.. ;.;~~~:rm-M<br />

... ·t'~' '.'. (~':?1<br />

'~.\';;:'.(€:,.. y<br />

".{':'.':',.::·m:l:Z; ..<br />

;~,~~:'~<br />

";' tOY<br />

'~'~<br />

'I~~r~<br />

•..•.. \1(,.',"<br />

.&<br />

·;:~W<br />

~:I<br />

A<br />

Fig. 16. Crocodylus niloticus. Dorsal view <strong>of</strong> embryos. (After Voeltzkow, 1899). Equivalent to<br />

Reese (1908, 1915a) stage IV for Alligator mississippiensis. (A) Ventral flexion (V) <strong>of</strong> <strong>the</strong> anterior<br />

end <strong>of</strong> <strong>the</strong> neural folds (M). (B) Closure <strong>of</strong> <strong>the</strong> neural folds (M). A, <strong>the</strong> amniotic head fold; B,<br />

developing brain; PS, primitive streak; Y, yolk.<br />

line to form a V-shaped process with <strong>the</strong> apex pointing toward <strong>the</strong> blastopore.<br />

The apex <strong>of</strong> <strong>the</strong> V-shaped secondary head fold later disappears <strong>and</strong><br />

each <strong>of</strong> <strong>the</strong> separate arms becomes continuous with <strong>the</strong> corresponding<br />

posterior neural fold. Thus, <strong>the</strong> secondary head fold forms <strong>the</strong> anterior<br />

part <strong>of</strong> <strong>the</strong> neural folds (Figs. 13A,B <strong>and</strong> 14A,B). Several stages in neurulation<br />

are shown in Figs. 15A-C, 16A,B, <strong>and</strong> 17A, B). Closure <strong>of</strong> <strong>the</strong> folds in<br />

Fig. 17. Crocodylus niloticus. Embryos. (After Voeltzkow, 1899.) (A. B) Dorsal <strong>and</strong> ventral<br />

views illustrating <strong>the</strong> dorsal fold <strong>of</strong> amnion <strong>and</strong> <strong>the</strong> lateral body folds delimiting <strong>the</strong> embryo<br />

from <strong>the</strong> overlying blastoderm in a craniocaudal sequence. The primitive head region is flexed<br />

ventrally. EqUivalent to Reese (1908, 1915a) stages V <strong>and</strong> Vll for A. mississippiellsis. (C, D)<br />

Dorsal <strong>and</strong> ventral views illustrating <strong>the</strong> progressive delineation <strong>of</strong> <strong>the</strong> embryo from <strong>the</strong><br />

blastoderm by <strong>the</strong> caudal fusion <strong>of</strong> <strong>the</strong> edges <strong>of</strong> <strong>the</strong> amniotic <strong>and</strong> body folds. The head is<br />

fur<strong>the</strong>r flexed ventrally. (E, F) Dorsal <strong>and</strong> ventral views just prior to egg laying. Note that <strong>the</strong><br />

edge <strong>of</strong> <strong>the</strong> dorsal amniotic fold lies at <strong>the</strong> caudal third <strong>of</strong> <strong>the</strong> embryo. The lateral body walls<br />

are delimiting <strong>the</strong> primitive gut tube ventrally <strong>and</strong> <strong>the</strong> heart has developed as a simple tube.<br />

The head is flexed ventrally <strong>and</strong> hangs vertically into <strong>the</strong> underlying yolk. It is shown rotated<br />

to one side for diagrammatic purposes only. A, Dorsal amniotic head fold; H, lateral body fold;<br />

BD, blastoderm; E, caudal edge <strong>of</strong> dorsal amniotic fold; G, primitive gut; H, head region; HT,<br />

primitive heart; N, neural tube <strong>and</strong> notochord; NP, patent posterior neuropore; 0, otic<br />

placode; PS, primitive streak; S, somite; Y, yolk.<br />

!:IDCIl


390 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCDDILIANS<br />

C. niloticus occurs first in <strong>the</strong> middle region <strong>of</strong> <strong>the</strong> embryo (Fig. 15A), nearer<br />

<strong>the</strong> posterior end <strong>of</strong> <strong>the</strong> neural groove (Voeltzkow, 1899, 1901), but in A.<br />

mississippiensis it occurs nearer <strong>the</strong> cranial end <strong>of</strong> <strong>the</strong> neural folds (Reese,<br />

1908, 1915a).<br />

The blastoporal or neurenteric canal is visible in all early embryos until<br />

after <strong>the</strong> closure <strong>of</strong> <strong>the</strong> neural canal. As in earlier development (Fig. 12E),<br />

<strong>the</strong> blastoporal canal runs through <strong>the</strong> embryo (Fig. 14C), backward from<br />

its cranially located ventral opening [Fig. 14C (3) <strong>and</strong> (4)], to open dorsally<br />

into <strong>the</strong> neural groove at its caudal limit [Fig. 14C (5)]. Some mammals<br />

show this blastoporal canal as <strong>the</strong> chordal canal (R. Bellairs, 1971).<br />

Throughout this period, somitogenesis occurs along <strong>the</strong> median axis (Figs.<br />

15A <strong>and</strong> 17A-E), <strong>the</strong> first pair developing halfway between <strong>the</strong> anterior<br />

<strong>and</strong> posterior ends. The peripheral somitic cells are compactly arranged,<br />

but small myocoels lie in <strong>the</strong> center <strong>of</strong> <strong>the</strong> somites [Figs. 15C(i)-(v)]. The<br />

mesodermal layers cleave, forming <strong>the</strong> somatic <strong>and</strong> splanchnic components<br />

[Figs. 15C(i)-(v)] as <strong>the</strong> foregut enlarges.<br />

Early in development <strong>the</strong> head fold <strong>of</strong> <strong>the</strong> embryo projects ventrally into<br />

'<strong>the</strong> underlying yolk (Figs. l3C <strong>and</strong> D). This process is accentuated by a<br />

ventral bending <strong>of</strong> <strong>the</strong> anterior neural folds (Figs. 15B, 16A,B, <strong>and</strong> 17A-E)<br />

<strong>and</strong> still later by cranial flexure. Thus <strong>the</strong> entire cranial end <strong>of</strong> <strong>the</strong> embryo<br />

cannot be seen from above, because it is pushed down into <strong>the</strong> yolk (Figs.<br />

15B, 16A, <strong>and</strong> 17A,B). Torsion occurs between Stages 3 <strong>and</strong> 6 (Section VI),<br />

beginning anteriorly <strong>and</strong> proceeding posteriorly (Figs. 18-20). Despite earlier<br />

conflicting reports (Clarke, 1891; Reese, 1908, 1912, 1915a; Deraniyagala,<br />

1939), <strong>the</strong> embryos <strong>of</strong> Alligator mississippiensis, Crocodylus porosus, C.<br />

johnsoni, <strong>and</strong> C. niloticus usually come to lie on <strong>the</strong>ir left side (Figs. 18-20).<br />

In Crocodilians, torsion occurs at a more advanced developmental stage<br />

(Stages 3-6) than in chicks (H. H. Stages 12-15, i.e., 16-20 somites).<br />

VI.<br />

STAGES OF EMBRVONIC DEVELOPMENT [AFTER<br />

EGG LAVING]<br />

The practical importance <strong>of</strong> establishing Normal Tables <strong>of</strong> development for<br />

vertebrate embryos, <strong>and</strong> ecto<strong>the</strong>rms in particular, is discussed elsewhere<br />

(Billett, Cans, <strong>and</strong> Maderson, Chapter 1, this volume). No staging scheme<br />

exists for any crocodilian. Clarke (1891), Voeltzkow (1899), <strong>and</strong> Reese<br />

Fig. 18. Alligator mississippiellsis. Stages 1 to 4 <strong>of</strong> embryonic development. Numbers indicate<br />

<strong>the</strong> stages. See text for <strong>the</strong>ir description. 0, Dorsal view; L, lateral view; V, ventral view.<br />

Dorsal (20) <strong>and</strong> ventral (2V) views <strong>of</strong> a stage 2 embryo illustrate its attachment <strong>and</strong> vertical<br />

relationship (i.e., no body torsion) to <strong>the</strong> blastoderm. Body torsion commences at stage 4 (4V)<br />

when <strong>the</strong> cranial end has rotated; it is complete by stage 6 where a ventral view (6V) illustrates<br />

its relationship to <strong>the</strong> overlying chorion. Scale bars = 1 mm.


392 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

Fig. 19. Alligator mississippiensis. Stages 5 to 14 (numbered) <strong>of</strong> embryonic development. See<br />

text for description <strong>of</strong> stages. Scale bars = 1 mm.<br />

(1908, 1915a) described some embryos in both surface view <strong>and</strong> section,<br />

but <strong>the</strong> series were incomplete, <strong>and</strong> chronology <strong>and</strong> incubation conditions<br />

were poorly documented. R<strong>and</strong>om embryos <strong>of</strong> unknown age <strong>and</strong><br />

developmental history have been described by some field biologists (Deraniyagala,<br />

1934, 1936, 1939; Pooley, 1962; Magnusson <strong>and</strong> Taylor, 1980);<br />

such have but limited embryological value. Preliminary information for<br />

estimating <strong>the</strong> ages <strong>of</strong> Crocodylus porosus <strong>and</strong> C. johnsoni embryos in <strong>the</strong><br />

wild, including some data on <strong>the</strong> effects <strong>of</strong> varying incubation temperatures<br />

is available (Webb et al., 1983a,e). Embryological stages constructed<br />

for Alligator mississippiensis equated with <strong>the</strong> number <strong>of</strong> days after egg<br />

laying, under known incubation conditions (Ferguson, 1982b), proved<br />

cumbersome to use because staging older embryos concerned mainly <strong>the</strong><br />

growth <strong>of</strong> external structures. Moreover, study <strong>of</strong> C. johnsoni <strong>and</strong> C. porosus<br />

has shown that <strong>the</strong>ir development is similar to that <strong>of</strong> A. mississippiensis.<br />

Timing is <strong>the</strong> principal variable, particularly in <strong>the</strong> later stages. Thus, it is<br />

possible to construct a staging scheme applicable to three species, <strong>and</strong><br />

! ,.<br />

Fig. 20. Alligator mississ i ppiel1sis. Stages 15 to 21 (numbered) <strong>of</strong> embryonic development. See<br />

text for description <strong>of</strong> stages. Scale bars = 2 mm.


384<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

BTAGEB OF EMBRYONIC DEVELOPMENT tAFTER EGG LAYINGJ 385<br />

presumably to crocodilians in general. This is <strong>of</strong> greater value than speciesspecific<br />

stages.<br />

The approach adopted is tw<strong>of</strong>old (Ferguson <strong>and</strong> Webb, in preparation).<br />

First, a detailed morphological staging scheme related to specified incubation<br />

conditions <strong>and</strong> chronological age is presented. Species-specific characters<br />

are noted, but <strong>the</strong> criteria for designating particular stages are<br />

"crocodilian" <strong>and</strong> species-independent. Second, 13 different st<strong>and</strong>ard<br />

measurements, for example, total length, eye length <strong>and</strong> snout length,<br />

which were made on embryos <strong>of</strong> all stages <strong>of</strong> Alligator mississippiensis,<br />

Crocodylus johnsoni, <strong>and</strong> C. porosus, have been supplemented by data on<br />

egg dimensions, weight, <strong>and</strong> <strong>the</strong> percentage <strong>of</strong> opaque eggshell b<strong>and</strong>ing.<br />

Such morphometric data permit several analyses: determination <strong>of</strong> <strong>the</strong><br />

relationship between egg size <strong>and</strong> embryo size within <strong>and</strong> among species<br />

(in general, larger embryos come from larger eggs <strong>and</strong> vice versa); determination<br />

<strong>of</strong> <strong>the</strong> relationship between <strong>the</strong> percentage <strong>of</strong> opaque b<strong>and</strong>ing <strong>and</strong><br />

embryonic stage; determination <strong>of</strong> diagnostic ratios (e.g., eye length over<br />

total length ratios are used to correct for <strong>the</strong> effect <strong>of</strong> egg size) for each<br />

stage in each species; interspecific comparison <strong>of</strong> similar stages to determine<br />

species-specific features (e.g., C. porosus embryos are larger <strong>and</strong> have<br />

longer tails, C. johnsoni have larger limbs <strong>and</strong> narrower snouts, A. mississippiensis<br />

have more abdominal yolk <strong>and</strong> retarded external genitalia); formulation<br />

<strong>of</strong> regression equations <strong>of</strong> chronological age against particular morphometric<br />

ratios (at different incubation temperatures <strong>and</strong> humidities) to<br />

predict "morphological age" for any embryo <strong>of</strong> a particular species (d. rat<br />

embryos, Ferguson, 1978a). This morphological aging is valuable when <strong>the</strong><br />

time interval between stages is long, due ei<strong>the</strong>r to slow changes in <strong>the</strong><br />

external form (Stages 20-24) or because <strong>the</strong> embryo is fully formed <strong>and</strong><br />

merely enlarging in size <strong>and</strong> absorbing yolk (Stages 25-28). The two systems<br />

are complementary, so that an embryo may be classified as "Stage 24,<br />

morphological age 58.5 days." In general, staging by external morphological<br />

criteria is most accurate up to Stage 20, because development is fast,<br />

<strong>and</strong> <strong>the</strong> time intervals between stages are small. After Stage 20, <strong>the</strong> morphological<br />

age based on morphometric ratios is most accurate for aging,<br />

because <strong>the</strong> time intervals between stages are long, <strong>and</strong> <strong>the</strong> embryos are<br />

large <strong>and</strong> easily measured.<br />

In <strong>the</strong> follOWing summary <strong>of</strong> <strong>the</strong> morphological staging system (Normal<br />

Table), no morphometric data are given. For each stage <strong>the</strong> most important<br />

diagnostic features are listed first, <strong>and</strong> <strong>the</strong> essential features are illustrated<br />

in Figs. 18-22. Details <strong>of</strong> important regions <strong>of</strong> various stages are illustrated<br />

in Figs. 23-26. Some stages may be subdivided by reference to certain<br />

criteria, for instance, Stages 1-6 may be supplemented with a somite count<br />

(e.g., Stage 1120 s embryo), Stages 17-19 with <strong>the</strong> percentage <strong>of</strong> palatal<br />

closure, <strong>and</strong> Stages 20-28 by morphometric ratios (e.g., yolk volume, yolk<br />

scar width, total length) (Ferguson <strong>and</strong> Webb, in preparation). Initially, <strong>the</strong><br />

stages have not been separated by criteria such as somite counts, because<br />

<strong>the</strong>se vary in relation to o<strong>the</strong>r features, for example, some embryos develop<br />

by enlarging existing somites before <strong>the</strong>y form new ones, whereas<br />

o<strong>the</strong>rs may form new somites before enlargement (such variation is <strong>of</strong>ten<br />

temperature dependent). The development <strong>of</strong> different structures does<br />

vary independently (e.g., in a particular specimen branchial arch development<br />

may lag behind that <strong>of</strong> <strong>the</strong> limbs) <strong>and</strong> appears to be marked at <strong>the</strong><br />

extremes <strong>of</strong> incubation temperatures. The present staging scheme is based<br />

on examinations <strong>of</strong> approximately 1500 embryos <strong>of</strong> Alligator mississippiensis<br />

<strong>and</strong> 300 each <strong>of</strong> Crocodylus porosus <strong>and</strong> C. johnsoni. All embryos were fixed<br />

in 10% formal saline <strong>and</strong> photographed with oblique incident illumination<br />

using a Wild M8 stereophotomicroscope.<br />

Some incubation ages in days are given for embryos within each stage<br />

(see Table VI). For Alligator mississippiensis, <strong>the</strong>se ages, given for all stages,<br />

are based on a number <strong>of</strong> st<strong>and</strong>ard series collected within three hours <strong>of</strong><br />

egg laying <strong>and</strong> artificially incubated at 30°C <strong>and</strong> approximately 90-100%<br />

humidity. For Crocodylus johnsoni <strong>and</strong> C. porosus, <strong>the</strong> st<strong>and</strong>ard series were<br />

incubated under similar conditions (Webb et aI., 1983a,e; unpublished).<br />

Ages are not ascribed on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> drawings in Webb et al. (1983a,e),<br />

which were prepared as a field guide, but on reexamination <strong>of</strong> <strong>the</strong> original<br />

embryos. The timing <strong>of</strong> development relative to stages is virtually identical<br />

in all three species up to Stage 20 (i.e., during <strong>org</strong>anogenesis); only later,<br />

when growth is occurring, do species-specific differences appear. Some <strong>of</strong><br />

<strong>the</strong>se may be due to differing incubation conditions (e.g., whe<strong>the</strong>r compensation<br />

is made for metabolic heat); perhaps <strong>the</strong> ages given for A. mississippiensis<br />

up to Stage 24 are similar in all species.<br />

Table VI also includes "equivalence values" for each described stage to<br />

<strong>the</strong> figures in Voeltzkow's (1899) report on Crocodylus niloticus <strong>and</strong> <strong>the</strong><br />

stages in Reese's (1915a) monograph on Alligator mississippiensis, which<br />

latter included Clarke's (1891) illustrations. Some <strong>of</strong> <strong>the</strong> data in <strong>the</strong>se older<br />

works are inaccurate, even self-contradictory. In <strong>the</strong> stage descriptions<br />

presented here, judgment <strong>of</strong> such major errors invoked <strong>the</strong> premise that<br />

new data for A. mississippiensis, C. porosus, <strong>and</strong> C. johnsoni are more complete<br />

<strong>and</strong> more detailed. Only limited data are available relating chronological<br />

age <strong>and</strong> stage at temperatures o<strong>the</strong>r than 30°C. In A. lIlississippiensis,<br />

increasing <strong>the</strong> incubation temperature (within viable limits) accelerates development<br />

up to Stage 20 (<strong>org</strong>anogenesis) to a much greater extent than in<br />

later stages. This is similar to observations on birds (Roman<strong>of</strong>f, 1967),<br />

snakes (Zehr, 1962), <strong>and</strong> turtles (Yntema, 1968; Ewert, 1979). However, it is<br />

difficult to make precise statements regarding <strong>the</strong> effects <strong>of</strong> incubation<br />

temperature on developmental rates because <strong>of</strong> tissue specificity, e.g.,<br />

gonadal development is retarded at 34°C compared to stage by stage events<br />

at 30°C.<br />

There are also difficulties in adjusting regression equations for variations<br />

<strong>of</strong> temperature during incubation in order to predict embryonic age (or<br />

hatching dates) from morphometric ratios (Webb et al., 1983a,e). Generally,<br />

development <strong>of</strong> alligator embryos up to Stage 20 proceeds approximately<br />

1.2 to 1.8 times as fast at 34° as at 30°C, <strong>and</strong> approximately 1.6 to 2.0


Stage<br />

2<br />

3<br />

TABLE VI<br />

Concordance for Staging/Aging <strong>of</strong> Crocodilian Embryos<br />

AM" (days) Cr's (days) CP'" (days) V dl ,<br />

W,h<br />

o I (after egg 0-1 0-1<br />

laying)<br />

VI(37a, b) VlII, IX<br />

2<br />

3<br />

2<br />

3 3<br />

4 4 4 4<br />

5 5 5<br />

6<br />

6<br />

7<br />

7<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

IS<br />

16<br />

17<br />

8 8 8 8<br />

9<br />

10-11<br />

12<br />

13-14<br />

IS<br />

16-17<br />

18-20<br />

21<br />

22-23<br />

9<br />

10<br />

12-13<br />

14<br />

IS<br />

16<br />

18-20<br />

21-22<br />

23<br />

18 24-26 26 25<br />

19<br />

20<br />

27-28<br />

29-30<br />

VI(38a, b, c)<br />

VI(40),<br />

VlII(5Ia)<br />

VII(43),<br />

VlII(5Ia)<br />

6 6<br />

7 VII(44),<br />

9<br />

10<br />

VIII(52, 53),<br />

IX(66 f , 74)<br />

VII(45), VlII(54),<br />

IX(67', 75, 76)<br />

IX(68, 77)<br />

VII(46),<br />

VlII(551'<br />

IX(69)<br />

12<br />

13 VII(47),<br />

VlII(55),<br />

IS<br />

17<br />

19<br />

21<br />

29<br />

30-34 29<br />

21 31-35 35-39<br />

22 36-40 40-45 35<br />

23 41-45 46-54 44<br />

24 46-50 55-64 55<br />

25<br />

26<br />

51-60<br />

ABSENT<br />

65-74<br />

75-80<br />

58-70<br />

71-75<br />

IX(69)f<br />

IX(70, 79),<br />

XV(134)<br />

VII(48), VIII(56),<br />

IX(71, 80), X(84A),<br />

XV(135)<br />

IX(72, 81)<br />

VIII(57), IX(82),<br />

X(85A)<br />

VII(49), VIII (58),<br />

X(86A), XI(105)<br />

X(87A,88A)<br />

VII (50), VlII(59),<br />

XI(95, 106), XV(136)<br />

VIII(60), XI(107A, B)<br />

VIII(61, 62)<br />

XI(96)<br />

XI(97)<br />

VIII(63), XI(98A-B)<br />

27 60-63 81-83 75-80 XI(99, 100)<br />

28 64-70 84-90 81-85 VlII(64), XI(108) XXlII<br />

X, XI<br />

XII<br />

XIII<br />

XIV<br />

XV, XVI<br />

XVII<br />

XVIII<br />

"AM, Alligator mississippiensis. dV, Voeltzkow (1899) stages for C. niloticus. VII(4a) = Tafel VII, Fig. 4a.<br />

bq, Crocodylus johnsani. 'R, Reese (1915a) stages for A. mississippiensis.<br />

'CP, Crocodylus porasus. fmajor error in <strong>the</strong> figure.<br />

sThe numbers <strong>of</strong> embryos <strong>of</strong> Cracodylus johnsoni <strong>and</strong> C. parasus with definite ages are limited, so that <strong>the</strong><br />

days given do not inclUde <strong>the</strong> range per stage, as provided for Alligator mississippiensis. The values represent<br />

<strong>the</strong> known ages <strong>of</strong> st<strong>and</strong>ard embryos available for <strong>the</strong> stage.<br />

hThe drawings <strong>of</strong> Reese (1908, 1915a) contain numerous errors, whereas those <strong>of</strong> VoeItzkow (1899) tend to<br />

be accurate. Hence, representative figures selected from <strong>the</strong> latter are used. Some contain major errors,<br />

e.g., his Figures 39b <strong>and</strong> 43; <strong>the</strong>se have ei<strong>the</strong>r been omitted from this table or, if no o<strong>the</strong>r illustration was<br />

available are listed with <strong>the</strong> notation! which indicates a major error. The present cross-reference between<br />

<strong>the</strong> drawings <strong>of</strong> whole embryos <strong>and</strong> those <strong>of</strong> regions may differ from <strong>the</strong> original, but is consistent with <strong>the</strong><br />

data <strong>of</strong> <strong>the</strong> three species for which recent observations are cited above. Voeltzkow's (1899) ages appear<br />

inaccurate <strong>and</strong> are inconsistent within his study (e.g., Figs. 49 <strong>and</strong> 58 show <strong>the</strong> same embryo, but are stated<br />

to represent ages <strong>of</strong> two months <strong>and</strong> four weeks, respectively). They have been omitted, although <strong>the</strong> trend<br />

suggested is similar to that for <strong>the</strong> o<strong>the</strong>r two species <strong>of</strong> Cracodylus.<br />

3BB<br />

XIX<br />

XX<br />

XXI<br />

XXII<br />

STA13ES OF EMBRYONIC OEVELOPMENT [AFTER EGG LAYING]<br />

397<br />

times as fast at 30° as at 28°C. Thereafter, rates <strong>of</strong> development at different<br />

temperatures show less variation; eggs incubated at 34°e hatch after 55-60<br />

days incubation, at 30 0 e after 62-67 days <strong>and</strong> at 28°e after 70-75 days. The<br />

situation may differ in species with longer incubation periods, possibly as a<br />

result <strong>of</strong> increased time spent in <strong>the</strong> egg between Stages 24 <strong>and</strong> 28. It is likely<br />

that <strong>the</strong>se later stages <strong>of</strong> growth <strong>and</strong> yolk absorption are accelerated by<br />

increased temperatures. Field nests <strong>of</strong> Crocodylus johnsoni increase gradually<br />

in temperature throughout incubation (Webb <strong>and</strong> Smith, 1984), <strong>and</strong> it<br />

would be interesting to know whe<strong>the</strong>r this facilitates accelerated development,<br />

yolk absorption, <strong>and</strong> hatching. Alligator mississippiensis (<strong>and</strong> some<br />

o<strong>the</strong>r species) may hatch in <strong>the</strong> minimum time possible (perhaps as a result<br />

<strong>of</strong> enhanced development in <strong>the</strong> later stages, Webb et al., 1983e) as an<br />

adaptation to <strong>the</strong>ir climatic environment. However, species occupying<br />

more tropical environments may incur a selective advantage by staying<br />

longer in <strong>the</strong> egg. Accurate prediction <strong>of</strong> hatching date is difficult for any<br />

species because hatching is initiated by factors o<strong>the</strong>r than completion <strong>of</strong><br />

development; viable embryos incubated under constant conditions hatch<br />

over a range <strong>of</strong> 5 to 10 days <strong>and</strong> show varying degrees <strong>of</strong> yolk absorption.<br />

The problems <strong>of</strong> identifying <strong>the</strong> early embryo have beset numerous<br />

investigators (Clarke, 1888a, 1891; Voeltzkow, 1892, 1899; Reese, 1907,<br />

1915a; Wettstein, 1954; Ferguson, 1982b). Statements in <strong>the</strong> literature, contending<br />

that development begins at oviposition, reflect <strong>the</strong> difficulties <strong>of</strong><br />

observing Stage 1 embryos under field conditions (McIlhenny, 1934, 1935;<br />

Pooley, 1962). For Alligator mississippiensis, Crocodylus johnsoni, <strong>and</strong> C.<br />

porosus, numerous embryos that were recovered within a few hours <strong>of</strong> egg<br />

laying have always been Stage 1, although with variation in <strong>the</strong> number <strong>of</strong><br />

somite pairs (9-20; mean 12 ± 2) <strong>and</strong> in <strong>the</strong> degree <strong>of</strong> delineation <strong>of</strong> <strong>the</strong><br />

dorsal wall. Because development <strong>of</strong> <strong>the</strong> earliest laid embryo to <strong>the</strong> latest<br />

occurs in 24 hours, Stage 1 embryos have been ascribed an age <strong>of</strong> 0 to 1<br />

days.<br />

Stage 1<br />

[Fig. 1 Bl<br />

Blastoderm. Blastoderm <strong>and</strong> embryo lie on top <strong>of</strong> <strong>the</strong> yolk <strong>and</strong> are not<br />

attached to <strong>the</strong> overlying shell membrane. Blood vessels are not evident.<br />

Somites. 9-20 pairs (16-18 are very common at <strong>the</strong> time <strong>of</strong> egg laying)<br />

lie posterior to <strong>the</strong> otic placode.<br />

Delineation <strong>of</strong> <strong>the</strong> Embryo from <strong>the</strong> Blastoderm. Approximately <strong>the</strong> caudal<br />

one-third <strong>of</strong> <strong>the</strong> dorsal body wall is not delineated from <strong>the</strong> blastoderm, for<br />

example, in a ISS embryo <strong>the</strong> body is delimited to <strong>the</strong> level <strong>of</strong> <strong>the</strong> 7th<br />

somite, in a 16S embryo to <strong>the</strong> 8th somite, in an 18S embryo to <strong>the</strong> 12th<br />

somite, <strong>and</strong> in a 20S embryo to <strong>the</strong> 16th somite.<br />

Branchial Arches. The first branchial arch is just visible.<br />

Heart. A simple S-shaped tube in <strong>the</strong> midline.<br />

Sensory Placodes, Pits, <strong>and</strong> Brain. Both <strong>the</strong> optic <strong>and</strong> otic placodes are


39B<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIAN9<br />

evident <strong>and</strong> may be invaginating. The optic <strong>and</strong> otic vesicles are also obvious,<br />

but <strong>the</strong> brain is not yet regionalized. The optic pIacodes <strong>and</strong> vesicles<br />

are more obvious than <strong>the</strong> otic.<br />

Flexures <strong>and</strong> Rotation. The embryo lies at right angles to <strong>the</strong> yolk surface,<br />

that is, body torsion has not yet commenced.<br />

Blastopore <strong>and</strong> Primitive Streak. Obvious.<br />

Gut. The gut is incomplete caudally <strong>and</strong> open ventrally along its entire<br />

length.<br />

Somitomeres. Three pairs <strong>of</strong> cranial somitomeres are visible anterior to<br />

<strong>the</strong> otic vesicle.<br />

Notochord. The notochord is evident.<br />

Stage 2 [Fig. 1 S)<br />

Blastoderm. The dorsal surface <strong>of</strong> <strong>the</strong> blastoderm is attached to <strong>the</strong><br />

overlying shell membrane, <strong>and</strong> <strong>the</strong> embryo remains so te<strong>the</strong>red throughout<br />

subsequent development. Blood vessels are now visible; one pair<br />

emerges from <strong>the</strong> embryo at <strong>the</strong> caudal level <strong>of</strong> <strong>the</strong> heart, whereas ano<strong>the</strong>r<br />

(larger) pair runs down <strong>the</strong> lateral wall <strong>of</strong> <strong>the</strong> embryo to emerge at approximately<br />

<strong>the</strong> level <strong>of</strong> <strong>the</strong> 20th somite.<br />

Somites. 21-25 pairs (decreasing markedly in size caudally).<br />

Delineation <strong>of</strong> <strong>the</strong> Embryo. Dorsally <strong>the</strong> embryo is almost completely<br />

delineated except for a very small circular area at <strong>the</strong> extreme caudal tip.<br />

Ventrally <strong>the</strong> caudal <strong>and</strong> caudo-Iateral boundaries <strong>of</strong> <strong>the</strong> body wall have<br />

formed.<br />

Branchial Arches.<br />

visible.<br />

The 1st <strong>and</strong> 2nd arches <strong>and</strong> <strong>the</strong> 1st branchial cleft are<br />

Heart. An extra vertical loop has developed making a total <strong>of</strong> three<br />

loops. The heart lies in <strong>the</strong> midline <strong>of</strong> <strong>the</strong> embryo.<br />

Sensory Placodes, Pits, etc. The lens placode <strong>and</strong> optic cup are defined,<br />

<strong>and</strong> <strong>the</strong> otic pit is distinctly patent.<br />

Brain. Hindbrain discernible as a clear transparent region.<br />

Flexures <strong>and</strong> Rotation. The cranial end <strong>of</strong> <strong>the</strong> embryo is flexed at approximately<br />

<strong>the</strong> level <strong>of</strong> <strong>the</strong> heart with <strong>the</strong> head lying at approximately 45° to<br />

<strong>the</strong> plane <strong>of</strong> <strong>the</strong> body. No body torsion has occurred.<br />

Stage 3 [Fig. 1 S)<br />

Somites. 26-30 pairs.<br />

Delineation <strong>of</strong> <strong>the</strong> Embryo. Complete.<br />

Branchial Arches. Three branchial arches, <strong>the</strong> 1st branchial cleft, <strong>the</strong> 2nd<br />

branchial groove, <strong>and</strong> <strong>the</strong> branchial sinus are all present.<br />

Tail. Bud present, but lacks somites.<br />

Brain. Forebrain, midbrain, <strong>and</strong> hindbrain are now discernible, <strong>the</strong><br />

latter appearing distinctly transparent.<br />

Sensory Placodes, Pits, etc. The optic cup has an elongated horseshoe<br />

BTAGEB OF EMBRYONIC OEVELOPMENT [AFTER EGG LAYING)<br />

399<br />

shape, which extends below <strong>the</strong> lens vesicle onto <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> primitive<br />

oronasal cavity.<br />

Blastopore <strong>and</strong> Primitive Streak. Not visible.<br />

Extra-embryonic Membranes. The amnion is attached ventrally to <strong>the</strong> lateral<br />

body walls, cranially to <strong>the</strong> borders <strong>of</strong> <strong>the</strong> pericardium about <strong>the</strong> level<br />

<strong>of</strong> <strong>the</strong> 7th to 8th somite <strong>and</strong> caudally to <strong>the</strong> cranial margin <strong>of</strong> <strong>the</strong> fold <strong>of</strong> tail<br />

bud.<br />

Flexures <strong>and</strong> Rotation. Head at approximately right angles to <strong>the</strong> body.<br />

No body torsion.<br />

Stage 4 [Fig. 1 S)<br />

Somiles. 31-35 pairs. The first is beginning to disappear.<br />

Tail. Distinct, straight, <strong>and</strong> contains 3-5 somites in its base; <strong>the</strong> tip is<br />

unsegmented.<br />

Flexures <strong>and</strong> Rotation. Body torsion has commenced. The cranial half <strong>of</strong><br />

<strong>the</strong> embryo is rotated so that its right surface is in contact with <strong>the</strong> shell<br />

membrane <strong>and</strong> its left is parallel to <strong>the</strong> underlying yolk. The caudal half <strong>of</strong><br />

<strong>the</strong> embryo is not rotated <strong>and</strong> lies at right angles to <strong>the</strong> shell <strong>and</strong> yolk.<br />

Heart. Displaced to <strong>the</strong> left side <strong>of</strong> <strong>the</strong> embryo <strong>and</strong> large.<br />

Allantois. Small elevation is just visible immediately caudal to <strong>the</strong> craniallimit<br />

<strong>of</strong> <strong>the</strong> ventral tail fold, at approximately somite 27.<br />

Branchial Arches. Three branchial arches, <strong>the</strong> 1st branchial cleft, <strong>the</strong> 2nd<br />

<strong>and</strong> 3rd branchial grooves, <strong>and</strong> <strong>the</strong> branchial sinus are present. The cranial<br />

nerves to branchial arches 1-3 are discernible using oblique or transmitted<br />

illumination.<br />

Stage 5<br />

[Fig. 1 gJ<br />

Somites. 36-40 pairs. Only traces <strong>of</strong> <strong>the</strong> first somite can be detected,<br />

although it is included in this count.<br />

Tail. The tail tip bends ventrally at right angles to <strong>the</strong> body <strong>of</strong> <strong>the</strong><br />

embryo; 6-10 somites in its base, tip unsegmented.<br />

Flexures <strong>and</strong> Rotation. Body torsion is complete except for <strong>the</strong> tail. The<br />

head is fur<strong>the</strong>r flexed with <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> brain at approximately 25° to<br />

<strong>the</strong> plane <strong>of</strong> <strong>the</strong> body.<br />

Allantois. The allantoic bud is distinctly swollen, smaller in height than<br />

<strong>the</strong> tail.<br />

Sensory Placodes, Pits, etc. The otic pit lies dorsal to <strong>the</strong> junction <strong>of</strong> <strong>the</strong><br />

2nd <strong>and</strong> 3rd branchial arches, <strong>and</strong> its external opening is closing.<br />

Stage S<br />

[Figs. 1 S. 1 g. <strong>and</strong> 23J<br />

Sensory Placodes, Pits, etc. Nasal placodes present. Otic pit closed.<br />

Limbs. Hindlimb buds are just visible on each side, <strong>the</strong> right hindlimb<br />

~ bud being marginally advanced over <strong>the</strong> left, but no forelimb buds are<br />

present (Fig. 23).


400<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Flexures <strong>and</strong> Rotation. Body torsion complete. The ro<strong>of</strong> <strong>of</strong> <strong>the</strong> brain is at<br />

approximately 45° to <strong>the</strong> plane <strong>of</strong> <strong>the</strong> body, whereas <strong>the</strong> floor <strong>of</strong> <strong>the</strong> brain is<br />

horizontal <strong>and</strong> parallel to <strong>the</strong> plane <strong>of</strong> <strong>the</strong> body.<br />

Brain. The olfactory bulbs, forebrain, <strong>and</strong> midbrain are distinct. Four to<br />

six neuromeres are discernible in <strong>the</strong> transparent hind brain area.<br />

Tail. The tip is starting to curl but is unsegmented; somites are only<br />

present in <strong>the</strong> proximal region <strong>of</strong> <strong>the</strong> vertically oriented tail.<br />

Allantois. The allantoic bud is stilI smaller in height than <strong>the</strong> tail.<br />

Gut. The foregut <strong>and</strong> hindgut are formed, but <strong>the</strong> midgut is incomplete<br />

ventrally.<br />

Extra-embryonic Membranes. Many blood vessels in <strong>the</strong> vitelline <strong>and</strong><br />

yolk sac membranes; major ones emerge at <strong>the</strong> level <strong>of</strong> <strong>the</strong> 18th somite <strong>and</strong><br />

o<strong>the</strong>r smaller ones at <strong>the</strong> 6th <strong>and</strong> 11th somite levels.<br />

Stage 7<br />

[Figs. 19, 23, <strong>and</strong> 27AJ<br />

Limbs. Distinct hindlimb bud; forelimb bud just visible as a sinusoidal<br />

elevation. The forelimb bud extends over approximately somites 12-15; <strong>the</strong><br />

smaller hindlimb bud extends over somites 26-28. Differences in size between<br />

forelimb <strong>and</strong> hindlimb buds are more marked in C. johnstoni.<br />

Sensory Placodes, Pits, etc. Nasal placode begins to invaginate.<br />

Brain. Midbrain bulge evident.<br />

Tail. Tail tip, curled at approximately 90° to <strong>the</strong> remainder <strong>of</strong> <strong>the</strong> tail,<br />

<strong>and</strong> contains somites.<br />

Flexures <strong>and</strong> Rotation. At <strong>the</strong> level <strong>of</strong> <strong>the</strong> heart, <strong>the</strong> cranial region is bent<br />

at approximately 90° to <strong>the</strong> body. The neck region is also flexed, so that <strong>the</strong><br />

ro<strong>of</strong> <strong>of</strong> <strong>the</strong> brain lies at approximately 60° to <strong>the</strong> body plane <strong>and</strong> <strong>the</strong> floor <strong>of</strong><br />

<strong>the</strong> brain at 45°. This dichotomy in angulation accentuates <strong>the</strong> midbrain<br />

bulge.<br />

Branchial Arches. Three branchial arches, <strong>the</strong> first branchial cleft <strong>and</strong><br />

groove, <strong>the</strong> second <strong>and</strong> third branchial grooves, <strong>and</strong> <strong>the</strong> branchial sinus<br />

are present (Fig. 27A).<br />

STAGES OF EMBRYONIC DEVELOPMENT (AFTER EGG LAYING)<br />

Tail. The tail tip is coiled through two 90° turns <strong>and</strong> flexion <strong>of</strong> <strong>the</strong> tail<br />

base has commenced. Twelve to eighteen somite pairs are present<br />

throughout <strong>the</strong> tail.<br />

Stage 9<br />

[Figs. 19, 23, 27C <strong>and</strong> OJ<br />

Branchial Arches. Four branchial arches, <strong>the</strong> 1st <strong>and</strong> 3rd branchial clefts<br />

<strong>and</strong> grooves, <strong>the</strong> 2nd <strong>and</strong> 4th branchial grooves, <strong>and</strong> <strong>the</strong> branchial sinus<br />

are visible (Figs. 27C <strong>and</strong> D). Branchial clefts are present only in <strong>the</strong> dorsal<br />

halves <strong>of</strong> <strong>the</strong> junctions between <strong>the</strong> 1st-2nd <strong>and</strong> 3rd-4th arches, <strong>the</strong> intervening<br />

ventral tissue is continuous <strong>and</strong> forms <strong>the</strong> branchial grooves.<br />

Facial Processes. The maxillary process is distinct <strong>and</strong> extends forward<br />

to <strong>the</strong> midpoint <strong>of</strong> <strong>the</strong> eye. There are elevated rims <strong>of</strong> tissue around <strong>the</strong><br />

nasal pits. A remnant <strong>of</strong> <strong>the</strong> ingrowth <strong>of</strong> Rathke's pouch is visible in <strong>the</strong><br />

ro<strong>of</strong> <strong>of</strong> <strong>the</strong> primitive oronasal cavity.<br />

Eye. The optic cup <strong>and</strong> central lens anlage are large <strong>and</strong> round but<br />

unpigmented.<br />

Limbs. There is a distinct apical ectodermal ridge on <strong>the</strong> hindlimb bud,<br />

but not on <strong>the</strong> forelimb bud. The hindlimb bud extends out far<strong>the</strong>r from<br />

<strong>the</strong> body than <strong>the</strong> forelimb bud (Fig. 23).<br />

Tail. The tail tip is curled through three 90° turns, <strong>and</strong> <strong>the</strong> tail base is<br />

distinctly flexed from <strong>the</strong> lower lumbar region; <strong>the</strong> tail contains approximately<br />

20 somites.<br />

Allantois. The large allantois is fused to both <strong>the</strong> amnion <strong>and</strong> chorion.<br />

The chorioallantois extends around approximately one-half <strong>of</strong> <strong>the</strong> breadth<br />

<strong>of</strong> <strong>the</strong> eggshell.<br />

Heart. The distinct atria, ventricles, <strong>and</strong> <strong>the</strong> lung primordia are visible<br />

through <strong>the</strong> transparent pericardial sac.<br />

Gut <strong>and</strong> Abdominal Organs. The midgut <strong>and</strong> body walls are open ventrally<br />

from <strong>the</strong> caudal limit <strong>of</strong> <strong>the</strong> pericardial sac to two-thirds <strong>the</strong> way<br />

down <strong>the</strong> body. The developing mesonephros <strong>and</strong> liver are just visible<br />

through <strong>the</strong> lateral body walls.<br />

401<br />

Stage B<br />

[Figs. 19, 23, <strong>and</strong> 27BJ<br />

Stage 10 [Figs. 19, 23, 27E, 34A <strong>and</strong> BJ<br />

Allantois. Now a large ballooning sac, longer than <strong>the</strong> tail; it contains<br />

blood vessels, but is not yet fused with ei<strong>the</strong>r <strong>the</strong> amnion or <strong>the</strong> chorion.<br />

External Genitalia. A small elevated genital tubercle is present.<br />

Sensory Placodes, Pits, etc. Nasal pits are present on each side <strong>of</strong> <strong>the</strong><br />

head external to <strong>the</strong> swellings <strong>of</strong> <strong>the</strong> olfactory bulbs; Rathke's pouch is<br />

invaginating in <strong>the</strong> middle <strong>of</strong> <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> primitive oronasal cavity to<br />

approXimate <strong>the</strong> infundibulum (Fig. 27B).<br />

Limbs. Forelimb <strong>and</strong> hindlimb buds both distinct <strong>and</strong> extending over<br />

somites 11-16 <strong>and</strong> 27-32, respectively (Fig. 23). The apical ectodermal<br />

ridge is developing on <strong>the</strong> hindlimb bud.<br />

Eye. Pigment in <strong>the</strong> iris makes <strong>the</strong> eye appear light black except for <strong>the</strong><br />

central opaque lens. The right eye is usually pigmented earlier <strong>and</strong> more<br />

heavily than <strong>the</strong> left eye.<br />

Branchial Arches. Five branchial arches, grooves, <strong>and</strong> <strong>the</strong> branchial sinus<br />

are present. The first cleft lies dorsally, ventral to <strong>the</strong> otocyst. The third<br />

branchial cleft (between arches 3 <strong>and</strong> 4) is closing over. Branchial arches 1<br />

<strong>and</strong> 2 are merged toge<strong>the</strong>r in <strong>the</strong>ir ventral halves, <strong>and</strong> arch 2 has started to<br />

overgrow arch 3 (Fig. 27£). Branchial arches 4 <strong>and</strong> 5 are very small. Viewed<br />

from <strong>the</strong> frontal aspect, <strong>the</strong> horseshoe-shaped 1st branchial arch is distinctly<br />

lobulated in <strong>the</strong> midline.


402 REPRODUCTIVE SIOLOGY AND EMSRYOLOGY OF CROCODILIANS<br />

STAGES OF EMSRYONIC DEVELOPMENT tAFTER EGG LAYING) 403<br />

Facial Processes. The medial <strong>and</strong> lateral nasal processes are distinct elevations<br />

on ei<strong>the</strong>r side <strong>of</strong> <strong>the</strong> nasal pits. The maxillary processes extend<br />

forward as far as <strong>the</strong> caudal junction <strong>of</strong> <strong>the</strong> medial <strong>and</strong> lateral nasal<br />

processes, <strong>and</strong> delimits a distinct groove beneath <strong>the</strong> eye.<br />

Limbs. The hindlimb bud is fan-shaped with a distinct apical ectodermal<br />

ridge (Fig. 23). It extends out fur<strong>the</strong>r from <strong>the</strong> body wall than <strong>the</strong><br />

forelimb bud.<br />

Tail. The tail is coiled through four 90 0 turns.<br />

Gut <strong>and</strong> Abdominal Organs. The mesonephros <strong>and</strong> liver are clearly visible<br />

through <strong>the</strong> lateral body walls.<br />

Stege 11 [Figs. 1 g end 23]<br />

Facial Processes. The nasal pit slit is starting to form between <strong>the</strong> medial<br />

<strong>and</strong> lateral nasal processes. The club-shaped maxillary processes extend to<br />

<strong>the</strong> junction <strong>of</strong> <strong>the</strong> medial <strong>and</strong> lateral nasal processes <strong>and</strong> is continuous<br />

with <strong>the</strong> lateral nasal process.<br />

Limbs. Both forelimb <strong>and</strong> hindlimb buds extend out caudally from <strong>the</strong><br />

body wall, <strong>and</strong> both have distinct apical ectodermal ridges (Fig. 23). The<br />

forelimb has a distinct constriction demarcating <strong>the</strong> proximal <strong>and</strong> distal<br />

elements, but this constriction is less marked in <strong>the</strong> hindlimb.<br />

Gut <strong>and</strong> Abdominal Organs. A loop <strong>of</strong> midgut tube is visible at <strong>the</strong> level<br />

<strong>of</strong> <strong>the</strong> umbilicus.<br />

Branchial Arches. The 2nd branchial arch continues to overgrow <strong>the</strong><br />

3rd, <strong>and</strong> arches 4 <strong>and</strong> 5 are starting to submerge. The 1st branchial cleft is<br />

immediately ventral to <strong>the</strong> otocyst.<br />

Eye. Distinct black pigment present in <strong>the</strong> iris.<br />

Extra-embryonic Membranes. The chorioallantois extends two-thirds <strong>the</strong><br />

way around <strong>the</strong> breadth <strong>of</strong> <strong>the</strong> shell membrane.<br />

Stage 12 [Figs. 1 g, 23, <strong>and</strong> 27H]<br />

Branchial Arches. The sinusoidal 1st branchial cleft lies above <strong>the</strong> otocyst<br />

<strong>and</strong> its margins show condensations for <strong>the</strong> auricular hillocks (Fig.<br />

27H). The merged conglomerate <strong>of</strong> arches 1 <strong>and</strong> 2 is growing caudally <strong>and</strong><br />

has overgrown arch 3 to reach <strong>the</strong> junction between <strong>the</strong> 3rd <strong>and</strong> 4th arches.<br />

This conglomerate forms <strong>the</strong> base <strong>of</strong> <strong>the</strong> lower jaw, which extends as far<br />

forward as <strong>the</strong> middle <strong>of</strong> <strong>the</strong> lens <strong>of</strong> <strong>the</strong> eye. Arches 4 <strong>and</strong> 5 are small but<br />

visible. The branchial sinus is patent.<br />

Facial Processes. The club-shaped maxillary process extends forward as<br />

a large shelf <strong>of</strong> tissue beneath <strong>the</strong> eye. The nasal pit slits are deepening as<br />

<strong>the</strong> medial <strong>and</strong> lateral nasal processes enlarge. There is a distinct notch <strong>and</strong><br />

furrow in <strong>the</strong> midline <strong>of</strong> <strong>the</strong> face between <strong>the</strong> medial nasal processes <strong>of</strong><br />

each side.<br />

Limbs. The forelimb, which is beginning to bend in <strong>the</strong> region <strong>of</strong> con-<br />

striction for <strong>the</strong> proximal <strong>and</strong> distal elements, lies closer to <strong>the</strong> flank <strong>of</strong> <strong>the</strong><br />

embryo. The elongated hindlimb shows little differentiation into proximal<br />

<strong>and</strong> distal elements, <strong>and</strong> although <strong>the</strong>re is still a distinct apical ectodermal<br />

ridge, foot plate formation is just discernible (Fig. 23).<br />

Stsge 13 [Figs. 1 g, 23, 24A-C, 27H, 34C end 0]<br />

Facial Processes. The nasal pit slits are very distinct (Figs. 24A <strong>and</strong> B).<br />

The prominent maxillary processes are continuous with <strong>the</strong> lateral nasal<br />

processes (Figs. 24A-C).<br />

Limbs. The forelimb is now distinctly bent towards <strong>the</strong> pericardium.<br />

The distal hindlimb is flattened <strong>and</strong> enlarged into a footplate primordium<br />

(Fig. 23).<br />

Branchial Arches. Arch 3 is almost completely overgrown by arch 2,<br />

which now reaches <strong>the</strong> pericardium. Arches 4 <strong>and</strong> 5 are difficult to see. The<br />

branchial sinus has closed. The anterior margin <strong>of</strong> <strong>the</strong> lower jaw has grown<br />

forward from <strong>the</strong> merged conglomerate <strong>of</strong> arches 1 <strong>and</strong> 2. The 1st branchial<br />

cleft is now more horizontally oriented <strong>and</strong> is hereafter referred to as <strong>the</strong><br />

external auditory meatus. The upper ear flap is sinusoidal with a midline<br />

bulge formed by <strong>the</strong> merging <strong>of</strong> <strong>the</strong> auricular hillocks (Fig. 27H). A groove<br />

runs craniocaudally along <strong>the</strong> basal (dorsal) aspects <strong>of</strong> <strong>the</strong> branchial arches<br />

<strong>and</strong> lower jaw.<br />

Extra-embryonic Membranes. The chorioallantois now extends as a ring<br />

around <strong>the</strong> inner circumference <strong>of</strong> <strong>the</strong> central eggshell membrane.<br />

Stege 14 [Figs. 1 g, 23, 240, 27F end H]<br />

Facial Processes. The nasal pit slit has closed due to <strong>the</strong> merging <strong>of</strong> <strong>the</strong><br />

medial nasal, lateral nasal, <strong>and</strong> maxillary processes (Figs. 240 <strong>and</strong> 27F).<br />

The medial nasal processes are prominent <strong>and</strong> have anterodorsal external<br />

bulges (Figs. 240 <strong>and</strong> 27F). These will later grow forward to displace <strong>the</strong><br />

external nares dorsally. The medial nasal processes also have two anterior<br />

intraoral bulges signifying <strong>the</strong> onset <strong>of</strong> primary palate development (Figs.<br />

240 <strong>and</strong> 27F). The maxillary processes have sinusoidal intraoral margins<br />

signifying <strong>the</strong> onset <strong>of</strong> secondary palate development. The internal nares<br />

are distinct.<br />

Limbs. The foot <strong>and</strong> h<strong>and</strong> plates are distinct; <strong>the</strong> former is advanced<br />

over <strong>the</strong> latter (Fig. 23).<br />

Branchial Arches. The 2nd branchial arch has overgrown <strong>the</strong> 3rd, 4th,<br />

<strong>and</strong> 5th, <strong>and</strong> this merged conglomerate toge<strong>the</strong>r with <strong>the</strong> 1st arch forms<br />

<strong>the</strong> base <strong>of</strong> <strong>the</strong> lower jaw <strong>and</strong> <strong>the</strong> neck. A craniocaudal groove is still<br />

present along <strong>the</strong> dorsal margins <strong>of</strong> <strong>the</strong> merged 1st <strong>and</strong> 2nd arches.<br />

Lower Jaw. The lower jaw extends one-fourth <strong>the</strong> way beneath <strong>the</strong><br />

upper jaw. It is broad <strong>and</strong> round in A. mississippiensis but more pointed in<br />

C. johnsoni.


404<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

STAGES OF EMBRYONIC OEVELOPMENT [AFTER EGG LAYING]<br />

405<br />

Ear. The upper ear flap is overgrowing <strong>the</strong> external ear opening. White<br />

opacities, internal condensations for ear development, are evident in <strong>the</strong><br />

region below <strong>the</strong> ear opening.<br />

Denticles. One denticle is present on each side <strong>of</strong> <strong>the</strong> developing primary<br />

palate (merged medial nasal processes) margins <strong>and</strong> one on each side<br />

<strong>of</strong> <strong>the</strong> midline <strong>of</strong> <strong>the</strong> lower jaw.<br />

Flexures <strong>and</strong> Rotation. The embryonic face rests on <strong>the</strong> large bulge <strong>of</strong> <strong>the</strong><br />

thorax (pericardial sac).<br />

Gut <strong>and</strong> Abdominal Viscera. A large loop <strong>of</strong> gut herniates through <strong>the</strong><br />

narrow umbilical stalk <strong>and</strong> touches <strong>the</strong> underlying yolk. The abdominal<br />

viscera (e.g., liver <strong>and</strong> mesonephros) are visible through <strong>the</strong> body walls.<br />

Tail. This is markedly coiled, <strong>and</strong> <strong>the</strong> tip has a terminal kink.<br />

External Genitalia. In A. mississippiensis, <strong>the</strong> tubercle is still small, but in<br />

C. porosus <strong>and</strong> C. johnsoni it is much larger.<br />

Embryonic Reflexes. Contralateral withdrawal reflexes occur.<br />

Stage 15 [Figs. 20, 23, 24E, <strong>and</strong> 2711<br />

Lower Jaw. This is one-third to one-half <strong>the</strong> length <strong>of</strong> <strong>the</strong> upper jaw<br />

(Fig. 24E). Dorsal to <strong>the</strong> lower jaw complex, <strong>the</strong>re are three furrows <strong>and</strong><br />

surface elevations, which appear to be dorsal representations <strong>of</strong> <strong>the</strong> branchial<br />

arches, which have now coalesced ventrally.<br />

Denticles. Two denticles are present on <strong>the</strong> anterior upper jaw margins<br />

<strong>of</strong> each side, one on <strong>the</strong> margin <strong>of</strong> <strong>the</strong> primary palate, <strong>the</strong> o<strong>the</strong>r on <strong>the</strong><br />

maxillary process behind <strong>the</strong> closure zone. As before, one m<strong>and</strong>ibular<br />

denticle is present on each side <strong>of</strong> <strong>the</strong> midline.<br />

Eye. Dark black stria in <strong>the</strong> iris radiate out from around <strong>the</strong> lens. The<br />

anlage for <strong>the</strong> upper eyelid is an elevated rim <strong>of</strong> tissue above each eye.<br />

Limbs. Distinct proximal <strong>and</strong> distal regions <strong>and</strong> h<strong>and</strong> <strong>and</strong> foot plates<br />

(but no digit rays) are present on both <strong>the</strong> forelimb <strong>and</strong> hindlimb (Fig. 23).<br />

Facial Processes. The anterodorsal (coalesced) bulges <strong>of</strong> <strong>the</strong> medial nasal<br />

processes have displaced <strong>the</strong> external nares dorsally (Fig. 24E). The primary<br />

palate has formed but still retains two anterior bulges (Fig. 24E).<br />

There is a distinct hollow in <strong>the</strong> face beneath <strong>the</strong> anterior one-third <strong>of</strong> <strong>the</strong><br />

eye. The tectoseptal process is evident in <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> primitive oronasal<br />

cavity.<br />

Stage 1 6 [Figs. 20 <strong>and</strong> 231<br />

Limbs. Faint digital condensations are present in <strong>the</strong> footplate but not<br />

in <strong>the</strong> h<strong>and</strong>plate (Fig. 23).<br />

Lower Jaw. This is now two-thirds <strong>the</strong> length <strong>of</strong> <strong>the</strong> upper jaw.<br />

Denticles. There are four on <strong>the</strong> upper jaw margins <strong>of</strong> each side, two on<br />

<strong>the</strong> primary palate (that closest to <strong>the</strong> midline may be difficult to see), <strong>and</strong><br />

two on <strong>the</strong> maxillary process. Two denticles lie on each side <strong>of</strong> <strong>the</strong> m<strong>and</strong>ible.<br />

Facial Processes. The upper jaw is hook-shaped, being moulded around<br />

<strong>the</strong> pericardial bulge. Small secondary palatal shelves are present immediately<br />

behind <strong>the</strong> posterolateral margins <strong>of</strong> <strong>the</strong> primary palate.<br />

Caruncle. Two tiny, widely spaced thickenings are just discernible on<br />

<strong>the</strong> anterior tip <strong>of</strong> <strong>the</strong> snout.<br />

Stage 17 [Figs. 20, 23, 24F, G, 25A, 2SA <strong>and</strong> B1<br />

Limbs. Mesodermal condensations for <strong>the</strong> five forelimb <strong>and</strong> four hindlimb<br />

digits are present (Fig. 23).<br />

Lower Jaw. The lower jaw lies behind <strong>the</strong> primary palate bulges (Figs.<br />

24F <strong>and</strong> G). The furrows <strong>and</strong> elevations dorsal to <strong>the</strong> lower jaw have<br />

disappeared.<br />

Denticles. At this <strong>and</strong> later stages, <strong>the</strong> numbers <strong>of</strong> denticles discernible<br />

macroscopically in <strong>the</strong> upper jaw varies as some appear <strong>and</strong> o<strong>the</strong>rs disappear;<br />

consequently, upper jaw denticle number is <strong>of</strong> little fur<strong>the</strong>r diagnostic<br />

value. Contrarywise, seven denticles occur on each side <strong>of</strong> <strong>the</strong> lower<br />

jaw; three are distinct, three less distinct, <strong>and</strong> one is disappearing <strong>and</strong> very<br />

difficult to see.<br />

Caruncle. Two small elevations, widely separated, have appeared on<br />

<strong>the</strong> anterior tip <strong>of</strong> <strong>the</strong> snout (similar to Fig. 26A).<br />

Palate. The secondary palatal shelves are distinct. They are closest to<br />

each o<strong>the</strong>r anteriorly behind <strong>the</strong> primary palate, but do not contact (Figs.<br />

25A, 28A <strong>and</strong> B). The tectoseptal processes are closing in <strong>the</strong> posterior half<br />

<strong>of</strong> <strong>the</strong> oronasal cavity.<br />

Scales, Scutes, etc. The somite pattern is distinct particularly on <strong>the</strong><br />

dorsal aspects <strong>of</strong> <strong>the</strong> body <strong>and</strong> tail. This heralds <strong>the</strong> onset <strong>of</strong> scale differentiation.<br />

Anlagen for <strong>the</strong> abdominal ribs are visible.<br />

Flexures <strong>and</strong> Rotation. The head is extended <strong>of</strong>f <strong>the</strong> bulge <strong>of</strong> <strong>the</strong> pericardial<br />

sac due to elongation <strong>of</strong> <strong>the</strong> neck.<br />

Ear. The external ear flap is distinct as <strong>the</strong> adult external ear form is<br />

established.<br />

Stage 1 S<br />

[Figs. 20, 23, 25B, C, 26A, <strong>and</strong> 2SC-F1<br />

Limbs. The digit rays on <strong>the</strong> h<strong>and</strong> <strong>and</strong> foot plates are now distinct<br />

cartilaginous condensations. The h<strong>and</strong> <strong>and</strong> foot plates have a crenellated<br />

appearance (Fig. 23) caused by <strong>the</strong> straight margins <strong>of</strong> <strong>the</strong> interdigital<br />

tissues.<br />

Lower Jaw. The lower jaw lies beneath <strong>the</strong> anterior primary palate<br />

bulges, <strong>and</strong> it no longer rests on <strong>the</strong> pericardial sac.<br />

Denticles. At <strong>the</strong> start <strong>of</strong> this stage, six denticles are visible on each side<br />

<strong>of</strong> <strong>the</strong> m<strong>and</strong>ible, <strong>and</strong> at <strong>the</strong> end, eight are discernible. The posterior denticles<br />

are difficult to see.<br />

Caruncle. Two widely spaced, white blebs on <strong>the</strong> anterior tip <strong>of</strong> <strong>the</strong><br />

snout (Fig. 25A).


406 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Palate. The secondary palatal shelves are one-fourth closed at <strong>the</strong> beginning<br />

<strong>of</strong> Stage 18 <strong>and</strong> three-fourths closed at <strong>the</strong> end (Figs. 25B <strong>and</strong> C).<br />

This stage can be accurately subdivided by specifying <strong>the</strong> extent <strong>of</strong> secondary<br />

palate closure (Figs. 25B <strong>and</strong> C, <strong>and</strong> 28C-E). The upper jaw margin is<br />

straighter <strong>and</strong> less hooked than previous.<br />

Eye. The margins <strong>of</strong> <strong>the</strong> upper eyelid anlage extend over <strong>the</strong> superior<br />

rim <strong>of</strong> <strong>the</strong> iris forming a distinct groove between <strong>the</strong> eyelids <strong>and</strong> <strong>the</strong> eye,<br />

into which small instruments can be passed.<br />

Scales, Scutes, etc. Dorsal scalation is now marked.<br />

PericardiaI Sac. The bulge <strong>of</strong> <strong>the</strong> transparent pericardial sac is starting to<br />

be submerged into <strong>the</strong> ventral thoracic wall.<br />

Stage 19 (Figs. 20, 23, 250, 26B, 34E <strong>and</strong> F]<br />

Eye. Upper <strong>and</strong> lower eyelids are distinct. The anterior nictitating<br />

membrane anlage is discernible in <strong>the</strong> anterior corner <strong>of</strong> <strong>the</strong> eye (Fig. 26B).<br />

Caruncle. Two elevations <strong>of</strong> <strong>the</strong> caruncle have approximated each o<strong>the</strong>r<br />

at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> snout (Fig. 26B), but <strong>the</strong> tissue between <strong>the</strong>m is thin,<br />

appearing transparent under incident illumination.<br />

Lower Jaw. The lower jaw lies behind <strong>the</strong> anterior margin <strong>of</strong> <strong>the</strong> upper<br />

jaw. Consequently, if <strong>the</strong> premaxillary bulges are large, <strong>the</strong> mouth opens<br />

(as in Fig. 24H). The tongue <strong>and</strong> floor <strong>of</strong> <strong>the</strong> mouth contents sag beneath<br />

<strong>the</strong> margins <strong>of</strong> <strong>the</strong> lower jaw.<br />

Limbs. Interdigital clefting has commenced producing slight marginal<br />

notches particularly in <strong>the</strong> foot plates (Fig. 23).<br />

Palate. The palate is almost completely closed (Fig. 250).<br />

Coloration. White flecks, representing underlying ossifications, are obvious<br />

on <strong>the</strong> margins <strong>of</strong> <strong>the</strong> upper <strong>and</strong> lower jaws <strong>and</strong> around <strong>the</strong> ears.<br />

External Genitalia. The end <strong>of</strong> <strong>the</strong> external genitalia has developed a<br />

globular swelling.<br />

Denticles. There are eight to nine denticles visible on each side <strong>of</strong> <strong>the</strong><br />

lower jaw. Henceforth, many m<strong>and</strong>ibular denticles appear <strong>and</strong> disappear<br />

so that <strong>the</strong>ir numbers are too variable to be used in staging.<br />

Species Differences. In C. johnsoni <strong>and</strong> C. porosus, <strong>the</strong> nostrils are elevated<br />

on a nasal disk. The lateral jaw margins have distinct notches where<br />

<strong>the</strong> primary <strong>and</strong> secondary palates closed (as in Figs. 24H <strong>and</strong> I); <strong>the</strong>se later<br />

accommodate <strong>the</strong> large fourth dentary teeth.<br />

Stage 20 (Figs. 20, 23, 24H, I, 25E, <strong>and</strong> 26C]<br />

Limbs. Nail anlagen develop rapidly in a specific sequence early in this<br />

stage (Fig. 23). They appear first on <strong>the</strong> most medial digit <strong>of</strong> <strong>the</strong> foot, <strong>the</strong>n<br />

on <strong>the</strong> neighboring two digits, <strong>the</strong>n on <strong>the</strong> most medial digit <strong>of</strong> <strong>the</strong> h<strong>and</strong><br />

<strong>and</strong> finally on <strong>the</strong> neighboring two medial h<strong>and</strong> digits. Consequently, nail<br />

anlagen are present on <strong>the</strong> most medial three digits <strong>of</strong> both <strong>the</strong> h<strong>and</strong>s <strong>and</strong><br />

STAGES OF EMBRYONIC DEVELOPMENT [AFTER EGG LAYING)<br />

407<br />

feet, despite <strong>the</strong> fact that <strong>the</strong> total number <strong>of</strong> digits varies between <strong>the</strong> two<br />

(Fig. 21). Interdigital clefting now extends along approximately one-fourth<br />

<strong>the</strong> length <strong>of</strong> <strong>the</strong> digits (Fig. 23). The outer two digits <strong>of</strong> <strong>the</strong> h<strong>and</strong> <strong>and</strong> <strong>the</strong><br />

outer digit <strong>of</strong> <strong>the</strong> foot never develop nails.<br />

Caruncle. The caruncle is now a solid structure due to consolidation <strong>of</strong><br />

<strong>the</strong> region between <strong>the</strong> two initial swellings (Fig. 26C).<br />

Lower Jaw. The lower jaw is in its adult relationship with <strong>the</strong> upper jaw<br />

(Figs. 24H <strong>and</strong> I).<br />

External Genitalia. The external genital primordium is now pointed<br />

with a distinct elevation <strong>of</strong> its tip.<br />

Palate. The palate is completely closed but <strong>the</strong> basihyal valve is not yet<br />

present (Fig. 25E).<br />

PericardiaI Sac. The pericardial sac is now one-fourth withdrawn into<br />

<strong>the</strong> ventral body cavity.<br />

Coloration. White flecks <strong>of</strong> ossification are present along <strong>the</strong> margins <strong>of</strong><br />

<strong>the</strong> upper <strong>and</strong> lower jaws, around <strong>the</strong> external auditory meatus, <strong>and</strong> in <strong>the</strong><br />

proximal <strong>and</strong> distal elements <strong>of</strong> <strong>the</strong> limbs.<br />

Scales <strong>and</strong> Scutes. Scale formation is marked dorsally <strong>and</strong> scutes are<br />

beginning to appear in <strong>the</strong> neck region behind <strong>the</strong> skull.<br />

Stage 21 (Figs. 20, 23, 25F, 260]<br />

Limbs. Interdigital clefting extends three-fourths <strong>of</strong> <strong>the</strong> way along <strong>the</strong><br />

digits. Phalanges can be distinguished in <strong>the</strong> digits (Fig. 23).<br />

Scales <strong>and</strong> Scutes. Scales are now visible on <strong>the</strong> ventral body wall as well<br />

as dorsally on <strong>the</strong> snout, neck, body, <strong>and</strong> tail. The dorsal neck scutes are<br />

clearly defined.<br />

Caruncle. The caruncle is a solid mass on <strong>the</strong> snout tip, but <strong>the</strong> tissue<br />

around <strong>the</strong> base <strong>of</strong> <strong>the</strong> caruncle is not differentiated from <strong>the</strong> o<strong>the</strong>r snout<br />

scales (Fig. 260).<br />

Palate. The superior basihyal valve flap is present at <strong>the</strong> posterior margin<br />

<strong>of</strong> <strong>the</strong> palate (<strong>and</strong> <strong>the</strong> inferior flap at <strong>the</strong> base <strong>of</strong> <strong>the</strong> tongue) <strong>and</strong> a<br />

plexus <strong>of</strong> palatal blood vessels is conspicuous (Fig. 25F).<br />

Pericardial Sac. The pericardial sac is one-half withdrawn into <strong>the</strong> body<br />

cavity.<br />

External Nares. Elevations for <strong>the</strong> constrictor nares muscles are evident.<br />

Eye. A white ring in <strong>the</strong> iris surrounds <strong>the</strong> outline <strong>of</strong> <strong>the</strong> lens <strong>of</strong> <strong>the</strong> eye<br />

<strong>and</strong> is overlapped by both upper a.nd lower eyelids.<br />

Stage 22 (Figs. 21, 23, 251]<br />

Coloration. Pigmentation is first visible on <strong>the</strong> margins <strong>of</strong> <strong>the</strong> upper<br />

jaw, along <strong>the</strong> ventral aspect <strong>of</strong> <strong>the</strong> flank, <strong>and</strong> on <strong>the</strong> proximal <strong>and</strong> distal<br />

elements <strong>of</strong> <strong>the</strong> limbs, but <strong>the</strong>re is little or no dorsal pigmentation.


STAGES OF EMBRYONIC DEVELOPMENT [AFTER EGG LAYING)<br />

409<br />

53 55 58 60 65<br />

I 50mm I<br />

12 14 20 25 28 30 35 40 46 48<br />

DAYS AFTER EGG LAYING-<br />

Fig. 22. Alligator mississippiensis. Montage at constant magnification, illustrating <strong>the</strong> growth<br />

<strong>and</strong> changing bodily proportions <strong>of</strong> embryos from 12 days after egg laying until hatching. All<br />

eggs were collected within 12 hours <strong>of</strong> egg laying, incubated at a constant 30 Q C <strong>and</strong> 100%<br />

humidity <strong>and</strong> fixed at indicated number <strong>of</strong> days after deposition.<br />

-27<br />

Limbs. Interdigital clefting is at its adult level (Fig. 23). Scalation is<br />

difficult to see on <strong>the</strong> limbs.<br />

Eye. The eyelids are generally closed at this <strong>and</strong> subsequent stages.<br />

PericardiaI Sac. The pericardial sac is two-thirds withdrawn into <strong>the</strong><br />

body cavity.<br />

StBge 23 [Figs. 21. 23. 24.... 25G. 26EJ<br />

Fig. 21. Alligator mississippiensis. Stages 22 to 28 (numbered) <strong>of</strong> embryonic development. See Coloration. Pigmentation is more extensive, <strong>and</strong> <strong>the</strong> embryos are light<br />

text for description <strong>of</strong> stages. Millimeter scales included.<br />

brown. Dorsally, stripes are present, <strong>the</strong> pattern <strong>of</strong> which varies within


STAGES OF EMBRYONIC OEVELOPMENT [AFTER EGG LAYING)<br />

411<br />

1ni'm"<br />

STAGE 6 7 8/9 10<br />

L:;:::(L~~0-- (\<br />

RF~<br />

bl:J~ ~<br />

1mm<br />

STAGE 12 13 14 15<br />

/<br />

~0_<br />

\ \<br />

ffrt<br />

16 17 18 19<br />

LHf\~>l~~~~~r<br />

R' rrmn<br />

\<br />

23 2mm 24 26-28<br />

STAGE 20 21 22 25<br />

<strong>and</strong> between species in association with definitive scale <strong>and</strong> scute patterns.<br />

Pigment is also present ventrally <strong>and</strong> on all limb elements.<br />

Limbs. Scales are present on <strong>the</strong> proximal <strong>and</strong> distal elements. The nail<br />

tips <strong>of</strong> <strong>the</strong> feet have a slight distal elevation (Fig. 23).<br />

Jaws. Sensory papillae are present along <strong>the</strong> lateral jaw margins <strong>and</strong><br />

scales are evident on <strong>the</strong> gular skin (Fig. 24J).<br />

Caruncle. The caruncle is located on a smooth white base (Fig. 26£).<br />

Brain. The midbrain is visible as a white bulge at <strong>the</strong> back <strong>of</strong> <strong>the</strong><br />

cranium because <strong>the</strong> overlying skin is poorly pigmented <strong>and</strong> <strong>the</strong> osseous<br />

cranial ro<strong>of</strong> is incomplete.<br />

Pericardial Sac. The pericardial sac is three-fourths withdrawn into <strong>the</strong><br />

body cavity.<br />

Palate. An extensive plexus <strong>of</strong> blood vessels <strong>and</strong> sensory papillae has<br />

formed (Fig. 25G).<br />

Species Differences. In C. johnsoni <strong>and</strong> C. porosus <strong>the</strong> scales along <strong>the</strong> jaw<br />

margins are triangular with <strong>the</strong> apex <strong>of</strong> <strong>the</strong> triangle toward <strong>the</strong> jaw margins,<br />

giving <strong>the</strong> latter a serrated appearance. The external genitalia are<br />

larger <strong>and</strong> more differentiated than in A. mississippiensis.<br />

St;ags 24 (Figs. 21, 23, <strong>and</strong> 24KJ<br />

Coloration. Pigmentation is now denser so that embryos appear blacker<br />

in color. Various patterns occur both within <strong>and</strong> between species.<br />

Limbs. The nails on <strong>the</strong> h<strong>and</strong> also have elevations at <strong>the</strong>ir tips (Fig. 23)<br />

<strong>and</strong> <strong>the</strong>se elevations are starting to form <strong>the</strong> curves at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> nails.<br />

Brain. The midbrain, enclosed by bone, is overlain by pigmented skin.<br />

Pericardial Sac. The pericardial sac is fully withdrawn into <strong>the</strong> body<br />

cavity <strong>and</strong> <strong>the</strong> ventral thoracic wall is closing in <strong>the</strong> midline.<br />

Yolk. A large volume <strong>of</strong> yolk lies outside <strong>the</strong> body <strong>and</strong> <strong>the</strong> ventral<br />

umbilical area is large.<br />

Scales <strong>and</strong> Scutes. The scales <strong>and</strong> scutes are now very evident as elevations<br />

all over <strong>the</strong> embryo (Fig. 24K).<br />

l~<br />

~.<br />

~<br />

Ai<br />

Fig. 23. The typical (diagnostic) appearances <strong>of</strong> crocodilian right fore <strong>and</strong> left hind limbs<br />

(including h<strong>and</strong>s, feet <strong>and</strong> nails) at various stages <strong>of</strong> development. Stages 6 to 11 are views<br />

from <strong>the</strong> dorsal aspect <strong>of</strong> <strong>the</strong> embryo <strong>and</strong> depict <strong>the</strong> projection <strong>of</strong> <strong>the</strong> limb anlage from <strong>the</strong><br />

flank. Stages 12 to 17 are lateral views <strong>of</strong> <strong>the</strong> sides <strong>of</strong> <strong>the</strong> embryo <strong>and</strong> depict <strong>the</strong> proximal <strong>and</strong><br />

distal elements <strong>of</strong> <strong>the</strong> limb anlage. Stages 18 to 28 are views <strong>of</strong> <strong>the</strong> h<strong>and</strong>s, feet, <strong>and</strong> nails. Up to<br />

Stage 17, no structures except <strong>the</strong> digital mesodermal condensations (at Stages 16 <strong>and</strong> 17) are<br />

visible macroscopically in <strong>the</strong> limbs, <strong>the</strong>reafter anlage for <strong>the</strong> limb <strong>and</strong> digit cartilages, for <strong>the</strong><br />

nails <strong>and</strong> for <strong>the</strong> interdigital webbing are evident, hence <strong>the</strong> change in diagram style at Stage<br />

18. Based on observation <strong>of</strong> Alligator mississippiensis, Crocodylus porosus, <strong>and</strong> C. johnsoni, although<br />

some (Stages 18 to 28) drawings are adapted from Voeltzkow's (1899) work on C.<br />

niloticus. AER, Apical ectodermal ridge; 0, mesodermal condensations for <strong>the</strong> digits; DC, digit<br />

cartilages; N, nail anlage.


STAGES OF EMBRYONIC OEVELOPMENT (AFTER EGG LAYING]<br />

413<br />

Stage 25 [Figs. 21, 23, 26F, 34G, <strong>and</strong> Hl<br />

The embryo is like a miniature version <strong>of</strong> a hatchling, with a considerable<br />

volume <strong>of</strong> external yolk <strong>and</strong> a large umbilical region. The hooking <strong>of</strong> <strong>the</strong><br />

nails becomes more prevalent toward hatching (Fig. 23). Musk gl<strong>and</strong>s are<br />

visible along <strong>the</strong> posterior lateral margins <strong>of</strong> <strong>the</strong> intergular floor <strong>of</strong> <strong>the</strong><br />

lower jaw. The caruncle is a bifid elevation on a smooth base (Fig. 26F)<br />

similar in structure to that at hatching (Figs. 26G, H), although perhaps a<br />

little less pigmented (this is variable). As few macroscopic changes are<br />

visible at this <strong>and</strong> later stages, aging is best estimated by morphometric<br />

procedures.<br />

Stage 26<br />

Stage 26 was intercalated to designate <strong>the</strong> time <strong>of</strong> tooth eruption in C.<br />

johnstoni <strong>and</strong> C. porosus, an event which occurs around <strong>the</strong> same time as <strong>the</strong><br />

appearance <strong>of</strong> sensory elevations on <strong>the</strong> scales. The teeth <strong>of</strong> A. mississippiensis<br />

rarely erupt before hatching, <strong>and</strong> if <strong>the</strong>y do it is at Stage 28.<br />

Stage 27 [Figs. 21, 23, 26G, <strong>and</strong> Hl<br />

Stage 27 is characterized by <strong>the</strong> withdrawal <strong>of</strong> <strong>the</strong> remaining yolk into <strong>the</strong><br />

abdominal cavity. It commences with <strong>the</strong> outgrowth <strong>of</strong> <strong>the</strong> ventral body<br />

Fig. 24. Alligator mississippiellsis. Development <strong>of</strong> <strong>the</strong> embryonic face. (A) Stage 13. Note <strong>the</strong><br />

eye, club-shaped maxillary process, medial nasal process, lateral nasal process, nasal pit,<br />

nasal pit slit (arrowed), <strong>and</strong> notch in <strong>the</strong> center <strong>of</strong> <strong>the</strong> frontonasal process. (B) Stage 13.<br />

Ventral view. (C) Stage 13. Lateral view. The maxillary process extends beneath <strong>the</strong> eye <strong>and</strong> is<br />

continuous with <strong>the</strong> lateral aspect <strong>of</strong> <strong>the</strong> lateral nasal process. The branchial arches are amalgamated.<br />

(D) Stage 14. Ventral view. The medial nasal, lateral nasal <strong>and</strong> maxillary processes<br />

have merged. Note bulges for <strong>the</strong> primary palate <strong>and</strong> <strong>the</strong> anterior/dorsal extension <strong>of</strong> <strong>the</strong><br />

nostrils. (E) Stage 15. Ventral view. The development <strong>of</strong> <strong>the</strong> anterior/dorsal bulges has displaced<br />

<strong>the</strong> external nares dorsally. The primary palate bulges <strong>and</strong> <strong>the</strong> maxillary processes are<br />

evident <strong>and</strong> <strong>the</strong> lower jaw is half-way beneath <strong>the</strong> upper jaw. (F) Early Stage 17 viewed from<br />

below. The lower jaw is behind <strong>the</strong> primary palate bulges. (G) Late Stage 17 viewed from<br />

below. Note <strong>the</strong> forward growth <strong>of</strong> <strong>the</strong> lower jaw. (H) Crocodylus Ililoticus. Stage 20. Lateral<br />

view illustrating <strong>the</strong> shift <strong>of</strong> <strong>the</strong> lower jaw beneath <strong>the</strong> primary palate, <strong>the</strong> notch in <strong>the</strong> upper<br />

jaw (arrowed) in <strong>the</strong> region <strong>of</strong> junction <strong>of</strong> <strong>the</strong> lateral nasal, medial nasal <strong>and</strong> maxillary processes<br />

(which will later become <strong>the</strong> notch for <strong>the</strong> large fourth dentary tooth), <strong>the</strong> elevated<br />

nasal disc, denticles, caruncle, lens, iris, eyelids <strong>and</strong> external ear flap. (I) Alligator mississippiellsis.<br />

Face-on view <strong>of</strong> <strong>the</strong> embryo shown in E. Note <strong>the</strong> development <strong>of</strong> <strong>the</strong> anterior nictitating<br />

membrane <strong>of</strong> <strong>the</strong> eye. (J) Stage 23. Oblique lateral view <strong>of</strong> <strong>the</strong> snout illustrating <strong>the</strong><br />

elevations for <strong>the</strong> sensory papillae on <strong>the</strong> jaw margins, <strong>the</strong> ventral scales on <strong>the</strong> floor <strong>of</strong> <strong>the</strong><br />

mouth <strong>and</strong> <strong>the</strong> subm<strong>and</strong>ibular odoriferous gl<strong>and</strong>. (K) Stage 24. View <strong>the</strong> top <strong>of</strong> <strong>the</strong> head. Note<br />

<strong>the</strong> scalation. 0, denticles; E, caruncle; EN, external naris; G, subm<strong>and</strong>ibular odoriferous<br />

gl<strong>and</strong>; L, lateral nasal process; M, medial nasal process; MD, m<strong>and</strong>ibular process; MN, m<strong>and</strong>ible;<br />

MX, maxillary process; N, notch in <strong>the</strong> frontonasal process; NB, nostril bulges; NO,<br />

elevated nasal disc; Nt nictitating membrane; NP, nasal pit; P, primary palate bulges; S,<br />

sensory papillae; SC, cervical scutes; V, ventral scales on <strong>the</strong> floor <strong>of</strong> <strong>the</strong> mouth.


Fig. 25. Alligator mississippiensis. (A) Stage 17. View <strong>of</strong> <strong>the</strong> inside <strong>of</strong> <strong>the</strong> mouth (lower jaw<br />

<strong>and</strong> tongue removed). Note <strong>the</strong> closed primary palate, <strong>the</strong> secondary palatal shelves, which<br />

have grown out from <strong>the</strong> maxillary processes on each side but which do not yet contact each<br />

o<strong>the</strong>r, <strong>the</strong> closing tectoseptal processes, caruncle <strong>and</strong> denticles. (B) Early Stage 18. Palatal<br />

view. The secondary palate is half closed. Note <strong>the</strong> V-shaped margins <strong>of</strong> <strong>the</strong> approximating<br />

palatal shelves. (C) Late Stage 18. Palatal view. The palate is three-quarters closed. (0) Stage<br />

19. Palatal view. The secondary palate <strong>and</strong> tectoseptal processes are almost completely closed.<br />

Note also <strong>the</strong> distinct anterior nictitating membrane <strong>of</strong> <strong>the</strong> eye <strong>and</strong> lower eyelid. (E) Early<br />

Stage 20. Palatal view. The palate is completely closed but <strong>the</strong> basihyal valve has not yet<br />

developed. (F) Stage 21. Palatal view. Note <strong>the</strong> development <strong>of</strong> <strong>the</strong> palatal plexus <strong>of</strong> blood<br />

vessels <strong>and</strong> <strong>the</strong> basihyal valve. (G) Stage 23. Palatal view. Note <strong>the</strong> extensive palatal plexus <strong>of</strong><br />

blood vessels <strong>and</strong> <strong>the</strong> outlines <strong>of</strong> <strong>the</strong> sensory papillae along <strong>the</strong> jaw margins. (H) Stage 19.<br />

View <strong>of</strong> <strong>the</strong> tongue <strong>and</strong> lower jaw. Note <strong>the</strong> denticles <strong>and</strong> teeth, epiglottis <strong>and</strong> swellings <strong>of</strong><br />

Fig. 26. Alligator mississippiensis. Views <strong>of</strong> <strong>the</strong> snout to show <strong>the</strong> development <strong>of</strong> <strong>the</strong> caruncle.<br />

(A) Late Stage 18. Frontal view. Caruncle is represented by two widely spaced elevations.<br />

The lower jaw has been removed. (B) Stage 19. Ventral view. Note that <strong>the</strong> two white blobs <strong>of</strong><br />

<strong>the</strong> caruncle have joined in <strong>the</strong> midline. (C) Stage 20. The caruncle now appears more solid.<br />

(0) Stage 21. (E) Stage 23. Note <strong>the</strong> smooth base <strong>of</strong> <strong>the</strong> bifid caruncle <strong>and</strong> elevations for <strong>the</strong><br />

pigmented sensory papillae (S) on <strong>the</strong> jaw margins. (F) Stage 25. Note that <strong>the</strong> smooth base <strong>of</strong><br />

<strong>the</strong> caruncle is pigmented. (G, H) Ventral <strong>and</strong> frontal views <strong>of</strong> Stage 27. E, Caruncle; S,<br />

sensory papillae.<br />

<strong>the</strong> paired hypobranchial eminences which will form <strong>the</strong> lower flap <strong>of</strong> <strong>the</strong> basihyal valve. (I)<br />

View <strong>of</strong> <strong>the</strong> tongue <strong>and</strong> lower jaw <strong>of</strong> Stage 22. Note <strong>the</strong> plexus <strong>of</strong> blood vessels in <strong>the</strong> lower<br />

jaw <strong>and</strong> <strong>the</strong> lower flap <strong>of</strong> <strong>the</strong> basihyal valve. A, Anterior nictitating membrane; B, basihyal<br />

valve; E, epiglottis; Ee, caruncle; D, denticles; H, hypobranchial eminences; L, lower eyelid;<br />

PP, primary palate; P, secondary palate; T, tectoseptal processes.


416<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

ORGANOGENESIS<br />

417<br />

wall to enclose <strong>the</strong> embryonic intestines, yolk sac <strong>and</strong> yolk; it ends with <strong>the</strong><br />

absorption <strong>of</strong> <strong>the</strong> latter into <strong>the</strong> abdominal cavity. Ventral skin forms across<br />

<strong>the</strong> yolk scar.<br />

Stage 28 [Figs. 21 <strong>and</strong> 23]<br />

At Stage 28 <strong>the</strong> yolk scar diminishes in length <strong>and</strong> width as <strong>the</strong> absorbed<br />

abdominal yolk is utilized. There are considerable variations both among<br />

<strong>and</strong> within species as to <strong>the</strong> volume <strong>of</strong> absorbed yolk <strong>and</strong> <strong>the</strong> size <strong>of</strong> <strong>the</strong><br />

yolk scar at hatching (which occurs at <strong>the</strong> end <strong>of</strong> this stage). These parameters<br />

may be influenced by <strong>the</strong> temperature <strong>of</strong> egg incubation (Ferguson <strong>and</strong><br />

Joanen, 1982, 1983). The growth <strong>and</strong> changing proportions <strong>of</strong> embryos <strong>of</strong><br />

A. mississippiensis from 12 days after egg laying to hatching are illustrated in<br />

Fig. 22.<br />

VII.<br />

ORGANOGENESIS<br />

A. Branchial Arches<br />

In Alligator mississippiensis (Parker, 1883; Clarke, 1891; Reese, 1908, 1912,<br />

1915a; Ferguson, 1984a), Crocodylus johnsoni (Ferguson, 1984a), C. porosus<br />

(Ferguson, 1984a), <strong>and</strong> C. niloticus (Voeltzkow, 1899), <strong>the</strong> five branchial<br />

arches appear in a cranio-caudal sequence (described in Section VI), beginning<br />

as a series <strong>of</strong> thickened epi<strong>the</strong>lial involutions in <strong>the</strong> pharynx (Figs.<br />

27C, E, <strong>and</strong> G). Initially, <strong>the</strong>se branchial pouches are internal grooves lined<br />

by thickened epi<strong>the</strong>lium but <strong>the</strong>y soon approximate <strong>the</strong> external branchial<br />

grooves. The pharyngeal endoderm fuses with <strong>the</strong> surface ectoderm to<br />

form true clefts in <strong>the</strong> dorsal half <strong>of</strong> <strong>the</strong> junctions between <strong>the</strong> 1st <strong>and</strong> 2nd<br />

<strong>and</strong> <strong>the</strong> 3rd <strong>and</strong> 4th arches (Ferguson, 1984a; Figs. 18, 19, 27C, 0, <strong>and</strong> G).<br />

In <strong>the</strong> remaining junctions, thin membranes <strong>of</strong> ectoderm, mesoderm, <strong>and</strong><br />

endoderm separate <strong>the</strong> external grooves from <strong>the</strong> internal pouches (Ferguson,<br />

1984a; Figs. 18, 19, 27C, 0, <strong>and</strong> G).<br />

The first branchial cleft migrates dorsally until it overlies <strong>the</strong> otocyst near<br />

which it forms <strong>the</strong> external meatus <strong>of</strong> <strong>the</strong> ear (Ferguson, 1984a, Figs. 27H<br />

<strong>and</strong> I). Auricular hillocks develop along its ventral margin, which becomes<br />

<strong>the</strong> superior flap <strong>of</strong> <strong>the</strong> external ear (Figs. 27H <strong>and</strong> I).<br />

The third branchial cleft is transitory. Its epi<strong>the</strong>lia become specialized<br />

<strong>and</strong> develop numerous cilia <strong>and</strong> cell processes, which extend from epi<strong>the</strong>lial<br />

cells on one side <strong>of</strong> <strong>the</strong> cleft to those on <strong>the</strong> o<strong>the</strong>r (Ferguson, 1982b,<br />

1984a). In this way, <strong>the</strong> two epi<strong>the</strong>lia oppose one ano<strong>the</strong>r, fuse, <strong>and</strong> migrate,<br />

thus closing <strong>the</strong> branchial clefts (Ferguson, 1982b, 1984a). In fish,<br />

patent branchial clefts separate all <strong>the</strong> arches to form gills, whereas mammals<br />

lack patent branchial clefts (Sperber, 1981). The limiting membrane<br />

becomes <strong>the</strong> tympanum in <strong>the</strong> remodeling <strong>of</strong> <strong>the</strong> first branchial groove <strong>and</strong><br />

pouch in mammals; tympanic development in crocodilians has not been<br />

reported. The significance <strong>of</strong> <strong>the</strong> transitory opening <strong>of</strong> <strong>the</strong> third cleft is<br />

unknown. The branchial sinus forms at <strong>the</strong> base <strong>of</strong> <strong>the</strong> most caudal branchial<br />

arch (Fig. 270); its specialized epi<strong>the</strong>lium invades <strong>the</strong> underlying<br />

pharyngeal mesoderm (Ferguson, 1982b, 1984a).<br />

Each branchial arch is covered externally by ectoderm <strong>and</strong> internally by<br />

endoderm, which extends to <strong>the</strong> outer border <strong>of</strong> <strong>the</strong> m<strong>and</strong>ibular arch (Fig.<br />

27G) <strong>and</strong> consists <strong>of</strong> a central core <strong>of</strong> mesoderm surrounded by a mass <strong>of</strong><br />

mesenchymal cells derived from <strong>the</strong> neural crest (Ferguson, 1981a). Preliminary<br />

experiments, involving surgical excision or chemical destruction<br />

<strong>of</strong> alligator neural crest cells <strong>and</strong> heterotypic grafting <strong>of</strong> quail neural crest<br />

cells at different levels <strong>of</strong> <strong>the</strong> neuraxis (Ferguson, 1981a, 1982b, 1984a,<br />

unpubl.) suggest that neural crest cells migrate in temporally distinct<br />

waves from different levels <strong>of</strong> <strong>the</strong> neuraxis. Crest cells destined for <strong>the</strong><br />

m<strong>and</strong>ibular arch <strong>and</strong> its maxillary processes migrate from <strong>the</strong> rostral <strong>and</strong><br />

caudal levels <strong>of</strong> <strong>the</strong> mesencephalon, respectively (Ferguson, 1981a). It is<br />

<strong>the</strong>refore possible selectively to block <strong>the</strong> migration <strong>of</strong> various waves <strong>of</strong><br />

neural crest cells to produce alligators with normal maxillary processes <strong>and</strong><br />

<strong>the</strong>refore a normal upper jaw <strong>and</strong> palate, but with virtually no lower jaw or<br />

tongue (Fig. 37E; Ferguson, 1981a, 1984a). This technique, combined with<br />

shell-less, or semi-shell-Iess culture, has enabled palatal development to be<br />

viewed as it happens; this is <strong>the</strong> first such longitudinal study in any animal<br />

(Ferguson, 1981a, 1982b, 1984a).<br />

Each branchial arch also contains its own aortic arch artery <strong>and</strong> appropriate<br />

cranial nerve (Figs. 18, 19, <strong>and</strong> 27G). The neural crest cells appear to<br />

give rise to all <strong>of</strong> <strong>the</strong> skeletal <strong>and</strong> connective tissues <strong>of</strong> <strong>the</strong> face, apart from<br />

striated muscle which is derived from <strong>the</strong> arch mesoderm; <strong>the</strong>se preliminary<br />

data (Ferguson, 1981a, 1982b) indicate that <strong>the</strong> general pattern <strong>of</strong><br />

neural crest derivatives in alligators is comparable to that in birds<br />

(LeOouarin, 1982). Macroscopic descriptions <strong>of</strong> branchial arch development<br />

<strong>and</strong> closure <strong>of</strong> <strong>the</strong> cervical sinus are given in Section VI <strong>and</strong> in<br />

Ferguson (1984a). Descriptive accounts <strong>of</strong> <strong>the</strong> branchial pouch derivatives<br />

<strong>and</strong> <strong>the</strong> cartilaginous, bony <strong>and</strong> muscular derivatives <strong>of</strong> <strong>the</strong> branchial<br />

arches exist for several species <strong>and</strong> include comparative comments with<br />

o<strong>the</strong>r vertebrates (Parker, 1883; Voeltzkow, 1903a,b; Reese, 1908, 1915a;<br />

Edgeworth, 1907; Goodrich, 1930; Pasteels, 1950; Oalcq <strong>and</strong> Pasteels, 1954).<br />

First branchial arches excised from Stage 10 alligator embryos can be<br />

cultured in vitro at 30°C <strong>and</strong> 37°C (Ferguson et al., 1981, 1983). In general,<br />

chemically defined, serumless media at 37°C are useful for short-term (up<br />

to 14 days) studies, whereas serum supplemented media at 30°C are useful<br />

for long-term (up to 60 days) studies. Explanted arches consist initially <strong>of</strong><br />

lobulated cylinders <strong>of</strong> undifferentiated mesenchyme covered by epi<strong>the</strong>lium<br />

(Fig. 27G). They undergo normal morphogenesis <strong>and</strong> differentiation<br />

in culture (Figs. 29A <strong>and</strong> B; Ferguson et al., 1982, 1983). Paired lingual<br />

swellings form a tongue-like structure. Blastematae for <strong>the</strong> Mm. genioglos­


ORGANOGENESIS<br />

419<br />

sus, hyoglossus, <strong>and</strong> interm<strong>and</strong>ibularis, <strong>the</strong> dentary, splenial, <strong>and</strong> angular<br />

bones, Meckel's cartilages, lingual lipid, <strong>and</strong> fibrous tissue appear <strong>and</strong> are<br />

patterned comparable to those seen in vivo (Figs. 29A <strong>and</strong> B; Ferguson et<br />

al., 1982, 1983). However, anlagen for taste buds <strong>and</strong> teeth are absent. The<br />

differentiation <strong>of</strong> alligator branchial arches in vitro is superior to that for<br />

any o<strong>the</strong>r vertebrate studied to date, so that <strong>the</strong>y are useful models for<br />

investigation <strong>of</strong> a variety <strong>of</strong> developmental phenomena.<br />

B. Fses snd Noss<br />

There are accounts <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> face <strong>and</strong> nose for several<br />

genera: Alligator (Rathke, 1866; Clarke, 1891; Reese, 1901b, 1908, 1915a,<br />

1925; Bertau, 1935; Wettstein, 1954; Parsons, 1959a, 1970; Ferguson, 1981a,<br />

b, 1982b, 1984a), Caiman (Rathke, 1866; Parsons, 1970; Saint Girons, 1976),<br />

Melanosuchus (Bertau, 1935; Parsons, 1970) <strong>and</strong> Crocodylus (Rathke, 1866;<br />

Meek, 1893, 1911; Rose, 1893a, b; Seydel, 1896, 1899; Voeltzkow, 1899;<br />

Bertau, 1935; Wettstein, 1954; Wegner, 1957; Parsons, 1959a, b, 1970;<br />

Guibe, 1970m; Saint Girons, 1976; Bellairs, 1977; Ferguson, 1984a). That <strong>of</strong><br />

Cavialis is unknown except for a figure in Bruhl (1866), an illustration by<br />

Bustard (1980c) <strong>and</strong> a description <strong>of</strong> <strong>the</strong> nasal excrescence (Martin <strong>and</strong> A.<br />

d'A. Bellairs, 1977). Butler (1905) notes that <strong>the</strong> snout <strong>of</strong> ei<strong>the</strong>r Cavialis or<br />

Tomistoma is shorter <strong>and</strong> wider in <strong>the</strong> embryo than in <strong>the</strong> adult (but see<br />

(,<br />

Fig. 27. Alligator mississippiensis. Embryos. (A-D) <strong>and</strong> (F-G); Crocodylus lliloticus. (E-I). (A)<br />

Stage 7. Scanning electron micrograph (SEM) <strong>of</strong> <strong>the</strong> cranial aspect. Note <strong>the</strong> first <strong>and</strong> second<br />

branchial arches <strong>and</strong> first branchial cleft (arrowed). (B) Stage 8. Face-on view. Note <strong>the</strong><br />

midline fissure <strong>and</strong> facial processes. (C) Stage 9. Scanning electron micrograph. Note <strong>the</strong> four<br />

branchial arches, grooves <strong>and</strong> clefts, nasal pit, limb buds, <strong>and</strong> tail. (D) Higher power view <strong>of</strong><br />

C illustrating <strong>the</strong> true 1st <strong>and</strong> 3rd branchial arch clefts (arrowed), <strong>the</strong> four branchial arches<br />

<strong>and</strong> <strong>the</strong> branchial sinus. The apparent cleft between <strong>the</strong> 2nd <strong>and</strong> 3rd arches is an artifact. (E)<br />

Stage 10. Note <strong>the</strong> nasal pits <strong>and</strong> surrounding nasal processes, <strong>the</strong> lens <strong>and</strong> surrounding optic<br />

cup, <strong>the</strong> second branchial arch starting to overgrow arch 3, <strong>the</strong> 1st branchial cleft ventral to <strong>the</strong><br />

otocyst <strong>and</strong> <strong>the</strong> brain regions. (After Voeltzkow, 1899.) (F) Stage 14. SEM illustrating closure<br />

<strong>of</strong> <strong>the</strong> nasal pit slits by <strong>the</strong> medial nasal, lateral nasal <strong>and</strong> maxillary processes. Note <strong>the</strong><br />

intraoral bulges <strong>of</strong> <strong>the</strong> club shaped maxillary processes, signifying <strong>the</strong> onset <strong>of</strong> secondary<br />

palate development, <strong>the</strong> anterodorsal elevations <strong>of</strong> <strong>the</strong> medial nasal processes <strong>and</strong> <strong>the</strong> enlarging<br />

m<strong>and</strong>ible. Compare with Figure D. (G) Stage 9. Horizontal hematoxylin <strong>and</strong> eosin section<br />

through <strong>the</strong> five branchial arches (1-5). Note <strong>the</strong> thick endoderm, thinner ectoderm, branchial<br />

grooves <strong>and</strong> pouches, aortic arch arteries,<strong>and</strong> branchiomeric nerves. (H, I) Stages 12 <strong>and</strong><br />

15. Two diagrams illustrating <strong>the</strong> rearrangement <strong>of</strong> <strong>the</strong> first branchial cleft to form <strong>the</strong> external<br />

ear <strong>and</strong> superior ear flap. (After Voeltzkow, 1899.) A, Auricular hillocks; AA, aortic arch<br />

arteries; AD, anterodorsal elevations <strong>of</strong> nasal processes; BN, branchiomeric nerves; BP, branchial<br />

pouches; BS, branchial sinus; e, first branchial cleft; 0, denticles; E, eye; Ee, ectoderm;<br />

EN, endoderm; EX, external surface. F, ear flap; FL, fore limbbud; G, branchial grooves; H,<br />

hindbrain; HL, hind limbbud; LN, lateral nasal process; M, midbrain; MA, m<strong>and</strong>ibular process;<br />

MD, m<strong>and</strong>ible; MN, medial nasal process; MX, maxillary process; N, nasal placode; NP,<br />

nasal pit; 0, optic placode; Oe, optic cup; OT, otocyst; P, palatal shelves; PE, pericardial sac;<br />

PH, pharynx; 1, 2, 3, 4, branchial arches 1-4.


420 REPROOUCTIVE SIOLOGY ANO EMSRYOLOGY OF CROCOOILIANS<br />

Bustard, 1980c for a photograph <strong>of</strong> a Cavialis hatchling with a long thin<br />

snout). The literature on crocodilian nasal embryology has been reviewed<br />

by Parsons (1959a, 1970). The buccopharyngeal membrane initially separates<br />

<strong>the</strong> surface ectoderm from <strong>the</strong> pharyngeal endoderm (Parker, 1883).<br />

After its rupture, <strong>the</strong> primitive mouth is bounded by <strong>the</strong> forebrain above<br />

<strong>and</strong> <strong>the</strong> pericardial sac below. The differentiation <strong>of</strong> Rathke's pouch <strong>and</strong><br />

<strong>the</strong> pituitary is discussed in Sections VII.I <strong>and</strong> P <strong>and</strong> for reptiles in general<br />

by Pearson, Chapter 9, this volume.<br />

Facial development in Alligator mississippiensis (Ferguson, 1981a, b,<br />

1982b, 1984a), Crocodylus johnsoni <strong>and</strong> C. porosus (Ferguson, 1984a) may be<br />

summarized as follows (for chronology, see Section VI). The first sign <strong>of</strong><br />

nasal development is <strong>the</strong> appearance <strong>of</strong> bilateral epi<strong>the</strong>lial thickenings on<br />

<strong>the</strong> anterolateral aspects <strong>of</strong> <strong>the</strong> forebrain bulge (Fig. 27A). These nasal<br />

placodes invaginate toward <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> primitive oronasal cavity <strong>and</strong><br />

form <strong>the</strong> nasal pits (Fig. 27A). As <strong>the</strong> nasal pits invaginate, two rims <strong>of</strong><br />

tissue are embossed outward around <strong>the</strong>ir surface openings to form <strong>the</strong><br />

medial nasal <strong>and</strong> lateral nasal processes (Figs. 24B, 27B <strong>and</strong> F). The area<br />

between <strong>the</strong> two nasal pits (including <strong>the</strong> medial nasal processes <strong>of</strong> each<br />

side) is known as <strong>the</strong> frontonasal process <strong>and</strong> is divided by a medial groove<br />

(Fig. 24B).<br />

Bilateral maxillary processes arise from <strong>the</strong> dorsal ends <strong>of</strong> <strong>the</strong> m<strong>and</strong>ibular<br />

arch (Figs. 24A-C, 27A, B, <strong>and</strong> F) <strong>and</strong> grow forward from <strong>the</strong> angles <strong>of</strong><br />

<strong>the</strong> primitive mouth cavity to form progressively more <strong>of</strong> its cranial borders<br />

(Figs. 19, 24A-D, 27A, B, <strong>and</strong> F). The club-shaped maxillary processes<br />

form <strong>the</strong> lower boundaries <strong>of</strong> <strong>the</strong> developing eye (Figs. 19, 24A-D, <strong>and</strong><br />

27F). Mesenchyme in <strong>the</strong> maxillary processes derives principally from <strong>the</strong><br />

mesencephalic neural crest, whereas that in <strong>the</strong> medial <strong>and</strong> lateral nasal<br />

processes derives principally from <strong>the</strong> prosencephalic neural crest. The<br />

maxillary mesenchymal cells migrate along several routes. Extra-orally<br />

<strong>the</strong>y migrate forward to form an ever increasing portion <strong>of</strong> <strong>the</strong> upper<br />

margin <strong>of</strong> <strong>the</strong> stomodeum; also, <strong>the</strong>y pass between <strong>the</strong> developing eye<br />

<strong>and</strong> ear <strong>and</strong> between <strong>the</strong> developing eye <strong>and</strong> lateral nasal process, demarcating<br />

<strong>the</strong> naso-optic furrow between <strong>the</strong> lateral nasal <strong>and</strong> maxillary processes.<br />

The furrow eventually closes entrapping an epi<strong>the</strong>lial rod, which<br />

canalizes to form <strong>the</strong> naso-Iacrimal duct. Intra-orally <strong>the</strong> maxillary processes<br />

have two principal advancing fronts <strong>of</strong> migrating mesenchymal<br />

cells, namely <strong>the</strong> tectoseptal processes <strong>and</strong> <strong>the</strong> palatal shelves (Section<br />

VILC).<br />

The invaginating nasal pits fuse with epi<strong>the</strong>lium in <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong><br />

oronasal cavity so forming <strong>the</strong> primitive nasal cavities with anterior <strong>and</strong><br />

posterior choanae. The posterior choanae open into <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> mouth a<br />

few millimeters behind <strong>the</strong> anterior choanae. By a combination <strong>of</strong> extremely<br />

rapid outward proliferation <strong>of</strong> <strong>the</strong> medial nasal <strong>and</strong> lateral nasal<br />

processes <strong>and</strong> a caudal extension <strong>of</strong> nasal pit invagination, <strong>the</strong> nasal pit<br />

slits develop between <strong>the</strong> ipsilateral medial <strong>and</strong> lateral nasal processes<br />

ORGANOGENESIS 421<br />

(Figs. 24A <strong>and</strong> B). The club-shaped maxillary processes come to lie beneath<br />

<strong>the</strong> nasal pit slits, which are eventually closed as <strong>the</strong> maxillary processes<br />

unite with <strong>the</strong> lateral <strong>and</strong> medial nasal processes (Figs. 240 <strong>and</strong> 27F). This<br />

uniting involves limited cell death <strong>and</strong> extensive migration <strong>of</strong> epi<strong>the</strong>lial<br />

cells, which exhibit a characteristic cobblestoned, villous morphology.<br />

Throughout this period, differential growth <strong>of</strong> <strong>the</strong> head brings <strong>the</strong> nasal<br />

pits <strong>and</strong> related processes from <strong>the</strong>ir early lateral positions (Figs. 27A <strong>and</strong><br />

B) closer to one ano<strong>the</strong>r in <strong>the</strong> midline (Figs. 24A-D <strong>and</strong> 27F).<br />

The adjacent medial nasal processes develop paired intraoral projections,<br />

which merge to form <strong>the</strong> primary palate <strong>and</strong> primary nasal septum.<br />

Differential growth <strong>of</strong> extraoral caudal elevations <strong>of</strong> <strong>the</strong> medial nasal processes<br />

shifts <strong>the</strong> anterior nasal choanae from <strong>the</strong> tip <strong>of</strong> <strong>the</strong> snout to <strong>the</strong><br />

adult dorsal position (Figs. 240 <strong>and</strong> E, 27F). The posterior nasal choanae<br />

now open behind <strong>the</strong> primary palate. The development <strong>of</strong> <strong>the</strong> secondary<br />

palate <strong>and</strong> associated structures is discussed in Section VII. C.<br />

Later, cartilage, bone, <strong>and</strong> muscle differentiate in various parts <strong>of</strong> <strong>the</strong><br />

facial <strong>and</strong> nasal skeleton, <strong>the</strong> nasal epi<strong>the</strong>lium becomes regionally specialized,<br />

<strong>the</strong> anlagen <strong>of</strong> <strong>the</strong> nasal gl<strong>and</strong>s <strong>and</strong> ducts appear, <strong>and</strong> <strong>the</strong> complex<br />

conchae <strong>and</strong> recesses, which characterize <strong>the</strong> crocodilian nose, begin to<br />

form (Bertau, 1935; Parsons, 1959a, 1970; Saint Girons, 1976).<br />

c. Palate snd Nasopharyngeal Duct<br />

Unlike any o<strong>the</strong>r reptiles, adult crocodilians have a mammal-like secondary<br />

palate composed <strong>of</strong> <strong>the</strong> sutured palatal processes <strong>of</strong> <strong>the</strong> maxillary,<br />

palatine <strong>and</strong> pterygoid bones (His, 1892; Moll, 1888; Busch, 1898; Gappert,<br />

1903; Voeltzkow, 1903b; H<strong>of</strong>fman, 1905; Fuchs, 1907, 1908, 1910; Sippel,<br />

1907, Fleischmann, 1910; Thater, 1910; Lakjer, 1927; Barge, 1937; Peter,<br />

1949; A. d'A. Bellairs <strong>and</strong> Boyd, 1957; Pasteels, 1950; Guibe, 1970b; Iordansky,<br />

1973; Ferguson, 1981a, b, 1982b, 1984a). It is even unlike <strong>the</strong> avian<br />

palate, which is muscular <strong>and</strong> permanently cleft (Sippel, 1907; Barge, 1937;<br />

Pasteels, 1950; A. d'A. Bellairs <strong>and</strong> Jenkin, 1960). Crocodilian embryos are<br />

<strong>the</strong>refore useful in studies <strong>of</strong> normal <strong>and</strong> abnormal crani<strong>of</strong>acial development,<br />

largely because <strong>of</strong> <strong>the</strong>ir accessibility to experimental manipulations<br />

inside <strong>the</strong> egg (Ferguson 1979a, 1981a, b, 1982b, 1984; Ferguson <strong>and</strong><br />

Honig, 1984; Ferguson et al., 1981).<br />

Some macroscopic drawings <strong>of</strong> <strong>the</strong> palates <strong>of</strong> embryos appear in His<br />

(1892), Voeltzkow (1899), Gappert (1903), Sippel (1907), <strong>and</strong> Fleischmann<br />

(1910), but no histological details <strong>of</strong> palatogenesis are given. More detailed<br />

studies <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> nasopharyngeal duct by Fuchs (1908)<br />

<strong>and</strong> Muller (1965, 1967) contain errors (see below; Ferguson, 1981b, 1984a).<br />

The following account is based on investigations <strong>of</strong> Alligator mississippiensis<br />

(Ferguson 1981a,b,d, 1982b, 1984a; Ferguson et al., 1984; Ferguson <strong>and</strong><br />

Honig, 1984) <strong>and</strong> <strong>of</strong> Crocodylus johnsoni <strong>and</strong> C. porosus (Ferguson, 1984a).<br />

Description <strong>of</strong> <strong>the</strong> early development <strong>of</strong> <strong>the</strong> alligator face (Section VILB)


4ee<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

indicates that <strong>the</strong> paired maxillary processes each develop two intra-oral<br />

migratory fronts <strong>of</strong> mesenchymal cells, namely <strong>the</strong> tectoseptal processes<br />

<strong>and</strong> <strong>the</strong> palatal shelves.<br />

The bilateral tectoseptal processes migrate superiorly between <strong>the</strong> floor<br />

<strong>of</strong> <strong>the</strong> brain <strong>and</strong> <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> oronasal cavity; eventually merging with<br />

one ano<strong>the</strong>r along <strong>the</strong> midline in a progressive anteroposterior direction<br />

(Figs. 25A-O <strong>and</strong> 28B). Anteriorly, <strong>the</strong> merged tectoseptal processes grow<br />

downward to form <strong>the</strong> secondary nasal septum (Fig. 28A).<br />

The bilateral palatal shelves arise from <strong>the</strong> maxillary processes as thick,<br />

blunt-ended structures (Figs. 25A-O, 28A <strong>and</strong> B), which grow horizontally<br />

from <strong>the</strong>ir first appearance (Fig. 28A), except in <strong>the</strong> posterior one-fifth <strong>of</strong><br />

<strong>the</strong> palate where <strong>the</strong>y are more vertically oriented (Fig. 28B). With later<br />

development, <strong>the</strong>se posterior shelves gradually flow over <strong>the</strong> tongue to<br />

become truly horizontal (Figs. 28C <strong>and</strong> 0). The reorientation involves <strong>the</strong><br />

migration <strong>of</strong> mesenchymal <strong>and</strong> epi<strong>the</strong>lial cells, <strong>the</strong> hydration <strong>of</strong> palatal<br />

glycosaminoglycans, <strong>the</strong> contraction <strong>of</strong> micr<strong>of</strong>ilaments, <strong>and</strong> differential<br />

mesenchymal proliferation. The shelves first approximate each o<strong>the</strong>r anteriorly<br />

behind <strong>the</strong> primary palate <strong>and</strong> from <strong>the</strong>re closure spreads backward<br />

(Figs. 25A-O, 28C, <strong>and</strong> 0). Palatal closure occurs principally during Stage<br />

18 <strong>and</strong> is characterized macroscopically by a V-shaped gap along which <strong>the</strong><br />

posterior margins <strong>of</strong> <strong>the</strong> opposing shelves approximate each o<strong>the</strong>r (Figs.<br />

25B <strong>and</strong> C, 28E). Palatal closure has been studied in normal cross-sectional<br />

sequences <strong>and</strong> also in ovo in <strong>the</strong> same embryo (longitudinal sequence)<br />

developing in a semi-sheIl-less culture (Ferguson, 1981a, 1982b, 1984).<br />

The process <strong>of</strong> palatal closure involves contact <strong>and</strong> adherence <strong>of</strong> <strong>the</strong><br />

epi<strong>the</strong>lial cells <strong>of</strong> <strong>the</strong> two shelves beginning on <strong>the</strong> oral aspect <strong>of</strong> <strong>the</strong> shelf<br />

margins <strong>and</strong> spreading nasally (Figs. 28C <strong>and</strong> 0). Cell death is limited to<br />

<strong>the</strong> small area <strong>of</strong> initial contact, after which <strong>the</strong> epi<strong>the</strong>lial cells <strong>of</strong> <strong>the</strong> two<br />

shelves migrate nasally <strong>and</strong> posteriorly out <strong>of</strong> <strong>the</strong> region <strong>of</strong> closure (Figs.<br />

28C, 0, <strong>and</strong> E). There is never an extensive epi<strong>the</strong>lial seam (Fig. 28C) <strong>and</strong><br />

epi<strong>the</strong>lial remnants cannot be detected following closure. Numerous small<br />

blood vessels in <strong>the</strong> shelf mesenchyme adjacent to <strong>the</strong> area <strong>of</strong> closure<br />

represent <strong>the</strong> earliest development <strong>of</strong> <strong>the</strong> palatal vascular plexus that<br />

characterizes late embryos (Figs. 24F <strong>and</strong> G) <strong>and</strong> adults. Mesenchymal<br />

continuity is usually established on <strong>the</strong> oral edges <strong>of</strong> <strong>the</strong> palatal shelves<br />

before <strong>the</strong> nasal edges are in contact (Fig. 28C). Anteriorly, <strong>the</strong> shelves<br />

Fig. 28. Alligator mississippiensis. (A) Stage 17. Mallory stain. Transverse section through<br />

head. Note <strong>the</strong> horizontal palatal shelves, bulge from <strong>the</strong> nasal septum, tongue, Meckel's<br />

cartilages, <strong>and</strong> interm<strong>and</strong>ibularis muscle. (B) Stage 17. More posterior section <strong>of</strong> H & E <strong>and</strong><br />

Alcian Blue stained specimen. Note <strong>the</strong> vertical secondary palatal shelves, closing tectoseptal<br />

processes, anlage <strong>of</strong> <strong>the</strong> anterior pterygoid muscle, Meckel's cartilages, anlagen for <strong>the</strong> interm<strong>and</strong>ibularis,<br />

genioglossus, <strong>and</strong> hyoglossus muscles. (C) Stage 18. Transverse section<br />

through <strong>the</strong> closing secondary palatal shelves (Mallory stained). Shelf contact <strong>and</strong> mesenchymal<br />

continuity are established on <strong>the</strong> oral edges <strong>of</strong> <strong>the</strong> shelves, before <strong>the</strong> nasal edges have<br />

j~~V<br />

~:~fi<br />

..•••..•<br />

"~"<br />

F~, .' .<br />

,,»,,~!,.. ......,.<br />

.~<br />

even contacted each o<strong>the</strong>r. Epi<strong>the</strong>lial seam absent. The matrix stains positively for glycosaminoglycans<br />

<strong>and</strong> numerous blood vessels are present. (D) Stage 18. Scanning electron<br />

micrograph <strong>of</strong> palate. Note <strong>the</strong> closing palatal shelves, midline palatal elevation, primary<br />

palatal bulge, denticles, caruncle, <strong>and</strong> eyes. (E) SEM <strong>of</strong> <strong>the</strong> medial edge epi<strong>the</strong>lial cells in <strong>the</strong><br />

region <strong>of</strong> palatal closure seen in (D). Note <strong>the</strong> markedly cobblestoned appearance <strong>and</strong> numerous<br />

microvilli, both characteristic <strong>of</strong> cell migration. (F) Stage 18. SEM <strong>of</strong> <strong>the</strong> developing tongue<br />

<strong>and</strong> lower jaw. Note <strong>the</strong> paired lingual swellings, tuberculum impar, hypobranchial eminences,<br />

developing larynx <strong>and</strong> epiglottis, <strong>and</strong> denticles. The elevated hypobranchial eminences<br />

later form from <strong>the</strong> inferior flaps <strong>of</strong> <strong>the</strong> basihyal valve-see Figs. 25H <strong>and</strong> I. A,<br />

Anterior pterygoid muscle; B, bulge from <strong>the</strong> nasal septum; C, caruncle; 0, denticles; E, eye;<br />

G, genioglossus muscle; H, hyoglossus muscle; HB, hypobranchial eminences; I, interm<strong>and</strong>ibularis<br />

muscle; L, lingual swellings; LA, larynx; M, Meckel's cartilages; MP, midline palatal<br />

elevation; P, palatal shelves; PP, primary palatal bulge; T, tongue; II, tuberculum impar; TS,<br />

tectoseptal process.


424 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY 01= CROCOOILIANS<br />

merge with each o<strong>the</strong>r <strong>and</strong> with <strong>the</strong> bulging downgrowth <strong>of</strong> <strong>the</strong> secondary<br />

nasal septum (Figs. 28A <strong>and</strong> C) to produce a continuation <strong>of</strong> <strong>the</strong> partitioned<br />

nasopharyngeal duct (Fig. 28A). Posteriorly <strong>the</strong> palatal shelves merge to<br />

produce an unpartitioned duct (Fig. 28C), which is subsequently partitioned<br />

by <strong>the</strong> fusion <strong>of</strong> internal midline ductal bulges. Thus, <strong>the</strong> posterior<br />

nasal choanae are progressively displaced posteriorly as <strong>the</strong> secondary<br />

palate develops. The epi<strong>the</strong>lial cells <strong>of</strong> <strong>the</strong> medial edges <strong>of</strong> <strong>the</strong> closing<br />

palatal shelves have characteristic surface topographies (Figs. 280 <strong>and</strong> E).<br />

Initially <strong>the</strong>y are flat <strong>and</strong> ra<strong>the</strong>r featureless, but <strong>the</strong>y become progressively<br />

more bulbous <strong>and</strong> develop surface microvilli <strong>and</strong> distinct cell boundaries so<br />

that by <strong>the</strong> time <strong>of</strong> shelf contact <strong>the</strong>y are markedly cobblestoned <strong>and</strong> villous,<br />

an appearance characteristic <strong>of</strong> migrating epi<strong>the</strong>lia (Figs. 280 <strong>and</strong> E).<br />

Medial edge, oral, <strong>and</strong> nasal epi<strong>the</strong>lial differentiation, palatal closure, <strong>and</strong><br />

mesenchymal differentiation occur in palatal shelves cultured in chemically<br />

defined or serum supplemented media (Figs. 29C,0, <strong>and</strong> E; Ferguson et<br />

al., 1984).<br />

Palatal development in alligators differs from that <strong>of</strong> mammals <strong>and</strong><br />

birds. Initially, mammalian palatal shelves grow vertically downward, lateral<br />

to <strong>the</strong> tongue, <strong>and</strong> suddenly elevate to a horizontal position above <strong>the</strong><br />

tongue; <strong>the</strong> opposing medial edge epi<strong>the</strong>lia fuse in a seam <strong>and</strong> <strong>the</strong>n die, so<br />

that mesenchymal continuity is established across <strong>the</strong> definitive secondary<br />

palate (Ferguson, 1977, 1978a, b). Avian palatal shelves, like those <strong>of</strong><br />

crocodilians, are horizontal from <strong>the</strong>ir first appearance. The epi<strong>the</strong>lia <strong>of</strong><br />

Fig. 29. Alligator mississippiensis. Explants. (A) Macroscopic view <strong>of</strong> first branchial arch explanted<br />

at Stage 10 <strong>and</strong> <strong>org</strong>an cultured for 14 days in serum supplemented media at 30OC.<br />

Note <strong>the</strong> m<strong>and</strong>ibular shape <strong>and</strong> <strong>the</strong> ventral aspect <strong>of</strong> <strong>the</strong> tongue tip. (B) Transverse section<br />

through an explanted first branchial arch after 36 days culture in serum supplemented media<br />

at 30°C. Note <strong>the</strong> tongue, Meckel's cartilages, <strong>and</strong> osteogenic blastemata for <strong>the</strong> lower jaw<br />

bones. (C) Scanning electron micrograph (SEM) <strong>of</strong> closing palatal shelves explanted from a<br />

20-day embryo <strong>and</strong> cultured for three days in chemically defined serumless media at 3TC. (0)<br />

Higher power view <strong>of</strong> <strong>the</strong> area <strong>of</strong> closure. Note <strong>the</strong> cobblestoned, villous, migrating medial<br />

edge epi<strong>the</strong>lia, which are similar to those seen in uitro (Fig. 28E.). (E) SEM <strong>of</strong> <strong>the</strong> medial edge<br />

epi<strong>the</strong>lia <strong>of</strong> a control recombination <strong>of</strong> alligator palatal epi<strong>the</strong>lium <strong>and</strong> alligator palatal mesenchyme<br />

cultured for three days in media containing serum at 37°C. (F) SEM <strong>of</strong> a recombination<br />

<strong>of</strong> alligator m<strong>and</strong>ibular epi<strong>the</strong>lium on alligator palatal mesenchyme cultured for 3.5 days in<br />

media containing serum at 37OC. Note <strong>the</strong> differentiation into stratified squamous oral<br />

epi<strong>the</strong>lia (0). cobblestoned, villous medial edge epi<strong>the</strong>lia (M) <strong>and</strong> ciliated columnar nasal<br />

epi<strong>the</strong>lia (N). (G) SEM <strong>of</strong> a recombination <strong>of</strong> mouse palatal epi<strong>the</strong>lium on alligator palatal<br />

mesenchyme with <strong>the</strong> medial edges <strong>of</strong> <strong>the</strong> two opposed. Cultured for 3.5 days in media<br />

containing serum at 37°C. Note <strong>the</strong> oral. nasal. <strong>and</strong> medial edge epi<strong>the</strong>lia. The latter is<br />

cobblestoned, villous <strong>and</strong> exhibits little cell death, a pattern typical <strong>of</strong> alligator (Fig. E. above),<br />

not mouse (see Fig. H.). (H) SEM <strong>of</strong> mouse palatal shelf cultured for 3.5 days in media<br />

containing serum at 37°C. Note <strong>the</strong> stratified squamous oral. ciliated columnar nasal epi<strong>the</strong>lia,<br />

<strong>and</strong> <strong>the</strong> massive epi<strong>the</strong>lial cell death along <strong>the</strong> medial edge (compare with Figs. E. <strong>and</strong> G.). M,<br />

Medial epi<strong>the</strong>lium; ME, Meckel's cartilage; N, nasal epi<strong>the</strong>lium; 0, oral epi<strong>the</strong>lium; OB,<br />

osteogenic blastemata; T, tongue.


426 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

<strong>the</strong>ir medial edges keratinize, <strong>the</strong> palatal shelves fail to fuse, <strong>and</strong> thus<br />

produce physiological cleft palate (Sippel, 1907; Barge, 1937; Pasteels, 1950;<br />

Shah <strong>and</strong> Crawford, 1980; Koch <strong>and</strong> Smiley, 1981).<br />

The differing characteristics <strong>of</strong> <strong>the</strong> medial edge epi<strong>the</strong>lial cells in <strong>the</strong><br />

alligator (cobblestones, villous, migrating), chicken (keratinized stratified<br />

squamous) <strong>and</strong> mouse (cell death) suggest that palatal differentiation could<br />

be regulated by epi<strong>the</strong>lial-mesenchymal interactions. To test this hypo<strong>the</strong>sis,<br />

palatal shelves <strong>of</strong> alligators, chicks, <strong>and</strong> mice were separated into<br />

epi<strong>the</strong>lia <strong>and</strong> mesenchyme, recombined in various heterotypic, homotypic,<br />

isochronic, <strong>and</strong> heterochronic combinations, <strong>and</strong> cultured. Additionally,<br />

palatal epi<strong>the</strong>lia <strong>and</strong> mesenchyme were cultured in isolation <strong>and</strong> in<br />

combination with m<strong>and</strong>ibular epi<strong>the</strong>lia <strong>and</strong> mesenchyme, respectively<br />

(Ferguson <strong>and</strong> Honig, 1984).<br />

If palatal epi<strong>the</strong>lium from alligator is cultured in isolation, it disintegrates<br />

after approximately three days, whereas palatal mesenchyme cultured<br />

in isolation differentiates into bony, cartilaginous, <strong>and</strong> muscular anlagen;<br />

control recombinations differentiate normally (Fig. 29E). Palatal<br />

shelf epi<strong>the</strong>lium recombined with m<strong>and</strong>ibular mesenchyme differentiates<br />

into typical stratified squamous m<strong>and</strong>ibular epi<strong>the</strong>lium. Conversely, m<strong>and</strong>ibular<br />

epi<strong>the</strong>lium recombined with palatal shelf mesenchyme differentiates<br />

into a typical palatal epi<strong>the</strong>lium (Fig. 29F). These results suggest<br />

that, in <strong>the</strong> alligator, differentiation <strong>of</strong> palatal epi<strong>the</strong>lium is regulated by<br />

an instructive epi<strong>the</strong>lial-mesenchymal interaction. This interpretation is<br />

confirmed in recombinations between vertebrate species. Thus, alligator<br />

palatal epi<strong>the</strong>lium recombined with a chick palatal mesenchyme exhibits<br />

<strong>the</strong> typical avian stratified squamous pattern <strong>of</strong> medial edge epi<strong>the</strong>lial differentiation.<br />

Equally, alligator palatal epi<strong>the</strong>lium recombined with mouse<br />

palatal mesenchyme exhibits massive medial edge epi<strong>the</strong>lial cell death (Fig.<br />

29H). Contrariwise, ei<strong>the</strong>r chick or mouse palatal epi<strong>the</strong>lium recombined<br />

with alligator palatal mesenchyme shows differentiation characteristic <strong>of</strong><br />

<strong>the</strong> alligator (Fig. 29G). These results show that <strong>the</strong> pattern <strong>of</strong> epi<strong>the</strong>lial<br />

differentiation is regulated by <strong>the</strong> source <strong>of</strong> <strong>the</strong> mesenchyme (Ferguson<br />

<strong>and</strong> Honig, 1984).<br />

The alligator oronasal cavity is not as restricted as that <strong>of</strong> mammals,<br />

which may explain why alligator palatal shelves grow horizontally (Ferguson,<br />

1981a, b, 1982b). Fur<strong>the</strong>r development <strong>of</strong> <strong>the</strong> palate involves <strong>the</strong> appearance<br />

<strong>and</strong> growth <strong>of</strong> osseous, muscular, <strong>and</strong> cartilaginous blastemata,<br />

<strong>the</strong> expansion <strong>of</strong> <strong>the</strong> palatal plexus <strong>of</strong> blood vessels, <strong>and</strong> <strong>the</strong> development<br />

<strong>of</strong> numerous domed tactile receptors (Figs. 3A <strong>and</strong> B) from subepi<strong>the</strong>lial<br />

condensations <strong>of</strong> mesenchymal (Merkel) cells (Fig. 24]). Small outpouchings<br />

<strong>of</strong> <strong>the</strong> nasal cavity exp<strong>and</strong> to form <strong>the</strong> maxillary sinuses, which<br />

enlarge laterally <strong>and</strong> medially to invade <strong>the</strong> palatal processes <strong>of</strong> <strong>the</strong> maxillae<br />

after hatching.<br />

The fibrous superior flap <strong>of</strong> <strong>the</strong> basihyal valve arises by a posteroinferior<br />

extension <strong>of</strong> palatal shelf closure (Figs. 25D-F). Crocodilians possess no<br />

true s<strong>of</strong>t palate; <strong>the</strong> superior flap <strong>of</strong> <strong>the</strong> basihyal valve descends from<br />

ORGANOGENESIS<br />

427<br />

<strong>the</strong> palate to seal behind a lower, more rigid flap, that lies posterior to <strong>the</strong><br />

tongue <strong>and</strong> is supported by <strong>the</strong> hyoid cartilage (Wood Jones, 1940). The<br />

superior valve flap is attached anteriorly to <strong>the</strong> posterior nasal choanae (in<br />

<strong>the</strong> pterygoid bone), runs parallel to <strong>the</strong> pterygoid palate for a short distance,<br />

<strong>and</strong> so forms a small area <strong>of</strong> nasopharynx between <strong>the</strong> pterygOid<br />

bony palate <strong>and</strong> <strong>the</strong> upper mucosa <strong>of</strong> <strong>the</strong> superior basihyal valve flap<br />

(Ferguson, 1981a). A failure to recognize <strong>the</strong> structure <strong>of</strong> <strong>the</strong> basihyal valve<br />

led Muller (1967) to misinterpret this space as a division <strong>of</strong> <strong>the</strong> nasopharyngeal<br />

duct (by a process <strong>of</strong> <strong>the</strong> pterygoid bone) into a "cavum<br />

ventrale" <strong>and</strong> a "cavum dorsale" (see her Figs. 9 <strong>and</strong> 10). Muller (1967) also<br />

confused <strong>the</strong> near simultaneous closure <strong>of</strong> <strong>the</strong> tectoseptal processes <strong>and</strong><br />

secondary palatal shelves in crocodilians (see Ferguson, 1981a, 1984a).<br />

Very little is known about <strong>the</strong> development <strong>of</strong> maxillary, palatal <strong>and</strong><br />

salivary gl<strong>and</strong>s (Rose, 1893b; Woerdeman, 1920; Reese, 1925; Barge, 1937;<br />

Fahrenholz, 1937; Kochva, 1978). The maxillary gl<strong>and</strong>s may arise from<br />

invaginations <strong>of</strong> <strong>the</strong> oral epi<strong>the</strong>lium, closely related to <strong>the</strong> invaginating<br />

dental epi<strong>the</strong>lium (Woerdeman, 1920). A review <strong>of</strong> <strong>the</strong> development <strong>of</strong> oral<br />

gl<strong>and</strong>s in Reptilia includes some data on crocodilians (Kochva, 1978).<br />

D. Tongue<br />

The tongue develops from three principal anlagen on <strong>the</strong> pharyngeal aspect<br />

<strong>of</strong> <strong>the</strong> branchial arches. The paired lingual swellings <strong>of</strong> <strong>the</strong> first arch<br />

form <strong>the</strong> anterior two-thirds <strong>of</strong> <strong>the</strong> adult tongue, whereas <strong>the</strong> midline<br />

tuberculum impar <strong>of</strong> <strong>the</strong> second <strong>and</strong> <strong>the</strong> paired hypobranchial eminences<br />

<strong>of</strong> <strong>the</strong> third form <strong>the</strong> posterior one-third (Ferguson, 1982b, 1984a; Figs. 25H<br />

<strong>and</strong> I, 27F). The epi<strong>the</strong>lia <strong>of</strong> <strong>the</strong>se anlagen come toge<strong>the</strong>r <strong>and</strong> merge (Fig.<br />

27F). Behind <strong>the</strong> tongue lie <strong>the</strong> developing epiglottis, larynx, <strong>and</strong> pharynx<br />

(Fig. 27F). The inferior flap <strong>of</strong> <strong>the</strong> basihyal valve arises from a superior<br />

outgrowth <strong>of</strong> <strong>the</strong> paired hypobranchial eminences (Figs. 25H <strong>and</strong> I, 27F).<br />

Crocodilian lingual development resembles that <strong>of</strong> mammals <strong>and</strong> birds<br />

(portmann, 1950; Scott <strong>and</strong> Symons, 1974; Sperber, 1981).<br />

During palatogenesis, as in <strong>the</strong> adult, <strong>the</strong> tongue lies low in <strong>the</strong> oronasal<br />

cavity (Ferguson, 1981a,b, 1982b). The body <strong>of</strong> <strong>the</strong> tongue contains fibrous<br />

tissue anteriorly <strong>and</strong> lipid posteriorly, but intrinsic lingual musculature is<br />

absent (Ferguson, 1981a, b, 1982b, 1984a). Anlagen for <strong>the</strong> Mm. genioglossus,<br />

hyoglossus, geniohyoid, <strong>and</strong> interm<strong>and</strong>ibularis develop, but <strong>the</strong>ir origins<br />

are poorly known. It has been suggested that all <strong>the</strong> lingual musculature<br />

develops from <strong>the</strong> geniohyoid anlage, which itself has split <strong>of</strong>f from<br />

<strong>the</strong> ventral longitudinal muscle anlage formed by <strong>the</strong> 4th to 8th trunk<br />

myotomes (Edgeworth, 1907). Later stages <strong>of</strong> development <strong>of</strong> <strong>the</strong> lingual<br />

musculature have been illustrated by Humboldt (1807), Rathke (1866),<br />

Voeltzkow (1899), Gappert (1903), Taguchi (1920), Sewertz<strong>of</strong>f (1929),<br />

Wettstein (1954), <strong>and</strong> Ferguson (1981a, b, 1982b, 1984a).<br />

The lingual gl<strong>and</strong>s arise from thickened epi<strong>the</strong>lia on <strong>the</strong> dorsum <strong>of</strong> <strong>the</strong><br />

tongue. These gl<strong>and</strong>s secrete salt in <strong>the</strong> estuarine crocodile, Crocodylus


42B<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCOOILIANS<br />

ORGANOGENESIS<br />

429<br />

porosus (Taplin <strong>and</strong> Grigg, 1981), <strong>and</strong> in C. acutus <strong>and</strong> C. johnsoni but apparently<br />

not in Alligator mississippiensis or Caiman crocodilus (Taplin et al., 1982).<br />

Numerous taste buds develop on <strong>the</strong> tongue <strong>and</strong> in <strong>the</strong> floor <strong>of</strong> <strong>the</strong> mouth<br />

(Ferguson, 1981a, b, 1982b). As taste buds do not form in tongues which<br />

develop from excised m<strong>and</strong>ibular arches, cultured in vitro, <strong>the</strong>ir induction<br />

<strong>and</strong> maintenance may be dependent on neural factors (Ferguson et al.,<br />

1982, 1983a).<br />

E. Ear<br />

Bilateral auditory pits arise in <strong>the</strong> usual vertebrate fashion from ectodermal<br />

thickenings which invaginate to form <strong>the</strong> auditory vesicles (Rathke, 1866;<br />

Reese, 1908, 1915a). These thick-walled cavities lie close to <strong>the</strong> lateral walls<br />

<strong>of</strong> <strong>the</strong> hindbrain <strong>and</strong> open to <strong>the</strong> exterior. The development <strong>of</strong> parts <strong>of</strong> <strong>the</strong><br />

middle ear has been studied in Alligator mississippiensis <strong>and</strong> compared with<br />

that <strong>of</strong> o<strong>the</strong>r reptiles <strong>and</strong> birds (Simonetta, 1956). The intertympanic canal<br />

is apparently a remnant <strong>of</strong> <strong>the</strong> vault <strong>of</strong> <strong>the</strong> embryonic pharynx, which is cut<br />

<strong>of</strong>f from <strong>the</strong> main part <strong>of</strong> <strong>the</strong> pharynx by <strong>the</strong> backward growth <strong>of</strong> <strong>the</strong><br />

posterior flange <strong>of</strong> <strong>the</strong> parasphenoid. A small posterior diverticulum (apparently<br />

homologous with <strong>the</strong> pharyngeal pouches <strong>of</strong> many mammals) is<br />

incorporated as a small appendix to <strong>the</strong> intertympanic canal (Simonetta,<br />

1956). The structure <strong>and</strong> development <strong>of</strong> <strong>the</strong> derivatives <strong>of</strong> <strong>the</strong> tubotympanic<br />

cavity, that is, <strong>the</strong> Eustachian tubes, <strong>the</strong> cavum tympani, <strong>the</strong> m<strong>and</strong>ibular<br />

recess, <strong>and</strong> <strong>the</strong> epitympanic recess have been described by<br />

Simonetta (1956). The histogenesis <strong>of</strong> <strong>the</strong> crocodilian columella auris <strong>and</strong><br />

o<strong>the</strong>r aspects <strong>of</strong> otic morphogenesis have been mentioned by Rathke<br />

(1866), Peter (1868), Hasse (1873), Van Beneden (1882), Parker (1883), Retzius<br />

(1884), Gadow (1888), Versluys (1903), Gaupp (1906), Shiino (1914),<br />

Goldby (1925), Kalin (1933), De Beer (1937), Wettstein (1937, 1954), Cordier<br />

<strong>and</strong> Dalcq (1954), Guibe (1970c), <strong>and</strong> Frank <strong>and</strong> Smit (1974). The cartilages<br />

form part <strong>of</strong> <strong>the</strong> chondrocranium <strong>and</strong> <strong>the</strong>ir structure <strong>and</strong> development<br />

have been reviewed previously in this series (Iordansky, 1973; A. d'A.<br />

Bellairs <strong>and</strong> Kamal, 1981). The structure <strong>and</strong> function <strong>of</strong> <strong>the</strong> crocodilian ear<br />

have been reviewed by Baird (1970), A. d'A. Bellairs (1971), <strong>and</strong> Wever<br />

(1978).<br />

F. EYB<br />

During early development <strong>the</strong> eye is a conspicuous feature <strong>of</strong> <strong>the</strong> crocodilian<br />

face (Figs. 18-20). Its development has been described by Rathke<br />

(1866), Voeltzkow (1899), Reese (1908, 1912, 1915a), Jolk (1923), <strong>and</strong> Wettstein<br />

(1954). The reptilian eye was reviewed by Underwood (1970),<br />

whereas Walls (1942), Rochon-Duvigneaud (1954, 1970), <strong>and</strong> Crescitelli<br />

(1977) reviewed vertebrate visual systems in general. All <strong>the</strong> available data<br />

suggest that <strong>the</strong> early morphogenesis <strong>of</strong> <strong>the</strong> crocodilian eye is essentially<br />

similar to that <strong>of</strong> o<strong>the</strong>r vertebrates, <strong>and</strong> several features are illustrated in<br />

Figs. 18, 19,20, 27A <strong>and</strong> F.<br />

The structure <strong>and</strong> development <strong>of</strong> <strong>the</strong> prem<strong>and</strong>ibular, m<strong>and</strong>ibular <strong>and</strong><br />

hyoid head cavities associated with <strong>the</strong> early embryology <strong>of</strong> <strong>the</strong> extrinsic<br />

ocular muscles in Alligator mississippiensis have been described by Wedin<br />

(1949, 1953, 1955). These cavities are interpreted as <strong>the</strong> myocoeles <strong>of</strong> somites.<br />

The origin, migration, <strong>and</strong> changing disposition <strong>of</strong> <strong>the</strong> ocular muscle<br />

anlagen are also described (see Table VII, Figs. 30A-D). The anlagen <strong>of</strong><br />

TABLE VII<br />

The Origin <strong>of</strong> <strong>the</strong> Extrinsic Ocular Muscles in Alligator mississippiensis"<br />

Muscle Nerve Supply Origin<br />

The prem<strong>and</strong>ibular myocoele<br />

The superior rectus Oculomotor From <strong>the</strong> dorso-medial<br />

wall<br />

The inferior rectus<br />

The medial rectus<br />

}<br />

Oculomotor<br />

From a common anlage <strong>of</strong><br />

<strong>the</strong> caudo-ventra-medial<br />

wall, above <strong>and</strong> slightly<br />

medial to <strong>the</strong> inferior<br />

oblique<br />

The inferior oblique Oculomotor From <strong>the</strong> caudo-ventra-lateral<br />

wall, below <strong>and</strong> a little<br />

lateral to <strong>the</strong> common<br />

anlage <strong>of</strong> <strong>the</strong> inferior <strong>and</strong><br />

medial recti<br />

The m<strong>and</strong>ibular myocoele<br />

The superior oblique Trochlear Rostro-dorsal to <strong>the</strong> prem<strong>and</strong>ibular<br />

myocmere<br />

The hyoid myocoele<br />

Caudo-dorsal to <strong>the</strong> pre­<br />

m<strong>and</strong>ibular myocoele, <strong>the</strong><br />

common anlage being in a<br />

horizontal plane at right<br />

angles to <strong>the</strong> median plane<br />

The abducens complex<br />

comprising:­<br />

The lateral rectus 1<br />

The r~tr~ctor palpebrae<br />

From a postero lateral portion<br />

<strong>of</strong> <strong>the</strong> common anlage<br />

Abducens<br />

supenons<br />

The retractor bulbi 1<br />

From an antero-medial<br />

The retractor membranae Abducens portion <strong>of</strong> <strong>the</strong> common annictitantis<br />

lage<br />

"Data from Wedin (1949, 1953); see Fig. 35.


430<br />

.' ,~i<br />

A<br />

REPRODUCTIVE SIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

NIV<br />

!<br />

!.<br />

I b<br />

l_~<br />

T<br />

B<br />

ORGANOGENESIS<br />

paper, <strong>the</strong> embryology <strong>of</strong> <strong>the</strong> crocodilian eye gl<strong>and</strong>s is completely unknown,<br />

although Rathke (1866) <strong>and</strong> Reese (1925) comment briefly on <strong>the</strong>ir<br />

structure in late embryos.<br />

G. Chondrocranium <strong>and</strong> Osteocranium<br />

The development <strong>and</strong> structure <strong>of</strong> <strong>the</strong> crocodilian chondrocranium <strong>and</strong><br />

osteocranium have been reviewed respectively by Bellairs <strong>and</strong> Kamal<br />

(1981) <strong>and</strong> lordansky (1973) in this series. No experimental manipulations<br />

(d. Toerien, 1965, 1967; Toerien <strong>and</strong> Rossouw, 1977) have been performed<br />

on <strong>the</strong> developing crocodilian skull.<br />

H. Teeth<br />

431<br />

C<br />

Fig. 30. Alligator mississippiensis. (A) Diagrammatic figure <strong>of</strong> a 9-mm embryo illustrating <strong>the</strong><br />

spatial disposition <strong>of</strong> <strong>the</strong> eye muscle anlagen relative to <strong>the</strong> eye, <strong>the</strong> prem<strong>and</strong>ibular myocoele<br />

(P.c., dotted) <strong>and</strong> various o<strong>the</strong>r cephalic structures. (After Wedin 1949, 1953.) (B) Schematic<br />

figure <strong>of</strong> <strong>the</strong> eye muscle anlagen in a 13.5-mm embryo. (After Wedin, 1953.) (C) Schematic<br />

figure <strong>of</strong> <strong>the</strong> eye muscle anlagen in a 20-mm embryo. (After Wedin, 1953.) (D) Schematic<br />

figure <strong>of</strong> <strong>the</strong> eye muscle anlagen in a 34-mm embryo. (After Wedin, 1953.) ABM, Abducens<br />

musculature; DP!, depressor palpebrae inferioris; G. CIL, ciliary ganglion; GV, trigeminal<br />

ganglion; 10, inferior oblique; IR, inferior rectus; LR, lateral rectus; MR, medial rectus; NIl,<br />

optic nerve; NIII, oculomotor nerve; NIV, trochlear nerve; NV!, abducens nerve; NO,<br />

notochord; OTO, otic vesicle; pc, prem<strong>and</strong>ibular myocoel; RB, retractor bulbi; RMN, retractor<br />

membrane nictitantis; RPS, retractor palpebae superioris; SO, superior oblique; SR, superior<br />

rectus.<br />

<strong>the</strong> muscles appear in <strong>the</strong> following sequence: (1) abducens, (2) superior<br />

oblique, (3) inferior oblique, (4) superior rectus, (5) medial <strong>and</strong> inferior<br />

recti, <strong>and</strong> (6) retractor membranae nictitantis (which arises much later than<br />

<strong>the</strong> o<strong>the</strong>rs). Except for <strong>the</strong> fact that <strong>the</strong> inferior oblique arises before <strong>the</strong><br />

superior rectus, this sequence coincides with that seen in <strong>the</strong> chick (Adelmann,<br />

1927). The first muscle anlage to appear is not <strong>the</strong> first to reach its<br />

final position (see Fig. 30; Wedin, 1953). Despite <strong>the</strong> title <strong>of</strong> Meek's (1893)<br />

D<br />

The first dental elements to form are rudimentary papillae called denticles<br />

(Rose, 1892a, b, 1894; Green, 1930; Deraniyagala, 1936, 1939; Edmund,<br />

1962, 1969; Figs. 25A-I, 280 <strong>and</strong> F). Green (1930) described <strong>the</strong>m as resembling<br />

a selachian denticle <strong>and</strong> drew attention to <strong>the</strong> structural similarity<br />

between <strong>the</strong>m <strong>and</strong> <strong>the</strong> egg tooth <strong>of</strong> Ornithorhynchus. The denticles arise as<br />

outgrowths from <strong>the</strong> oral epi<strong>the</strong>lium <strong>and</strong> later differentiate into very small<br />

teeth, which make dentine but little or no enamel. They never become<br />

functional but sink into <strong>the</strong> mesenchyme <strong>and</strong> are resorbed. The dental<br />

lamina grows down near <strong>the</strong> posteromedial aspect <strong>of</strong> <strong>the</strong> trough <strong>of</strong> denticle<br />

epi<strong>the</strong>lium, as <strong>the</strong> latter sinks beneath <strong>the</strong> oral epi<strong>the</strong>lium (Westergaard<br />

<strong>and</strong> Ferguson, 1984 <strong>and</strong> in preparation). The sequence <strong>of</strong> appearance <strong>of</strong> <strong>the</strong><br />

early tooth germs does not correspond to Zahnreihen sensu Edmund, 1962,<br />

1969 (Westergaard <strong>and</strong> Ferguson, 1984 <strong>and</strong> in preparation; also review in<br />

Westergaard, 1980).<br />

Subsequent development <strong>of</strong> <strong>the</strong> dentition was reviewed by Edmund<br />

(1962, 1969), <strong>and</strong> <strong>the</strong> few papers that have appeared since (Soule, 1967,<br />

1970; Miller, 1968; Miller <strong>and</strong> Radnor, 1970; Berkovitz <strong>and</strong> Sloan, 1979;<br />

Slavkin et al., 1982, 1984; Owens <strong>and</strong> Ferguson, 1982) emphasize <strong>the</strong><br />

similarities between crocodilians <strong>and</strong> mammals. The stages <strong>of</strong> dental development<br />

are similar (Slavkin et al., 1984) <strong>and</strong> <strong>the</strong> enamel protein <strong>of</strong> Alligator<br />

mississippiensis is immunologically cross reactive with mammalian enamel<br />

protein (Slavkin et al., 1982). Unlike <strong>the</strong> teeth <strong>of</strong> o<strong>the</strong>r reptiles, those <strong>of</strong><br />

crocodilians are attached in <strong>the</strong> jaws by a periodontal ligament, <strong>and</strong> both<br />

its development <strong>and</strong> that <strong>of</strong> root cementum are similar to those in mammals<br />

(Soule, 1967, 1970; Berkovitz <strong>and</strong> Sloan, 1979; Owens <strong>and</strong> Ferguson,<br />

1.982). Alligator tooth germs, explanted at <strong>the</strong> bell stage <strong>and</strong> cultured in<br />

vitro on chemically defined media, develop satisfactorily (Ferguson <strong>and</strong><br />

Honig, unpublished data). Moreover, if <strong>the</strong>se tooth germs are separated<br />

into <strong>the</strong> outer dental epi<strong>the</strong>lium <strong>and</strong> inner dental papilla mesenchyme <strong>and</strong><br />

<strong>the</strong>n recombined with <strong>the</strong> equivalent structures from developing mouse<br />

molars, <strong>the</strong> recombinants produce enamel <strong>and</strong> dentine (Ferguson <strong>and</strong>


432 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Honig, unpublished data). The harmonious development <strong>of</strong> chimaeric alligator/mouse<br />

teeth indicates that <strong>the</strong> reciprocal epi<strong>the</strong>lial-mesenchymal<br />

interactions involved in amelogenesis <strong>and</strong> dentinogenesis can operate<br />

across vertebrate classes. These results reinforce <strong>the</strong> contention that alligator<br />

embryonic material is promising for <strong>the</strong> study <strong>of</strong> general problems<br />

in developmental biology.<br />

ORGANOGENESIS<br />

ec<br />

433<br />

I. Central Nervous System<br />

The development <strong>of</strong> <strong>the</strong> crocodilian central nervous system has been described<br />

by Rathke (1866), Parker (1883), Voeltzkow (1899, 1903a), Neumayer<br />

(1906), Reese (1908, 191Oa, 1915a), Wettstein (1937), <strong>and</strong> Dalcq <strong>and</strong><br />

Pasteels (1954). Pasteels (1970) <strong>and</strong> Senn (1979) review <strong>the</strong> literature on<br />

Reptilia in general, whereas Wettstein (1937), Cordier (1954), <strong>and</strong> Anthony<br />

(1970) describe <strong>the</strong> structure <strong>of</strong> <strong>the</strong> adult central nervous system <strong>and</strong> comment<br />

on its development.<br />

The early development <strong>of</strong> <strong>the</strong> central nervous system, including <strong>the</strong><br />

closure <strong>of</strong> <strong>the</strong> neural folds <strong>and</strong> <strong>the</strong> fate <strong>of</strong> <strong>the</strong> notochord, was described in<br />

Section V. The anterior end <strong>of</strong> <strong>the</strong> neural canal enlarges sequentially to<br />

form <strong>the</strong> vesicles <strong>of</strong> <strong>the</strong> forebrain, midbrain <strong>and</strong> hindbrain (Figs. 18-19).<br />

The cranial flexure develops so that <strong>the</strong> huge midbrain forms a conspicuous<br />

"bulge" at <strong>the</strong> back <strong>of</strong> <strong>the</strong> head (Figs. 18-21, 31A <strong>and</strong> B). The developing<br />

brain cavity is large <strong>and</strong> retort-shaped with comparatively thick<br />

walls <strong>of</strong> compactly arranged cells (Reese, 1908, 1915a; Fig. 31A). The walls<br />

<strong>of</strong> <strong>the</strong> forebrain are quite thick, especially anteriorly; <strong>the</strong> wall <strong>of</strong> <strong>the</strong> midbrain<br />

is somewhat thinner, especially in <strong>the</strong> region <strong>of</strong> <strong>the</strong> cranial flexure,<br />

<strong>and</strong> it is still thinner posteriorly over <strong>the</strong> hindbrain (Fig. 31A; Reese, 1908,<br />

1915a). Thus <strong>the</strong> dorsal wall <strong>of</strong> <strong>the</strong> hindbrain is reduced to a mere membrane,<br />

whereas <strong>the</strong> ventral wall is also thin, but <strong>the</strong> lateral walls are thicker<br />

(Reese, 1908, 1915a). The hindbrain is wider but not as deep as <strong>the</strong> forebrain<br />

(Fig. 31A). In <strong>the</strong> acute angle caused by cranial flexure is <strong>the</strong> anterior<br />

end <strong>of</strong> <strong>the</strong> notochord (Fig. 31A), which is distinctly vacuolated by Stages 2<br />

to 3. Commencing around Stage 5, <strong>the</strong> walls <strong>of</strong> <strong>the</strong> forebrain thicken bilaterally,<br />

later forming <strong>the</strong> cerebral hemispheres (Parker, 1883; Reese, 1908,<br />

191Oa, 1915a; Figs. 31A <strong>and</strong> B).<br />

Differentiation in <strong>the</strong> walls <strong>of</strong> <strong>the</strong> brain begins with <strong>the</strong> formation <strong>of</strong> an<br />

inner granular <strong>and</strong> an outer clear zone, <strong>and</strong> cranial nerve fibers develop<br />

from <strong>the</strong> base <strong>of</strong> <strong>the</strong> brain (Reese, 1908, 1915a; Van Campenhout, 1952).<br />

The median third ventricle has a thick ventral wall <strong>and</strong> a thin dorsal wall,<br />

extended to form a large paraphysis. The two lateral ventricles, <strong>the</strong> cavities<br />

<strong>of</strong> <strong>the</strong> cerebral hemispheres, have quite thick walls except on <strong>the</strong> side next<br />

to <strong>the</strong> third ventricle (Reese, 1908, 1915a). The forming sense <strong>org</strong>ans are<br />

associated with various regions <strong>of</strong> <strong>the</strong> developing brain in a typical vertebrate<br />

fashion. Crocodilians apparently develop a white fibrillar stratum<br />

below <strong>the</strong> grainy layer <strong>of</strong> <strong>the</strong> cerebellum (Cordier, 1954), which itself arises<br />

j~~'PI1<br />

1.:..<br />

.ti~ m~<br />

B<br />

i'-~.<br />

Fig. 31. Alligator mississippiensis. (A) Sagittal section through <strong>the</strong> head <strong>of</strong> a 7-mm embryo<br />

illustrating <strong>the</strong> early appearance <strong>of</strong> <strong>the</strong> paraphysis (P), velum (V), cerebellum (C), hypophysis<br />

(H) <strong>and</strong> pharyngeal sac (PS). (After Neumayer, 1906, <strong>and</strong> Reese, 191Oa.) (B) Sagittal section<br />

through <strong>the</strong> head <strong>of</strong> a 13-mm embryo. Insert 1 shows a parasagittal section <strong>of</strong> <strong>the</strong> same<br />

embryo. Note <strong>the</strong> vesicular appearance <strong>of</strong> <strong>the</strong> paraphysis (which lies like a tube between <strong>the</strong><br />

forebrain <strong>and</strong> superficial ectoderm) <strong>and</strong> <strong>the</strong> forward growth <strong>of</strong> <strong>the</strong> velum into <strong>the</strong> lateral<br />

ventricle, where it eventually forms <strong>the</strong> choroid plexus. Insert 2 shows <strong>the</strong> hypophysis at this<br />

stage <strong>of</strong> development. (After Reese, 191Oa.) C Cerebellum; CH, cerebral hemisphere; CP,<br />

choroid plexus; FB, forebrain; H, hypophysis; HB, hind brain; HS, hypophyseal stalk; I,<br />

infundibulum; IP, infundibular pit; LV, lateral ventricle; M, m<strong>and</strong>ible; MB, midbrain; NA,<br />

neuroporus; NT, notochord; 01, 02, 03, lateral diverticula <strong>of</strong> hypophysis; OC, optic chiasma;<br />

P, paraphysis; PC, posterior commissure; PS, pharyngeal sac; PV, post velar arch; TP, tuberculum<br />

posterius; TTR, torus transversus; V, velum.<br />

from a fold between mid <strong>and</strong> hindbrains (Figs. 31A <strong>and</strong> B). Migration <strong>of</strong><br />

nerve cells to <strong>the</strong> outer wall <strong>of</strong> <strong>the</strong> neopallium results in <strong>the</strong> formation <strong>of</strong> a<br />

cerebral cortex.<br />

The pineal (epiphysis) is absent (Voeltzkow, 1903a; Reese, 191Oa;<br />

Krabbe, 1939; Hamasaki <strong>and</strong> Eder, 1977), so that <strong>the</strong> circulating melatonin<br />

is presumably syn<strong>the</strong>sized elsewhere, perhaps in <strong>the</strong> Harderian gl<strong>and</strong>s<br />

(Roth et al., 1980). The large paraphysis was mistaken for an epiphysis<br />

(Fig. 31) by earlier workers. The development <strong>of</strong> <strong>the</strong> paraphysis has been<br />

described by Voeltzkow (1903a) <strong>and</strong> Reese (191Oa). In alligator embryos 7<br />

mm in length (stage uncertain), it is first seen as a wide evagination <strong>of</strong> <strong>the</strong><br />

ro<strong>of</strong> <strong>of</strong> <strong>the</strong> forebrain, just cephalad to <strong>the</strong> velum, forming a transverse<br />

ventral depression <strong>of</strong> <strong>the</strong> dorsal wall <strong>of</strong> <strong>the</strong> forebrain (Fig. 31A). Posterior<br />

to <strong>the</strong> velum, <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> forebrain is slightly arched to form <strong>the</strong> begin­


434 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANB<br />

ning <strong>of</strong> <strong>the</strong> postvelar arch, which is limited posteriorly by a thickening <strong>of</strong><br />

<strong>the</strong> dorsal wall, <strong>the</strong> future posterior commissure (Fig. 31A). Shortly after its<br />

appearance, <strong>the</strong> paraphyseal evagination becomes partially constricted<br />

from <strong>the</strong> brain <strong>and</strong> forms a rounded, hollow diverticulum, connected with<br />

<strong>the</strong> forebrain cavity by a wide opening (Fig. 31B). Later, <strong>the</strong> paraphysis<br />

elongates so that in embryos 7-cm long (<strong>and</strong> older), it is seen as a tubular<br />

structure, with thin smooth walls, slightly curved away from <strong>the</strong> cerebral<br />

hemispheres over <strong>the</strong> top <strong>of</strong> <strong>the</strong> diencephalon (Fig. 31B). Simultaneously,<br />

<strong>the</strong> velum increases in size <strong>and</strong> projects into <strong>the</strong> forebrain cavity as a<br />

transverse ridge, which ends in an acute posteriorly directed angle <strong>and</strong> a<br />

thicker obtuse angle projecting forward under <strong>the</strong> paraphysis (Fig. 31B).<br />

Subsequently, vesicles lined by cuboidal epi<strong>the</strong>lium appear in <strong>the</strong> velum<br />

<strong>and</strong> form <strong>the</strong> choroid plexus which projects into <strong>the</strong> lateral ventricle (Fig.<br />

31B). In crocodilians, <strong>the</strong> fate <strong>of</strong> <strong>the</strong> cells that form <strong>the</strong> epiphysis in o<strong>the</strong>r<br />

animals is unknown.<br />

The hypophysis (pituitary) originates as an invagination <strong>of</strong> stomodaeal<br />

ectoderm (Rathke's pouch) beneath <strong>the</strong> floor <strong>of</strong> <strong>the</strong> forebrain (see Section<br />

VIlA <strong>and</strong> Figs. 27B, 31A <strong>and</strong> B). The pharyngeal sac is a smaller, less<br />

definite invagination <strong>of</strong> thickened epi<strong>the</strong>lium (Figs. 31A, -8; Reese, 1910a),<br />

that develops caudal to <strong>the</strong> hypophysis <strong>and</strong> apparently disappears without<br />

trace in older embryos (Reese, 1910a), although it may be associated with<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong> pharyngeal tonsil (Killian, 1888). The original hypophyseal<br />

invagination becomes <strong>the</strong> stalk <strong>of</strong> a branched hollow structure,<br />

which, by leng<strong>the</strong>ning <strong>of</strong> <strong>the</strong> stalk, recedes to some distance from <strong>the</strong> ro<strong>of</strong><br />

<strong>of</strong> <strong>the</strong> mouth (Fig. 31B) <strong>and</strong> loses its connection with <strong>the</strong> stomoda~al ectoderm<br />

<strong>and</strong> eventually loses its stalk (Reese, 1910a). During its development,<br />

<strong>the</strong> hypophyseal cavity consists <strong>of</strong> a central region <strong>and</strong> three outgrowths;<br />

<strong>the</strong> largest extending back until it nearly reaches <strong>the</strong> notochord,<br />

<strong>the</strong> second extending in <strong>the</strong> same direction from <strong>the</strong> base <strong>of</strong> <strong>the</strong> hypophyseal<br />

stalk, <strong>and</strong> <strong>the</strong> third extending toward <strong>the</strong> floor <strong>of</strong> <strong>the</strong> infundibulum<br />

(Fig. 31B; Reese, 1910a). These outgrowths become more numerous <strong>and</strong><br />

<strong>the</strong> body <strong>of</strong> <strong>the</strong> hypophysis becomes completely solid as development<br />

progresses (Reese, 1910a).<br />

The body <strong>of</strong> <strong>the</strong> hypophysis is associated with a downward growth from<br />

<strong>the</strong> floor <strong>of</strong> <strong>the</strong> infundibulum (Fig. 31B). The adult crocodilian pituitary has<br />

three lobes, two <strong>of</strong> which originate from <strong>the</strong> ectodermal hypophyseal invagination<br />

<strong>and</strong> one from <strong>the</strong> infundibular downgrowth (Guibe, 1970e).<br />

Baumgartner (1916), Saint Girons (1970a, b), <strong>and</strong> Pasteels (1970) have described<br />

<strong>the</strong> embryology, morphology, <strong>and</strong> cytology <strong>of</strong> <strong>the</strong> reptilian pituitary,<br />

<strong>and</strong> <strong>the</strong>se topics are considered elsewhere (Pearson, Chapter 9, this<br />

volume). The most comprehensive study <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> cranial<br />

nerves is that <strong>of</strong> Van Campenhout (1952) on Crocodlflus niloticus. O<strong>the</strong>rs<br />

(Shiino, 1914; Wettstein, 1937, 1954; Guibe, 1970d; Pasteels, 1970) provide<br />

occasional data on <strong>the</strong> development <strong>of</strong> <strong>the</strong> peripheral nervous system.<br />

The embryonic crocodilian central nervous system becomes functional<br />

ORGANOGENEBIB<br />

435<br />

about Stage 14. At this stage, whole body contralateral withdrawal reflexes<br />

can be elicited by gently touching <strong>the</strong> lateral flank or jaw margins or limbs<br />

<strong>of</strong> <strong>the</strong> embryo. As development progresses, such reflexes become more<br />

marked, more complex, <strong>and</strong> can be elicited for longer periods <strong>of</strong> time. At<br />

Stage 20, <strong>the</strong> body <strong>of</strong> <strong>the</strong> embryo may wriggle both away from <strong>and</strong> toward<br />

<strong>the</strong> stimulus, also <strong>the</strong> limbs may move. Jaw opening <strong>and</strong> closing reflexes<br />

can be elicited <strong>and</strong> <strong>the</strong> embryo exhibits spontaneous movements including<br />

swallowing. In general, <strong>the</strong> first reflexes or movements to appear embryologically<br />

can be elicited for progressively longer periods <strong>of</strong> time as development<br />

progresses. Moreover, when eggs are opened <strong>the</strong> most recent<br />

reflexes or movements to appear developmentally disappear first as <strong>the</strong><br />

embryo dies, whereas <strong>the</strong> developmentally earliest movements are <strong>the</strong> last<br />

ones to disappear. What effects <strong>the</strong>se activities have on <strong>the</strong> embryology <strong>of</strong><br />

certain structures (such as joints <strong>and</strong> <strong>the</strong> gastrointestinal system) is unknown<br />

for crocodilians, but has been described in o<strong>the</strong>r animals (Humphrey,<br />

1968, 1969a, b, 1971a, b; Gottlieb, 1973; Oppenheim, 1973; Vince,<br />

1973; Freeman <strong>and</strong> Vince, 1974).<br />

oJ.<br />

VertebrBe Bnd Ribs<br />

Several accounts <strong>of</strong> <strong>the</strong> morphology <strong>and</strong> development <strong>of</strong> <strong>the</strong> crocodilian<br />

vertebral column <strong>and</strong> ribs are available (Voeltzkow <strong>and</strong> D6derlein, 1901;<br />

Shipley <strong>and</strong> McBride, 1904; Shiino, 1914; Higgins, 1923; Goodrich, 1930;<br />

Emelianov, 1937; Wettstein, 1937; Mookerjee <strong>and</strong> Bhattacharya, 1948a, b;<br />

Devillers, 1954a, b; Chiasson, 1962; Guibe, 1970f, g; Seidel, 1978). In <strong>the</strong><br />

light <strong>of</strong> current knOWledge, some <strong>of</strong> <strong>the</strong>se (e.g., Voeltzkow <strong>and</strong> D6derlein,<br />

1901; Higgins, 1923) may be misleading, but <strong>the</strong> most relevant recent reviews<br />

are those by Williams (1959) <strong>and</strong> H<strong>of</strong>fstetter <strong>and</strong> Gasc (1969).<br />

The ribs arise between two adjoining vertebral segments shortly after<br />

<strong>the</strong> part-sclerotomes have formed a series <strong>of</strong> paired sclerotomes along <strong>the</strong><br />

body axis; each rib is said to derive from <strong>the</strong> scleroblastic cells <strong>of</strong> both <strong>the</strong><br />

original cranial <strong>and</strong> caudal part-sclerotomes (Higgins, 1923). The devel­<br />

oping ribs become associated with <strong>the</strong> neural arches (Higgins, 1923;<br />

Emelianov, 1937). As development progresses, centers <strong>of</strong> chondrification<br />

appear within <strong>the</strong> membranous ribs <strong>and</strong> extend throughout <strong>the</strong>ir length.<br />

Whereas <strong>the</strong> developing ribs are associated with <strong>the</strong> vertebral column at<br />

o~e end, <strong>the</strong>ir main body lies between <strong>the</strong> epaXial <strong>and</strong> hypaxial muscles,<br />

~lth <strong>the</strong> exception <strong>of</strong> <strong>the</strong> first pair (or ribs <strong>of</strong> <strong>the</strong> atlas vertebra), which lie<br />

Internal to <strong>the</strong> hypaxial muscles <strong>and</strong> external to <strong>the</strong> peritoneal lining <strong>of</strong> <strong>the</strong><br />

coelom (Mookerjee <strong>and</strong> Bhattacharya, 1948a, b).<br />

The gastralia or abdominal ribs are said to originate by direct ossification<br />

<strong>of</strong> membranous centers situated in <strong>the</strong> subcutaneous tissue outside <strong>the</strong><br />

three abdominal muscles (Voeltzkow <strong>and</strong> D6derlein, 1901). They insinuate<br />

t?emselves between <strong>the</strong>se muscles secondarily <strong>and</strong> apparently do not denve<br />

from ossification <strong>of</strong> <strong>the</strong> abdominal muscle tendons.


1436 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

K. Respiratory System<br />

ORGANOGENESIS<br />

437<br />

The embryology <strong>of</strong> <strong>the</strong> upper respiratory tract is little known. Edgeworth<br />

(1907) suggests that <strong>the</strong> crocodilian laryngeal muscles form from an anlage<br />

in <strong>the</strong> second branchial arch, but gives no details. Soller (1931) described<br />

<strong>the</strong> hyoid apparatus, larynx <strong>and</strong> its musculature in late embryos <strong>of</strong> Alligator<br />

mississippiensis, Caiman crocodilus, <strong>and</strong> Crocodylus niloticus. The pharynx <strong>and</strong><br />

trachea in late embryos <strong>of</strong> A. mississippiensis have been described by Moser<br />

(1902), Hesser (1905), Reese (191Oc, 1915a, b, 1926), Hilber (1932), Broman<br />

(1939), <strong>and</strong> Guibe (1970h).<br />

In 30-somite (Stage 4) alligator embryos, <strong>the</strong> lung primordia arise from<br />

<strong>the</strong> ventral pharynx just caudad to <strong>the</strong> branchial clefts (Reese, 1915b). Later<br />

(circa Stage 14), <strong>the</strong> trachea separates from <strong>the</strong> esophagus <strong>and</strong> divides into<br />

two bronchial primordia, both surrounded by mesoderm (Reese, 1915b;<br />

Broman, 1939). When <strong>the</strong> branchial clefts close, <strong>the</strong>re is a temporary closure<br />

<strong>of</strong> <strong>the</strong> anterior end <strong>of</strong> <strong>the</strong> esophagus <strong>and</strong> trachea (Reese, 191Oc, 1915a,<br />

b, 1926); both subsequently regain <strong>the</strong>ir lumina, <strong>the</strong> trachea earlier than <strong>the</strong><br />

esophagus. Lung rudiments each consist <strong>of</strong> an endo<strong>the</strong>lial component divided<br />

into three main lobes (each subdivided into numerous lobules) <strong>and</strong> a<br />

mesodermal component with a smooth outline (Reese, 1915b). The lobules<br />

usually consist <strong>of</strong> a single layer <strong>of</strong> endoderm surrounded by a thin layer <strong>of</strong><br />

flattened mesoderm in which lie <strong>the</strong> pulmonary vascular anlagen (Reese,<br />

1915b). Condensations <strong>of</strong> mesoderm around <strong>the</strong> trachea <strong>and</strong> bronchi differentiate<br />

into <strong>the</strong> cartilaginous rings <strong>and</strong> associated structures (Reese,<br />

1910c, 1915b).<br />

L. Cardiovascular System<br />

The primary <strong>org</strong>anogenesis <strong>of</strong> this system is described by Reese (1908,<br />

1915a). The heart, lined by a distinct endo<strong>the</strong>lium, appears first as a slight<br />

bulge to <strong>the</strong> right <strong>of</strong> <strong>the</strong> neural canal just anterior to <strong>the</strong> first somite.<br />

Vitelline vessels also occur at this time. The initially thin mesodermal wall<br />

increases in thickness as <strong>the</strong> muscle columns differentiate; <strong>the</strong>y are particularly<br />

conspicuous ventrally in <strong>the</strong> presumptive ventricles. Fur<strong>the</strong>r development<br />

<strong>of</strong> <strong>the</strong> heart has been described by Rathke (1866). Greil (1903), Shipley<br />

<strong>and</strong> McBride (1904), Felix (1906a), Hochstetter (1906a, c). Kerr (1919),<br />

Goodrich (1930), Stephan (1954), Wettstein (1954), White (1968, 1970),<br />

Springer (1970), <strong>and</strong> Guibe (1970i). Hochstetter's (1906a) account is <strong>the</strong><br />

most comprehensive <strong>and</strong> Goodrich (1930) described crocodilian cardiac<br />

development in a phylogenetic context.<br />

Although <strong>the</strong> heart <strong>of</strong> most reptiles is three chambered, that <strong>of</strong> crocodilians<br />

is four chambered, due to <strong>the</strong> development <strong>of</strong> a complete interventricular<br />

septum (Beddard <strong>and</strong> Mitchell, 1895; Shaner, 1924; Goodrich, 1930;<br />

Wettstein, 1954; Foxon, 1955; Bellairs <strong>and</strong> Attridge, 1975; Webb, 1979). The<br />

evolution <strong>of</strong> <strong>the</strong> crocodilian <strong>and</strong> avian interventricular septum have been<br />

FP<br />

VI<br />

v<br />

J I .<br />

DA<br />

Fig. 32. Heart <strong>and</strong> aortic arches <strong>of</strong> a<br />

crocodilian embryo, diagrammed from <strong>the</strong><br />

ventral aspect. I, II, III. IV. V, VI. First to<br />

sixth aortic arches; C, coeliac artery; CC.<br />

common carotid artery; DA, dorsal aorta;<br />

DC, dorsal carotid artery (right side nearly<br />

atrophied); FP, Foramen <strong>of</strong> Panizza; LA, left<br />

aortic arch; P, pulmonary artery; RA, right<br />

aortic arch; VC, ventral carotid artery; VS,<br />

ventral subclavian artery (Modified from<br />

Shipley <strong>and</strong> McBride. 1904; Shindo, 1914;<br />

Goodrich, 1930; De Beer. 1959; Pasteels.<br />

1970.)<br />

considered in detail (Webb, 1979). The septum develops by <strong>the</strong> inward<br />

growth <strong>of</strong> <strong>the</strong> edge <strong>of</strong> <strong>the</strong> interventricular anlage from behind <strong>and</strong> above,<br />

from <strong>the</strong> septum aorticum (between <strong>the</strong> right <strong>and</strong> left systemic trunks),<br />

from <strong>the</strong> front, <strong>and</strong> also from <strong>the</strong> endocardial rudiment <strong>of</strong> <strong>the</strong> right septal<br />

valve (Hochstetter, 1906a; Goodrich, 1930). Although manifesting this "advanced"<br />

cardiac condition (similar to that in birds) in its early development,<br />

<strong>the</strong> crocodilian heart still shows <strong>the</strong> sharp, double flexure <strong>of</strong> <strong>the</strong><br />

conus seen in dipnoans (Hochstetter, 1906a; Kerr, 1919). Likewise, <strong>the</strong><br />

lateral valve <strong>of</strong> <strong>the</strong> right atrioventricular orifice becomes muscular; this<br />

feature is absent in mammals, but exaggerated in birds (Shaner, 1924;<br />

GOodrich, 1930). Crocodilians retain <strong>the</strong> left aortic arch (Fig. 32), which<br />

only OCCurs as an abnormality in birds (Goodrich, 1930). Thus, in crocodilians,<br />

<strong>the</strong> right aortic arch (carrying oxygenated blood) arises from <strong>the</strong> left<br />

Ventricle, whereas <strong>the</strong> left aortic arch <strong>and</strong> pulmonary trunk arise from <strong>the</strong><br />

right ventricle (Fig. 32). The right <strong>and</strong> left aortic arches communicate via<br />

<strong>the</strong> foramen <strong>of</strong> Panizza (Fig. 32), which is located near <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

Systemic trunks, just anterior to <strong>the</strong> semilunar valves (Shaner, 1924; Kerr,<br />

1919; Goodrich, 1930; Webb, 1979). This foramen apparently arises as a<br />

secondary perforation <strong>of</strong> <strong>the</strong> aortic septum comparatively late in development,<br />

just before <strong>the</strong> closing <strong>of</strong> <strong>the</strong> interventricular foramen (Grei!, 1903).<br />

The development <strong>of</strong> <strong>the</strong> arterial <strong>and</strong> venous systems has been described<br />

by Balfour (1881), Zuckerk<strong>and</strong>l (1895a, b), Voeltzkow (1901), Shipley <strong>and</strong>


143S<br />

REPRODUCTIVE BIOLOGY AND EMSRYOLOGY OF CROCODILIANS<br />

cBride (1904), Hochstetter (1906a, c), Reese (1908, 1915a), Shiino (1914),<br />

Shindo (1914), Kerr (1919), Goodrich (1930), Stephan (1954), Wettstein<br />

(1954), DeBeer (1959), Guibe (1970i), <strong>and</strong> Bellairs <strong>and</strong> Attridge (1975), The<br />

fates <strong>of</strong> <strong>the</strong> embryonic aortic arches are illustrated in Fig. 32. The right<br />

dorsal carotids atrophy almost completely, <strong>and</strong> frequently <strong>the</strong> left common<br />

carotid artery gives rise to <strong>the</strong> dorsal <strong>and</strong> ventral carotids <strong>of</strong> both sides. The<br />

right <strong>and</strong> left 4th aortic arches fuse to form <strong>the</strong> dorsal aorta, whereas <strong>the</strong><br />

6th aortic arches become <strong>the</strong> pulmonary arteries (Fig, 32). The anterior<br />

cardinal veins lie adjacent to <strong>the</strong> notochord <strong>and</strong> unite with <strong>the</strong> posterior<br />

cardinal veins to form <strong>the</strong> Ducti Cuvieri, which in turn connects with <strong>the</strong><br />

meatus venosus <strong>of</strong> <strong>the</strong> liver (Reese, 1908, 1910c, 1915a). The adult lymphatic<br />

system was described by Ottaviani <strong>and</strong> Tazzi (1977), but its development<br />

is poorly understood.<br />

M. Diaphragm<br />

Crocodilians are unique among reptiles in having thoracic <strong>and</strong> abdominal<br />

cavities separated by a structure analogous to <strong>the</strong> mammalian diaphragm,<br />

but which has been little studied (Butler, 1889; Hochstetter, 1906b; Goodrich,<br />

1930). The diaphragm apparently develops from <strong>the</strong> secondary fusion<br />

<strong>of</strong> many parts: <strong>the</strong> pos<strong>the</strong>patic septum (including <strong>the</strong> ventral oblique hepatic<br />

ligament), <strong>the</strong> ventral pulmonary fold, <strong>and</strong> parts <strong>of</strong> <strong>the</strong> gastric mesentery.<br />

Along its edge, <strong>the</strong> diaphragm is associated with many <strong>of</strong> <strong>the</strong> back<br />

muscles. The large diaphragmaticus muscle runs from <strong>the</strong> liver to <strong>the</strong><br />

pelvis <strong>and</strong> assists <strong>the</strong> costal breathing mechanism by retracting <strong>the</strong> liver<br />

<strong>and</strong> exp<strong>and</strong>ing <strong>the</strong> pleural cavity by stretching <strong>the</strong> diaphragm thus powering<br />

inspiration (Gans <strong>and</strong> Clark, 1976). The diaphragm also separates <strong>of</strong>f<br />

eight coelomic recesses <strong>and</strong> cavities (Hochstetter, 1906b).<br />

ORGANOGENESIS<br />

_............ - .......\<br />

---<br />

,/<br />

\<br />

,,/ ,<br />

, , " «<br />

, I<br />

I I<br />

P<br />

°n/Nf))';:'<br />

'--"', .:<br />

: "~ ('.~ \ )'<br />

: " . "'"J .••' ./<br />

I<br />

, •.•••' \ D<br />

PG<br />

5 : ..... ,..::..;';, ....•.<br />

, .<br />

LU~.!.e.;..,.\ \<br />

\ -- ,--:-, Pl<br />

H \ ~ 1M .=-,' A<br />

\ ~'/ C<br />

'.... , ,. , //<br />

, ~<br />

, ~<br />

... _------­<br />

T<br />

439<br />

Fig. 33. Alligator mississippicllsis. Diagram<br />

<strong>of</strong> a reconstruction <strong>of</strong> <strong>the</strong> embryonic gastrointestinal<br />

system approXimately 3 weeks after<br />

egg deposition. Digestive canal shown<br />

in solid black, gl<strong>and</strong>s in solid lines <strong>and</strong> em.<br />

bryo outline in dotted lines (after Reese<br />

1910). A, Allantois; C, cloaca; D,<br />

duodenum; E, eye; H, hindgut; L, liver;<br />

LU, lung; M, mouth, O. oesophagus; P,<br />

pharynx; PA, pancreas; PC, post-anal gut<br />

<strong>of</strong> Reese (1910); PL, posterior limb bud; S,<br />

stomach; T, trachea; Y, yolk sac.<br />

N. Gastrointestinal System<br />

The most extensive accounts <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> gastrointestinal<br />

system are those <strong>of</strong> Reese (191Oc, 1913c) but some comments are given by<br />

Rathke (1866), Clarke (1891), Voeltzkow (1899), Reese (1908, 1912, 1915a,<br />

1926), Grunwald (1931), Wettstein (1954), Elias (1955), Arvy <strong>and</strong> Bonichon<br />

(1958), Guibe (1970b), Gabe (1970b), Miller <strong>and</strong> Lagios (1970), <strong>and</strong> Skozylas<br />

(1978).<br />

After early development (Section V), <strong>the</strong> foregut is a shallow enclosure<br />

<strong>of</strong> <strong>the</strong> anterior endoderm (Figs. l3C <strong>and</strong> D) <strong>and</strong> <strong>the</strong> blastopore connects <strong>the</strong><br />

hindgut region with <strong>the</strong> exterior. Subsequently (Figs. 14 <strong>and</strong> 15), <strong>the</strong> foregut<br />

becomes a cavity wider laterally than dorsoventrally <strong>and</strong> extends only<br />

to about <strong>the</strong> cranial third <strong>of</strong> <strong>the</strong> trunk, opening onto <strong>the</strong> yolk sac (Reese,<br />

191Oc). With <strong>the</strong> appearance <strong>of</strong> <strong>the</strong> definitive hindgut, <strong>the</strong> anterior <strong>and</strong><br />

posterior intestinal portals are identifiable where <strong>the</strong> unenclosed midgut<br />

joins <strong>the</strong> foregut <strong>and</strong> hindgut (Reese, 191Oc).


440 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS ORGANOGENESIS<br />

The liver first appears as an endodermal diverticulum from <strong>the</strong> ventral<br />

foregut surrounded by splanchnic mesoderm (Fig. 33; Reese, 1910c; Elias,<br />

1955). A small projection from <strong>the</strong> wall <strong>of</strong> <strong>the</strong> duodenum differentiates into<br />

<strong>the</strong> bile duct, which ends blindly on <strong>the</strong> anteroventral edge <strong>of</strong> <strong>the</strong> liver <strong>and</strong><br />

is closely related to <strong>the</strong> pancreatic duct. The pancreas derives from one<br />

dorsal <strong>and</strong> two ventral diverticula <strong>of</strong> <strong>the</strong> foregut, which evaginate just<br />

anterior to <strong>the</strong> hepatic rudiments (Reese, 1910c; Gabe, 1970b; Miller <strong>and</strong><br />

Lagios, 1970). Their subsequent fate is unknown, but in <strong>the</strong> late embryo<br />

<strong>the</strong> pancreas lies between <strong>the</strong> posterior end <strong>of</strong> <strong>the</strong> stomach <strong>and</strong> <strong>the</strong> anterior<br />

end <strong>of</strong> <strong>the</strong> duodenum <strong>and</strong> opens into <strong>the</strong> latter by two or more short ducts<br />

(Reese, 1910c).<br />

o. UrogenitBI System <strong>and</strong> Sex Determination<br />

The literature on <strong>the</strong> embryology <strong>and</strong> structure <strong>of</strong> crocodilian urogenital<br />

systems is large (Remak, 1845, 1855; Rathke, 1866; Wiedersheim, 1890a, b,<br />

1891, 1897; VoeItzkow, 1892, 1899; Wilson, 1896, 1900; Szakall, 1899; Felix,<br />

1906b; Loyez, 1905, 1906; Reese, 1908, 1912, 1915c, 1924; Moens, 1912;<br />

Taguchi, 1920; Forbes, 1934, 1937a, b, 1938a, b, c, 1939, 1940a, b, 1961;<br />

Gerrard, 1954; Wettstein, 1954; Godet, 1961; Forsburg <strong>and</strong> Olivecrona,<br />

1963; Ramaswami <strong>and</strong> Jacobi, 1965; Guibe, 1970j; Pasteels, 1970; Fox, 1977;<br />

Ferguson <strong>and</strong> ]oanen, 1982, 1983; Webb <strong>and</strong> Smith, 1984) <strong>and</strong> has been<br />

reviewed by Fox (1977). Here follows a more detailed account <strong>of</strong> events in<br />

crocodilians with particular emphasis on data related to temperature dependent<br />

sex determination. It is based on a number <strong>of</strong> publications <strong>and</strong> on<br />

my observations on Alligator mississippiensis, Crocodylus johnsoni, <strong>and</strong> C.<br />

porosus. Good descriptions <strong>and</strong> illustrations <strong>of</strong> <strong>the</strong> developing gonads <strong>and</strong><br />

Mullerian ducts in A. mississippiensis are available (Forbes, 1940a) as are<br />

data on <strong>the</strong> histology <strong>of</strong> hatchling gonads <strong>and</strong> reproductive ducts (Ferguson<br />

<strong>and</strong> ]oanen, 1983). Histological data are also available for hatchling C.<br />

johnsoni (Webb <strong>and</strong> Smith, 1984).<br />

The first indication (at approximately Stage 1) <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong><br />

excretory system is <strong>the</strong> appearance <strong>of</strong> approximately six ciliated tubules<br />

opening into <strong>the</strong> anterior coelom (Wiedersheim, 1890a, b, 1891). On ei<strong>the</strong>r<br />

side <strong>of</strong> this pronephros a large vascular coil covered by coelomic epi<strong>the</strong>lium<br />

appears <strong>and</strong> forms <strong>the</strong> muItilobate glomus. Later, <strong>the</strong> pronephros<br />

degenerates as <strong>the</strong> mesonephros originates from nephrotomes 11-23<br />

(which begin posterior to <strong>the</strong> pronephros <strong>and</strong> extend to <strong>the</strong> anterior cloacal<br />

border). There is no clear demarcation between pronephros <strong>and</strong><br />

mesonephros (Wiedersheim, 1890a, b, 1891). The mesonephros develops<br />

branched tubules (with internal Malpighian corpuscles) which do not open<br />

into <strong>the</strong> coelom (Wiedersheim, 1890a, b, 1891; Reese, 1908, 1912, 1915a).<br />

They function as collecting ducts through embryogeny <strong>and</strong> for some time<br />

posthatching (Forbes, 1940a), but <strong>the</strong>y ultimately become transformed into<br />

epididymal structures in <strong>the</strong> male or disappear in <strong>the</strong> female. The mesonephric<br />

duct arises from a mesodermal blastema closely related to <strong>the</strong><br />

pronephros (Reese, 1908, 1912, 1915a) <strong>and</strong> grows posteriorly receiving<br />

mesonephric tubules as <strong>the</strong>y form. The same coelomic epi<strong>the</strong>lium, that<br />

gave rise to <strong>the</strong> mesonephros, also forms <strong>the</strong> metanephros. The metanephros<br />

develops convoluted tubules, glomeruli, <strong>and</strong> gives origin to <strong>the</strong><br />

ureters, which join <strong>the</strong> mesonephric ducts before <strong>the</strong> latter open into<br />

<strong>the</strong> cloaca (Forbes, 1940a; Fox, 1977).<br />

Forbes (1940a) described three phases in gonadal development in Alligator<br />

mississippiensis: <strong>the</strong> period <strong>of</strong> genital ridge formation, <strong>the</strong> period <strong>of</strong><br />

bisexuality, <strong>and</strong> <strong>the</strong> period <strong>of</strong> visible sex differentiation. The following<br />

summary derives primarily from that study. No information is available on<br />

<strong>the</strong> origin <strong>and</strong> migration <strong>of</strong> <strong>the</strong> germ cells in crocodilians. The genital ridge<br />

is seen first as a thickening <strong>of</strong> <strong>the</strong> coelomic epi<strong>the</strong>lium on <strong>the</strong> ventral <strong>and</strong><br />

ventromedial surface <strong>of</strong> <strong>the</strong> mesonephros, continuous medially with <strong>the</strong><br />

primordium <strong>of</strong> <strong>the</strong> adrenal cortex. This epi<strong>the</strong>lium becomes <strong>org</strong>anized into<br />

primary sex cords, rete cords, <strong>and</strong> germ cells. Embryos <strong>of</strong> 75-88-mm headtrunk<br />

length (exact stages uncertain) show a period <strong>of</strong> bisexuality when<br />

both male <strong>and</strong> female primitive gonadal components are present (Forbes,<br />

1940a, 1964). The gonad has a well-defined outer layer <strong>of</strong> simple germinal<br />

epi<strong>the</strong>lium <strong>and</strong> a subjacent zone <strong>of</strong> medullary cords. Subsequently, visible<br />

sex differentiation takes place. In ovaries, a well-defined germinal epi<strong>the</strong>lium<br />

develops in which <strong>the</strong> germ cells are fairly numerous, whereas <strong>the</strong><br />

medullary cords regress <strong>and</strong> are distended by large irregular cavities. The<br />

testes retain limited cortical areas external to <strong>the</strong> tunica albuginea, whereas<br />

<strong>the</strong> medullary cords differentiate as seminiferous tubules containing germ<br />

cells. Both males <strong>and</strong> females exhibit a degree <strong>of</strong> embryonic bisexuality;<br />

immature females retain Wolffian ducts <strong>and</strong> a small mass <strong>of</strong> testis-like<br />

medullary tissue (<strong>the</strong> medullary rest) in <strong>the</strong> ovary; immature males may<br />

retain variable testicular cortical areas <strong>and</strong> occasional Mullerian duct segments<br />

(Forbes, 1934, 1937a, b, 1938a, b, c, 1939, 1940a, b, 1961, 1964;<br />

Ferguson <strong>and</strong> ]oanen, 1983).<br />

Controversy regarding <strong>the</strong> origin <strong>of</strong> <strong>the</strong> Mullerian ducts was reviewed<br />

by Fox (1977: 52); <strong>the</strong> generally accepted view is that <strong>of</strong> Forbes (1940a) <strong>and</strong><br />

Forsburg <strong>and</strong> Olivecrona (1963). In <strong>the</strong> female, <strong>the</strong> Mullerian ducts become<br />

<strong>the</strong> OViducts, whereas in <strong>the</strong> male <strong>the</strong>y remain until around <strong>the</strong> time <strong>of</strong><br />

hatching when <strong>the</strong>y disintegrate except for short rudimentary segments,<br />

which may persist throughout life (Forbes, 1940a, Ferguson <strong>and</strong> ]oanen,<br />

1983). Vestiges at <strong>the</strong> anterior poles <strong>of</strong> <strong>the</strong> testes are common <strong>and</strong> apparently<br />

homologous with <strong>the</strong> mammalian appendix testis (Forbes, 1940a).<br />

There is no information available on <strong>the</strong> development <strong>of</strong> oviducal gl<strong>and</strong>s<br />

(Such as albumen secreting <strong>and</strong> shell gl<strong>and</strong>s).<br />

With degeneration <strong>of</strong> most <strong>of</strong> <strong>the</strong> embryonic mesonephros, <strong>the</strong> Wolffian<br />

duct has little role in excretion, but it persists in both sexes (Ferguson <strong>and</strong><br />

Joanen, 1983). In males, <strong>the</strong> ends <strong>of</strong> <strong>the</strong> Wolffian ducts closest to <strong>the</strong> testes<br />

are mUch coiled <strong>and</strong> form <strong>the</strong> epididymis in conjunction with persistent<br />

44'1


442 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

mesonephric tubules. The posterior Wolffian ducts form <strong>the</strong> ducti deferens,<br />

which open into <strong>the</strong> cloaca near <strong>the</strong> base <strong>of</strong> a groove that runs along<br />

<strong>the</strong> upper surface <strong>of</strong> <strong>the</strong> single penis (Moens, 1912; Reese, 1924; Neal <strong>and</strong><br />

R<strong>and</strong>, 1936; Bellairs <strong>and</strong> Attridge, 1975). The development <strong>of</strong> <strong>the</strong> crocodilian<br />

clitero-penis has been described by Rathke (1866), Voeltzkow (1892,<br />

1899), Moens (1912), <strong>and</strong> Reese (1924). It grows out from <strong>the</strong> ventral abdominal<br />

wall, anterior to <strong>and</strong> distinct from <strong>the</strong> cloaca. As <strong>the</strong> cloacal lips<br />

develop, <strong>the</strong> clitero-penis withdraws between <strong>the</strong>m <strong>and</strong> differentiates into<br />

its adult component parts (Figs. 34A-H). Anal musk gl<strong>and</strong>s <strong>and</strong> abdominal<br />

pores arise by epi<strong>the</strong>lial invagination (Reese, 1921, 1924).<br />

Although sex is fully determined <strong>and</strong> <strong>the</strong> gonads are differentiated at<br />

<strong>the</strong> time <strong>of</strong> hatching in all crocodilian species investigated (Ferguson <strong>and</strong><br />

Joanen, 1982, 1983), <strong>the</strong> degree <strong>of</strong> differentiation <strong>of</strong> <strong>the</strong> external genitalia is<br />

variable. Sexing by cloacal examination is impossible in Alligator mississippiensis<br />

(Joanen <strong>and</strong> McNease, 1978) or in Cavialis gangeticus (Singh, personal<br />

communication) less than 0.6 m in length. However, male <strong>and</strong> female<br />

Crocodylus porosus, C. johnsoni, <strong>and</strong> C. niloticus can be distinguished at<br />

hatching (Webb et aI., 1983c; Hutton, personal communication). These<br />

differences may be <strong>the</strong> result <strong>of</strong> <strong>the</strong> shorter incubation times <strong>of</strong> some<br />

species, for example, A. mississippiensis (see Table III) as suggested by<br />

Webb et a1. (1983c), but this would not explain <strong>the</strong> etiology in C. gangeticus<br />

<strong>and</strong> possibly o<strong>the</strong>r crocodilians. Striking differences in <strong>the</strong> degree <strong>of</strong> differentiation<br />

<strong>of</strong> <strong>the</strong> external genitalia <strong>and</strong> in <strong>the</strong> size <strong>of</strong> <strong>the</strong> latter are present<br />

from Stage 7 <strong>and</strong> marked after Stage 14 (Figs. 34A-H) between A. mississippiensis,<br />

C. johnsoni, <strong>and</strong> C. porosus. Thus, development <strong>of</strong> <strong>the</strong> external<br />

genitalia may be different from <strong>the</strong> onset in alligators <strong>and</strong> crocodiles. The<br />

influence <strong>of</strong> incubation temperatures on <strong>the</strong> development <strong>of</strong> <strong>the</strong> external<br />

genitalia is unknown, as is <strong>the</strong> influence <strong>of</strong> <strong>the</strong> degree <strong>of</strong> differentiation <strong>of</strong><br />

<strong>the</strong> external genitalia at hatching (<strong>and</strong> <strong>the</strong>ir subsequent rate <strong>of</strong> development)<br />

on <strong>the</strong> age or size at which sexual maturity is attained in various<br />

crocodilians Cfable I). Perhaps <strong>the</strong> onset <strong>of</strong> gametogenesis is only one <strong>of</strong><br />

<strong>the</strong> factors that determine sexual maturation.<br />

In Alligator mississippiensis, both laboratory <strong>and</strong> field experiments have<br />

shown that incubation temperature determines <strong>the</strong> sex <strong>of</strong> <strong>the</strong> hatchling<br />

<strong>and</strong> hence <strong>of</strong> <strong>the</strong> adult (Ferguson <strong>and</strong> Joanen, 1982, 1983), <strong>and</strong> this is<br />

confirmed by preliminary data for Crocodylus johnsoni (Webb et aI., 1983e;<br />

Webb <strong>and</strong> Smith, 1984), C. porosus (Webb, personal communication) <strong>and</strong> C.<br />

niloticus (Hutton, personal communication). Temperature dependent sex<br />

determination is Widespread among turtles <strong>and</strong> lizards (Bull, 1980). That<br />

heteromorphic sex chromosomes appear to be absent from all living<br />

crocodilians studied to date (21 out <strong>of</strong> <strong>the</strong> 29 species) (Cohen <strong>and</strong> Gans,<br />

1970) makes it likely that all crocodilian species have a temperature dependent<br />

mechanism. Female alligators are HY pOSitive, similar to snakes <strong>and</strong><br />

turtles (V. Lance, personal communication).<br />

In Alligator mississippiensis, incubation <strong>of</strong> eggs at 340C produces only<br />

Fig. 34. Crocodylus niloticus. Drawings <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> external genitalia (after<br />

Voeltzkow, 1899, 1901). (A, B) Stage 10. Ventral <strong>and</strong> lateral views. (C, D) Stage 13. Ventral <strong>and</strong><br />

lateral views. (E, F) Stage 19. Ventral <strong>and</strong> lateral views. (G, H) Stage 25. Ventral <strong>and</strong> lateral<br />

views. (I) Higher power view <strong>of</strong> <strong>the</strong> cross-section <strong>of</strong> <strong>the</strong> umbilical stalk seen in E. A, Allantois;<br />

G, gut loops; GA, genital anlage; GB, genital bulb (glans in male); GF, genital fold; GS, shaft <strong>of</strong><br />

genital primordium; L, limb buds; 0, omphalo-mesenteric artery; U, umbilicus; UA, umbilical<br />

artery; UV, umbilical vein.<br />

I


444 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

ORGANOGENESIS<br />

445<br />

males, whereas incubation at 30°C or below produces only females (Ferguson<br />

<strong>and</strong> Joanen, 1982, 1983). At 32°C, <strong>the</strong> sex ratio varies from 87% females:<br />

13% males to 100% males, whereas <strong>the</strong> sex ratio is approximately<br />

50% females:50% males at 31°C (Ferguson <strong>and</strong> Joanen, 1982, 1983, unpublished<br />

observations). Similarly, in Crocodylus niloticus (Hutton, personal<br />

communication) incubation at 34°C produces males, <strong>and</strong> at 30°C, it produces<br />

females. In C. porosus (Webb <strong>and</strong> Smith, 1984; Webb, personal communication)<br />

incubation at 32°C produces 100% males <strong>and</strong> at 30°C 100%<br />

females; 34°C incubation causes a high mortality <strong>of</strong> C. porosus eggs. Despite<br />

this apparent uniformity amongst species, <strong>the</strong>re is at least one exception.<br />

In C. johnsoni, incubation at 34°C produces 100% females, at 31°-33°C<br />

males (in various ratios), <strong>and</strong> at 26°-30°C 100% females (Webb <strong>and</strong> Smith,<br />

1984). This bimodal pattern <strong>of</strong> production <strong>of</strong> females at both high <strong>and</strong> low<br />

temperatures <strong>and</strong> males at intermediate temperatures is similar to <strong>the</strong> situation<br />

in Chelydra serpentina (Yntema, 1976, 1979), which itself contrasts to<br />

<strong>the</strong> normal turtle pattern in which high temperatures produce females <strong>and</strong><br />

low temperatures produce males (Bull <strong>and</strong> Vogt, 1979, 1981; Bull, 1980). In<br />

all experiments differential embryonic mortality has been eliminated as a<br />

factor producing <strong>the</strong> skewed sex ratios, which have also been recorded in<br />

natural nests in different environments (Ferguson <strong>and</strong> Joanen, 1982, 1983;<br />

Webb <strong>and</strong> Smith, 1984) <strong>and</strong> in adult populations (see Table II).<br />

In an attempt to define <strong>the</strong> temperature sensitive period (TSP) for sex<br />

determination, experiments have been performed involving <strong>the</strong> shift <strong>of</strong><br />

eggs from an all male to an all female producing temperature <strong>and</strong> vice<br />

versa at various times <strong>of</strong> development. If eggs <strong>of</strong> Alligator mississippiensis<br />

are shifted from 30° to 34°C, <strong>the</strong> TSP is between days 14 <strong>and</strong> 21 (Stages 13­<br />

16), but if eggs are shifted from 34° to 30°C, <strong>the</strong> TSP is between days 28 <strong>and</strong><br />

35 (Stages 20-21); (Ferguson <strong>and</strong> Joanen, 1983). Thus, <strong>the</strong> temperature <strong>of</strong><br />

egg incubation prior to <strong>the</strong> TSP (run-in temperature) does influence sex<br />

determination but not irreversibly. The relationship is opposite to what<br />

one might expect in that <strong>the</strong> higher run-in temperature (which accelerates<br />

macroscopic external development) delays <strong>the</strong> TSP <strong>and</strong> embryos remain<br />

sexually labile for much longer.<br />

In Crocodylus porosus (Webb, personal communication) shifts from 30° to<br />

32°C give a TSP between 20 <strong>and</strong> 25 days (Stages 15-18), whereas shifts<br />

from 32° to 30°C give a TSP between 40 <strong>and</strong> 45 days (Stage 23). The TSP <strong>of</strong><br />

C. johnsoni is poorly documented, but preliminary data for shifts from 31°<br />

to 30°C put it between 20 <strong>and</strong> 30 days (Stages 15-20) (Webb <strong>and</strong> Smith,<br />

1984). The embryonic stages during <strong>the</strong> TSPs both for switches <strong>of</strong> high to<br />

low or low to high temperature are remarkably similar in <strong>the</strong>se three<br />

species. Moreover, <strong>the</strong> stages are similar to <strong>the</strong> equivalent ones for Chelydra<br />

(Yntema, 1968); <strong>the</strong> TSP for shifts <strong>of</strong> <strong>the</strong> eggs <strong>of</strong> emydid turtles from 25°C<br />

(male producing temperature) to 31°C (female producing temperature) occurs<br />

at Stage 16 (Yntema, 1968), whereas <strong>the</strong> TSP in shifts from 31° to 25°C<br />

is Stage 22 (Bull <strong>and</strong> Vogt, 1981). Double shift experiments in which a pulse<br />

<strong>of</strong> one temperature occurs on a background <strong>of</strong> <strong>the</strong> o<strong>the</strong>r revealed that <strong>the</strong><br />

time required to produce males (25°C) is less than to produce females<br />

(31°C) (Bull <strong>and</strong> Vogt, 1981). Therefore in Alligator mississippiensis, C.<br />

porosus, <strong>and</strong> emydid turtles, cooler temperatures act earlier <strong>and</strong> more rapidly<br />

in determining sex (females in crocodilians, males in turtles).<br />

The situation is more complex in biomodal species with two temperature<br />

thresholds. No data are available for Crocodylus johnstoni but <strong>the</strong> TSPs <strong>of</strong><br />

Chelydra serpentina are between Yntema Stages 16 <strong>and</strong> 20 for shifts from 26°<br />

to 30°C, Stages 12 <strong>and</strong> 15 for shifts from 30° to 26°C, Stages 13 <strong>and</strong> 17 for<br />

shifts from 20° to 26°C, <strong>and</strong> Stages 12 <strong>and</strong> 18 for shifts from 26° to 20°C<br />

(Yntema, 1979). Thus, it appears that less incubation at 30°C (to Yntema<br />

Stage 16) is required to determine femaleness than is required at 26°C (to<br />

Yntema Stage 19) to determine maleness. Embryos <strong>of</strong> C. serpentina, incubated<br />

at <strong>the</strong> male producing temperatures <strong>of</strong> 22° or 24°C must be exposed<br />

to 30°C for at least four hours per day in order to ensure female<br />

development (Wilh<strong>of</strong>t et al., 1983).<br />

To date <strong>the</strong> data on temperature sensitive periods for sex determination<br />

(in both crocodilians <strong>and</strong> turtles) have remained puzzling <strong>and</strong> no one has<br />

satisfactorily explained <strong>the</strong>m or assimilated <strong>the</strong>m into any model <strong>of</strong> <strong>the</strong><br />

mechanism for temperature dependent sex determination. Part <strong>of</strong> <strong>the</strong> reason<br />

for this may have been <strong>the</strong> tendency to assume that <strong>the</strong> TSP equates<br />

with <strong>the</strong> time <strong>of</strong> embryonic sex determination (which would <strong>the</strong>refore have<br />

to occur over at least 2 to 3 widely different stages <strong>of</strong> development). This<br />

assumption may be erroneous, <strong>and</strong> <strong>the</strong> concepts <strong>and</strong> nomenclature <strong>of</strong> TSPs<br />

<strong>and</strong> even temperature-dependent sex determination itself may be misleading,<br />

<strong>and</strong> <strong>the</strong> term gonadal size-dependent sex determination may reflect<br />

more accurately <strong>the</strong> underlying biological processes. A new <strong>the</strong>ory regarding<br />

<strong>the</strong>se phenomena has been proposed (Ferguson, submitted).<br />

P. Endocrine Gl<strong>and</strong>s<br />

The development <strong>of</strong> <strong>the</strong> reptilian pituitary gl<strong>and</strong> is reviewed by Pearson<br />

(Chapter 9, this volume); that <strong>of</strong> crocodilians is discussed in Section VII.I.<br />

The development <strong>of</strong> <strong>the</strong> thyroid gl<strong>and</strong> resembles <strong>the</strong> basic vertebrate<br />

pattern. With <strong>the</strong> approximation <strong>of</strong> <strong>the</strong> m<strong>and</strong>ibular arches, a deep narrow<br />

groove is formed in <strong>the</strong> anterior floor <strong>of</strong> <strong>the</strong> pharynx; it is uncertain<br />

Whe<strong>the</strong>r this location implies a first pouch origin. The epi<strong>the</strong>lium <strong>of</strong> <strong>the</strong><br />

caudal part <strong>of</strong> this groove thickens ventrally <strong>and</strong> invaginates to form <strong>the</strong><br />

anlage <strong>of</strong> <strong>the</strong> thyroid gl<strong>and</strong>. The gl<strong>and</strong> becomes cut <strong>of</strong>f from <strong>the</strong> pharynx<br />

<strong>and</strong> migrates caudally in <strong>the</strong> form <strong>of</strong> solid cords, which break up into<br />

groups <strong>of</strong> cells that form <strong>the</strong> primary follicles. These <strong>the</strong>n become encapsulated<br />

to form <strong>the</strong> adult gl<strong>and</strong> (Reese, 1908, 191Oa, c, 1915a, 1931b; Lynn,<br />

1960. 1970; Gabe <strong>and</strong> Saint Girons, 1970a).


qq&<br />

REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCODILIANS<br />

The parathyroids, like those <strong>of</strong> reptiles in general, are derived from<br />

branchial pouches three <strong>and</strong> four (Gabe <strong>and</strong> Saint Girons, 1970b). Van<br />

Bemmelen (1886, 1888) described a single pair <strong>of</strong> parathyroids derived from<br />

pouch three in late embryonic <strong>and</strong> adult specimens <strong>of</strong> Alligator mississippiensis<br />

<strong>and</strong> Crocodylus porosus. Hammar (1937) observed two pairs <strong>of</strong><br />

parathyroid gl<strong>and</strong>s in young embryos <strong>of</strong> C. porosus, but noted that <strong>the</strong> pair<br />

from pouch four disappeared in adults, a finding supported by <strong>the</strong> work <strong>of</strong><br />

Clarke (1970) on Caiman crocodilus. The gl<strong>and</strong>s derived from pouch four are<br />

small, <strong>and</strong> it is probable that <strong>the</strong>y fuse with those from pouch three during<br />

late development (Clarke, 1970). The parathyroids are not associated with<br />

<strong>the</strong> thyroid gl<strong>and</strong>s but are located in or near <strong>the</strong> thymus, in dose proximity<br />

to <strong>the</strong>ir embryonic relationship with <strong>the</strong> third <strong>and</strong> fourth aortic arches.<br />

In Alligator mississippiensis, <strong>the</strong> primitive adrenal cortex arises from a<br />

thickened mass <strong>of</strong> coelomic epi<strong>the</strong>lium lying on <strong>the</strong> ventromedial surface<br />

<strong>of</strong> <strong>the</strong> mesonephros <strong>and</strong> extending laterally from <strong>the</strong> dorsal mesentery to<br />

<strong>the</strong> genital primordium (Forbes, 1940a; Gabe, 1970a; Martoja, 1970).<br />

Shortly after its appearance, buds arise <strong>and</strong> extend rapidly as cortical cords<br />

into <strong>the</strong> mesenchyme between <strong>the</strong> mesonephros <strong>and</strong> aorta. Adrenal medullary<br />

tissue appears as aggregations <strong>of</strong> basophilic cells in <strong>the</strong> mesenchyme<br />

dorsal to <strong>the</strong> cortical cords <strong>and</strong> medial to <strong>the</strong> mesonephros. It migrates<br />

ventrally into <strong>the</strong> cortical mass (Lawton, 1937; Forbes, 1940a).<br />

G. Thymus <strong>and</strong> Immune System<br />

The observations available on <strong>the</strong> thymus are mainly topographic descriptions<br />

<strong>of</strong> its size <strong>and</strong> position in late embryos <strong>and</strong> young adults, in which it<br />

occupies much <strong>of</strong> <strong>the</strong> total length <strong>of</strong> <strong>the</strong> neck (Rathke, 1866; Van Bemmelen,<br />

1888; Hammar, 1909; Reese, 1908, 191Oc, 1915a; Pischinger, 1937;<br />

Wettstein, 1954; Bockman, 1970). Histological descriptions <strong>of</strong> <strong>the</strong> early thymus<br />

report nothing about its development (Dustin, 1914; Taguchi, 1920;<br />

Wettstein, 1954; Bockman, 1970). The crocodilian thymus, like that in o<strong>the</strong>r<br />

reptiles, derives from <strong>the</strong> branchial pouches (Reese, 191Oc), but precisely<br />

which ones is unknown (Bockman, 1970), although <strong>the</strong> second has been<br />

suggested (Reese, 191Oc). Study <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> structure <strong>and</strong><br />

function <strong>of</strong> <strong>the</strong> crocodilian thymus, which is known to be involved with<br />

adaptive immunity (Bockman, 1970), would be <strong>of</strong> great interest as a comparison<br />

with <strong>the</strong> avian immune response, which involves <strong>the</strong> unique Bursa<br />

<strong>of</strong> Fabricius. Bursa equivalents in crocodilians remain to be investigated.<br />

R. Limbs <strong>and</strong> Tail<br />

Aspects <strong>of</strong> <strong>the</strong> development <strong>of</strong> crocodilian limbs have been described by<br />

Rathke (1866), Kiikenthal (1893), Zuckerk<strong>and</strong>l (1895a, b), Voeltzkow<br />

(1899), Goeldi (1900), Braus (1906), Reese (1908, 1915a), Kerr (1919), Tornier<br />

(1928), Goodrich (1930), Steiner (1934), Wettstein (1937), Deraniyagala<br />

ORGANOGENEBIS<br />

(1939), Kniisel (1944), Devillers (1954c), De Beer (1959), Guibe (1970g, k),<br />

Pasteels (1970), Walker (1972) <strong>and</strong> Honig (1984). Rathke (1866), Voeltzkow<br />

(1899), Reese (1908, 1915a), Wettstein (1937, 1954), Deraniyagala (1939),<br />

<strong>and</strong> Ramaswami (1946) mention some features <strong>of</strong> tail development.<br />

In Alligator mississippiensis, <strong>the</strong> limb buds first appear about Stage 6<br />

(Figs. 23 <strong>and</strong> 35). The posterior buds develop faster than <strong>the</strong> anterior, at<br />

least during <strong>the</strong> early stages <strong>of</strong> <strong>the</strong>ir embryology, contrary to Reese (1915a).<br />

The chronology <strong>of</strong> limb development is outlined in Section VI <strong>and</strong> is diagramed<br />

in Fig. 23. The limb buds develop distinct apical ectodermal ridges<br />

(Figs. 23 <strong>and</strong> 35A-H). Grafting experiments within alligator embryos <strong>and</strong><br />

between alligator <strong>and</strong> chicken embryos (Honig, 1984) have revealed that<br />

<strong>the</strong> apical ectodermal ridge <strong>and</strong> zones <strong>of</strong> polarizing activity (ZPA) regulate<br />

differentiation as has been shown in o<strong>the</strong>r tetrapods (see reviews in Fallon<br />

<strong>and</strong> Caplan, 1983). These experimental digit duplications resemble those<br />

seen as natural abnormalities in <strong>the</strong> wild (Fig. 36L). Normally, <strong>the</strong>re are<br />

five digits on <strong>the</strong> forelimb, but only four on <strong>the</strong> hindlimb (Fig. 23). Claws<br />

differentiate on <strong>the</strong> tips <strong>of</strong> three digits <strong>of</strong> both limbs, but are absent from<br />

<strong>the</strong> two outer digits <strong>of</strong> <strong>the</strong> forelimb <strong>and</strong> <strong>the</strong> one outer digit <strong>of</strong> <strong>the</strong> hindlimb<br />

(Fig. 23). The ventral concaVity <strong>of</strong> <strong>the</strong> embryonic claw is filled by <strong>the</strong><br />

neonychial pad, a s<strong>of</strong>t rounded cushion formed by a thickening <strong>of</strong> <strong>the</strong><br />

epidermis superficial to <strong>the</strong> sole <strong>of</strong> <strong>the</strong> claw (Kerr, 1919). These structures<br />

prevent <strong>the</strong> embryo from tearing its membranes as it moves about during<br />

late development; <strong>the</strong>y detach shortly after hatching, leaving behind <strong>the</strong><br />

functional claws, <strong>the</strong> morphogenesis <strong>of</strong> which has not been reported.<br />

Explanted limb buds that are grown ei<strong>the</strong>r in vitro or as grafts on <strong>the</strong><br />

chick chorioallantoic membrane show good mesenchymal differentiation,<br />

particularly in <strong>the</strong> cartilages (Honig <strong>and</strong> Ferguson, unpublished data).<br />

The development <strong>of</strong> skeletal elements in <strong>the</strong> limb has been described by<br />

Kiikenthal (1893), Voeltzkow (1899), <strong>and</strong> Steiner (1934). There is a similar­<br />

ity between avian <strong>and</strong> crocodilian embryos as regards <strong>the</strong> lateral deflexion<br />

<strong>of</strong> <strong>the</strong> wrist-h<strong>and</strong> axis from that <strong>of</strong> <strong>the</strong> forearm <strong>and</strong> in <strong>the</strong> reduction <strong>of</strong> <strong>the</strong><br />

two outer digits. The tarsus <strong>of</strong> <strong>the</strong> avian embryo has a distinctly crocodilian<br />

appearance, with a dorsolateral process <strong>of</strong> <strong>the</strong> astragalus contacting <strong>the</strong><br />

lower end <strong>of</strong> <strong>the</strong> fibula above <strong>the</strong> calcaneum (Walker, 1972). In <strong>the</strong> embryo,<br />

<strong>the</strong> iliac, pubic, <strong>and</strong> ischiadic cartilages are in continuity <strong>and</strong> <strong>the</strong> ace­<br />

tabulum is closed. The piercing <strong>of</strong> <strong>the</strong> acetabulum <strong>and</strong> separation <strong>of</strong> <strong>the</strong><br />

pubis take place late in development (Goodrich, 1930).<br />

Little is known about tail development (Figs. 18-22) apart from com­<br />

~ents on its changing relative length. Deraniyagala (1939) described a<br />

highly vascularized terminal hook (or kink) on <strong>the</strong> tail <strong>of</strong> embryos <strong>of</strong><br />

Crocodylus porosus, which arises by fusion <strong>of</strong> <strong>the</strong> last three rings <strong>of</strong> caudal<br />

scales. This hook is clearly evident in Alligator mississippiensis, C. porosus,<br />

<strong>and</strong> C. johnstoni (Figs. 18-22). Ramaswami (1946) reported that <strong>the</strong> kink<br />

Contains only connective tissue cells <strong>and</strong> concluded that it was a transient<br />

feature <strong>of</strong> unknown function, but Deraniyagala (1939) hypo<strong>the</strong>sized that<br />

qq7


Fig. 36. Alligator mississippiensis. Details <strong>of</strong> <strong>the</strong> caruncle. (A) Dorsal view <strong>of</strong> <strong>the</strong> snout <strong>of</strong> a<br />

hatchling illustrating <strong>the</strong> position <strong>of</strong> <strong>the</strong> caruncle. (B) Scanning electron micrograph <strong>of</strong> hatchling,<br />

note <strong>the</strong> smooth pedicle <strong>and</strong> bifid points <strong>of</strong> <strong>the</strong> caruncle, that are used to slit <strong>the</strong> eggshell<br />

membranes. (C) Stage 24. Coronal histological section <strong>of</strong> <strong>the</strong> caruncle. Note <strong>the</strong> vascular loose<br />

fibrous central core <strong>and</strong> <strong>the</strong> enlarged strateum corneum. (D) Stage 28. Coronal histological<br />

section. Note <strong>the</strong> denser avascular fibrous core <strong>and</strong> <strong>the</strong> greatly enlarged strateum corneum.<br />

Fig. 35. Alligator mississippiensis. Early limb development (compare with Fig. 23.). (A) Stage 7<br />

(day 7). Scanning electron micrograph (SEM) <strong>of</strong> <strong>the</strong> hindlimb bud (H). Note also <strong>the</strong> developing<br />

tail (T) <strong>and</strong> allantois (A). (B) Stage 11 (day 12). Histological section <strong>of</strong> <strong>the</strong> apical ectodermal<br />

ridge (AER) on <strong>the</strong> forelimb bud. Photograph courtesy <strong>of</strong> Dr. J. Fallon. (C) Stage 9 (day 9).<br />

Lateral SEM view <strong>of</strong> <strong>the</strong> hindlimb bud. Note <strong>the</strong> apical ectodermal ridge (AER). (D) Stage 9<br />

(day 9). Lateral SEM view <strong>of</strong> <strong>the</strong> forelimb bud. Note that it lacks an apical ectodermal ridge<br />

<strong>and</strong> is less well developed than <strong>the</strong> hindlimb bud. (E) Edge on SEM view <strong>of</strong> <strong>the</strong> hindlimb bud<br />

depicted in C. Note <strong>the</strong> apical ectodermal ridge (arrowed). (F) Edge on SEM view <strong>of</strong> <strong>the</strong><br />

forelimb bud depicted in D. The apical ectodermal ridge is not apparent. (G) Stage 10 (day 10).<br />

SEM <strong>of</strong> a hindlimb bud. Note <strong>the</strong> apical ectodermal ridge (arrowed). (H) Stage 10 (day 10).<br />

SEM <strong>of</strong> a forelimb bud. Note <strong>the</strong> apical ectodermal ridge (arrowed).


450 REPRODUCTIVE BIOLOGY AND EMBRYOLDGY OF CROCODILIANS<br />

DEVELOPMENTAL ABNORMALITIES<br />

4/51<br />

its hypertrophy could have produced <strong>the</strong> terminal caudal fin <strong>of</strong> some extinct<br />

crocodiles.<br />

S. Integument <strong>and</strong> Its Gl<strong>and</strong>s<br />

Information on reptilian integumentary embryology is reviewed by Maderson<br />

(Chapter 7, this volume). The most detailed description for crocodilians<br />

is by Voeltzkow (1899) who also reports <strong>the</strong> development <strong>of</strong> <strong>the</strong><br />

integumentary gl<strong>and</strong>s <strong>and</strong> bony scutes (osteoderms). The latter have been<br />

extensively described by Schmidt (1914), <strong>and</strong> much <strong>of</strong> <strong>the</strong>ir development<br />

occurs posthatching. According to Deraniyagala (1939), embryos <strong>of</strong><br />

Crocodylus porosus form scales about 26 days after egg laying; <strong>the</strong> process is<br />

largely complete by 45 days when pigmentation apparently begins. The<br />

macroscopic appearance <strong>and</strong> chronology <strong>of</strong> scale formation are described<br />

in Section VI. There is substantial variation in <strong>the</strong> coloration pattern <strong>of</strong><br />

hatchling alligators, <strong>the</strong> yellow stripes being variable in both form <strong>and</strong><br />

position. We do not know what determines this pattern <strong>and</strong> how it<br />

changes with growth <strong>and</strong> development.<br />

Data on <strong>the</strong> development <strong>of</strong> <strong>the</strong> various types <strong>of</strong> integumentary gl<strong>and</strong>s<br />

indicate only that <strong>the</strong>se arise as invaginations <strong>of</strong> ectoderm into <strong>the</strong> dermis<br />

(Reese, 1921); <strong>the</strong> surrounding mesenchyme forms gl<strong>and</strong> capsules <strong>of</strong> connective<br />

tissue <strong>and</strong> muscle (Reese, 1921).<br />

T. Caruncle<br />

The small caruncle facilitates slitting <strong>of</strong> <strong>the</strong> extraembryonic <strong>and</strong> shell membranes<br />

during hatching. It has been described for most crocodilians<br />

(Voeltzkow, 1891, 1892, 1893, 1899; Pooley, 1962, 1969a; Deraniyagala,<br />

1936, 1939; McIlhenny, 1935; Joanen, 1969; Singh, 1975). At <strong>the</strong> time <strong>of</strong><br />

hatching, it is a small hard structure (approximately 1 mm in length <strong>and</strong> 2<br />

mm in diameter) located at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> snout (Figs. 36A, B). It is bifid <strong>and</strong><br />

ends in two sharp points; as <strong>the</strong> embryo "nods" its head in ovo, <strong>the</strong>se rub<br />

against, pierce, <strong>and</strong> slit <strong>the</strong> enclosing membranes (Figs. 26G, H, I, 36A <strong>and</strong><br />

B). The chronology <strong>of</strong> its macroscopic development is described in Section<br />

VI <strong>and</strong> illustrated in Fig. 26. It is initiated (<strong>and</strong> present histologically) at<br />

Stage 15 <strong>and</strong> becomes evident at Stage 16. It persists for approximately two<br />

weeks posthatching, <strong>the</strong>n falls <strong>of</strong>f leaving a scar that later heals. Hatchlings<br />

show a 1-2 mm "halo" <strong>of</strong> smooth <strong>and</strong> lightly pitted integument around <strong>the</strong><br />

base <strong>of</strong> <strong>the</strong> caruncle (Figs. 36A <strong>and</strong> B).<br />

The structure <strong>and</strong> development <strong>of</strong> <strong>the</strong> caruncle were first described in<br />

Crocodylus porosus (Sluiter, 1893), <strong>and</strong> this work formed <strong>the</strong> basis for subsequent<br />

descriptions <strong>and</strong> illustrations (Voeltzkow, 1899; De Beer, 1949;<br />

Fioroni, 1962; Edmund, 1969; Guibe, 1970m). The caruncle <strong>of</strong> crocodilians,<br />

like that <strong>of</strong> Testudines, Sphenodon <strong>and</strong> birds, is epidermal <strong>and</strong> is formed<br />

principally by a hyperplastic stratum corneum so that it is structurally<br />

~, '<br />

unrelated to <strong>the</strong> dentition. In this regard, it is very different from <strong>the</strong> true<br />

"egg teeth" <strong>of</strong> <strong>the</strong> Squamata, which are formed as part <strong>of</strong> <strong>the</strong> premaxillary<br />

dentition (De Beer, 1949; Fioroni, 1962; Edmund, 1969; Guibe, 1970m).<br />

Some minor confusion may result when <strong>the</strong> crocodilian caruncle is called<br />

<strong>the</strong> "egg tooth" by field workers (e.g., McIlhenny, 1935; Deraniyagala,<br />

1936, 1939; Pooley, 1962, 1969a; Neill, 1971; Singh, 1975).<br />

In Crocodylus niloticus, C. porosus, C. johnsoni, <strong>and</strong> Alligator mississippiensis,<br />

<strong>the</strong> caruncle first appears at Stage 15 as a pair <strong>of</strong> epi<strong>the</strong>lial outgrowths<br />

on <strong>the</strong> tip <strong>of</strong> <strong>the</strong> snout (Sluiter, 1893; Voeltzkow, 1899; Fig. 26A). By Stage<br />

20, <strong>the</strong>se have approximated, <strong>and</strong> <strong>the</strong> tissue between <strong>the</strong>m has grown out<br />

to form a single consolidated mass (Figs. 26B <strong>and</strong> C). The ensemble forms a<br />

lightly pigmented horny outgrowth terminating in two points (Fig. 260). It<br />

has been suggested that <strong>the</strong> caruncle forms entirely by a thickening <strong>of</strong> <strong>the</strong><br />

strateum corneum (Rose, 1892a; Sluiter, 1893; Voeltzkow, 1899; Fioroni,<br />

1962; Guibe, 1970m) in which calcium salts may be deposited (Fioroni,<br />

1962). However, coronal sections (Figs. 36C, D) <strong>of</strong> <strong>the</strong> caruncle in A. mississippiensis<br />

show a previously overlooked sizable fibrous, dermal core, in<br />

addition to <strong>the</strong> hyperplastic stratum corneum. Initially this dermal core is<br />

composed <strong>of</strong> loosely arranged fibroblasts <strong>and</strong> numerous blood vessels (Fig.<br />

36C).<br />

As development proceeds <strong>the</strong> dermal core becomes less vascular <strong>and</strong><br />

more fibrous; at hatching it is almost completely fibrous (Fig. 360). Posthatching,<br />

this fibrosis continues until <strong>the</strong> caruncle breaks <strong>of</strong>f, a process<br />

facilitated by epi<strong>the</strong>lial ingrowths at <strong>the</strong> base <strong>and</strong> <strong>the</strong> diminished blood<br />

supply in <strong>the</strong> dermal core. The epi<strong>the</strong>lial ingrowths <strong>the</strong>n establish a normal<br />

epidermis. In parallel with <strong>the</strong> changes <strong>of</strong> <strong>the</strong> connective tissue, <strong>the</strong><br />

keratinocytes <strong>of</strong> <strong>the</strong> stratum corneum <strong>of</strong> <strong>the</strong> developing caruncle become<br />

more numerous <strong>and</strong> densely packed as keratinization proceeds (Figs. 36C,<br />

D). The thickness <strong>of</strong> <strong>the</strong> peridermal layer decreases but <strong>the</strong> distinctive<br />

interface between periderm <strong>and</strong> stratum corneum persists (Figs. 36C, D).<br />

The presence <strong>of</strong> a fibrous core seems logical because an unsupported pile<br />

<strong>of</strong> dead epidermal cells, 2-mm broad by 1-mm high, would be weak <strong>and</strong><br />

prone to breakage, unlike <strong>the</strong> actual condition at <strong>the</strong> time <strong>of</strong> hatching. The<br />

crocodilian caruncle with its fibrous core is not dissimilar to that <strong>of</strong> monotremes<br />

in which <strong>the</strong> core contains a nodule <strong>of</strong> bone (Hill <strong>and</strong> De Beer, 1949)<br />

so that <strong>the</strong> two are more likely to be homologous than has hi<strong>the</strong>rto been<br />

assumed (De Beer, 1949).<br />

VIII.<br />

DEVELOPMENTAL ABNORMALITIES<br />

Case reports garnered from <strong>the</strong> literature are listed in Table VIII. In most<br />

cases, <strong>the</strong> etiology <strong>and</strong> pathogenesis <strong>of</strong> such malformations are unknown.<br />

Comparable summaries exist for lizards, snakes, <strong>and</strong> turtles (A. d'A. Bellairs,<br />

1981; Ewert, 1979).


TABLE VIII<br />

A Systematic Catalogue <strong>of</strong> Reported Developmental Abnormalities<br />

in Crocodilians<br />

Type oi Maliormation<br />

Double yolks<br />

Twins<br />

Species<br />

A. mississippiensis<br />

C niloticus<br />

C. aculus<br />

C. POroSU5<br />

Notes<br />

Often laid first or<br />

last by young iemales<br />

A. mississippiensis Stage 1 <strong>and</strong> Stage 25<br />

o tetraspis<br />

C. nilolicus<br />

C. porosus<br />

C. nilolicus<br />

Reierence<br />

Ferguson <strong>and</strong> Joanen<br />

(1983)<br />

Blomberg (1979)<br />

Neill (1971)<br />

Webb et a1. (1983b)<br />

Type oi Maliormation<br />

(b) cyclopia<br />

(c) anophthalmia<br />

Species<br />

A. mississippiensis<br />

O. tetraspis<br />

A. mississippiensis<br />

C. palustris<br />

TABLE VIII<br />

(Continued)<br />

Notes<br />

Teratogen induced<br />

<strong>and</strong> spontaneous<br />

Spontaneous<br />

Reference<br />

Fig. 37c; Ferguson<br />

(l982b, 1984)<br />

Tryon (1980)<br />

Ferguson (unpublished<br />

data)<br />

Whitaker <strong>and</strong> Whitaker<br />

(1976a, b)<br />

Pooley (1969a)<br />

Singh <strong>and</strong> T<strong>and</strong>an<br />

Reese (1906); Joanen<br />

(personal communica­<br />

C. niloticus<br />

C. gangeticus Deiective develoption)<br />

ment oi optic (1978); Subba-Rao <strong>and</strong><br />

Hatchlings Tryon (1980)<br />

Hutton <strong>and</strong> Loveridge<br />

(personal communication)<br />

Stage 18<br />

Ferguson <strong>and</strong> Webb<br />

(unpublished data)<br />

Stage 20, hatchlings Ferguson <strong>and</strong> Webb<br />

(unpublished data)<br />

(d) exophthalmia<br />

(e) corneal <strong>and</strong> iris<br />

malformations<br />

(2) Jaw deiects<br />

(a) cleit lip <strong>and</strong> palate<br />

A. mississippiensis<br />

C gangelicus<br />

placodes <strong>and</strong><br />

vesicle<br />

Bustard (1979); Singh<br />

<strong>and</strong> Bustard (1982)<br />

Ferguson (1981a. 1982b,<br />

1984)<br />

Singh <strong>and</strong> Bustard<br />

(1982)<br />

C. jo/msol1i<br />

A. mississippiensis Teratogen induced Figs. 37i-i; Ferguson<br />

Axial biiurcation <strong>and</strong> par­ A. mississippiensis Single head with Fig. 37b or spontaneous, (l981a, 1982b, 1984)<br />

tial twinning<br />

cleft lip <strong>and</strong> palate<br />

see text<br />

C. niloticu5<br />

Two vertebral col­<br />

Spontaneous<br />

Hutton <strong>and</strong> Loveridge<br />

umns, 2 sets oi<br />

(personal communicalimbs<br />

<strong>and</strong> tails<br />

tion)<br />

(b) reduced upper or A. mississippiensis<br />

Stage 21 doubleheaded<br />

embryo munication)<br />

genically induced 1984); Fig. 37e<br />

Joanen (personal com­<br />

Surgically or terato­<br />

Ferguson (1981a, 1982b,<br />

lower jaws<br />

Double head, two Hutton <strong>and</strong> Loveridge<br />

<strong>and</strong> spontaneous,<br />

tails <strong>and</strong> iour hind (personal communication)<br />

see text<br />

C. porusus<br />

legs<br />

Hot <strong>and</strong> cold nests Webb <strong>and</strong> Messel<br />

eNS maliormations (1977); Webb et a1.<br />

(1) Spina biiida<br />

(2) Exencephaly <strong>and</strong><br />

anancephaly<br />

(3) Encephalocele<br />

(4) Microcephaly<br />

(5) Hydrocephalus<br />

(6) Inner ear <strong>and</strong> cerebellar<br />

maliormations<br />

A mississippiensis<br />

A. mississippiensis<br />

A. mississippiclIsis<br />

C. nilotirus<br />

C. nilolic"s<br />

A. mississippiens;s<br />

A. mississippiensis<br />

A. mississippiensis<br />

Often laid by young<br />

iemales<br />

Often laid by young<br />

females<br />

Often laid by young<br />

iemales<br />

High incubation<br />

temperatures<br />

Teratogen induced<br />

Low incubation temperatures.<br />

see Section<br />

II<br />

Fig. 37a; Ferguson<br />

(1981a, 1982b, 1984)<br />

Ferguson (unpublished<br />

data)<br />

Ferguson (unpublished<br />

data)<br />

Hutton <strong>and</strong> Loveridge<br />

(personal communication)<br />

Hu tton <strong>and</strong> Loveridge<br />

(personal communication)<br />

Ferguson (unpublished<br />

data)<br />

Fig. 37j; Ferguson<br />

(1981a, 1982b, 1984)<br />

Joanen (personal communication);<br />

Ferguson<br />

(unpublished data)<br />

Crani<strong>of</strong>acial nlalformations<br />

(1) Eye deiects<br />

(a) microphthalmia A. mississippiensis Teratogen induced Fig. 37d; Ferguson<br />

<strong>and</strong> spontaneous (1982b, 1984)<br />

(c) laterally skewed<br />

lower jaws<br />

(3) Dental deiects<br />

C. johnsoni<br />

C. niloticus<br />

C. palustris<br />

O. tetraspis<br />

C. gangeticus<br />

A. mississippiensis<br />

C. porosus<br />

C. ;011ll50ni<br />

C. gangeticus<br />

Basihyal valve<br />

absent<br />

C. porGsus<br />

Several teeth in one<br />

socket<br />

A. mississippiensis Tooth erupting into<br />

<strong>the</strong> nose<br />

(l983b)<br />

Webb <strong>and</strong> Manolis<br />

(1983)<br />

Pooley (1969a); Hutton<br />

<strong>and</strong> Loveridge (personal<br />

communication)<br />

Kalin (1936a, b)<br />

Tryon (1980)<br />

Singh <strong>and</strong> Bustard<br />

(1982)<br />

Ferguson (unpublished<br />

data)<br />

Webb <strong>and</strong> Messel<br />

(1977); Webb et a1.<br />

(1983b)<br />

Webb <strong>and</strong> Manolis<br />

(1983)<br />

Singh <strong>and</strong> Bustard<br />

(1982)<br />

De Jong (1928)<br />

Ferguson (1982b)<br />

(continued)


TABLE VIII<br />

(Continued)<br />

TABLE VIII<br />

(Continued)<br />

Type <strong>of</strong> Malformation Species Notes Reference<br />

Type <strong>of</strong> Malformation Species Notes Reference<br />

(3) Vertebral column<br />

Skeletal malformations (a) twisted back A. mississippiensis Eggs incubated up­ Fig. 37k; Ferguson (un­<br />

(1) Limbs<br />

(scoliosis,<br />

right, i.e., at right published data)<br />

(a) extra limbs<br />

A. mississippiensis Extra fifth hind leg Ferguson (observation<br />

kyphosis or<br />

angles to <strong>the</strong> nest<br />

attached to dorsal <strong>of</strong> animal at St Augustine<br />

Alligator<br />

lordosis)<br />

base <strong>and</strong> spontaneous<br />

surface <strong>of</strong> <strong>the</strong><br />

back at <strong>the</strong> pelvic Farm, Florida)<br />

C. porosus<br />

Desiccation<br />

Kar (1979)<br />

level<br />

High <strong>and</strong> low incubation<br />

tempera­<br />

Webb et at. (1983b)<br />

A. mississippiensis Extra fifth leg attached<br />

to right<br />

tures<br />

(b) extra digits<br />

(c) absent digits<br />

(d) syndactyly<br />

(2) Tail<br />

(a) kinked tail<br />

(b) reduced or absent<br />

tail<br />

A. mississippiensis<br />

C. porosus<br />

hindleg<br />

Eight toes on each<br />

<strong>of</strong> <strong>the</strong> front limbs<br />

<strong>and</strong> <strong>the</strong> left hind<br />

foot, seven on <strong>the</strong><br />

right hind foot,<br />

teratogenical1y induced<br />

<strong>and</strong> spontaneous<br />

Eight toes on each<br />

<strong>of</strong> <strong>the</strong> hind feet<br />

Giles (1948)<br />

Ferguson (1981a, 1982b)<br />

Deraniyagala (1936,<br />

1939)<br />

Fig. 371<br />

Ferguson (1982b)<br />

C. johnsoni<br />

A. mississippifllsis Teratogenically induced<br />

<strong>and</strong> spontaneous<br />

C. niloticus Hutton <strong>and</strong> Loveridge<br />

A. mississippiensis<br />

A. mississippiensis<br />

High incubation<br />

temperatures<br />

High incubation<br />

temperatures <strong>and</strong><br />

eggs incubated<br />

upright, i.e, at<br />

right angles to <strong>the</strong><br />

(personal communication)<br />

Ferguson (unpublished<br />

data)<br />

Ferguson (unpublished<br />

data)<br />

(b) extra vertebrae<br />

(c) missing vertebrae<br />

Visceral malformations<br />

(1) Herniation <strong>of</strong> thoracic<br />

<strong>and</strong>/or abdominal<br />

contents<br />

C. niloticus<br />

G. gangeticus<br />

A. mississippiensis<br />

C. porosus<br />

C. niloticus<br />

C. porosus<br />

A. mississippiensis<br />

G. gangetieus<br />

C. porosus<br />

C. niloticus<br />

(2) Hermaphroditism A. mississippiensis<br />

Color malformations<br />

C. johnson;<br />

Evident only on<br />

gonadal histology<br />

High incubation<br />

temperatures, evident<br />

only on<br />

gonadal histology<br />

Modha (1967); Pooley<br />

(1969a)<br />

Singh <strong>and</strong> Bustard<br />

(1982)<br />

Case (1896)<br />

Rheinhardt (1874); Baur<br />

(1886, 1889)<br />

Kalin (1936a, b)<br />

Webb et at. (1983b)<br />

Fig. 37a; Ferguson (unpublished<br />

data)<br />

Singh <strong>and</strong> Bustard<br />

(1982)<br />

Webb et al. (1983b)<br />

Hutton <strong>and</strong> Loveridge<br />

(personal communication)<br />

Forbes (1940a)<br />

Webb <strong>and</strong> Smith (1984)<br />

nest base (1) Albinism or partial A. mississippiensis Some genetic cases Ferguson, unpublished;<br />

G. gangeticus Singh <strong>and</strong> Bustard albinism <strong>and</strong> also related to McIlhenny (1935);<br />

(1982) incubation tem­ Allen <strong>and</strong> Neill (1956);<br />

C. novaeguineae High incubation Bustard (1969, 1971) peratures Neill (1971)<br />

temperatures C. porosus Kar <strong>and</strong> Bustard, 1982;<br />

C. niloticus Pooley (1969a); Hutton Ferguson <strong>and</strong> Webb<br />

<strong>and</strong> Loveridge (per­<br />

(unpublished data)<br />

sonal communication) C. ;ohnstoni Ferguson <strong>and</strong> Webb<br />

C. palustris Deraniyagala (1939);<br />

(unpublished data)<br />

Whitaker <strong>and</strong><br />

C. niloticus<br />

Blake <strong>and</strong> Loveridge<br />

Whitaker (1976a, b, (1975)<br />

1977b) C. acutus Neill (1971)<br />

C. novaeguineae Photograph <strong>of</strong> a<br />

pure white albino<br />

wi th red eyes<br />

C. crocodi/u$ Completely black<br />

A. mississippiensis Red <strong>and</strong> yellow<br />

C. porosus Kar (1979); Kar <strong>and</strong> Bustard<br />

(1982b); Webb et<br />

al. (1983b)<br />

A. mississippiensis<br />

Ferguson (unpublished<br />

(2) Melanistic<br />

data)<br />

(3) Erythristic<br />

C. porosus Genetic cause sus­ Webb et al. (1983b) colour<br />

pected<br />

C. niloticus Modha (1967); Pooley<br />

(1969a)<br />

dF;Pi,<br />

Whitaker (personal communication)<br />

Allen <strong>and</strong> Neill (1956)<br />

Allen <strong>and</strong> Neill (1956)


456 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Embryos produced by young <strong>and</strong> very old females are frequently abnormal<br />

(Section IlD <strong>and</strong> Table IV). Defects include spina bifida (Fig. 37A),<br />

exencephaly, cyclopia (Fig. 37C), microphthalmia (Fig. 370), exophthalmia,<br />

hydrocephalus (Fig. 37J), reduced upper or lower jaw (Fig. 37E), cleft<br />

lip <strong>and</strong> palate (Figs. 37F-I), scoliosis (Fig. 37K), <strong>and</strong> herniation <strong>of</strong> <strong>the</strong><br />

thoracic or abdominal viscera.<br />

During incubation, extremes <strong>of</strong> temperature, abnormalities in hydric or<br />

gaseous environment, <strong>and</strong> variations in <strong>the</strong> orientation <strong>of</strong> eggs (i.e., sitting<br />

upright as opposed to lying flat) all cause malformations (Table VIII <strong>and</strong><br />

Section II). Animals incubated at high temperatures, which hatch prematurely,<br />

<strong>of</strong>ten have a bump or bulge on <strong>the</strong>ir cranial platform (Alligator<br />

mississippiensis, Ferguson, unpublished data; Crocodylus porosus, Webb<br />

et al., 1983b; C. johnsoni, Webb, personal communication; C. niloticus,<br />

Modha, 1967). This represents <strong>the</strong> midbrain bulge <strong>and</strong> is probably caused<br />

by enhanced ossification <strong>of</strong> <strong>the</strong> skull before <strong>the</strong> cranial flexure has straightened<br />

out. As with gonadal growth, this emphasizes how an alteration<br />

in incubation temperature may introduce asynchronies in development.<br />

Crani<strong>of</strong>acial malformations have been induced experimentally in embryos<br />

<strong>of</strong> Alligator mississippiensis by ei<strong>the</strong>r surgical excision <strong>of</strong> various regions<br />

<strong>of</strong> <strong>the</strong> neural crest or by teratogens such as 5-fluoro-2-desoxyuridine<br />

(FUDR) or hydrocortisone (Ferguson, 1981a, 1982b, 1984a). Teratogens<br />

can be injected into <strong>the</strong> albumen or <strong>the</strong> yolk. Injection into <strong>the</strong> chorioallantoic<br />

blood vessels is technically more difficult, but preferable because uniform,<br />

homogeneous deformities result from eggs treated with <strong>the</strong> same<br />

dose <strong>of</strong> <strong>the</strong> same drug at <strong>the</strong> same developmental stage. Table IX sum-<br />

Fig. 37. Alligator mississippiensis. Examples <strong>of</strong> malformed embryos. (A) View <strong>of</strong> embryo from<br />

egg laid by a young mo<strong>the</strong>r. Note <strong>the</strong> meningicoel covering <strong>the</strong> thoracic spina bifida (arrowed),<br />

<strong>the</strong> thoraco-abdominal herniation (A) <strong>and</strong> <strong>the</strong> kyphotic spine. Such embryos tend to<br />

die after 10-20 days incubation. (B) Spontaneous malformation recovered from a 50-day egg<br />

laid by a young female. Radiograph illustrating axial bifurcation. There are two vertebral<br />

columns, two pairs <strong>of</strong> upper <strong>and</strong> lower limbs, two pelves, two shoulder girdles. <strong>and</strong> two tails,<br />

but only one head. The latter has bilateral cleft lip <strong>and</strong> palate. (C) Lateral view <strong>of</strong> a 24-day<br />

embryo with FUOR induced monorhiny (one stage before cyclopia). Note <strong>the</strong> single nasal<br />

proboscis (arrowed), absent midface <strong>and</strong> small m<strong>and</strong>ible. The eyes contact each o<strong>the</strong>r in <strong>the</strong><br />

ventral midline. (D) Right lateral view <strong>of</strong> a developmentally retarded 24-day embryo with<br />

FUOR induced microophthalmia (right side) <strong>and</strong> anophthalmia (left side). (E) Macroscopic<br />

view <strong>of</strong> a hatchling alligator treated with 0.01 mg FUOR on day 10. The o<strong>the</strong>rwise normal<br />

embryo has almost no lower jaw. but a normal palate <strong>and</strong> upper jaw. (F) Lateral view <strong>of</strong> a 29­<br />

day embryo with FUOR induced bilateral cleft lip <strong>and</strong> palate (arrowed). The lower jaw is<br />

trapped behind <strong>the</strong> cleft premaxilla. (G) Intraoral view <strong>of</strong> a hatchling alligator with FUOR<br />

induced bilateral cleft lip (large arrows) <strong>and</strong> palate (small arrows). The wide palatal cleft<br />

extends into <strong>the</strong> nasal cavities anteriorly <strong>and</strong> into <strong>the</strong> nasopharyngeal duct posteriorly. (H)<br />

Transverse section through <strong>the</strong> head <strong>of</strong> a 20-day embryo with FUOR induced bilateral cleft lip<br />

<strong>and</strong> palate. H. & E. <strong>and</strong> Alcian Blue. Note <strong>the</strong> small slender projections representing <strong>the</strong><br />

palatal shelves (P). (I) Transverse section through a hatchling with FUOR induced bilateral<br />

cleft lip <strong>and</strong> palate. Mallory. Note <strong>the</strong> cleft maxilla, distorted tongue <strong>and</strong> floor <strong>of</strong> <strong>the</strong> mouth,<br />

genioglossus (G), hyoglossus (H), interm<strong>and</strong>ibularis (I), palatal submucosa (S), junction between<br />

nasal ciliated columnar <strong>and</strong> oral stratified squamous epi<strong>the</strong>lia (arrowed) <strong>and</strong> continuous<br />

oral <strong>and</strong> nasal cavities. (J) Lateral view <strong>of</strong> a hatchling with FUOR induced hydrocephalus<br />

<strong>and</strong> bilateral cleft lip <strong>and</strong> palate. (K) Dorsal view <strong>of</strong> a hatchling with kyphosis <strong>and</strong> scoliosis.<br />

~is type <strong>of</strong> spontaneous malformation is frequently seen in eggs incubated at an incorrect<br />

onentation, e.g., at 45-90° to <strong>the</strong> nest base. Such embryos are usually unable to hatch spon<br />

taneously <strong>and</strong> <strong>the</strong> malformations <strong>of</strong>ten become progressively worse after hatching. (L)<br />

Crocodylus johnsoni. View <strong>of</strong> a hatchling with complete duplication <strong>of</strong> <strong>the</strong> digits in its right pes.<br />

(M) Detail <strong>of</strong> part L. Similar malformations can be produced experimentally by grafts <strong>of</strong><br />

SUpernumerary ZPA's (zones <strong>of</strong> polariZing activity). Unless o<strong>the</strong>rwise indicated <strong>the</strong> scale<br />

markings are divided into 1 mm intervals.<br />

M


DEVELOPMENTAL ABNORMALITIES<br />

459<br />

....<br />

o<br />

CIJ<br />

~<br />

;:l ~<br />

o CIJ<br />

~ .§<br />

I:: 1G<br />

'" 6<br />

§ lS<br />

:=:=l<br />

.s;::E '" '"<br />

-2 r;<br />

·6 .~<br />

~ ....<br />

< .~<br />

.... I::<br />

o :::<br />

ClJU<br />

aJ e I::<br />

.~<br />

F=-2<br />

, aJ<br />

~U<br />

o aJ<br />

;:J ~<br />

.... ~<br />

-0<br />

aJ ...<br />

I::i=l-<<br />

>, ....<br />

I:Q >< ~<br />

< £ ...<br />

!-< aJ 0<br />

0 ....<br />

I ...<br />

N aJ<br />

• "0<br />

o ...<br />

lSO<br />

..... ~<br />

,E I::<br />

, CIJ<br />

IJ'l 0<br />

.... 0<br />

0,t:l<br />

~ 6<br />

~~<br />

..... ~<br />

bll==<br />

.s <<br />

o lS<br />

aJ­<br />

..c:gj,<br />

.... 0<br />

:3­<br />

-­<br />

.~ I::<br />

~ 0<br />

I:: ....<br />

aJ :::<br />

,t:l .~<br />

!-< '" .~ I::<br />

.... -<br />

0 6<br />

","0<br />

6<<br />

6<br />

rE<br />

'0<br />

,>,<br />

"0"0<br />

.<br />

.n<br />

Q)<br />


460 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS<br />

Crani<strong>of</strong>acial malformations can also be induced by altering <strong>the</strong> diet <strong>of</strong><br />

penned breeding animals (Ferguson 1981a, 1982b, 1984a). However, such<br />

regimes produce a wide spectrum <strong>of</strong> malformations <strong>and</strong> are <strong>the</strong>refore <strong>of</strong><br />

less experimental value but important in farming, management, conservation,<br />

<strong>and</strong> population studies.<br />

,<br />

IX.<br />

SHELL-LESS, SEMI·SHELL-LESS, AND IN VITAO<br />

CULTURE TECHNIBUES<br />

In many surgical <strong>and</strong> teratological investigations, it is useful to be able to<br />

follow development throughout incubation by observing, even manipulating,<br />

<strong>the</strong> embryo through <strong>the</strong> shell. Numerous investigators have explanted<br />

chicken embryos <strong>and</strong> egg contents into petri dishes <strong>and</strong> grown <strong>the</strong>m in<br />

shell-less culture (for review, see Ferguson, 1984a). The developing alligator<br />

is a particularly good animal for shell-less culture because it obtains<br />

little calcium from <strong>the</strong> shell as compared to turtles <strong>and</strong> birds (Section IILD).<br />

Alligator embryos collected within 12 hours <strong>of</strong> egg laying, before attachment<br />

to <strong>the</strong> shell, may be prepared for shell-less culture (Ferguson, 1981a).<br />

An incision made around <strong>the</strong> longitudinal axis <strong>of</strong> <strong>the</strong> shell permits removal<br />

<strong>of</strong> <strong>the</strong> top one-third; this is followed by sterile excision <strong>of</strong> <strong>the</strong> underlying<br />

shell membrane. The egg contents are <strong>the</strong>n explanted into a 120 mm<br />

sterile, vented petri dish under a laminar flow hood. This dish is covered<br />

<strong>and</strong> placed inside a larger one containing filter paper saturated with sterile<br />

water for high humidity. The entire assembly is incubated at 30°C <strong>and</strong><br />

100% humidity under sterile conditions. Development proceeds normally<br />

in such preparations up to approximately Stage 18, after which malformations,<br />

particularly in <strong>the</strong> snout, cranium, <strong>and</strong> limbs, occur. Probably <strong>the</strong>se<br />

result from altered tensile forces impinging on <strong>the</strong> embryo.<br />

As <strong>the</strong> yolk <strong>and</strong> albumen <strong>of</strong> alligator eggs are more viscous than those <strong>of</strong><br />

avian eggs, a technique <strong>of</strong> semi-shell-less culture has been developed; with<br />

slight modifications, this can be used successfully at any period <strong>of</strong> development<br />

(Ferguson, 1981a, 1982b, 1984a). Sterile incisions are made around<br />

<strong>the</strong> longitudinal axis <strong>of</strong> <strong>the</strong> shell, as described earlier, <strong>and</strong> <strong>the</strong> top one-third<br />

<strong>of</strong> <strong>the</strong> shell <strong>and</strong> shell membrane are removed. The yolk <strong>and</strong> albumen are<br />

viscous enough to remain intact inside <strong>the</strong> lower two-thirds <strong>of</strong> <strong>the</strong> shell so<br />

that <strong>the</strong> natural geometry <strong>of</strong> <strong>the</strong> egg contents is maintained (Fig. 38). Maintenance<br />

<strong>of</strong> such embryos in sterile incubators at 30°C <strong>and</strong> 100% humidity<br />

results in normal development (Fig. 38), which can be filmed <strong>and</strong>/or experimentally<br />

manipulated. The modest extrinsic calcium needs <strong>of</strong> <strong>the</strong> embryo<br />

are met by <strong>the</strong> intact lower two-thirds <strong>of</strong> <strong>the</strong> shell. For optimum<br />

results, <strong>the</strong> technique should be performed within 24 hours <strong>of</strong> egg laying,<br />

before <strong>the</strong> embryo has attached to <strong>the</strong> top <strong>of</strong> <strong>the</strong> shell membrane or developed<br />

a chorioallantois; such embryos will develop normally <strong>and</strong> hatch<br />

approximately 65 days later (Fig. 38). There are no statistically significant<br />

DAY 12 DAY 20 DAY 28<br />

DAY 30 DAY 35<br />

DAY 40<br />

MM<br />

DAY 55<br />

Fig. 38. Alligator mississippiensis. Montage illustrating <strong>the</strong> development <strong>of</strong> embryos in semi­<br />

Shell-less culture. Note <strong>the</strong> chorioallantoic blood vessels overlying <strong>the</strong> embryos.


4S2<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

ACKNOWLEDGMENTS<br />

4S3<br />

differences between <strong>the</strong> weights <strong>and</strong> crown-rump lengths <strong>of</strong> <strong>the</strong>se embryos<br />

<strong>and</strong> those recovered from normally incubating eggs <strong>of</strong> <strong>the</strong> same age.<br />

The technique, combined with <strong>the</strong> application <strong>of</strong> 0.01 mg. FUDR to a<br />

Stage 10 embryo (to inhibit lower jaw formation), has permitted <strong>the</strong> direct<br />

observation <strong>of</strong> palatal development in normal <strong>and</strong> teratogen-treated embryos<br />

in situ. Initially, <strong>the</strong> treated embryos are developmentally retarded,<br />

but <strong>the</strong>y exhibit rapid compensatory growth <strong>and</strong> apart from an extremely<br />

small lower jaw, <strong>the</strong>y exhibit no o<strong>the</strong>r macroscopically detectable abnormalities.<br />

The treated embryos remain viable <strong>and</strong> hatch around 65 days but<br />

die shortly <strong>the</strong>reafter because <strong>the</strong>y cannot feed. The semi-sheIl-less culture<br />

technique may be equally useful for studying <strong>the</strong> development <strong>of</strong> o<strong>the</strong>r<br />

structures.<br />

Alligator eggs can be windowed for experimental purposes, preferably<br />

during <strong>the</strong> first 12 hours after egg laying, before <strong>the</strong> embryo attaches to <strong>the</strong><br />

shell. C<strong>and</strong>ling <strong>and</strong> removal <strong>of</strong> <strong>the</strong> eggshell <strong>and</strong> shell membrane gives<br />

poorer results in analyzing older embryos; many embryos die because <strong>the</strong>y<br />

drop from <strong>the</strong> inside <strong>of</strong> <strong>the</strong> shell membrane into <strong>the</strong> underlying yolk,<br />

tearing <strong>the</strong>ir chorioallantoic blood vessels. Only 5% survive this later windowing<br />

technique (Honig, 1984; Honig <strong>and</strong> Ferguson, unpublished data).<br />

Embryonic rudiments, e.g. m<strong>and</strong>ibular arches, palatal shelves, limb<br />

buds, teeth, genital ridges <strong>and</strong> lungs have been successfully cultured in<br />

vitro (Ferguson et al., 1982, 1983a, b; Ferguson <strong>and</strong> Honig, 1984). Tissues<br />

can be cultured for long time periods in ei<strong>the</strong>r chemically defined or serum<br />

supplemented media, <strong>and</strong> at <strong>the</strong> abnormally high temperature <strong>of</strong> 37°C;<br />

procedural details have been presented previously (Ferguson et al., 1982,<br />

1983, 1984; Ferguson <strong>and</strong> Honig, 1984).<br />

x. CONCLUSIONS<br />

The embryology <strong>of</strong> crocodilians is an interesting <strong>and</strong> important topic, with<br />

applications not just in herpetology but also in medicine, dentistry, <strong>and</strong><br />

general developmental biology. Fur<strong>the</strong>r research is required <strong>and</strong> areas in<br />

need <strong>of</strong> attention have been highlighted. There is a need to extend what<br />

little knowledge we now possess by systematic studies <strong>of</strong> development in<br />

various species, particularly in <strong>the</strong> more atypical such as <strong>the</strong> gavial <strong>and</strong><br />

Tomistoma. One could hardly do better than to close with a quotation from<br />

Parker's (1883) monograph on <strong>the</strong> development <strong>of</strong> <strong>the</strong> crocodilian skull,<br />

which is as relevant today as it was 100 years ago: "As <strong>the</strong> crocodile is<br />

known to be one <strong>of</strong> <strong>the</strong> most ancient types inhabiting this terraqueous<br />

globe, his development is full <strong>of</strong> interest in relation to those countless<br />

Reptilian forms that have succumbed to secular changes <strong>of</strong> <strong>the</strong> earth, <strong>and</strong><br />

have left nei<strong>the</strong>r son nor nephew in <strong>the</strong> regions where <strong>the</strong>y once were<br />

dominant."<br />

ACKNOWLEOGMENTS<br />

In 1978 <strong>the</strong> alligator specimens referred to in this chapter were collected<br />

during <strong>the</strong> tenure <strong>of</strong> a Winston Churchill Travelling Fellowship from <strong>the</strong><br />

Winston Churchill Memorial Trust, London, in 1980 during <strong>the</strong> tenure <strong>of</strong> a<br />

Sir Thomas <strong>and</strong> Lady Edith Dixon Research Scholarship from The Queen's<br />

University <strong>of</strong> Belfast, <strong>and</strong> in 1981 during <strong>the</strong> tenure <strong>of</strong> a Wellcome Trust<br />

Research Visiting Fellowship from <strong>the</strong> Wellcome Trust, London. I am<br />

grateful to all <strong>the</strong>se Bodies for <strong>the</strong>ir support <strong>and</strong> confidence.<br />

I would like to thank sincerely Mr. Ted Joanen <strong>and</strong> <strong>the</strong> staff <strong>of</strong> <strong>the</strong><br />

Rockefeller Wildlife Refuge, Louisiana, for <strong>the</strong>ir outst<strong>and</strong>ing assistance in<br />

obtaining alligator specimens an,d for <strong>the</strong>ir generous hospitality <strong>and</strong> advice<br />

during my visits with <strong>the</strong>m. The Anatomy Department, Belfast, secretaries,<br />

Miss Anne Richardson <strong>and</strong> Miss Janice Smith, <strong>and</strong> <strong>the</strong> Divisional<br />

secretaries in Ann Arbor, Ms. S. Konchal <strong>and</strong> Mrs. K! Vernon, transformed<br />

my scribbles into a beautifully typed manuscript. I would also like to thank<br />

Mr. Ge<strong>org</strong>e Bryan for photographic assistance, Dr. K. Lewis <strong>and</strong> <strong>the</strong> staff<br />

<strong>of</strong> <strong>the</strong> Q. U. B. Biomedical <strong>and</strong> Medical Libraries for assistance in procuring<br />

copies <strong>of</strong> many obscure papers, Pr<strong>of</strong>essors A. d'A. Bellairs, C. Gans,<br />

P. F. A. Maderson, <strong>and</strong> Drs. F. Billett, G. Webb, <strong>and</strong> B. Westergaard for<br />

critical analysis <strong>of</strong> <strong>the</strong> original manuscript, <strong>and</strong> <strong>the</strong> Academic Council <strong>of</strong><br />

The Queen's University <strong>of</strong> Belfast for a grant to <strong>of</strong>fset <strong>the</strong> cost <strong>of</strong> translating<br />

some important German papers cited in this chapter. Dr. G. Webb <strong>and</strong> <strong>the</strong><br />

Conservation Commission <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>rn Territory, Australia, greatly<br />

facilitated my study <strong>of</strong> Crocodylus porosus <strong>and</strong> C. johnsoni embryos <strong>and</strong><br />

provided valuable financial assistance toward my traveling expenses.<br />

Many individuals volunteered copies <strong>of</strong> unpublished data or papers in<br />

press <strong>and</strong> participated in useful discussions: I thank <strong>the</strong>m all, but especially<br />

Ted Joanen, Larry McNease, Grahame Webb, Jon Hutton, John<br />

Loveridge, Alistair Graham, Bjarne Westergaard, <strong>and</strong> Larry Honig.<br />

Alligator research expenses were generously provided by grants from<br />

<strong>the</strong> Medical Research Council <strong>of</strong> Great Britain (Grants No. G979/386/C <strong>and</strong><br />

811361OCB), <strong>the</strong> Eastern Health <strong>and</strong> Social Services Board, Nor<strong>the</strong>rn Irel<strong>and</strong><br />

(Grant No. E109/74/75), <strong>the</strong> National Institutes <strong>of</strong> Health, U.S.A.<br />

(Grant No. DE-02848 <strong>and</strong> DE-03569), <strong>and</strong> <strong>the</strong> Louisiana Wildlife <strong>and</strong><br />

F~sheries Commission. This work was carried out under my U.S. Federal<br />

FISh <strong>and</strong> Wildlife permit No. PRT2-2511 <strong>and</strong> under my Nor<strong>the</strong>rn Irel<strong>and</strong><br />

Wildlife permit No. B/WLl/78, B/WL2/80.<br />

. Finally, it is with deep regret that I record <strong>the</strong> sudden death <strong>of</strong> my good<br />

friend Pr<strong>of</strong>essor J. J. Pritchard, for whose advice <strong>and</strong> encouragement I will<br />

always be grateful. His death, shortly after <strong>the</strong> work for this chapter had<br />

commenced was a great shock <strong>and</strong> loss to me, <strong>and</strong> doubtless this chapter<br />

would have been enriched by his critical editorial pen had he lived to see it<br />

materialize.


464 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCODILIANS<br />

REFERENCES<br />

Acharjyo, L. N., Biswas, S., <strong>and</strong> Misra, R. (1975). Some notes on gharial [Cavialis gangeticus<br />

(Gmelin)] in captivity. ]. Bombay na!. His!. Soc. 72(2), 558-560.<br />

Ackerman, R. A. (1980). Physiological <strong>and</strong> ecological aspects <strong>of</strong> gas exchange by sea turtle<br />

eggs. Amer. Zool. 20, 575-583.<br />

Ackerman, R. A. (1981a). Oxygen consumption by sea turtle (Chelonia, Caretta) eggs during<br />

development. Physiol. Zool. 54, 316-324.<br />

Ackerman, R. A. (1981b). Growth <strong>and</strong> gas exchanges <strong>of</strong> embryonic sea turtles (Chelonia,<br />

Caretta). Copeia 1981, 757-765.<br />

Adams, S. E., Smith, M. H., <strong>and</strong> Baccus, R. (1980). Biochemical variation in <strong>the</strong> American<br />

alligator. Herpetologica 36, 289-296.<br />

Adelmann, H. B. (1927). The development <strong>of</strong> <strong>the</strong> eye muscles Df <strong>the</strong> chick. ]. Morph. Physiol.<br />

44,29-87.<br />

Agassiz, L. (1857). Contributions to <strong>the</strong> Natural History <strong>of</strong> <strong>the</strong> United States <strong>of</strong> America. Monograph<br />

1, Vol. 2. Little Brown Co., Boston.<br />

Allen, E. R. <strong>and</strong> Neill, W. T. (1956). Some color abnormalities in crocodilians. Copeia 1956(2),<br />

124.<br />

Anderson, A. (1875). An account <strong>of</strong> <strong>the</strong> eggs <strong>and</strong> young <strong>of</strong> <strong>the</strong> gavial. Proc. zool. Soc. L<strong>and</strong>.<br />

1875,2.<br />

Anthony, J. (1970). Le nevraxe des reptiles. In Trait


4BB<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Broman, 1. (1939). Die Embryonalentwicklung der Lungen bei Krokodilen und Seeschildkr6­<br />

ten. Gegenbaurs Morph. Jahrb. 84(2), 244-306.<br />

Bruhl, C. B. (1886). Zootomie aller Thierklassen fur Lemerlde nach Autopsien skizzirt. Alfred<br />

Holder, Vienna, pp. 137-140.<br />

Buckner, G. D., Martin, ]. H., <strong>and</strong> Peter, A. M. (1925). Concerning <strong>the</strong> mode <strong>of</strong> transference<br />

<strong>of</strong> calcium from <strong>the</strong> shell <strong>of</strong> <strong>the</strong> hen's egg to <strong>the</strong> embryo during incubation. Amer. f.<br />

Physio1. 72, 253-255.<br />

Bull, J. J. (1980). Sex determination in reptiles. Q. Rev. BioI. 55, 3-21.<br />

Bull, J. J. <strong>and</strong> Vogt, R. C. (1979) Temperature-dependent sex determination in turtles. Science,<br />

N. Y. 206, 1186-1188.<br />

Bull, J. J. <strong>and</strong> Vogt, R. C. (1981). Temperature-sensitive periods <strong>of</strong> sex determination in<br />

emydid turtles. J. expo Zoo1. 218, 435-440.<br />

Burrage, B. R. (1965). Copulation in a pair <strong>of</strong> Alligator mississippiensis. Br. J. Herpet. 3,207-208.<br />

Busch, K. H. (1898). Beitrag zur Kenntnis der Gaumenbildung bei den Reptilien. Zool. Jb.,<br />

(Anat). 11, 441-499.<br />

Bustard, H. R. (1969). Tail abnormalities in reptiles resulting from high temperature egg<br />

Chabreck, R. H. (1977). Collection <strong>of</strong> American alligator eggs for artificial incubation. Proc.<br />

incubation. Br. f. Herpet. 4(3), 121-]23.<br />

31st Ann. Conf· Sou<strong>the</strong>ast. Assoc. Game Fish Comm., San Antonio, Texas. Oct, 1977, pp. 1-8.<br />

Bustard, H. R. (1971). Temperature <strong>and</strong> water tolerances <strong>of</strong> incubating crocodile eggs. Br. J.<br />

Chabreck, R H. (1978). Collection <strong>of</strong> American alligator eggs for artificial incubation. Wildl.<br />

Soc. Bull. 6(4), 253-256.<br />

Herpet. 4, 198-200.<br />

Bustard, H. R. (1975). Captive breeding <strong>of</strong> crocodiles. In Breeding Endangered Species in CaptiV­Chaffeeity (R. D. Martin, ed.). Academic Press, London, pp. 43-47.<br />

P. S. (1969). Artificial incubation <strong>of</strong> alligator eggs Alligator mississippiensis at Fresno<br />

Zoo. Intern. Zoo Yearb. 9, 34.<br />

Bustard, H. R. (1980a). Clutch size, incubation, <strong>and</strong> hatching success <strong>of</strong> gharial [Gavialis<br />

Chiasson, R. B. (1962). li1boratory Anatomy <strong>of</strong> <strong>the</strong> Alligator. W. M. C.<br />

Iowa.<br />

Brown Co., Dubuque,<br />

gangeticus (Gmelin)] eggs from Narayan! River, Nepal, 1976-1978. f. Bombay nat. Hist. Soc.<br />

77(1), 100-105<br />

Bustard, H. R. (1980b). Maternal care in <strong>the</strong> gharial, Gavialis gangeticus (Gmelin). Brit. J. Herp.<br />

6(2), 63-64.<br />

Bustard, H. R. (1980c). Captive breeding <strong>of</strong> crocodiles. In The Care <strong>and</strong> Breeding <strong>of</strong> Captive<br />

Reptiles (S. Townsend, N. J. Millichamp, D. G. D. Lucas, <strong>and</strong> A. J. Millwood, eds.).<br />

British Herpetological Society, pp. 1-20.<br />

Bustard, H. R. (1980d). A note on nesting behaviour in <strong>the</strong> Indian gharial Gavialis gangeticus. /.<br />

Bombay nat. Hist. Soc. 76, 519-521.<br />

Bustard, H. R. <strong>and</strong> Singh, L. A. K. (1981). Age at onset <strong>of</strong> sexual maturity in male Indian<br />

mugger (Crocodylus palustris) reared under ideal husb<strong>and</strong>ry conditions in captivity. J<br />

Bombay nat. Hist. Soc 78, 607-610.<br />

Butler, A. L. (1905). The eggs <strong>and</strong> embryos <strong>of</strong> Schlegel's gavial (Tamistoma schlegelii, S. Muller).<br />

J. Fed. Malay St. Mus. 1(1), 1-2.<br />

Butler, G. W. (1889). On <strong>the</strong> subdivision <strong>of</strong> <strong>the</strong> body cavity in lizards, crocodiles <strong>and</strong> birds.<br />

Proc zool. Soc L<strong>and</strong>., 452-474.<br />

Campbell, H. W. (1972). Ecological or phylogenetic interpretations <strong>of</strong> crocodilian nesting<br />

habits. Nature, Lond. 238, 404-405.<br />

CampbelL H. W. (1973). Observations on <strong>the</strong> acoustic behavior <strong>of</strong> crocodilians. Zoologicd<br />

(N. YJ 58, 1-11<br />

Cardeilhac, P. T. (1981). <strong>Reproductive</strong> physiology <strong>of</strong> <strong>the</strong> American alligator. In Proceedings "I<br />

<strong>the</strong> First Annual Alligator Production Conference. University <strong>of</strong> Florida, 12th February, 1981.<br />

p.13.<br />

REFERENCES<br />

467<br />

Cardeilhac, P. T., Puckett, H. M., De Sena, R. R., <strong>and</strong> Larsen, R. E. (1982). Progress in<br />

artificial insemination <strong>of</strong> <strong>the</strong> alligator. Proc. 2nd Ann. Alligator Conf. Univ. Florida, pp. 44­<br />

46.<br />

Carroll, R. L. (1969). Origin <strong>of</strong> Reptiles. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans, A. d'A. Bellairs, <strong>and</strong><br />

T. S. Parsons, eds.). Volume 1, 1\:0. 1, Academic Press, London <strong>and</strong> New York, pp. 1-44.<br />

Casas, A. G. Y. M. <strong>and</strong> Guzman, A. (1970). Estado actual de las investigaciones sombre<br />

cocodrilos Mexicanos. Bo1. Mexico Inst. Nat. Invest. Bioi. Pesq., Ser. Divulg. 3, 1-52.<br />

Case, E. C. (1896). Abnormal sacrum in an alligator. Amer. Nat. 30, 232-234.<br />

Chabreck, R. H. (1966). Methods <strong>of</strong> determining <strong>the</strong> size <strong>and</strong> composition <strong>of</strong> alligator popUlations<br />

in Louisiana. Proe. 20th Ann. Conf. Sou<strong>the</strong>ast. Assoc. Game Fish Com . 20, 105-112.<br />

m<br />

Chabreck, R. H, (1973). Temperature variation in nests <strong>of</strong> <strong>the</strong> American alligator. Herpetologica<br />

29, 48-51.<br />

Chabreck, R. H. (1975). Moisture variation in nests <strong>of</strong> <strong>the</strong> American alligator (Alligator mississippiensis).<br />

Herpeto10gica 31(4), 385-389.<br />

Chu, C. K. (1957). Observations on <strong>the</strong> life history <strong>of</strong> <strong>the</strong> Chinese alligator (Alligator sinensis<br />

Faurel). Acta Zool. Sinica 9, 129-143.<br />

Chu-Chen, H. (1982). The ecology <strong>of</strong> <strong>the</strong> Chinese alligator <strong>and</strong> changes in its geographical<br />

distribution. In Crocodiles. Proceedings <strong>of</strong> <strong>the</strong> 5th Working Meeting <strong>of</strong> <strong>the</strong> Crocodile Specialist<br />

Group <strong>of</strong> <strong>the</strong> Species Survival Commission <strong>of</strong> <strong>the</strong> International Union for Conservation <strong>of</strong> Nature<br />

<strong>and</strong> Natural Resources. IUCN Publ., New Ser., 54-62.<br />

Clark, H., Sisken, B., <strong>and</strong> Shannon,]. E. (1957). Excretion <strong>of</strong> nitrogen by <strong>the</strong> alligator embryo.<br />

f. Cell compo Physiol. 50(1), 129-134.<br />

Bustard, H. R. (1984). Breeding <strong>the</strong> gharial (Gavialis gangeticus): Captive breeding a key<br />

Clark, N. B. (1970). The parathyroid. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans <strong>and</strong> T. S. Parsons, eds.).<br />

conservation strategy for endangered crocodilians. In The Structure, Development <strong>and</strong> Evolution<br />

<strong>of</strong> Reptiles (M. W. J. Ferguson, ed.). Academic Press, London, 385-406.<br />

Clarke, S. F. (1888a). The nest <strong>and</strong> eggs <strong>of</strong> <strong>the</strong> alligator (Alligator lucius, Cuv.). Ann. Nat. Hist.<br />

Volume 3, Academic Press, London <strong>and</strong> New York, pp. 235-262.<br />

2, 509-511; Zool. Anz. 11(290), 568-570.<br />

Bustard, H. R. <strong>and</strong> Kar, S. K. (1981). Defence <strong>of</strong> <strong>the</strong> nest against man by <strong>the</strong> saltwater<br />

crocodile (Crocody1us porosus). f. Bombay nat. Hist. Soc. 77(3), 514-515.<br />

Clarke, S. F. (1888b). Eggs <strong>of</strong> Alligator lucius. f. Roy. micro. Soc. 6,925.<br />

Clarke, S. F. (1891). The habits <strong>and</strong> embryology <strong>of</strong> <strong>the</strong> American alligator. J. Morph. 5(2), 181­<br />

205.<br />

Cohen, M. M. <strong>and</strong> Gans, C. (1970). The chromosomes <strong>of</strong> <strong>the</strong> order Crocodilia. Cytogenetics 9,<br />

81-105.<br />

Compton, A. (1981). Courtship <strong>and</strong> nesting behaviour <strong>of</strong> <strong>the</strong> freshwater crocodile Crocodylus<br />

johnstani under controlled conditions. Aust. Wild/. Res. 8, 443-450.<br />

Cordier, R. (1954). Le systeme nerveux central et les nerfs cerebro-spinaux. In Traite de<br />

Z~ologie. Vertebres, Embryologie, Gr<strong>and</strong>s Problemes d'Anatomie Comparee, Caracteristiques<br />

BIOChemiques (P. P. Grasse, ed.). Volume 12, Masson, Paris, pp. 202-332.<br />

Cordier, R. <strong>and</strong> Dalcq, A. (1954). Organe stato-acoustique. In Traite de Zoologie. Vertebres,<br />

Embryologie, Gr<strong>and</strong>s Problemes d'Anatomie Comparee, Caracteristiques Biochemiques (P. P.<br />

Grasse, ed.). Volume 12, Masson, Paris, pp. 451-521.<br />

Cott, J:I. B. (1961). Scientific results <strong>of</strong> an inqUiry into <strong>the</strong> ecology <strong>and</strong> economic status <strong>of</strong> <strong>the</strong><br />

Nile crocodile (Crocodilus niloticus) in Ug<strong>and</strong>a <strong>and</strong> Nor<strong>the</strong>rn Rhodesia. Trans. zool. Sac.<br />

Lond. 29(4), 211-359.


468<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Cott, H. B. (1969). Tourists <strong>and</strong> crocodiles in Ug<strong>and</strong>a. Oryx 10, 153-160.<br />

Cott, H. B. (1971). Parental care in <strong>the</strong> Crocodilia, with special reference to Crocodylus niloticus.<br />

In Crocodiles. Proceedings <strong>of</strong> <strong>the</strong> 1st Meeting <strong>of</strong> Crocodile Specialists. I. U.C.N. 32, 166-180.<br />

Cot!, H. B. (1975). Looking at Animals. A Zoologist in Africa. Collins, London.<br />

Coulson, R. A. <strong>and</strong> Hern<strong>and</strong>ez, T. (1964). Biochemistry <strong>of</strong> <strong>the</strong> Alligator. A Study <strong>of</strong> Metabolism in<br />

Slow Motion. Louisiana State University Press, Baton Rouge.<br />

Coulson, R. A. <strong>and</strong> Hern<strong>and</strong>ez, T. (1983). Alligator Metabolism. Studies on Chemical Reactions in<br />

vivo. Pergamon Press, Oxford.<br />

Coulson, T. D., Coulson, R. A., <strong>and</strong> Hern<strong>and</strong>ez, T. (1973). Some observations on <strong>the</strong> growth<br />

<strong>of</strong> captive alligators. Zoologica, N. Y. 58(2), 47-52.<br />

Crawshaw, P. G. <strong>and</strong> Schaller, G. B. (1980). Nesting <strong>of</strong> Paraguayan caiman (Caiman yacare) in<br />

Brazil. Pap. Avul. Zool. S. Paulo 33(18), 283-292.<br />

Crescitelli, F. (ed.) (1977). The Visual System in Vertebrates. Springer-Verlag, Berlin.<br />

Crews, D. <strong>and</strong> Garrick, L. D. (1980). Methods <strong>of</strong> inducing reproduction in captive reptiles. In<br />

<strong>Reproductive</strong> <strong>Biology</strong> <strong>and</strong> Diseases <strong>of</strong> Captive Reptiles (J. B. Murphy <strong>and</strong> J. T. Collins, eds.).<br />

Volume 1, SSAR Contributions to Herpetology, pp. 49-70.<br />

Cuellar, O. (1966). Oviductal anatomy <strong>and</strong> sperm storage structures in lizards. J. Morph. 119,<br />

7-20.<br />

Dalcq, A. <strong>and</strong> Pasteels, J. (1954). Le developpement des vertebres. In Traite de Zoologie.<br />

Vertebres: Embryologie, Gr<strong>and</strong>s Problcmes d'Anatomie Comparee et Caracteristiques Biochemiques<br />

(P. P. Grasse, ed.). Volume 12, Masson, Paris, pp. 35-201.<br />

David, R. (1970). Breeding <strong>the</strong> mugger, Crocodylus palustris <strong>and</strong> water monitor Varanus salvator<br />

at Ahmedabad Zoo. Internal. Zoo Yearb. 10, 116.<br />

de Beer, G. R. (1937). The Development <strong>of</strong> <strong>the</strong> Vertebrate Skull. Oxford University Press, Oxford.<br />

de Beer, G. R. (1949). Caruncles <strong>and</strong> egg teeth: Some aspects <strong>of</strong> <strong>the</strong> concept <strong>of</strong> homology.<br />

Proc. Linnean Soe. Lond. 161(2), 218-224.<br />

de Beer, G. (1959). Vertebrate Zoology. Sidgwick & Jackson, London.<br />

de Jong, J. K. (1928). Uber eine abnorme Bezahnung bei Crocodilus porosus Schn. Mise. Zool.<br />

Sumatrana 31, 1-5.<br />

de Rooij, N. (1915). The Reptiles <strong>of</strong> <strong>the</strong> Indo-Australian Archipelago. 1. Lacertilia, Chelonia, Emy­Ernelianovdosauria. E. J. Brill, Leiden.<br />

S. W. (1937). Die Morphologie der Tetrapodenrippen. Zool. Jb. (Anat), 62, 173­<br />

274.<br />

del Toro, A. M. (1969). Breeding <strong>the</strong> spectacled caiman (Caiman crocodylus) at Tuxtla Gutierrez<br />

Zoo. Internal. Zoo Yearb. 9, 35-36.<br />

del Toro, A. M. (1974). Los Crocodylia de Mexico. Instituto Mexicano Recursos Naturales Ren(lvables<br />

A. c., Mexico, D.F.<br />

del Toro, A. M. (1975). Morelet's crocodile. In Wildlife, World Conservation Yearbook, pp. 88­<br />

91.<br />

Deitz, D. C. <strong>and</strong> Hines, T. C. (1980). Alligator nesting in north-central Florida. Copeia 1980,<br />

249-258.<br />

Densmore, L. D. (1981). "Biochemical <strong>and</strong> Immunological Systematics <strong>of</strong> <strong>the</strong> Order<br />

Crocodilia." Ph.D. diss., Louisiana State University, New Orleans.<br />

Deraniyagala, P. E. P. (1934). Neoteny in Crocodylus porosus. Ceylon J. Sci. 19,97-100.<br />

Deraniyagala, P. E. P. (1936). Reproduction <strong>of</strong> <strong>the</strong> estuarine crocodile <strong>of</strong> Ceylon. Ceylon J. SCI.<br />

19(3), 253-277.<br />

Deraniyagala, P. E. P. (1939). The Tetrapod Reptiles <strong>of</strong> Ceylon, Vol. 1, Testudinates <strong>and</strong> Cron)­<br />

dilians. Colombo Museum, Sri Lanka. Dubau & Co., London.<br />

Descourtilz, M. E. (1809). Voyages d'un Naturaliste, et ses Observations. Volume 3, Masson,<br />

Paris.<br />

REFERENCES 468<br />

Dessauer, H. C. (1974). Plasma proteins <strong>of</strong> reptiles. In Chemical Zoology (M. Florkin <strong>and</strong> B. T.<br />

Scheer, eds.). Volume 9, Academic Press, New York, pp. 187-216.<br />

Devillers, C. (1954a). Structure et evolution de la colonne vertebrale. In Traite de Zoologie.<br />

Vertebres: Embry%gie, Gr<strong>and</strong>s Problcmes d'Anatomie Comparee, Caracteristiques Biochemiques<br />

(P. P. Grasse, ed.). Volume 12, Masson, Paris, pp. 605-672.<br />

DeviIlers, C. (1954b). Les cotes. In Traite de Zoologie. Vertebres: Embryologie, Gr<strong>and</strong>s Problcmes<br />

d'Anatomie Comparee, Caracteristiques Biochemiques (P. P. Grasse, ed.). Volume 12, Masson,<br />

Paris, pp. 673-697.<br />

DeviIlers, C. (1954c). Origine et evolution des nageoires et des membres. In Traite de Zoologie.<br />

Vertebres: Embryologie, Gr<strong>and</strong>s Problcmes d'Anatomie Comparee, Caracteristiques Biochemiques<br />

(P. P. Grasse, ed.). Volume 12, Masson, Paris, pp. 710-790.<br />

Diamond, J. M. (1982). How eggs brea<strong>the</strong> while avoiding desiccation <strong>and</strong> drowning. Nature,<br />

Lond. 295, 10-11.<br />

Drent, R. H. (1967). Functional Aspects <strong>of</strong> Incubation in <strong>the</strong> Herring Gull (Larus argentatus Pont).<br />

E. J. Brill, Leiden.<br />

Dunn, R. W. (1977). Notes on <strong>the</strong> breeding <strong>of</strong> Johnstone's crocodile Crocodylus johnsoni.<br />

Internat. Zoo Yearb. 17, 130-131.<br />

Dunn, R. W. (1981). Fur<strong>the</strong>r observations on <strong>the</strong> captive reproduction <strong>of</strong> Johnstone's<br />

crocodiles (Crocodylus jolmsoni) at Melbourne Zoo. Internat. Zoo Yearb. 21, 82-83.<br />

Dustin, A. P. (1914). A l'etude du thymus des reptiles. Arch. Zool. exper. gen. 54, 1-56.<br />

Edgeworth, H. (1907). The development <strong>of</strong> <strong>the</strong> head muscles in Gallus domesticus <strong>and</strong> <strong>the</strong><br />

morphology <strong>of</strong> <strong>the</strong> head muscles in <strong>the</strong> Sauropsida. Q. JI. micro Sci. N.S. 51(4), 511-556.<br />

Edmund, A. G. (1962). Sequence <strong>and</strong> rate <strong>of</strong> tooth replacement in <strong>the</strong> Crocodilia. Life Sciences<br />

Div., Roy. Ontario Mus. 56, 1-42.<br />

Edmund, A. G. (1969). Dentition. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans, A. d'A. Bellairs, <strong>and</strong> T. S.<br />

Parsons, eds.). Volume 1, Academic Press, London <strong>and</strong> New York, pp. 117-200.<br />

Elias, H. (1955). Embryonic diversity leading to adult identity: The early embryology <strong>of</strong> <strong>the</strong><br />

liver <strong>of</strong> vertebrates (A preliminary report). Anal. Anz. 101(13/15), 153-167.<br />

Elsey, R. M. <strong>and</strong> Lance, V. (1983). Effect <strong>of</strong> diet on blood selenium <strong>and</strong> glutathione peroxidase<br />

activity in <strong>the</strong> alligator. Compo Biochem. Physiol. 76B(4), 831-837.<br />

Erben, H. K. (1970). Ultrastrukturen und Mineralisation rezenter und fossiler Eischalen bei<br />

Vogeln und Reptilien. Biomineral. Forscllber. 1, 1-66.<br />

Ewert, M. A. (1979). The embryo <strong>and</strong> its egg: development <strong>and</strong> natural history. In Turtles,<br />

Perspectives <strong>and</strong> Research. (M. Harless <strong>and</strong> H. Morlock, eds.). J. Wiley & Sons, New York,<br />

pp. 333-413.<br />

EWing, H. E. (1943). Continued fertility in female box turtle following mating. Copeia 1943,<br />

112-114.<br />

Fahrenholz, C. (1937). Drusen der Mundhohle. In H<strong>and</strong>buch der vergleichenden Anatomie der<br />

Wlrbeltiere. (L. Bolk, E. Goppert, E. Kallius, <strong>and</strong> W. Lubosch, eds.). Volume 3, Urban und<br />

Schwarzenberg, Berlin <strong>and</strong> Vienna, pp. 115-210.<br />

Fallon, J. F. <strong>and</strong> Caplan, A. I. (1983). Limb Development <strong>and</strong> Regeneration. A. R. Liss, New York.<br />

Feilden, H. W. (1810). The nest <strong>of</strong> <strong>the</strong> alligator. The Zoologist (2) 5, 2090-2092.<br />

Felix, W..(1906a). Die Entwickelung des Harnapparates. In H<strong>and</strong>buch der vergleichenden und<br />

e~erzmentellen Entwicklungslehre der Wirbeltiere (0. Hertwig, ed.). Volume 3, No.1, Gustav<br />

Fischer, lena, pp. 1-58.<br />

Flix<br />

e ,W. (1906b). Theoretische Betrachtungen uber das Genitalsystem der Vertebraten. In


470 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

H<strong>and</strong>buch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere (0. Hertwig,<br />

ed.). Volume 3, No.1, Gustav Fischer, Jena, pp. 59-98.<br />

Ferguson, M. W. J. (1977). The mechanism <strong>of</strong> palatal shelf elevation <strong>and</strong> <strong>the</strong> pathogenesis <strong>of</strong><br />

cleft palate. Virchows Arch. path. Anat. Histol. 375,97-113.<br />

Ferguson, M. W. J. (1978a). Palatal shelf elevation in <strong>the</strong> Wistar rat fetus. J. Anat. 125(3),555­<br />

577.<br />

Ferguson, M. W. J. (] 978b). The teratogenic effects <strong>of</strong> 5 fluoro-2-desoxyuridine (F. U.D.R.) on<br />

<strong>the</strong> Wistar rat fetus, with particular reference to cleft palate. J. Anat. 126(1), 37-49.<br />

Ferguson, M. W. J. (1979a). The American alligator (Alligator mississippiensis): A new model for<br />

investigating developmental mechanisms in normal <strong>and</strong> abnormal palate formation. Med.<br />

Hypoth. 5(10), 1079-1090.<br />

Ferguson, M. W. J. (1979b). The palatal histology <strong>of</strong> Alligator mississippiensis. I.R.CS. Med. Sci.<br />

Anat. Human BioI. 7, 472.<br />

Ferguson, M. W. J. (1981a). The value <strong>of</strong> <strong>the</strong> American alligator (Alligator mississippiensis) as a<br />

model for research in crani<strong>of</strong>acial development. J. Crani<strong>of</strong>ac. Genet. Devl. BioI. 1(1), ]23­<br />

144.<br />

Ferguson, M. W. J. (1981b). The structure <strong>and</strong> development <strong>of</strong> <strong>the</strong> palate in Alligator mississippiensis.<br />

Arch. Oral Bioi. 26, 427-443.<br />

Ferguson, M. W. J. (]98lc). Extrinsic microbial degradation <strong>of</strong> <strong>the</strong> alligator eggshell. Science,<br />

N. Y. 214, 1135-1137.<br />

Ferguson, M. W. J. (1981d). Developmental mechanisms in normal <strong>and</strong> abnormal palate<br />

formation with particular reference to <strong>the</strong> etiology, pathogenesis <strong>and</strong> prevention <strong>of</strong> cleft<br />

palate. Brit. J. Orthodont. 8, 115-137.<br />

Ferguson, M. W. J. (1982a). The structure <strong>and</strong> composition <strong>of</strong> <strong>the</strong> eggshell <strong>and</strong> embryonic<br />

membranes <strong>of</strong> Alligator mississippiensis. Trans. zool. Soc. Lond. 36, 99-152.<br />

Forbes, T. R. (1938c). Administration <strong>of</strong> oestrone to young alligators. Science, N. Y. 87(2256),<br />

Ferguson, M. W. J. (1982b). "The Structure <strong>and</strong> Development <strong>of</strong> <strong>the</strong> Palate in Alligator mississippiensis."<br />

Ph.D. Diss., Queen's Univ., Belfast.<br />

282-283.<br />

Forbes, T. R. (1939). Studies on <strong>the</strong> reproductive system <strong>of</strong> <strong>the</strong> alligator. V. The effects <strong>of</strong><br />

Ferguson, M. W. J. (1984). Crani<strong>of</strong>acial development in Alligator mississippiensis. In The Structure,<br />

Development <strong>and</strong> Evolution <strong>of</strong> Reptiles (M. W. J. Ferguson, ed.). Academic Press,<br />

injections <strong>of</strong> testosterone propionate in immature alligators. Anat. Rec. 75(1), 51-57.<br />

London, 223-273.<br />

Ferguson, M. W. J. <strong>and</strong> Honig, L. S. (]984). Epi<strong>the</strong>lial-mesenchymal interactions during<br />

vertebrate palatogenesis. In Palate Development: Normal <strong>and</strong> Abnormal, Cellular <strong>and</strong> Molecular<br />

Aspects (E. F. Zimmerman, ed.). Curro Topics devel. Bioi. 19, 137-164.<br />

Ferguson, M. W. J. <strong>and</strong> Joanen, T. (1982). Temperature <strong>of</strong> egg incubation determines sex in<br />

Alligator mississippiensis. Nature, Lond. 296, 850-853.<br />

Ferguson, M. W. J. <strong>and</strong> Joanen, T. (1983). Temperature dependent sex determination in<br />

Alligator mississippiensis. J. Zool. 200, 143-177.<br />

Ferguson, M. W. J., Honig, L. S., Bringas, P. <strong>and</strong> Slavkin, H. C. (1981). Epi<strong>the</strong>lialmesenchymal<br />

interactions in vertebrate secondary palate development. Amer. Zool. 21(4).<br />

952.<br />

Ferguson, M. W. J., Honig, L. S., Bringas, P., <strong>and</strong> Slavkin, H. C. (1982). In vivo <strong>and</strong> in viti'll<br />

development <strong>of</strong> first branchial arch derivatives in Alligator mississippiensis. In Factors alld<br />

Mechanisms Influencing Bone Growth (A. D. Dixon <strong>and</strong> B. G. Sarnat, eds.). Alan R. Liss,<br />

New York, pp. 275-286.<br />

Ferguson, M. W. J., Honig, L. S., Bringas, P., <strong>and</strong> Slavkin, H. C. (1983). Alligator m<strong>and</strong>ibular<br />

development during long-term <strong>org</strong>an culture. In Vitro 19, 385-393.<br />

Ferguson, M. W. J., Honig, L. S., <strong>and</strong> Slavkin, H. C. (1984). Differentiation <strong>of</strong> cultured palatal<br />

shelves from alligator, chick <strong>and</strong> mouse embryos. Anat. Rec., 209, 23]-249.<br />

Fioroni, P. (1962). Der Eizahn und die Eischwiele der Reptilien. Acta Anat. 49, 328-366.<br />

REFERENCES<br />

471<br />

Fischer, K. (1974). Die Steuerung der Fortpfanzungszyklen bei mannlichen Reptilien. Fortsch.<br />

Zool. 22, 362-390.<br />

Fisk, A. <strong>and</strong> Tribe, M. (1949). The development <strong>of</strong> <strong>the</strong> amnion <strong>and</strong> chorion <strong>of</strong> reptiles. Proc.<br />

zool. Soc. Lond. 119(1), 83-114.<br />

Fleischmann, A. (1910). Uber den Begriff Gaumen. Morph. Jb. 41, 681-707.<br />

Fleming, D. M., Palmisano, A. W., <strong>and</strong> Joanen, T. (1976). Food habits <strong>of</strong> coastal marsh<br />

raccoons with observations on alligator nest predation. Proc. 30th Ann. Conf. Sou<strong>the</strong>ast.<br />

Assoc. Game Fish Comm., 1976.<br />

Fogarty, M. J. (1972). Review <strong>of</strong> The Last <strong>of</strong> <strong>the</strong> Ruling Reptiles, Alligators, Crocodiles <strong>and</strong> Their Kin<br />

by Wilfred T. Neill. J. Wildl. Manag. 36(4), 1370-1372.<br />

Fogarty, M. J. (1974). The ecology <strong>of</strong> <strong>the</strong> Everglades alligator. In Environments <strong>of</strong> South Florida:<br />

Present <strong>and</strong> Past (P. J. Gleason, ed.). Mem. Miami Geol. Survey (2),367-378.<br />

Forbes, T. R. (1934). Effect <strong>of</strong> injections <strong>of</strong> pituitary whole gl<strong>and</strong> extract on immature alligator.<br />

Proc. Soc. expo BioI. Med. 31, 1129-1130.<br />

Forbes, T. R. (]937a). Studies on <strong>the</strong> reproductive system <strong>of</strong> <strong>the</strong> alligator. I. The effects <strong>of</strong><br />

prolonged injections <strong>of</strong> pituitary whole gl<strong>and</strong> extract in <strong>the</strong> immature alligator. Anat. Rec.<br />

70(1), 113-133.<br />

Forbes, T. R. (1937b). "Studies on <strong>the</strong> <strong>Reproductive</strong> System <strong>of</strong> <strong>the</strong> Alligator." Ph.D. Thesis,<br />

The University <strong>of</strong> Rochester.<br />

Forbes, T. R. (1938a). Studies on <strong>the</strong> reproductive system <strong>of</strong> <strong>the</strong> alligator. II. The effects <strong>of</strong><br />

prolonged injections <strong>of</strong> oestrone in <strong>the</strong> immature alligator. J. expo Zool. 78(3), 335-367.<br />

Forbes, T. R. (1938b). Studies on <strong>the</strong> reproductive system <strong>of</strong> <strong>the</strong> alligator. III. The action <strong>of</strong><br />

testosterone on <strong>the</strong> accessory sex structures <strong>of</strong> recently hatched female alligators. Anat.<br />

Rec. 72(1), 87-94.<br />

Forbes, T. R. (1940a). Studies on <strong>the</strong> reproductive system <strong>of</strong> <strong>the</strong> alligator. IV. Observations on<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong> gonad, <strong>the</strong> adrenal cortex <strong>and</strong> <strong>the</strong> Mullerian duct. Cam. Inst.<br />

Washington Publ. (518), Contrib. Embryol. 28(174), 129-]56.<br />

Forbes, T. R. (1940b). Studies on <strong>the</strong> reproductive system <strong>of</strong> <strong>the</strong> alligator. VI. Fur<strong>the</strong>r observa­<br />

tions on heterosexual structures in <strong>the</strong> female alligator. Anat. Rec. 77(3), 343-359.<br />

Forbes, T. R. (1940c). A note on reptilian sex ratios. Copeia 1940(2), 132.<br />

Forbes, T. R. (1961). Endocrinology <strong>of</strong> reproduction in cold blooded vertebrates. In Sex <strong>and</strong><br />

Internal Secretions (W. C. Young, ed.). Volume 2, Balliere, Tindall & Cox, London, pp<br />

1035-1087.<br />

Forbes, T. R. (1964). Intersexuality in Reptiles. In Intersexuality in Vertebrates including Man<br />

(c. N. Armstrong <strong>and</strong> A. J. Marshall, eds.). Academic Press, London, pp. 273-283.<br />

FOrsburg, J. G. <strong>and</strong> Olivecrona, H. (1963). Degeneration processes dUring <strong>the</strong> development <strong>of</strong><br />

<strong>the</strong> Mullerian ducts in alligator <strong>and</strong> female chicken embryos. Z. Anat. EntwGesch. 124,<br />

659-663.<br />

Fox, H. (1977). The urogenital system <strong>of</strong> reptiles. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans <strong>and</strong> T. S.<br />

Parsons, eds.). Volume 6, Academic Press, London <strong>and</strong> New York, pp. 1-122.<br />

xon<br />

Fo 228. , G. E. H. (1955). Problems <strong>of</strong> <strong>the</strong> double circulation in vertebrates. Bioi. Rev. 30, 196­<br />

Frank: G: H. <strong>and</strong> Smit, A. L. (1974). The early ontogeny <strong>of</strong> <strong>the</strong> columella aUris <strong>of</strong> Crocodilus<br />

mlotzcus <strong>and</strong> its bearing on problems concerning <strong>the</strong> upper end <strong>of</strong> <strong>the</strong> reptilian hyoid<br />

arch. Zool. Afric. 9(1), 59-88.


~<br />

472 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS REFERENCES<br />

Freeman, B. M. <strong>and</strong> Vince, M. A. (1974). Development <strong>of</strong> <strong>the</strong> Avian £mbryo. A Behavioural <strong>and</strong><br />

Physiological Study. Chapman <strong>and</strong> Hall, London.<br />

Fuchs, H. (1907). Untersuchungen iiber Ontogenie und Phylogenie der Gaumenbildung bei<br />

den Wirbeltieren. Erste Mitteilung. Ober den Gaumen der Schildkroten und seine Entwicklungsgeschichte.<br />

Z. Morph. Anth. 10, 409-463.<br />

Fuchs, H. (1908). Cntersuchungen iiber Ontogenie und Phylogenie der Gaumenbildung bei<br />

den Wirbeltieren. Zweite Mitteilung. Ober das Munddach der Rhynchocephalen,<br />

Saurier, Schlangen, Krokodile und 'Sauger und den Zusammenhang zwischen Mund und<br />

Nasenhohle bei diesen Tieren. Z.Morph. Anth. 11, 153-248.<br />

Fuchs, H. (1910). Ober das Pterygoid, Palatinum und Parasphenoid der Quadrupeden insbesonder<br />

der Reptilien und Saugetiere, nebst einigen Betrachtungen iiber die Beziehungen<br />

zwischen Nerven und Skeletteilen. Anat. Anz. 36(2/4), 33-95.<br />

Gabe, M. (1970a). The Adrenal. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans <strong>and</strong> T. S. Parsons, eds.).<br />

Volume 3, Academic Press, London <strong>and</strong> New York, pp. 263-318.<br />

Gabe, M. (1970b). Pancreas endocrine. In Traite de Zoologie. Reptiles. Gl<strong>and</strong>es Endocrines, Embryologie,<br />

Systematique, Paleontologie (P. P. Grasse. ed.). Volume 14, No.3, Masson, Paris, pp.<br />

1333-1399.<br />

Gabe, M. <strong>and</strong> Saint Girons, H. (1970a). GI<strong>and</strong>e thyroide. In Traite de Zoologie. Reptiles. Gl<strong>and</strong>es<br />

Endocrilles. Embryologie, Systematique, Paleontologie (P. P. Grasse, ed.). Volume 14, No.3,<br />

Masson, Paris, pp. 727-758.<br />

Gabe, M. <strong>and</strong> Saint Girons, H. (1970b). Gl<strong>and</strong>e parathyroide. In Traite de Zoologie. Reptiles.<br />

Gl<strong>and</strong>es Endocrines, Embryologie, Systematique, Paleontologie (P. P. Grasse, ed.). Volume 14,<br />

No.3, Masson, Paris, pp. 759-770.<br />

Gadow, H. (1888). On <strong>the</strong> modifications <strong>of</strong> <strong>the</strong> first <strong>and</strong> second visceral arches with especial<br />

reference to <strong>the</strong> homologies <strong>of</strong> <strong>the</strong> auditory ossicles. Phil. Trans. R.oy. Soc. 179B, 451-485.<br />

Gans, C. <strong>and</strong> Clark, B. (1976). Studies on ventilation <strong>of</strong> Caiman crocadilus (Crocodilia: Reptilia).<br />

Respir. Physiol. 26(3), 285-301.<br />

Garrick, L. D. <strong>and</strong> Garrick, R. A. (1978). Temperature influences on hatchling Caiman<br />

crocodilus distress calls. Phys. ZooI. 51(2), 105-111.<br />

Garrick, L. D. <strong>and</strong> Lang, J. W. (1977). Social signals <strong>and</strong> behaviors <strong>of</strong> adult alligators <strong>and</strong><br />

crocodiles. Amer. Zool. 17, 225-239.<br />

Garrick, L. D., Lang, J. W., <strong>and</strong> Herzog, H. A. (1978). Social signals <strong>of</strong> adult American<br />

alligators. Bu/1. Amer. Mus. nat. Hist. 160, 155-192.<br />

Gartside, D. F., Dessauer, H. c., <strong>and</strong> Joanen, T. (1977). Genic homozygosity in an ancient<br />

reptile (Alligator mississippiensis). Biochem. Genet. 15, 655-663.<br />

Gaupp, E. (1906). Die Entwicklung der Kopfskelettes. In H<strong>and</strong>buch der vergleichenden ulld<br />

experimentellen Entwickelungslehre del' Wirtbeltiere (0. Hertwig, ed.). Volume 3, No.2.<br />

Gustav fischer, Jena, pp. 66-89.<br />

Gerard, P. (1954). Organes urogenitaux. In Traite de Zoologie. VerICbres. Embryologie, Gralld,<br />

Problemes d'Anatomie Comparee, Caracteristiques Biochemiques. (P. P. Grasse, ed.). Volume?<br />

12, Masson, Paris, pp. 974-1043.<br />

Giles, L. W. (1948). Polydactylism in an alligator. Copeia 1948(3), 214.<br />

Giles, L. W. <strong>and</strong> Childs, V. L. (1949). Alligator management <strong>of</strong> <strong>the</strong> Sabine National Wildlift'<br />

Refuge. f. WildI. Mgmt. 13(1), 16-28.<br />

Godet, R. (1961). Action du propionate de testosterone sur les jeunes crocodiles (Crocadi/u,;<br />

473<br />

Goodrich, E. S. (1930). Studies on <strong>the</strong> Structure <strong>and</strong> Development <strong>of</strong> Vertebrates. Macmillan & Co.<br />

Ltd., London.<br />

Goodwin, T. M. <strong>and</strong> Marion, W. R. (1978). Aspects <strong>of</strong> <strong>the</strong> nesting ecology <strong>of</strong> American<br />

alligators (Alligator mississippiensis) in north-central Florida. Herpetologica 34(1), 43-47.<br />

Goppert, E. (1903). Die Bedeutung der Zunge fiir den sekundaren Gaumen und den Ductus<br />

nasopharyngeus. Morp. lb. 31, 311-359.<br />

Gorzula, S. J. (1978). An ecological study <strong>of</strong> Caiman crocodilus inhabiting savanna lagoons in<br />

<strong>the</strong> Venezuelan guayana. Oecalogia 34, 21-34.<br />

Gottlieb, G. (ed). (1973). Studies on <strong>the</strong> Development <strong>of</strong> Behavior <strong>and</strong> <strong>the</strong> Nervous System, 1.<br />

Behavioral <strong>Embryology</strong>. Academic Press, New York <strong>and</strong> London.<br />

Graham, A (1968). "The Lake Rudolf Crocodile (Crocodylus niloticus Laurenti) Population."<br />

M.Sc. <strong>the</strong>sis, University College Nairobi; Report Kenya Game Department Wildlife Services<br />

Ltd, Nairobi.<br />

Graham, A. (1981). "Mapping <strong>the</strong> Pattern <strong>of</strong> Crocodile Nesting ActiVity in Papua New<br />

Guinea. Assistance to <strong>the</strong> Crocodile Skin Industry." FAO Field Document No.3, Wildlife<br />

Division, Port Moresby, FO:DP/PNG/74i029.<br />

Graham, A <strong>and</strong> Beard, P. (1973). Eyelids <strong>of</strong> Morning. The Mingled Destinies <strong>of</strong> Crocodiles <strong>and</strong><br />

Men. New York Graphic Society Ltd.<br />

Graham, A, Patterson, L., <strong>and</strong> Graham, J. (1976). Aerial photographic techniques for monitoring<br />

crocodile populations. fAO/UNDP Technical Note No. 34: Investigation <strong>of</strong> <strong>the</strong><br />

Okavango as a primary water resource for Botswana. BOTi71/506. Gov. <strong>of</strong> <strong>the</strong> Republic <strong>of</strong><br />

Botswana, 13 pp.<br />

Green, H. L. (1930). A description <strong>of</strong> <strong>the</strong> egg tooth <strong>of</strong> Ornithorhynchus toge<strong>the</strong>r with some<br />

notes on <strong>the</strong> development <strong>of</strong> <strong>the</strong> palatine processes <strong>of</strong> <strong>the</strong> premaxillae. f. Anat. 64, 512­<br />

522.<br />

Greer, A. E. (1970). Evolutionary <strong>and</strong> systematic significance <strong>of</strong> crocodilian nesting habits.<br />

Nature, Lond. 227, 523-524.<br />

Greer, A. E. (1971). Crocodilian nesting habits <strong>and</strong> evolution. Fauna 2, 20-28.<br />

Greer, A. E. (1975). Clutch size in crocodilians. f. Herpetol. 9,319-322.<br />

Greil, A. (1903). Vergleichende Anatomie und Entwicklungsgeschichte des Herzens und des<br />

Truncus Arteriosus der Wirbeltiere. Morph. lb. 31, 7-21.<br />

Groombridge, B. (1982). The I.U.C.N. Amphibia-Reptilia Red Data Book. Part 1 Testudines,<br />

Crocodylia, Rltyncltocephalia. I. C.C.N., Gl<strong>and</strong>, Switzerl<strong>and</strong>, pp. 283-413.<br />

Grunwald, E. (1931). La torsion intestinale chez les reptiles. Arch. Anat. Hist. Embryol. strasbourg<br />

14, 167-349.<br />

Guggisberg, C. A W. (1972). Crocadiles-Their Natural History, Folklore <strong>and</strong> Conservation. David<br />

& Charles, Newton Abbot.<br />

CUibe, J. (1970a). Le squelette cephalique. In Traite de Zoologie. Reptiles. Caracteres Generallx et<br />

Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 78-143.<br />

CUibe, J. (197Db). L'appareil digesti£. In Traite de Zoologie. Reptiles. Carae/eres Generaux et<br />

Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 521-548.<br />

e<br />

CUib , J. (1970c). Les <strong>org</strong>anes stato-acoustiques. In Traite de Zoologie. Reptiles. Caracteres<br />

Generaux et Anatomic (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 36D-375.<br />

Cuibe" J. (1970d). Le systeme nerveux peripherique. In Traite de Zoologie. Reptiles. Caracteres<br />

niloticus) de sexe femelle. C. r. Seane. Soc. BioI. 155, 394-395.<br />

Generaux et Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 333-346.<br />

Goeldi, E. A. (1900). Hufformige Verbreiterungen an den Krallen von Crocodilembryonen.<br />

GUibe, J. (1970e). La systematique des reptiles actuels. In TraitC de Zoologie. Reptiles. Gl<strong>and</strong>es<br />

Lool. Anz. 23, 149-151.<br />

Endocrines, Embryologie, Systematique, Paleontologie (P. P. Grasse, ed.). Volume 14, No.3,<br />

Masson, Paris, pp. 1054-1160.<br />

Golby, F. (1925). The development <strong>of</strong> <strong>the</strong> columella auris in <strong>the</strong> Crocodilia. f.<br />

III<br />

Anat. 59(3), 301­<br />

325.<br />

. Guibe, J. (1970f). Le squelette du tronc et des membres. In Traite de Zoologie. Reptiles. Caracteres<br />

Generaux et Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 33-77.


474 REPROOUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANB<br />

REFERENCEB<br />

4715<br />

Guibe, J. (1970g). La musculature. In Traite de Zoologie. Reptiles. Caracteres Generaux et Anatomie<br />

(P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 144-180.<br />

Guibe, J. (1970h). L'appareil respiratoire. In Traite de Zoologie. Reptiles. Caracteres Generaux et<br />

Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, 410-428.<br />

Guibe, J. (1970i). L'appareil circulatoire. In Traite de Zoologie. Reptiles. Caracteres Generaux et<br />

Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 429-473.<br />

Guire, J. (197Oj). L'appareil urogenital. In Traite de Zoologie. Reptiles. Gl<strong>and</strong>es Endocrines, Embryologie,<br />

Systematique, Paleontologie (P. P. Grasse, ed.) Volume 14, No.3, Masson, Paris, pp.<br />

801-828.<br />

Guibe, J. (1970k). La reduction des membres. In Traite de Zoologie. Reptiles. Caracteres Generaux<br />

et Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 194-20l.<br />

Guibe, J. (19701). La reproduction. In Traite de Zoologie. Reptiles. Gl<strong>and</strong>es Endocrines, Embryologie,<br />

Systematique, Paleontologie (P. P. Grasse, ed.). Volume 14, No.3, Masson, Paris, pp.<br />

859-892.<br />

Guibe, J. (1970m). Les <strong>org</strong>anes de I'olfaction. In Traite de Zoologie. Reptiles. Caracteres Generaux<br />

et Anatomie (P. P. Grasse, ed.). Volume 14, No.2, Masson, Paris, pp. 347-359.<br />

Gutzke, W. H. N. <strong>and</strong> Paukstes, G. L. (1983). The influence <strong>of</strong> <strong>the</strong> hydric environment on<br />

sexual differentiation <strong>of</strong> turtles. J. expo Zool. 226, 467-469.<br />

Haase, C. (1873). Das Gehor<strong>org</strong>an der Crocodile nebst weiteren vergleichend anatomischen<br />

Bemerkungen iiber das mittlere Ohr der Wirbeithiere und dessen Annexa. Anat. Stud. 17,<br />

679-750.<br />

Hagmann, G. (1902a). Alligatoren-schlachten im Amazonenstrom. Die Schweiz 6, 460-464.<br />

Hagmann, G. (1902b). Die Eier von Caiman niger. Zool. lb. (Syst). 16, 405-410.<br />

Hagmann, G. (1906). Die Eier von Gonatodes humeralis, Tupinambis nigropunctatus und Caimar!<br />

sclerops. Zool. lb. (Syst). 24, 307-316.<br />

Hagmann, G. (1909). Die Reptilien der Insel Mexiana, Amazonenstrom. Zool. lb. (Syst). 28,<br />

473-504.<br />

Hall, R. J., Kaiser, T. E., Robertson, W. B. <strong>and</strong> Patty, P. C. (1979). Organochlorine residues in<br />

eggs <strong>of</strong> <strong>the</strong> endangered American crocodile (Crocodylus acutus). Bull. environm. Contam.<br />

Toxicol. 23, 87-90.<br />

Hamasaki, D. I. <strong>and</strong> Eder, D. J. (1977). The adaptive radiation <strong>of</strong> <strong>the</strong> pineal system. In Tilt"<br />

Visual System in Vertebrates (F. Crescitelli, ed.). H<strong>and</strong>book <strong>of</strong> Sensory Physiology. Volume 7,<br />

No.5, Springer-Verlag, Berlin, pp. 497-548.<br />

Hammar, J. A. (1909). Ftinfzig Jahre Thymusforschung. Ergebn. Anat. EntwGesch. 19, 1-274.<br />

Hammar, J. A. (1937). Zur Bildungsgeschichte der Kiemenderivate der Krokodile. Z. mikrosk<br />

anal. Forsch. 41, 75-87.<br />

Hara, K. <strong>and</strong> Kikuchi, F. (1978). Breeding <strong>the</strong> West African dwarf crocodile Osteolaeml/s<br />

tetraspis tetraspis at Ueno Zoo, Tokyo. Internal. Zoo Yearb. 18, 84-87.<br />

Harrison, K. E., Bently, T. B., Lutz, P. L., <strong>and</strong> Marszalek, D. S. (1978). Water <strong>and</strong> gas<br />

diffusion in <strong>the</strong> American crocodile egg. Am. Zool. 18, 637.<br />

Herzog, H. (1975). An observation <strong>of</strong> nest opening by an American alligator Alligator mississil'­<br />

piensis. Herpetologica 31, 446-447.<br />

Hesser, A. S. (1905). Ober die Entwickelung der Reptilien Lungen. Anat. Hefte 29, 235.<br />

Higgins, G. M. (1923). Development <strong>of</strong> <strong>the</strong> primitive reptilian vertebral column as shown by a<br />

study <strong>of</strong> Alligator mississippiensis. Amer. J. Anat. 31(4), 373-395.<br />

Hilber, P. B. (1932). Der formative Einfluss der Luft auf die Atem<strong>org</strong>ane. (Vergleichende<br />

Untersuchungen tiber Bau und Entwicklung von Reptilien und Saugerlungen.) Gegenbaurs<br />

Morph. lb. 71, 184-265.<br />

Hill, J. P. <strong>and</strong> De Beer, G. R. (1949). Development <strong>of</strong><strong>the</strong> Monotremata. Part VII. The develop- Zoo Yearb. 9, 36-37.<br />

ment <strong>and</strong> structure <strong>of</strong> <strong>the</strong> egg tooth <strong>and</strong> <strong>the</strong> caruncle in <strong>the</strong> monotremes <strong>and</strong> on <strong>the</strong><br />

occurrence <strong>of</strong> vestiges <strong>of</strong> <strong>the</strong> egg tooth <strong>and</strong> caruncle in marsupials. Trans. zool. Soc. L<strong>and</strong>.<br />

26, 503-544.<br />

Hines, T. C. Fogarty, M. J., <strong>and</strong> Chappell, L. C. (1968). Alligator research in Florida: a<br />

progress report. Proc. 22nd Ann. Conf. Sou<strong>the</strong>ast. Assoc. Game Fish Comm., 1968, 22, 166­<br />

180.<br />

Hirsch, K. F. (1984). Fossil crocodilian eggs from <strong>the</strong> Eocene <strong>of</strong> Colorado. J. Paleonl. in press.<br />

His, W. (1892). Die Entwickelung der menschlichen und thierischer Physiognomien. Arch.<br />

Anat. Phys., 384-424.<br />

Hochstetter, F. (1906a). Beitrage zur Anatomie und Entwicklungsgeschichte des Blutgefassystemes<br />

der Krokodile. In Reise in Ostafrika in den lahren 1903-1905. Anatomie und Entwickelungsgeschichte<br />

(A. VoeItzkow, ed.). Volume 4, Wissenschaft, Stuttgart, pp. 1-140.<br />

Hochstetter, F. (1906b). Ober die Entwickelung der Scheidew<strong>and</strong>bildungen in der Leibeshohle<br />

der Krokodile. In Reise in Ostafrika in den lahren 1903-1905. Anatomie und<br />

Entwickelungsgeschichte (A. Voeltzkow, ed.). Volume 4, Wissenschaft, Stuttgart, pp. 141­<br />

206.<br />

Hochstetter, F. (1906c). Die Entwickelung des B1utgefassystemes. In H<strong>and</strong>buch der vergleichenden,<br />

und experimentellen Entwickelungslehreder Wirbeltiere (0. Hertwig, ed.). Volume 3, No.<br />

2, Gustav Fischer, Jena, pp. 131-186.<br />

H<strong>of</strong>fman, O. (1905). Das Munddach der Saurier. Morph. lb. 33, 3-38.<br />

H<strong>of</strong>fstetter, R. <strong>and</strong> Gasc, J. P. (1969). Vertebrae <strong>and</strong> ribs <strong>of</strong> modem reptiles. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong><br />

Reptilia (c. Gans, A. d'A. Bellairs, <strong>and</strong> T. S. Parsons, eds.). Volume 1, Academic Press,<br />

London <strong>and</strong> New York, pp. 201-310.<br />

Honegger, R. E. (1971). Zoo breeding <strong>and</strong> crocodile bank. In Crocodiles. Proceedings <strong>of</strong> <strong>the</strong> 1st<br />

Working Meeting <strong>of</strong> Crocodile Specialists. I.U.C.N. 32, 86-97.<br />

Honegger, R. E. (1975). The crocodilian situation in European zoos. Internat. Zoo Yearb. 15,<br />

277-287.<br />

Honig, L. S. (1984). Pattern formation dUring development <strong>of</strong> <strong>the</strong> amniote limb. In The<br />

Structure, Development <strong>and</strong> Evolution <strong>of</strong> Reptiles (M. W. J. Ferguson, ed.). Academic Press,<br />

London, 197-22l.<br />

Hughes, G. R. (1976). Irregular reproductive cycles in <strong>the</strong> Tongal<strong>and</strong> loggerhead sea turtle,<br />

Caretta caretta L. (Cryptodira: Chelonidae). Zool. Afric. 11, 285-29l.<br />

Huettner, A. F. (1949). Fundamentals <strong>of</strong> Comparative <strong>Embryology</strong> <strong>of</strong> <strong>the</strong> Vertebrates. Rev. Ed.<br />

Macmillan Co., New York.<br />

Humboldt, A. V. (1807). Ober das Zungenbein und den Kehlkopf der Vogel, der Affen und<br />

des Krokodils. In Beobachtungen aus der Zoologie und vergleichenden Anatomie. 1. Wissenschaft,<br />

Stuttgart, 1807-1809.<br />

Humphrey, T. (1968). The development <strong>of</strong> mouth opening <strong>and</strong> related reflexes involving <strong>the</strong><br />

oral area <strong>of</strong> human fetuses. Alabama I. Med. Sci. 5, 126-157.<br />

Humphrey, T. (1969a). The prenatal development <strong>of</strong> mouth opening <strong>and</strong> mouth closing<br />

reflexes. Ped. Rig. 11, 28-40.<br />

Humphrey, T. (1969b). The relation between human fetal mouth opening reflexes <strong>and</strong> closure<br />

<strong>of</strong> <strong>the</strong> palate. Amer. J. Anat. 125, 317-344.<br />

Humphrey, T. (1971a). Development <strong>of</strong> oral <strong>and</strong> facial motor mechanisms in human fetuses<br />

<strong>and</strong> <strong>the</strong>ir relation to cranio-facial growth. J. dent. Res. 50(6), pt 1 (supp.), 1428-144l.<br />

., ..<br />

Humphrey, T. (1971b). Human prenatal activity sequences in <strong>the</strong> facial region <strong>and</strong> <strong>the</strong>ir<br />

relationship to postnatal development. In Patterns <strong>of</strong> Or<strong>of</strong>acial Growth <strong>and</strong> Developmenl.<br />

Proceedings <strong>of</strong> <strong>the</strong> conference at Ann Arbor. Repts. Amer. Speech Hear. Assoc. 6, 19-37.<br />

Hunt, R. H. (1969). Breeding <strong>of</strong> spectacled caiman (Caiman crocodylus) at Atlanta Zoo. Internal.


476 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Hunt, R. H. (1973). Breeding Morelet's crocodile (Crocodylus morelctii) at Atlanta Zoo. Intenzat.<br />

Zoo Yearb. 13, 41-43.<br />

Hunt, R. H. (1975). Maternal behavior in <strong>the</strong> Morelet's crocodile (Crocodylus more/etii). Copcia<br />

1975(4), 763-764.<br />

Hunt, R. H. (1977). Aggressive behavior by adult Morelet's crocodiles (Crocodylus moreletii)<br />

toward young. Herpetologica 33(2), 195-201.<br />

Hunt, R. H. (1980). Propagation <strong>of</strong> Morelet's crocodile. In <strong>Reproductive</strong> <strong>Biology</strong> <strong>and</strong> Diseases <strong>of</strong><br />

Captive Reptiles (J. B. Murphy <strong>and</strong> I. T. Collins, eds.). SSAR Contributions to Herpetology<br />

(1), 161-165.<br />

Hunt, R. H. <strong>and</strong> Watanabe, M. E. (1982). Observations on maternal behavior <strong>of</strong> <strong>the</strong> American<br />

alligator, Alligator mississippiensis. f. Herp. 16(3), 235-239.<br />

Ikai, A., Kitamoto, T., <strong>and</strong> Mishigai, M. (1983). Alpha-2-macroglobulin-like protease inhibitor<br />

from <strong>the</strong> egg white <strong>of</strong> Cuban crocodile (Crocodylus rhombifer). f. Biochem. 93, 121-127.<br />

Iordansky, N. N. (1973). The skull <strong>of</strong> <strong>the</strong> Crocodilia. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia. (c. Gans <strong>and</strong><br />

T. S. Parsons, eds.). Volume 4, Academic Press, London <strong>and</strong> New York, pp. 201-262.<br />

lelden, D. T. (1981). Preliminary studies on <strong>the</strong> breeding biology <strong>of</strong> Crocodylus porosus <strong>and</strong><br />

Crocodylus novaeguineae on <strong>the</strong> Middle Sepik (Papua New Guinea). Amphibia/Reptilia 3/4,<br />

353-358.<br />

lenkins, N. K. (1975). Chemical composition <strong>of</strong> <strong>the</strong> eggs <strong>of</strong> <strong>the</strong> crocodile (Crocodylus novaeguineae).<br />

Camp. Biochem. Phys. 51A, 891-895.<br />

lenkins, N. K. <strong>and</strong> Simkiss, K. (1968). The calcium <strong>and</strong> phosphate metabolism <strong>of</strong> reproducing<br />

reptiles with particular reference to <strong>the</strong> adder (Viper berus). Compo Biochem. Phys. 26,865-876.<br />

lenkinson, I. W. (1913). Vertebrate <strong>Embryology</strong>. Comprising <strong>the</strong> Early History <strong>of</strong> <strong>the</strong> Embryo <strong>and</strong> It,<br />

Foetal Membranes. Oxford University Press, London.<br />

loanen, T. (1969). Nesting Ecology <strong>of</strong> Alligators in Louisiana. Proc. 23rd Anll. Conf. Sou<strong>the</strong>ast<br />

Assoc. Game Fish Comm. 1969, 141-151.<br />

loanen, T. <strong>and</strong> McNease, L. (1970). A telemetric study <strong>of</strong> nesting female alligators on Rockefeller<br />

Refuge, Louisiana. Proc. 24th Ann. Conf. Sou<strong>the</strong>ast. Assoc. Game Fish Comm. 1970,<br />

175-193.<br />

loanen, T. <strong>and</strong> McNease, L. (1971). Propagation <strong>of</strong> <strong>the</strong> American alligator in captivity. Proc<br />

25th Ann. Conf. Sou<strong>the</strong>ast. Assoc. Game Fish Comm. 1971, 106-116.<br />

loanen, T. <strong>and</strong> McNease, L. (1972). A telemetric study <strong>of</strong> adult male alligators on Rockefeller<br />

Refuge, Louisiana. Proc. 26th Ann. Conf. Sou<strong>the</strong>ast. Assoc. Game Fish Comm. 1972,252-275.<br />

loanen, T. <strong>and</strong> McNease, L. (1973). Developments in Alligator Research in Louisiana since<br />

1968. In Proceedings <strong>of</strong> <strong>the</strong> Symposium <strong>of</strong> <strong>the</strong> American Alligator Council, Winter Park, Florida,<br />

May 1973, pp. 1-20.<br />

loanen, T. <strong>and</strong> McNease, L. (1974a). Propagation <strong>of</strong> immature American alligators in controlled<br />

environmental chambers. ProC. South. Zoo Workshop, Monroe, Louisiana, May 7.<br />

1974, 1-11.<br />

loanen, T. <strong>and</strong> McNease, L. (1974b). Propagation <strong>of</strong> immature American alligators in controlled<br />

environmental chambers. ProC. Am. Assoc. Zool. Parks Aquar. Reg. Conf. 1974, 262­<br />

268.<br />

loanen, T. <strong>and</strong> McNease, L. (1975a). Notes on <strong>the</strong> reproductive biology <strong>and</strong> captive propagation<br />

<strong>of</strong> <strong>the</strong> American alIigator. Proc. 29th AmI. Conf. Sou<strong>the</strong>ast. Assoc. Game Fish Comlli.<br />

1975, 407-415.<br />

loanen, T. <strong>and</strong> McNease, L. (1975b). Louisiana's Alligator Research Program. Proc. 68th Ni/­<br />

tion. Audubon Conv., New Orleans, Louisiana, April 19, 1975, pp. 1-33.<br />

loanen, T. <strong>and</strong> McNease, L. (1976). Culture <strong>of</strong> immature American alligators in controlled<br />

environmental chambers. Proc. 7th Ann. Workshop, World Maricult. Soc. 1976, Louisiana<br />

State University Press, pp. 201-211.<br />

REFERENCES<br />

477<br />

loanen, T. <strong>and</strong> McNease, L. (1977). Artificial incubation <strong>of</strong> alligator eggs <strong>and</strong> post hatching<br />

culture in controlled environmental chambers. Proc. 8th Ann. World Maricult. Soc. Meet.<br />

San lose, Costa Rica, Ian. 9-13, 1977,483-489.<br />

loanen, T. <strong>and</strong> McNease, L. (1978). The cloaca sexing method for immature alligators. Proc.<br />

32nd Ann. Conf. Sou<strong>the</strong>ast. Assoc. Fish Wildl. Agenc. Virginia, Nov. 5-8, 1978,32,179-181.<br />

loanen, T. <strong>and</strong> McNease, L. (1979a). Culture <strong>of</strong> <strong>the</strong> American alligator Alligator mississippiensis.<br />

Intenzat. Zoo Yearb. 19, 61-66.<br />

loanen, T. <strong>and</strong> McNease, L. (1979b). Time <strong>of</strong> egg deposition for <strong>the</strong> American alligator. Proc.<br />

33rd Ann. Conf. Sou<strong>the</strong>ast. Assoc. Fish Wildl. Agenc. 33, 15-19.<br />

loanen, T. <strong>and</strong> McNease, L. (1980). <strong>Reproductive</strong> biology <strong>of</strong> <strong>the</strong> American alligator in southwest<br />

Louisiana. In ReprOductive <strong>Biology</strong> <strong>and</strong> Diseases <strong>of</strong> Captive Reptiles (1. B. Murphy <strong>and</strong><br />

I· T. Collins, eds.). Volume 1, SSAR Contributions to Herpetology, pp. 153-159.<br />

loanen, T. <strong>and</strong> McNease, L. (1981). Incubation <strong>of</strong> alligator eggs. Proc. 1st Ann. Alligator<br />

Product. Confer., University <strong>of</strong> Florida, Gainesville, pp. 1-13.<br />

loanen, T., McNease, L., <strong>and</strong> Perry, G. (1977). Effects <strong>of</strong> simulated flooding on alligator eggs.<br />

Proc. 31st Ann. Conf. Sou<strong>the</strong>ast. Assoc. Game Fish CO/nm. 31, 33-35.<br />

lolk, A. (1923). Ober den Verschluss der fotalen Augenbecherspalte die Entwicklung der<br />

Sehnerveninsertion und die Bildung ektodermaler und mesodermaler Zapfen in embryonalen<br />

Reptilienauge. Z. Anat. EntwGesch. 68, 523-618.<br />

Kalin, I. A. (1933). Beitrage zur vergleichenden Osteologie des Crocodilidenschadels. Zool. Jb.<br />

(Anal). 57(4), 535-714.<br />

Kalin, I. A. (1936a). Ober Skeletalanomalien bei Crocodiliden. Z. Morph. Okol. Tiere 32(2),327­<br />

347.<br />

Kalin, I. A. (1936b). Sur les anomalies du squelette chez les crocodiliens. Bull. Mus. natl. Hist.<br />

Nat. Paris, (Ser. 2) 8(5), 385-387.<br />

Kar, S. K. (1979). Malformation at birth in <strong>the</strong> saltwater crocodile (Crocodylus porosus<br />

Schneider) in Orissa, India. f. Bombay nat. Hist. Soc. 76, 166-167.<br />

Kar, S. K. <strong>and</strong> Bustard, H. R. (1982a). Occurrence <strong>of</strong> natural albinism in a wild population <strong>of</strong><br />

<strong>the</strong> saltwater crocodile (Crocodylus porosus Schneider) in Orissa, India. Br. f. Herpet. 6,<br />

220-221.<br />

Kar, S. K. <strong>and</strong> Bustard, H. R. (1982b). Embryonic tail deformation in <strong>the</strong> saltwater crocodile<br />

(Crocodylus porosus Schneider) in Orissa, India. Br. f. Herpet. 6, 221-222.<br />

Kerr, I. G. (1919). Textbook <strong>of</strong> <strong>Embryology</strong>. Vol. 11. Vertebrata with <strong>the</strong> Exception <strong>of</strong> Mammalia.<br />

Macmillan <strong>and</strong> Co. Ltd., London.<br />

Killian, G. (1888). Ober die Bursa und Tonsilla pharyngea. Eine entwickJungsgeschichtliche<br />

und vergleichend-anatomische Studie. Morph. Jb. 14, 618-711.<br />

King, F. W. <strong>and</strong> Dobbs, I. S. (1975). Crocodilian propagation in American zoos <strong>and</strong> aquaria.<br />

Intenzat. Zoo Yearb. 15, 272-277.<br />

King, J. A. <strong>and</strong> Millar, R. P. (1982). Structure <strong>of</strong> avian hypothalamic gonadotrophin-releasing<br />

hormone. S. Afric. J. Sci. 78, 124-125.<br />

K1ause, S. E., Doer, P. D., <strong>and</strong> S<strong>and</strong>ers, P. (1984). Breeding period <strong>and</strong> minimum size <strong>of</strong><br />

sexually mature American alligators in North Carolina. Herpetologica, in press.<br />

K1ause, S. E., Fuller, M. K., <strong>and</strong> Doer, P. D. (1984). Growth rates <strong>and</strong> age <strong>of</strong> sexual maturity <strong>of</strong><br />

American alligators in North Carolina. Herpetologica, in press.<br />

Kniisel, P. L. (1944). Beitrage zur Morphologie und Funktion der Crocodiliden­<br />

Extremitaten. Arb. Zool. Inst. Freiburg, 87S, 1-30.<br />

Koch, ~. E. <strong>and</strong> Smiley, G. R. (1981). In vivo <strong>and</strong> in vitro studies <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong><br />

aVIan secondary palate. Arch. Oral BioI. 26, 181-188.<br />

Kochva, E. (1978). Oral gl<strong>and</strong>s <strong>of</strong> <strong>the</strong> Reptilia. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans <strong>and</strong> K. A.<br />

Gans, eds.). Volume 8, Academic Press, London <strong>and</strong> New York, pp. 43-161.


47S<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

REFERENCES 478<br />

Kohlmeyer, J. (1969). The role <strong>of</strong> marine fungi in <strong>the</strong> penetration <strong>of</strong> calcareous substances.<br />

Am. Zoo!' 9, 741-746.<br />

Kohlmeyer, J. (1972). Marine fungi deteriorating chitin <strong>of</strong> Hydrozoa <strong>and</strong> keratin-like annelid<br />

tubes. Marine Bio!. 12(4), 277-284.<br />

Kopstein, F. (1929). Herpetologische Notizen II. Onlogische Beobachtungen an westjavanischen<br />

Reptilien. Treubia 2, 301-307.<br />

Krabbe, K. H. (1939). Studies on <strong>the</strong> Morphogenesis <strong>of</strong> <strong>the</strong> Brain in Reptiles. Munksgaard,<br />

Copenhagen.<br />

Kramptiz, V. G., B6hme, W., Kriesten, K., <strong>and</strong> Hardebeck, W. (1974). Die Aminosarenzusammensetzung<br />

von Reptilien-Eischalen in biochemischer und evolutiver Sicht. Z.<br />

zoo!. Syst. Evo!. 12(1), 1-22.<br />

Kriesten, K. V. (1975). Untersuchungen uber Ultrastruktur, Proteinmuster und Aminosaurenzusammensetzung<br />

der Eischalen von Testudo elephantopus, Caiman crocodilus und<br />

Iguana iguana. Zoo!' ]b. Anat. 945, 101-122.<br />

Kukenthal, W. (1893). Zur Entwicklung des H<strong>and</strong>skelettes des Krokodils. Morph. ]b. 19, 42­<br />

55.<br />

Kushlan, J. A. (1973). Observations on maternal behavior in <strong>the</strong> American alligator (Alligator<br />

mississippiensis). Herpetologica 29, 256-257.<br />

KushIan, J. A. <strong>and</strong> Kushlan, M. S. (1979). Water levels <strong>and</strong> alligator nesting in <strong>the</strong> Everglades.<br />

In Second Conference on Scientific Research in National Parks. San Francisco, pp. 1-9.<br />

Kushlan, J. A. <strong>and</strong> Kushlan, M. S. (1980). Function <strong>of</strong> nest attendance in <strong>the</strong> American<br />

alligator. Herpetologica 36(1), 27-32.<br />

Kushlan, J. A. <strong>and</strong> Kushlan, M. S. (1981). Egg manipulation by <strong>the</strong> American alligator. J<br />

Herpeto!. 15(4), 451-454.<br />

Kutchai, H. <strong>and</strong> Stean, J. B. (1971). Permeability <strong>of</strong> <strong>the</strong> shell <strong>and</strong> shell membranes <strong>of</strong> hens'<br />

eggs during development. Resp. Physio!. 11, 265-278.<br />

Lakjer, T. (1927). Studien uber die Gaumenregion bei Sauriern im Vergleich mit Anamniern<br />

und primitiven Sauropsiden. Zoo!' ]b. (Anal). 49, 57-356.<br />

Lance, V. (1982). Trace elements, vitamin E, <strong>and</strong> glutathione peroxidase in <strong>the</strong> American<br />

alligator, Alligator mississippiensis. In Proceedings <strong>of</strong> <strong>the</strong> 2nd Annual Alligator Production<br />

Conference. University <strong>of</strong> Florida, Gainesville, pp. 17-30.<br />

Lance, V. (1983). Reproduction in <strong>the</strong> alligator. Proc. 9th Int. Symp. Compo Endocrino!. Hong<br />

Kong, in press.<br />

Lance, V. (1984). Endocrinology <strong>of</strong> reproduction in male reptiles. In The Structure, Development<br />

<strong>and</strong> Evolution <strong>of</strong> Reptiles (M. W. J. Ferguson, ed.). Academic Press, London, 357-383.<br />

Lance, V. <strong>and</strong> Lauren, D. (1984). Circadian variation in plasma corticosterone in <strong>the</strong> American<br />

alligator, Alligator mississippiensis <strong>and</strong> <strong>the</strong> effects <strong>of</strong> ACTH injections. Gen. Compo Endocrino!.<br />

in press.<br />

Lance, V., Joanen, T., <strong>and</strong> McNease, L. (1983). Selenium, vitamin E, <strong>and</strong> trace elements in <strong>the</strong><br />

plasma <strong>of</strong> wild <strong>and</strong> farm reared alligators during <strong>the</strong> reproductive cycle. Can. ]. Zoo!. 61,<br />

1744-1751.<br />

Lang, J. W. (1976). Amphibious behavior <strong>of</strong> Alligator mississippiensis: roles <strong>of</strong> circadian rhythm<br />

<strong>and</strong> light. Science, N. Y. 191, 575-577.<br />

Lang, J. W. (1979). Thermophilic response <strong>of</strong> <strong>the</strong> American alligator <strong>and</strong> <strong>the</strong> American<br />

crocodile to feeding. Copeia 1979, 48-59.<br />

Lang, J. W. (1981). Thermal preferences <strong>of</strong> hatchling New Guinea crocodiles: Effects <strong>of</strong> feeding<br />

<strong>and</strong> ontogeny. ]. <strong>the</strong>rmo Bio!. 6, 73-78.<br />

Larsen, R. (1981). Collection <strong>and</strong> maintenance <strong>of</strong> semen for artificial insemination. In Proceed­<br />

Larsen, R E., De Sena, R R, Puckett, H. M., <strong>and</strong> Cardeilhac, P. T. (1982). Collection <strong>of</strong><br />

semen for artificial insemination. In Proceedings <strong>of</strong> <strong>the</strong> 1st Annual Alligator Production Conference.<br />

University <strong>of</strong> Florida, Gainesville, pp. 42-43.<br />

Lawton, F. E. (1937). The adrenal-autonomic complex in Alligator mississippiensis.]. Morph. 60,<br />

361-377.<br />

Lee, D. S. (1968). Possible communication between eggs <strong>of</strong> <strong>the</strong> American alligator. Herpetologica<br />

24(1), 88.<br />

Le Clercq, F., Schnek, A. G., Braunitzer, G., Stangl, A., <strong>and</strong> Schrank, B. (1981). Direct<br />

reciprocal allosteric interaction <strong>of</strong> oxygen <strong>and</strong> hydrogen carbonate sequence <strong>of</strong> <strong>the</strong><br />

haemoglobins <strong>of</strong> caiman (Caiman crocodylus), <strong>the</strong> Nile crocodile (Crocodylus niloticus) <strong>and</strong><br />

<strong>the</strong> Mississippi crocodile (Alligator mississippiensis). Hoppe-Seyler's Z. physio!. Chem. 362,<br />

1151-1158.<br />

Le Douarin, N. (1982). The Neural Crest. Cambridge University Press.<br />

Legge, R E. (1967). Mating behaviour <strong>of</strong> American alligators (Alligator mississippiensis) at<br />

Manchester Zoo. Internat. Zoo Yearb. 7, 179-180.<br />

Legge, R E. (1969). Fur<strong>the</strong>r notes on <strong>the</strong> mating behaviour <strong>of</strong> American alligators (Alligator<br />

mississippiensis) at Belle Vue Zoo, Manchester. Internat. Zoo Yearb. 9, 35.<br />

Licht, P. <strong>and</strong> Crews, D. (1976). Gonadotropin stimulation <strong>of</strong> in vitro progesterone production<br />

in reptilian <strong>and</strong> amphibian ovaries. Gen. compo Endocrino!. 29, 141-151.<br />

Licht, P., Papk<strong>of</strong>f, H., Goldman, B. D., Follett, B. K., <strong>and</strong> Scanes, C G. (1974). Immunological<br />

relatedness among reptilian, avian <strong>and</strong> mammalian pituitary luteinizing hormones.<br />

Gen. compo Endocrino!. 24, 168-176.<br />

Licht, P., Farmer, S. W., <strong>and</strong> Papk<strong>of</strong>f, H. (1976). Fur<strong>the</strong>r studies on <strong>the</strong> chemical nature <strong>of</strong><br />

reptilian gonadotropins: FSH <strong>and</strong> LH in <strong>the</strong> American alligator <strong>and</strong> green sea turtle. Bio!.<br />

Reprod. 14, 222-232.<br />

L<strong>of</strong>ts, B. (1977). Patterns <strong>of</strong> spermatogenesis <strong>and</strong> steroidogenesis in male reptiles. In Reproduction<br />

<strong>and</strong> Evolution (J. M. Calaby <strong>and</strong> C H. Tyndale-Biscoe, eds.). Australian Acad. Sci.,<br />

Canberra, pp. 127-136.<br />

Loyez, M. M. (1905). Recherches sur Ie developpement ovarien des oeufs meroblastiques a<br />

vitellus nutritif abondant. Archs Anat. microsc. Morph. expo 8, 69-237.<br />

Loyez, M. M. (1906). Recherches sur Ie developpement ovarien des oeufs meroblastiques a<br />

vitellus nutritif abondant. Archs Anat. microsc. Morph. expo 8, 239-397.<br />

Lutz, P. L. <strong>and</strong> Dunbar Cooper, A. (1982). The Nest Environment <strong>of</strong> <strong>the</strong> American Crocodile<br />

(Crocodylus acutus). Final Report, Contract no. CX5280-9-2129, Everglades National Park,<br />

Florida, 38 pp.<br />

Lutz, P. L. <strong>and</strong> Dunbar Cooper, A. (1984). The nest environment <strong>of</strong> <strong>the</strong> American crocodile<br />

(Crocodylus acutus). Copeia, 1984(1), 153-161.<br />

Lutz, P. L., Bentley, T. B., Harrison, K. E. <strong>and</strong> Marszalek, D. S. (1980). Oxygen <strong>and</strong> water<br />

vapour conductance in <strong>the</strong> shell <strong>and</strong> shell membrane <strong>of</strong> <strong>the</strong> American crocodile egg.<br />

Compo Biochem. Physio!. 66A, 335-338.<br />

Lynn, W. G. (1960). Structure <strong>and</strong> functions <strong>of</strong> <strong>the</strong> thyroid gl<strong>and</strong> in reptiles. Am. Mid!. Nat.<br />

64, 309-326.<br />

Lynn, W. G. (1970). The thyroid. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (C Gans <strong>and</strong> T. S. Parsons, eds.).<br />

Volume 3, Academic Press, London <strong>and</strong> New York, pp. 201-234.<br />

Magnusson, W. E. (1979a). Dispersal <strong>of</strong> hatchling crocodiles (Crocodylus porosus). ]. Herpeto!.<br />

13(3), 227-231.<br />

Magnusson, W. E. (1979b). Incubation period <strong>of</strong> Crocodylus porosus. ]. Herpeto!. 13(3), 362­<br />

363.<br />

ings <strong>of</strong> <strong>the</strong> 1st Annual Alligator Production Conference. University <strong>of</strong> Florida, Gainesville, pp. Magnusson, W. E. (1979c). Maintenance <strong>of</strong> temperature <strong>of</strong> crocodile nests. ]. Herpeto!. 13(4),<br />

439-443.<br />

15.<br />

~


••••••••••••<br />

4BO<br />

REPRODUCTIVE BIDLDGY AND EMBRYDLDGY DF CRDCDDILIANS<br />

REFERENCES<br />

4B1<br />

Magnusson, W. E. (1980). Hatching <strong>and</strong> creche formation by Crocodylus porosus. Copeia 1980,<br />

359-362.<br />

Magnusson, W. E. (1982). Mortality <strong>of</strong> eggs <strong>of</strong> <strong>the</strong> crocodile Crocodylus porosus in Nor<strong>the</strong>rn<br />

Moll, M. (1888). Zur Anatomie der Mundhi.ihle von Lacerta agilis. Sber. Akad. Wiss. Wien, mathnat.<br />

KI. 3, 171-195.<br />

Australia. J. Herpetol. 16, 121-130.<br />

Magnusson, W. E. <strong>and</strong> Taylor, J. A. (1980). A description <strong>of</strong> developmental stages in Crocody­Moll, E. O. (1979). <strong>Reproductive</strong> cycles <strong>and</strong> adaptations. In Turtles: Perspectiws <strong>and</strong> Research<br />

Ius porosus for use in aging eggs in <strong>the</strong> field. Aust. Wildl. Res. 7, 479-485.<br />

(M. Harless <strong>and</strong> H. Morlock, eds.). J. Wiley <strong>and</strong> Sons, New York, 305-331.<br />

Magnusson, W. E., Grigg, G. C, <strong>and</strong> Taylor, J. A. (1978). An aerial survey <strong>of</strong> potential nesting<br />

Mookerjee, H. K. <strong>and</strong> Bhattacharya, R. N. (1948a). On <strong>the</strong> development <strong>of</strong> <strong>the</strong> vertebral<br />

areas <strong>of</strong> <strong>the</strong> saltwater crocodile, Crocodylus porosus Schneider on <strong>the</strong> north coast <strong>of</strong> Arnhem<br />

L<strong>and</strong>, nor<strong>the</strong>rn Australia. Aust. Wildl. Res. 5,<br />

column in Alligator mississippiensis. Proc. zool. Soc. Bengal 1(1), 71-78.<br />

401-415.<br />

Martin, B. G. H. <strong>and</strong> Bellairs, A. d'A. (1977). The narial excrescence <strong>and</strong> pterygoid bulla <strong>of</strong> <strong>the</strong><br />

gharial Gavialis gangeticus (Crocodilia). J. Zool., Lond. 182, 541-558.<br />

Moser, F. (1902). Beitrage zur vergleichenden Entwicklungsgeschichte der Wirbeltierlunge.<br />

Martoja, M. (1970). Gl<strong>and</strong>e Suprenale. In Tmite de Zoologie. Reptiles. Gl<strong>and</strong>es Endocrines, Embn/­Arcll. mikrosk. Anat. EntwMech. 60, 405-410.<br />

ologie, Systematique, Paleontologie (P. P. Grasse, ed.). Volume 14, No.3, Masson, Paris,<br />

Movchan, N. A. (1964). Antibiotic properties <strong>of</strong> <strong>the</strong> egg albumin <strong>of</strong> <strong>the</strong> steppe tortoise (Testudo<br />

771-800.<br />

horsficldi Grav.). Vestn. Leningr. LIniv. BioI. 15(3), 18-25.<br />

Massh<strong>of</strong>f, W. <strong>and</strong> Stolpmann, H. J. (1961). Licht und elektronenmikroskopische Untersuchungen<br />

an der Schalenhaut und Kalkschale des Huhnereies. Z. Zellforsch. 55, 818-332.<br />

Mcllhenny, E. A. (1934). Notes on incubation <strong>and</strong> growth <strong>of</strong> alligators. Copeia 1934(2),80-88<br />

McIlhenny, E. A. (1935). The Alligator's Life History. Christopher Publishing House, Boston:<br />

1976 Facsimile reprint, SSAR.<br />

Medem, F. (1958). El conocimiento actual sobre la distribucion geografia y ecologica de los<br />

Crocodylia en Colombia. Rev. LIniv. Nac. Colombia 23, 37-57.<br />

Medem, F. (1960). Notes on <strong>the</strong> Paraguay caiman, Caiman yacare Daudin. Mitt. Zool. Mlls.<br />

Berlin 36(1), 129-142.<br />

Medem, F. (1963). Osteologia craneal, distribucion, geografia y ecologia de Melanosuchus niger<br />

(Spix) (Crocodylia, Alligatoridae). Rev. Acad. Colomb. Cienc. ex. nat. 12(45), 5-19.<br />

Medem, F. (1971). The reproduction <strong>of</strong> <strong>the</strong> drawf caiman Paleosuchus palpebrosus. In Crocodiles.<br />

Proceedings <strong>of</strong> <strong>the</strong> 1st Working Meeting <strong>of</strong> Crocodile Specialists. l.U.C.N., N.S. 32, 159-165.<br />

Medem, F. (1972). El primer nacimiento de Paleosuchus palpebrosus (Crocodylia, Alligatoridae).<br />

Rev. Acad. Colomb. Cienc. ex. nat. 14(53), 33-36.<br />

Medem, F. (1976). Das Orinoko-Krokodil, Crocodylus intermedius in Kolumbien: Studien Ubl't'<br />

seine Naturgeschichte und Verbreitung. Natur Mus. 106(8). 237-244.<br />

Meek, A. (1893). On <strong>the</strong> occurrence <strong>of</strong> a Jacobson's <strong>org</strong>an with notes on <strong>the</strong> development l)t<br />

<strong>the</strong> nasal cavity, <strong>the</strong> lachrymal duct <strong>and</strong> <strong>the</strong> Harderian gl<strong>and</strong> in Crocodylus poroslls. J.<br />

Anat. Physiol. 27(10), 151-160.<br />

Meek, A. (1911). On <strong>the</strong> morphogenesis <strong>of</strong> <strong>the</strong> head <strong>of</strong> <strong>the</strong> crocodile (Crocodylus porosus). J.<br />

Anat. Physiol. 45(4), 357-377.<br />

Menzies, R. A., Kushlan, J., <strong>and</strong> Dessauer, H. C. (1979). Low degree <strong>of</strong> genetic variabilitv in<br />

<strong>the</strong> American alligator. Isozyme Bull. 12, 61.<br />

Miller, M. R. <strong>and</strong> Lagios, M. D. (1970). The Pancreas. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (C Gans <strong>and</strong><br />

T. S. Parsons, eds.). Volume 3, Academic Press, London <strong>and</strong> New York, pp. 319-346.<br />

Miller, W. A. (1968). Periodontal attachment apparatus in young Caiman sclerops. Arch. 01'111<br />

BioI. 13, 735-743.<br />

Miller, W. A. <strong>and</strong> Radnor, C J. P. (1970). Tooth replacement patterns in young Cail1Ill 11<br />

sclerops. J. Morph. 130(4), 501-510.<br />

Modha, M. L. (1967). The ecology <strong>of</strong> <strong>the</strong> Nile crocodile (Crocodylus niloticus Laurenti) on<br />

Central Isl<strong>and</strong>, Lake Rudolf. E. Afr. Wildl. J. 5, 74-95.<br />

Modha, M. L. (1968). Crocodile research project, Central Isl<strong>and</strong>, Lake Rudolf: 1967 breeding<br />

Moens, N. L. I. (1912). Die Peritonealkanale der Schildkri.iten und Krokodile. Morph. Jb. 44, 1­<br />

80.<br />

Mookerjee, H. K. <strong>and</strong> Bhattacharya, R. N. (1948b). On <strong>the</strong> development <strong>of</strong> <strong>the</strong> vertebral<br />

column in Crocodilia. Proc. Ind. Sci. Congo 35(3), 212-213.<br />

Movchan, N. A. (1966). Fungicidal properties <strong>of</strong> <strong>the</strong> albumin <strong>of</strong> <strong>the</strong> eggs <strong>of</strong> <strong>the</strong> steppe tortoise<br />

(Testudo IlOrsfieldi). Vestn. Leningr. LIniv. BioI. 3(1). 59-69.<br />

Movchan, N. A. (1967). Bacteria in <strong>the</strong> egg <strong>of</strong> <strong>the</strong> steppe tortoise. Vestn. Letlingr. LIniv. BioI.<br />

9(2). 155-157.<br />

Muller, F. (1965). Zur Morphogenese des Ductus nasopharyngeus und des sekundaren<br />

Gaumendaches bei den Crocodilia. Rev. Suisse Zool. 72, 647-652.<br />

Muller, F. (1967). Zur embryonalen Kopfentwicklung von Crocodylus cataphractus Cuv. Rev.<br />

Suisse Zool. 74(3), 189-294.<br />

Miiller, S. (1838). Waarnemingen over de indische krokodillen en beschrijving van eene<br />

nieuwe soort. Tijd. nat. Gesch. Phys. 5, 61-87.<br />

Murphy, T. M. (1980). The Population Status <strong>of</strong> <strong>the</strong> American Alligator at <strong>the</strong> Savannah River<br />

National Environment Research Park (I. L. Brisbin, Jr., ed.). Typewritten manuscript from<br />

<strong>the</strong> Savannah River Ecology Laboratory.<br />

Neal, H. V. <strong>and</strong> R<strong>and</strong>, H. W. (1936). Comparative Anatomy. H. K. Lewis, London.<br />

Neill, W. T. (1946). Notes on Crocodylus novaeguineae. Copeia 1946, 17-20.<br />

Neill, W. T. (1971). The Last <strong>of</strong> <strong>the</strong> Ruling Reptiles: Alligators, Crocodiles <strong>and</strong> Their Kill. Columbia<br />

University Press, New York <strong>and</strong> London.<br />

Neumayer, L. (1906). Zur Morphogenie des Centralnervensystems der Chelonier und<br />

Crocodilier. In Reise in Ostafrika in den Jahren 1903-1905. Anatomie und Elltwickelungsgeschichte<br />

(A. Voeltzkow, ed.). Volume 4, Wissenschaft, Stuttgart, pp. 436-508.<br />

Neumeister, R. (1895). Ueber die Eischalenhaute von Echidna amleata (E. hystrix) und der<br />

Wirbelthiere im Allgemeinen. Zt. BioI. 31, 413-420.<br />

Nichols, J. D. <strong>and</strong> Chabreck, R. H. (1980). On <strong>the</strong> variability <strong>of</strong> alligator sex ratios. Am. Nat.<br />

116, 125-137.<br />

Nichols, J. D., Viehman, L., Chabreck, R. H., <strong>and</strong> Fenderson, B. (1976). Simulation <strong>of</strong> a<br />

commercially harvested alligator population in Louisiana. Bull. La. State LIniv. Cent. Agr.<br />

Sci. Rur. Devel. (691), 1-59.<br />

Ogden, J. C. (1978). Status <strong>and</strong> nesting biology <strong>of</strong> <strong>the</strong> American crocodile, Crocodylus acutus in<br />

flOrida. /. Herpetol. 12(2). 183-196.<br />

Oliver, J. A. (1955). The Natural History <strong>of</strong> North American Amphibians <strong>and</strong> Reptiles. D. Van<br />

Nostr<strong>and</strong>, Princeton.<br />

Oppenheim, R. W. (1973). Prehatching <strong>and</strong> hatching behavior: a comparative <strong>and</strong> physiological<br />

season. E. Afr. Wildl. J. 6,96-121. ., Consideration. In Studies on <strong>the</strong> Development <strong>of</strong> Behavior <strong>and</strong> <strong>the</strong> Nervous System (G .<br />

Gottlieb, ed.). Volume 1, Academic Press, New York <strong>and</strong> London, pp. 163-244.<br />

.'


4B2<br />

REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILIANS<br />

Ottaviani, G. <strong>and</strong> Tazzi, A. (1977). The lymphatic system. In The <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (e Gans<br />

<strong>and</strong> T. S. Parsons, eds.). Volume 6, Academic Press, London <strong>and</strong> New York, pp. 315­<br />

462.<br />

Owens, P. D. A. <strong>and</strong> Ferguson, M. W. J. (1982). Root development in Alligator mississippiensis.<br />

J. dent. Res. 61, 548.<br />

Packard, G. e, Tracy, e R., <strong>and</strong> Roth, J. J. (1977). The physiological ecology <strong>of</strong> reptilian eggs<br />

<strong>and</strong> embryos, <strong>and</strong> <strong>the</strong> evolution <strong>of</strong> viviparity within <strong>the</strong> class Reptilia. BioI. Rev. Camb.<br />

Phil. Soc. 52, 71-105.<br />

Packard, G. e, Taigen, T. L., Packard, M. J., <strong>and</strong> Shuman, R. D. (1979). Water vapour<br />

conductance <strong>of</strong> testudinian <strong>and</strong> crocodilian eggs (Class Reptilia), Resp, Physiol. 38, 1-10.<br />

Packard, G. e, Packard, M. L Boardman, T. J., <strong>and</strong> Ashen, M. D. (1981). Possible adaptive<br />

value <strong>of</strong> water exchanges in flexible shelled eggs <strong>of</strong> turtles. Science, N. Y. 213,471-473.<br />

Packard, M. J., Packard, G. e <strong>and</strong> Boardman, T. J. (1982). Structure <strong>of</strong> eggshells <strong>and</strong> water<br />

relations <strong>of</strong> reptilian eggs. Herpetologica 38, 136-155.<br />

Packard, G. e, Packard, M. L Boardman, T. J., Morris, K. A., <strong>and</strong> Shuman, R. D. (1983),<br />

Influence <strong>of</strong> water exchanges by flexible shelled eggs <strong>of</strong> painted turtles, Cllrysemys piela on<br />

metabolism <strong>and</strong> growth <strong>of</strong> embryos. Physiol. Zoo I. 56, 217-230.<br />

Parker, W. K. (1883). On <strong>the</strong> structure <strong>and</strong> development <strong>of</strong> <strong>the</strong> skull in <strong>the</strong> Crocodilia. Trans,<br />

zool. Soc. Lond. 11(9), 263-311.<br />

Parker, W, K. <strong>and</strong> Waytialingam, S. (1880). Notes on <strong>the</strong> breeding <strong>of</strong> Crocodilus palustris. Proc,<br />

zool. Soc. L<strong>and</strong>. 1880, 186-187.<br />

Paramenter, e J. (1980). Incubation <strong>of</strong> <strong>the</strong> eggs <strong>of</strong> <strong>the</strong> green sea turtle, Chelonia mydas in<br />

Torres Strait, Australia: <strong>the</strong> effect <strong>of</strong> movement on hatchability. Ausl. Wildl. Res. 7,487­<br />

491.<br />

Parsons, T. S. (1959a). Studies on <strong>the</strong> comparative embryology <strong>of</strong> <strong>the</strong> reptilian nose. Bul/,<br />

Mus. camp. Zool. Harvard 120(2), 104-280.<br />

Parsons, T. S. (1959b). Nasal anatomy <strong>and</strong> phylogeny <strong>of</strong> reptiles. Evolution 13, 175-187.<br />

Parsons, T. S. (1970). The nose <strong>and</strong> Jacobson's <strong>org</strong>an. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (e Gans <strong>and</strong><br />

T. S. Parsons, eds.). Volume 2, Academic Press, London <strong>and</strong> New York, pp. 99-191.<br />

Pasteels, J. J. (1950). Developpement embryonnaire. In Traite de Zoologie. Oiseaux (P, P.<br />

Grasse, ed.). Volume 15, Masson, Paris, pp. 893-971.<br />

Pasteels, J. J. (1970). Developpement embryonnaire. In Traite de Zoologic. Reptiles. CIa/lib<br />

Endocrines, Embryologic, Systematique, Paleontologic (P. P. Grasse, ed.). Volume 14, No. J.<br />

Masson, Paris, pp. 479-535.<br />

Patten, B. M. (1925). The Early <strong>Embryology</strong> <strong>of</strong> <strong>the</strong> Chick. 2nd Ed. J. Murray, London.<br />

Perez-Higareda, G. (1980). Notes on nesting <strong>of</strong> Crocodylus morelelii in sou<strong>the</strong>rn Veracruz.<br />

Mexico. Bull. Maryl<strong>and</strong> herp. Soc. 16(2), 52-53.<br />

Perutz, M. F., Bauer, e, Gros, G., Le Clercq, F., V<strong>and</strong>ecasserie, e, Schnek, A. G., Brainitzer.<br />

lu<br />

G., Friday, A. E., <strong>and</strong> Joysey, K, A, (1981). Allosteric regulation <strong>of</strong> crocodilian haemog ­<br />

bin. Nature, L<strong>and</strong>. 291, 682-684.<br />

n n<br />

Peter, K. (1949). Die Beteiligung der Gesichtsfortsatze an der Bildung des primiti ·<br />

Gaumens. Anal. Anz. 97, 111-116.<br />

Peters, W. (1868). Ueber die Gehorknochelchen und den Meckelschen Knorpel bei den<br />

Krokodilen. Monatsber. deul. Akad, Wiss. Berlin, 592-598.<br />

Pischinger, A. (1937). Kiemenanlagen und ihre Schicksale bei Amnioten. Schildriise und<br />

epi<strong>the</strong>liale Organe der Pharynxw<strong>and</strong> bei Tetrapoden. In H<strong>and</strong>buch der vergleic/tendcll<br />

Anatomie der Wirbeltiere (L. Bolk, E. Goppert, E. Kallius, <strong>and</strong> W. Lubosch, eds.). Volume<br />

3, Urban und Schwarzenberg, Berlin <strong>and</strong> Vienna, pp. 279-348.<br />

Pooley, A. e (1962). The Nile crocodile, Crocodylus niloticus: notes on <strong>the</strong> incubation period<br />

<strong>and</strong> growth rate <strong>of</strong> juveniles. Lammergeyer 2(1), 1-55.<br />

REFERENCES<br />

4B3<br />

pooley, A. e (1969a). Preliminary studies on <strong>the</strong> breeding <strong>of</strong> <strong>the</strong> Nile crocodile, Crocodylus<br />

nilotieus in Zulul<strong>and</strong>. Lammergeyer 3(10), 22-44.<br />

pooley, A. e (1969b), Some observations on <strong>the</strong> rearing <strong>of</strong> crocodiles. Lammergeyer 3(10),45­<br />

57.<br />

Pooley, A. e (1971). Crocodile rearing <strong>and</strong> restocking. In Crocodiles. Proceedings <strong>of</strong> <strong>the</strong> 1st<br />

Meeting <strong>of</strong> Crocodile Specialists. l.U.eN. 32, 104-130.<br />

Pooley, A. e (1974a). How does a baby crocodile get to water? Afric. Wildl. 28(4), 8-11.<br />

Pooley, A. e (1974b). Parental care in <strong>the</strong> Nile crocodile: A preliminary report on behaviour <strong>of</strong><br />

a captive female. Lammergeyer 21, 43-45.<br />

Pooley, A. e (1976). Mo<strong>the</strong>r's day in <strong>the</strong> crocodile pool. Anim. Kingd. 79, 7-13.<br />

Pooley, A. e (1977). Nest opening response <strong>of</strong> <strong>the</strong> Nile crocodile, Crocodylus niloticus. J. Zool.,<br />

Lond. 182, 17-26.<br />

Pooley, A. e <strong>and</strong> Gans, e (1976). The Nile crocodile. Sci, Amer. 234, 114-124.<br />

Pope, e H. (1956). The [{eptile World. A Natural History <strong>of</strong> <strong>the</strong> Snakes, Lizards, Turtles <strong>and</strong><br />

Crocodilians. Routledge <strong>and</strong> Kegan Paul, London.<br />

Portmann, A. (1950). Le tube digestif. In Traite de Zoologie. Oiseaux (P. P. Grasse, ed.). Volume<br />

15, Masson, Paris, pp. 243-289.<br />

Prakash, M. (1971). Crocodile (Crocodylus palustris) breeding at <strong>the</strong> Jaipur Zoo. J. Bombay nat.<br />

Hist. Soc. 68(3), 835-837.<br />

Rahn, H. (1982). Comparison <strong>of</strong> embryonic development in birds <strong>and</strong> mammals: birth weight,<br />

time <strong>and</strong> cost. In A Companion to Animal Physiology (R. e Taylor, K. Johansen, <strong>and</strong> L.<br />

Bolis, eds.). Cambridge University Press, pp. 124-138.<br />

Rahn, H. <strong>and</strong> Ar, A. (1974). The avian egg: incubation time <strong>and</strong> water loss. Condor 76, 147­<br />

152.<br />

Rahn, H., Ar, A., <strong>and</strong> Paganelli, V. (1979). How bird eggs brea<strong>the</strong>. Sci. Amer. 240, 46-55,<br />

Ramaswami, L. S. (1946). A note on <strong>the</strong> caudal kink <strong>of</strong> reptilian embryos. Spolia Zeylanica<br />

24(3), 193-194.<br />

Ramaswami, L. S. <strong>and</strong> Jacobi, D. (1965). Effect <strong>of</strong> testosterone propionate on <strong>the</strong> urogenital<br />

<strong>org</strong>ans <strong>of</strong> <strong>the</strong> immature crocodile (Crocodylus palustris Lesson). Experientia 21, 206-207.<br />

R<strong>and</strong>, A. S. (1968). Desiccation rates in crocodile <strong>and</strong> iguana eggs, Herpetologica 24,178-180.<br />

Rathke, H. (1866). Untersuchungen iiber die Entwickelwlg tl1Jd den Korperbau der Krokodile. F.<br />

Vieweg und Sohn, Braunschweig.<br />

Reese, A. M. (1901a). Artificial incubation <strong>of</strong> alligator eggs, Am. Nal. 35(411), 193-195.<br />

Reese, A. M. (1901b). The nasal passage <strong>of</strong> <strong>the</strong> Florida alligator. Proc. Phila. Acad. nat. Sci. 53,<br />

457-464.<br />

Reese, A. M. (1906). A double embryo <strong>of</strong> <strong>the</strong> Florida alligator. Anat. Anz. 28(9/10), 229-231.<br />

Reese, A. M. (1907). The breeding habits <strong>of</strong> <strong>the</strong> Florida alligator. Smithson. misc. Coli. 50(1696),<br />

381-386.<br />

Reese,. A. M. (1908). The development <strong>of</strong> <strong>the</strong> American alligator (A, mississippiensis). Smithson.<br />

misc. Coli. 51(1791), 1-66.<br />

Reese, A. M. (1910a). Development <strong>of</strong> <strong>the</strong> brain <strong>of</strong> <strong>the</strong> American alligator: <strong>the</strong> paraphysis <strong>and</strong><br />

hypophysis. Smithson, misc. Coil. 54(1922), 1-20.<br />

Reese, A. M. (1910b). The horne <strong>of</strong> <strong>the</strong> alligator. Pop. Sci. Month. Oct. 1910, 365-372.<br />

Reese,. A. M. (191Oc). Development <strong>of</strong> <strong>the</strong> digestive canal <strong>of</strong> <strong>the</strong> American alligator. Smithson.<br />

misc. Coli. 56(11), 1-25.<br />

......•...... Reese, A. M. (1912). The embryology <strong>of</strong> <strong>the</strong> Florida alligator (A. mississippiensis). Proc. 7th<br />

'. Internal. Zool. Congo Boston, 19-24 August, 1907, 535-537.<br />

, R<br />

eese, A. M. (1913). The histology <strong>of</strong> <strong>the</strong> enteron <strong>of</strong><strong>the</strong> Florida alligator. Anal. Rec. 7(4), 105­<br />

, 129.<br />


494 REPRODUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCOOILIANS REFERENCES<br />

Reese, A. M. (1915a). The Alligator <strong>and</strong> Its Allies. G. P. Putnam's Sons, New York <strong>and</strong> London.<br />

Reese, A. M. (1915b). Development <strong>of</strong> <strong>the</strong> lung <strong>of</strong> <strong>the</strong> American alligator. Smithson. misc. Call.<br />

(2356),65(2), 1-11.<br />

Reese, A. M. (1921). Structure <strong>and</strong> development <strong>of</strong> <strong>the</strong> integumental gl<strong>and</strong>s <strong>of</strong> Crocodilia. f.<br />

Morph. 35(3), 581-611.<br />

Reese, A. M. (1923). Notes on <strong>the</strong> Crocodilia <strong>of</strong> British Guiana. Bull. W. Virginia Sci. Assoc. 2,<br />

3-11, 21-29.<br />

Reese, A. M. (1924). The structure <strong>and</strong> development <strong>of</strong> <strong>the</strong> intromittent <strong>org</strong>an <strong>of</strong> <strong>the</strong><br />

Crocodilia. f. Morph. 38, 301-313.<br />

Reese, A. M. (1925). The cephalic gl<strong>and</strong>s <strong>of</strong> Alligator mississippiensis, Florida alligator <strong>and</strong> <strong>of</strong><br />

Agkistrodon, copperhead <strong>and</strong> moccasin. BioI. General. 1(315), 482-500.<br />

Reese, A. M. (1926). The occlusion <strong>of</strong> <strong>the</strong> oesophagus <strong>and</strong> trachea in Crocodilia <strong>and</strong> snakes.<br />

Amer. I. Anat. 37(2), 195-212.<br />

Reese, A. M. (1931a). The ways <strong>of</strong> alligators. Sci. Month. 33,321-355.<br />

Reese, A. M. (1931b). The ductless gl<strong>and</strong>s <strong>of</strong> Alligator mississippiensis. Smithson. misc. Call.<br />

(3110), 82(16), 1-14.<br />

Reese, A. M. (1936). The origin <strong>of</strong> <strong>the</strong> notochord in Alligator mississippiensis. Anat. Rec. 64(3).<br />

405-408.<br />

Reese, A. M. (1945). The laryngeal region <strong>of</strong> Alligator mississippiensis. Anat. Rec. 92(3),273-277.<br />

Remak, G. (1845). Ueber Wimperbewegungen in den Kanalchen des Wolffschen Korpers bei<br />

Eidechsenembryonen. Frorieps neue No<strong>the</strong>n 36, 108.<br />

Remak, G. (1855). Entwickelung der Wirbeltiere. Reimer, Berlin.<br />

Retzius, G. (1884). Das Gehor<strong>org</strong>an der Wirbeltiere II. Reptilien, Vogel, Saugethiere. Samson <strong>and</strong><br />

Wallin, Stockholm.<br />

Rheinhardt, F. (1874). Sur les anomalies des vertebres sacrees chez les crocodiliens. luI. Zool.<br />

3(4), 185-192.<br />

Rochon-Duvigneaud, A. (1954). L'oeil des vertebres. In TraiiC de Zoologie. Vertebres. Embnl'<br />

ologie, Gr<strong>and</strong> Problemes d'Anatomie Comparee, Caracteristiqlles Biochimiques (P. P. Grass,,,<br />

ed.). Masson, Paris, 12, 333-452.<br />

Rochon-Duvigneaud, A. (1970). L'oeil et la vision. In Trait


-<br />

•<br />

486 REPRDDUCTIVE BIDLDGY AND EMBRYDLDGY DF CRDCDDILIANS<br />

Shah, R. N. <strong>and</strong> Crawford, B. J. (1980). Development <strong>of</strong> <strong>the</strong> secondary palate in <strong>the</strong> chick<br />

embryo: A light <strong>and</strong> electron microscopic <strong>and</strong> histochemical study. Invest. Cell. Patho/. 3,<br />

319-328.<br />

Shaner, R. F. (1924). On <strong>the</strong> muscular architecture <strong>of</strong> <strong>the</strong> ventricles <strong>of</strong> <strong>the</strong> alligator heart with a<br />

note on <strong>the</strong> formation <strong>of</strong> <strong>the</strong> interventricular septum <strong>of</strong> birds <strong>and</strong> mammals. Anat. Rec.<br />

29, 21-32.<br />

Sharell, R. (1966). The Tuatara, Lizards <strong>and</strong> Frogs <strong>of</strong> New Zeal<strong>and</strong>. Collins, London.<br />

Shiino, K. (1914). Studien zur Kenntnis des Wirbeltierkopfes. L Das Chondrocranium von<br />

Crocodilus mit Beriicksichtungung der Gehirnerven und der Kopfgefasse. Anat. Hefte 50,<br />

253-38l.<br />

Shindo, T. (1914). Zur vergleichenden Anatomie der arteriellen Kopfgefasse der Reptilien.<br />

Anat. Hefte 51, 267-355.<br />

Shipley, A. E. <strong>and</strong> McBride, E. W. (1904). Zoology. 2nd Ed. Cambridge University Press,<br />

Cambridge.<br />

Simkiss, K. (1967). Calcium in <strong>Reproductive</strong> Physiology. A Comparative Study <strong>of</strong> Vertebrates. Chapman<br />

<strong>and</strong> Hall Ltd., London.<br />

Simkiss, K. (1980). Water <strong>and</strong> ionic fluxes inside <strong>the</strong> egg. Amer. Zoo/. 20, 385-393.<br />

Simkiss <strong>and</strong> Tyler, C. (1959). The possible calcification mechanisms in some reptilian<br />

eggshells. Qt. JI micro Sci. 100, 529-538.<br />

Simonetta, A. (1956). Organogenesi e significato morfologico del sistema intertimpanico de<br />

Crocodilia. Archs ital. Anat. Embryo/. 61, 335-372.<br />

Simons, P. S. M. <strong>and</strong> Wiertz, G. (1963). Notes on <strong>the</strong> structure <strong>of</strong> membranes <strong>and</strong> shell in <strong>the</strong><br />

hen's egg. An electron microscopical study. Z. Zellforsch. mikrosk. Anat. 59, 555-567.<br />

Singh, A. N. <strong>and</strong> T<strong>and</strong>an, B. K. (1978). Significance <strong>of</strong> <strong>the</strong> absence <strong>of</strong> optic nerves in a<br />

teratological specimen <strong>of</strong> Gavialis gangeticus. CheetaI19(4), 55-56.<br />

Singh, L. A. K. (1975). Studies on <strong>the</strong> Indian gharial Gavialis gangeticlls IX. Observations on <strong>the</strong>><br />

development <strong>and</strong> fate <strong>of</strong> <strong>the</strong> egg tooth. Prakrunti Utkal Univ. J. Sci. 12, 89-95.<br />

Singh, L. A. K. <strong>and</strong> Bustard, H. R. (1977). Studies on <strong>the</strong> Indian gharial (Gavialis gangetiClls) V<br />

Preliminary observations on maternal behaviour. Indian For. 103(10), 671-678.<br />

Singh, L. A. K. <strong>and</strong> Bustard, H. R. (1982). Congenital defects in <strong>the</strong> ghariaI, Gavialis gangeticl"<br />

(Gmelin). Br. J. Herp. 6, 215-219.<br />

Singh, V. B. (1979). The status <strong>of</strong> <strong>the</strong> gharial (Gavialis gangetic us) in U.P. <strong>and</strong> its rehabilitation.<br />

J. Bombay nat. Hist. Soc. 75, 668-683.<br />

Sippel, W. (1907). Das Munddach der Vogel und Saurier. Morpho/. Jb. 37, 490-524.<br />

Skozylas, R. (1978). Physiology <strong>of</strong> <strong>the</strong> digestive tract. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans an,j<br />

K. A. Gans, eds.). Volume 8, Academic Press, London <strong>and</strong> New York, pp. 589-717.<br />

Slavkin, H. c., Zeichner-David, M., Ferguson, M. W. J., Termine, J. D., Graham, E., M,lC­<br />

Dougall, M., Bringas, P., Bessem, c., <strong>and</strong> Grodin, M. (1982). Phylogenetic <strong>and</strong> Immunogenetic<br />

aspects <strong>of</strong> enamel proteins. In Oral Immunogenetics <strong>and</strong> Tissue Transplantall


• .'<br />

4BB<br />

REPRODUCTIVE BIOLOGY ANO EMBRYOLOGY OF CROCODILIANS<br />

REFERENCES<br />

4BS<br />

Terepka, A. R. (1963a). Structure <strong>and</strong> calcification in avian eggshell. Exp. Cell. Res. 30, 171~<br />

182.<br />

Terepka, A. R. (1963b). Organic-in<strong>org</strong>anic interrelationships in avian eggshell. Exp. Cell. Res.<br />

30, 183-192.<br />

Thater, K. (1910). Das Munddach der Schlangen und Schildkroten. Morph. Jb. 41, 471-518.<br />

Tinkle, D. W., <strong>and</strong> Gibbons, J. W. (1977). The distribution <strong>and</strong> evolution <strong>of</strong> viviparity in<br />

reptiles. Misc. Publ. Mus. zool. Univ. Mich. 154, 1-55.<br />

Toerien, M. J. (1965). An experimental approach to <strong>the</strong> development <strong>of</strong> <strong>the</strong> ear capsule in <strong>the</strong><br />

turtle Chelydra serpentina. J. Embryol. expo Morph. 13(2), 1-9.<br />

Toerien, M. J. (1967). Experimental embryology <strong>and</strong> cranial morphology. S. Afr. J. Sci. 63(7),<br />

278-281.<br />

Toerien, M. J. <strong>and</strong> Rossouw, R. J. (1977). Experimental studies on <strong>the</strong> origin <strong>of</strong> <strong>the</strong> parts <strong>of</strong> <strong>the</strong><br />

nasal capsule. S. Afr. J. Sci. 73, 371-374.<br />

Tornier, G. (1928). Zur Phylogenese des L<strong>and</strong>wirbeltier-Hinterfusses und des Menschens. Sb.<br />

Ges. naturf. Freunde Berl. 1928, 22-35.<br />

Tracy, C. R., Packard, G. c., <strong>and</strong> Packard, M. J. (1978). Water relations <strong>of</strong> chelonian eggs.<br />

Phys. Zool. 51(4), 378-387.<br />

Tryon, B. W. (1980). Observations on reproduction in <strong>the</strong> West African dwarf crocodile with il<br />

description <strong>of</strong> parental behavior. In <strong>Reproductive</strong> <strong>Biology</strong> <strong>and</strong> Diseases <strong>of</strong> Captive Reptile,<br />

(}. B. Murphy <strong>and</strong> J. T. Collins, eds.). Volume 1, SSAR Contributions to Herpetology,<br />

pp. 167-185.<br />

Tsui, H. W. <strong>and</strong> Licht, P. (1977). Gonadotropin regulation <strong>of</strong> in vitro <strong>and</strong>rogen production bv<br />

reptilian testes. Gen. comp. Elldocrinoi. 31, 422-434.<br />

Tullett, S. G. (1975). Regulation <strong>of</strong> avian eggshell porosity. J. Zool., Lond. 177, 339-348.<br />

Tyler, C. (1969). Avian eggshells: Their structure <strong>and</strong> characteristics. Int. Rev. gell. expo Zoo!. 4,<br />

81-130.<br />

Underwood, G. (1970). The Eye. In <strong>Biology</strong> <strong>of</strong> <strong>the</strong> Reptilia (c. Gans <strong>and</strong> T. S. Parsons, eds.).<br />

Volume 2, Academic Press, London, pp. 1-97.<br />

Van Bemmelen, J. F. (1886). Die Visceraltaschen und Aortenbogen bei Reptilien und Vogeln.<br />

Zool. Anz. 9, 528-532, 543-548.<br />

Van BemmeIen, J. F. (1888). Beitrage zur Kenntniss der Halsgegend bei Reptilien. Bijdr. Dink.<br />

Konenkl. Zool., Amsterdam, 16, 101-146.<br />

Van Beneden, E. (1882). Recherches sur I'oreille moyenne des crocodiliens et ses communica·<br />

tions multiples avec Ie pharynx. Archs BioI., Liege 3, 497-560.<br />

Van Campenhout, E. (1952). Le systeme nerveux peripherique cranien du jeune embryon de<br />

crocodile. Ann. Soc. roy. Zool. Belg. 83, 243-268.<br />

Versluys, J. (1903). Entwicklung der Columella auris bei den Lacertiliern. Ein Beitrag Lllf<br />

Kenntniss der schalleitenden Apparate und des Zungenbeinbogens bei den Sauropsiden.<br />

Zool. Jb. (Anat). 19, 106-187.<br />

Vince, M. A. (1969). Embryonic communication, respiration <strong>and</strong> <strong>the</strong> synchronization <strong>of</strong> hatching.<br />

In Bird Vocalizations (R. A. Hinde, ed.). Cambridge University Press, Cambridge, pp.<br />

39-58.<br />

Vince, M. A. (1973). Some environmental effects on <strong>the</strong> activity <strong>and</strong> development <strong>of</strong> <strong>the</strong> avian<br />

embryo. In Studies on <strong>the</strong> Development <strong>of</strong> Behavior <strong>and</strong> <strong>the</strong> Nervous System. Vol. 1. Behm'i,"l!!<br />

<strong>Embryology</strong> (G. Gottlieb, ed.). Academic Press, New York <strong>and</strong> London, pp. 285-323.<br />

Voeltzkow, A. (1891). The eggs <strong>and</strong> embryos <strong>of</strong> <strong>the</strong> crocodile. J. Roy. micro. Soc. L<strong>and</strong>. P5, 577­<br />

578.<br />

Voeltzkow, A. (1892). On <strong>the</strong> oviposition <strong>and</strong> embryonic development <strong>of</strong> <strong>the</strong> crocodile. AIlI/.<br />

Mag. nat. Hist. (Ser. 6) 9(49), 66-72.<br />

Voeltzkow, A. (1893). Ober Biologie und Embryonalentwicklung der Krokodile. Sitzber.<br />

Preuss. Akad. Wiss. Berlin 23, 347-353.<br />

Voeltzkow, A. (1899). Beitrage zur Entwicklungsgeschichte der Reptilien. I. Biologie und<br />

Entwicklung der ausseren Kbrperform von Crocodilus madagascariensis Gr<strong>and</strong>. Abh<strong>and</strong>l.<br />

Senckenb. naturf. Ges. 26(1), 1-150.<br />

Voeltzkow, A. (1901). Beitrage zur Entwicklungsgeschichte der Reptilien. IV. KeimbIatter,<br />

Dottersack und erste Anlage des Blutes und der Gefasse bei Crocodilus madagascariensis<br />

Gr<strong>and</strong>. Abh<strong>and</strong>l. senckenb. naturf. Ges. 26(3), 337-418.<br />

Voeltzkow, A. (1903a). Beitrage zur Entwicklungsgeschichte der Reptilien. V. Epiphyse und<br />

Paraphyse bei Krokodilen und Schildkroten. Abhalldl. senckenb. naturf. Ges. 27(2), 165­<br />

177.<br />

Voeltzkow, A. (1903b). Gesichtsbildung und Entwicklung der ausseren Kbrperform bei<br />

Chelone imbricata Schweigg. Ab/ul/ldl. senckenb. Ilaturf. Ges. 27, 181-190.<br />

Voeltzkow, A. <strong>and</strong> Dbderlein, L. (1901). Beitrage zur Entwicklungsgeschichte der Reptilien.<br />

III. Zur Frage nach der Bildung der Bauchrippen. Abh<strong>and</strong>!. senckenb. naturf. Gesell. 26(3),<br />

313-336.<br />

Waitkuwait, W. E. (1982). Investigations into <strong>the</strong> breeding biology <strong>of</strong> <strong>the</strong> slender snouted<br />

crocodile Crocodylus cataphractus. Proc. Symp. Croc. Conserv. Util. 6th Work. Meet. Crocodile<br />

Specialist Group IUCN, Victoria Falls, September 1982, pp. 1-12.<br />

Walker, A. D. (1972). New light on <strong>the</strong> origin <strong>of</strong> birds <strong>and</strong> crocodiles. Nature. Lond. 237,257­<br />

263.<br />

Walls, G. L. (1942). The Vertebrate Eye. Cranbook Institute <strong>of</strong> Science, Michigan.<br />

Webb, G. J. W. (1977a). The natural history <strong>of</strong> Crocodylus porosus. Habitat <strong>and</strong> nesting. In<br />

Australian Animals <strong>and</strong> Their Environment (H. Messel <strong>and</strong> S. T. Butler, eds.). Shakespeare<br />

Head Press, Sydney, pp. 239-284.<br />

Webb, G. J. W. (1977b). The natural history <strong>of</strong> Crocodylus porosus. Growth, movement, river<br />

distribution, <strong>and</strong> general comments. In Australian Animals <strong>and</strong> Their Environment. (H.<br />

Messel <strong>and</strong> S. T. Butler, eds.). Shakespeare Head Press, Sydney, pp. 285-312.<br />

Webb, G. J. W. (1979). Comparative cardiac anatomy <strong>of</strong> <strong>the</strong> Reptilia III. The heart <strong>of</strong> crocodilians<br />

<strong>and</strong> an hypo<strong>the</strong>sis on <strong>the</strong> completion <strong>of</strong> <strong>the</strong> interventricular septum <strong>of</strong> crocodilians<br />

<strong>and</strong> birds. J. Morph. 161(2), 221-240.<br />

Webb, G. J. W. <strong>and</strong> Manolis, S. C. (1983). Crocodylus johnstoni in <strong>the</strong> McKinlay river area, N.T.<br />

V. Abnormalities <strong>and</strong> injuries. Aust. Wild!. Res. 10,407-420.<br />

Webb, G. J. W. <strong>and</strong> Messel, H. (1977). Abnormalities <strong>and</strong> injuries in <strong>the</strong> estuarine crocodile<br />

Crocodylus porosus. Aust. Wildl. Res. 4, 311-319.<br />

Webb, G. J. W. <strong>and</strong> Smith, A. (1984). Sex ratio <strong>and</strong> surVivorship in <strong>the</strong> Australian freshwater<br />

crocodile Crocodylus johnstoni. In The Structure, Development <strong>and</strong> Ei'olution <strong>of</strong> Reptiles<br />

(M. W. J. Ferguson, ed.). Academic Press, London, 319-355.<br />

Webb, G. J. W., Messel, H. <strong>and</strong> Magnusson, W. (1977). The nesting <strong>of</strong> Crocodylus porosus in<br />

Arnhem L<strong>and</strong>, Nor<strong>the</strong>rn Australia. Copeia 1977(2), 238-250.<br />

Webb, G. J. W., Messel, H., Crawford, J., <strong>and</strong> Yerbury, M. J. (1978). Growth rates <strong>of</strong>Crocodyius<br />

porosus (Reptilia, Crocodilia) from Arnhem L<strong>and</strong>, Nor<strong>the</strong>rn Australia. Aust. f. Zool. 26,<br />

1-27.<br />

Webb, G. J. W., Buckworth, R., Sack, G. c., <strong>and</strong> Manolis, S. C. (1983a). An interim method<br />

for estimating <strong>the</strong> age <strong>of</strong> Crocodylus porosus embryos. Aust. Wildl. Res. 10, 563-570.<br />

Webb, G. J. W., Sack, G. c., Buckworth, R., <strong>and</strong> Manolis, S. C. (1983b). An examination <strong>of</strong><br />

....... '.' .... Crocodylus porosus nests in two nor<strong>the</strong>rn Australian freshwater swamps, with an analysis<br />

:, W <strong>of</strong> embryo mortality. Aust. Wildl. Res. 10, 571-605.<br />

- ebb, G. J. W., Manolis, S. c., <strong>and</strong> Sack, G. C. (1983c). Cloacal sexing <strong>of</strong> hatchling<br />

. crocodiles. Aust. Wildl. Res. 11,201-202.


490 REPRODUCTIVE BIOLOGY AND EMBRYOLOGY OF CROCODILlAN9<br />

Webb, G. J. W., Buckworth, R. <strong>and</strong> Manolis, S. C. (1983d). Crocodylus johnstoni in <strong>the</strong> McKinlay<br />

river area, Nor<strong>the</strong>rn Territory. Ill. Growth, movement <strong>and</strong> <strong>the</strong> population age structure.<br />

Aust. Wildl. Res. 10, 383-401.<br />

Webb, G. J. W., Buckworth, R. <strong>and</strong> Manolis, S. C. (1983e). Crocodylus johnstoni in <strong>the</strong> McKinlay<br />

river, Nor<strong>the</strong>rn Territory. VI. Nesting <strong>Biology</strong>. Aust. Wildl. Res. 10, 607-637.<br />

Wedin, B. (1949). The development <strong>of</strong> <strong>the</strong> head cavities in Alligator mississippiensis. Lunds<br />

Univ. Arsskr. new ser. 2, 45(3); Kungl. Fysiogr. Siillskiip. H<strong>and</strong>l. new ser. 60(3), 1-31.<br />

Wedin, B. (1953). The origin <strong>and</strong> development <strong>of</strong> <strong>the</strong> extrinsic ocular muscles in <strong>the</strong> alligator.<br />

]. Morph. 92(2), 303-335.<br />

Wedin, B. (1955). Embryonic Segmentations in <strong>the</strong> Head. Lundgrens Sonera Boktr., Malmo.<br />

Wegner, R. N. (1957). Studien uber die Nebenhohlen des Schadels. 2 Teil. Die Nebenhohlen<br />

der Nase be den Krokodilen. Wiss. Z. Ernst Moritz Arndt-Univ. 7(112), 1-39.<br />

Wermuth, H. <strong>and</strong> Mertens, R. (1977). Testudines, Crocodylia, Rhychocephalia. Tierreich 100,<br />

1-174.<br />

Werner, F. (1933). Reptilia-Loricata. Tierreich 62, 1-40.<br />

Westergaard, B. (1980). Evolution <strong>of</strong> <strong>the</strong> mammalian dentition. Mem. Soc. geol. Fr. N.S. 139,<br />

191-200.<br />

Westergaard, B. <strong>and</strong> Ferguson, M. W. J. (1984). The pattern <strong>of</strong> embryonic dentition development<br />

in two reptilian species. J. Embryol. expo Morph. 82(5), 184.<br />

Wettstein, O. V. (1937). Crocodilia (1). In H<strong>and</strong>buch der Zoologie (W. Kukenthal <strong>and</strong> T. Krumbach,<br />

eds.). De Gruyter, Berlin. 7(1,3), 236-320.<br />

Wettstein, O. V. (1954). Crocodilia (2). In H<strong>and</strong>buch der Zoologie (W. Kukenthal, T. Krumbach,<br />

]. G. Melmcke, H. V. Lengerken, eds.). De Gruyter, Berlin, 7(1,4),321-424.<br />

Wever, E. G. (1978). The Reptile Ear. Princeton University Press, Princeton, New Jersey.<br />

Whitaker, R. (1979). The Madras Snake Park: its role in public education <strong>and</strong> reptile research.<br />

Internal. Zoo Yearb. 19, 337-339.<br />

Whitaker, R. (1980). The status <strong>and</strong> distribution <strong>of</strong> crocodiles in Papua New Guinea. Field<br />

Document No.1 Wildlife Division FAG, Papua.<br />

Whitaker, R. <strong>and</strong> Basu, D. (1983). The gharial (Gavialis gangeticus): a review. ]. Bombay Nat.<br />

Hisl. Soc. 79(3), 531-548.<br />

Whitaker, R. <strong>and</strong> Whitaker, Z. (1976a). Collection <strong>and</strong> hatching <strong>of</strong> marsh crocodile (c. paluslr,,)<br />

eggs. ]. Bombay nal. Hist. Soc. 73(2), 403-407.<br />

Whitaker, R. <strong>and</strong> Whitaker, Z. (1976b). Note on natural history <strong>of</strong> Crocodylus palustris. ,.<br />

Bombay nat. Hist. Soc. 74(2), 358-360.<br />

Whitaker, R. <strong>and</strong> Whitaker, Z. (1977a). Notes on vocalization <strong>and</strong> protective behaviour in <strong>the</strong><br />

mugger. ]. Bombay nat. Hist. Soc. 75(1), 227-228.<br />

Whitaker, R. <strong>and</strong> Whitaker, Z. (1977b). Notes on captive breeding in mugger (Crocody/II'<br />

palustris). ]. Bombay nal. Hist. Soc. 75(1), 228-231.<br />

Whitaker, R. <strong>and</strong> Whitaker, Z. (1977c). Growth rate <strong>of</strong> Crocodyills palustris. ]. Bombay nat. Hi,!<br />

Soc. 75(1), 231-232.<br />

White, F. N. (1968). Functional anatomy <strong>of</strong> <strong>the</strong> heart <strong>of</strong> reptiles. Am. ZooI. 8,211-219.<br />

White, F. N. (1970). Central vascular shunts <strong>and</strong> <strong>the</strong>ir control in reptiles. Fedn. Proc. Fedn. All!<br />

Socs. expo BioI. 29, 1140-1153.<br />

Wiedersheim, R. (1890a). Ober die Entwicklung des Urogenitalsystems bei Krokodilen und<br />

Schildkroten. Anat. Anz. 5, 337-344.<br />

Wiedersheim, R. (1890b). Ober die Entwicklung des Urogenitalapparates bei Crocodilen und<br />

Schildkroten. Arch. mikrosk. Anat. 36, 410-468.<br />

Wiedersheim, R. (1891). Development <strong>of</strong> urinogenital apparatus <strong>of</strong> crocodiles <strong>and</strong> chelonians.<br />

J. Roy. microsc. Soc. Lond. PI, 23-24.<br />

REFERENCES<br />

491<br />

Wiedersheim, R. (1897). Elements <strong>of</strong> <strong>the</strong> Comparative Anatomy <strong>of</strong> Vertebrates. 2nd Ed. Translated<br />

by W. N. Parker. Macmillan <strong>and</strong> Co., London.<br />

Wilh<strong>of</strong>t, D. c., Hotaling, E., <strong>and</strong> Franks, P. (1983). Effects <strong>of</strong> temperature on sex determination<br />

in embryos <strong>of</strong> <strong>the</strong> snapping turtle Chelydra serpentina. J. Herpetol. 17(1), 38-42.<br />

Williams, E. E. (1959). Gadow's arcualia <strong>and</strong> <strong>the</strong> development <strong>of</strong> tetrapod vertebrae. Q. Rev.<br />

Bioi. 34, 1-32.<br />

Wilson, G. (1896). The development <strong>of</strong> <strong>the</strong> ostium abdominaIe tubae in <strong>the</strong> crocodile. Anat.<br />

Anz. 12, 79-85.<br />

Wilson, G. (1900). The development <strong>of</strong> <strong>the</strong> Mullerian duct <strong>of</strong> reptiles. Trans. Roy. Soc. Edinburgh<br />

39, 613-621.<br />

Woerdeman, M. W. (1920). Ober die Gaumendrusen der Krokodile. Anal. Anz. 53(14), 345­<br />

352.<br />

Wood Jones, F. (1940). The nature <strong>of</strong> <strong>the</strong> s<strong>of</strong>t palate. J. Anat. 74(2), 147-170.<br />

Yadav, R. N. (1969). Breeding <strong>the</strong> mugger crocodile Crocodyills palustris at Jaipur Zoo. Internal.<br />

Zoo Yearb. 9, 33.<br />

Yadav, R. N. (1979). A fur<strong>the</strong>r report on breeding <strong>the</strong> mugger crocodile Crocodyills palustris at<br />

Jaipur Zoo. Internal. Zoo. Yearb. 19, 45.<br />

Yangprapakorn, U., McNeeley, J. A., <strong>and</strong> Cronin, E. W. (1971). Captive breeding <strong>of</strong><br />

crocodiles in Thail<strong>and</strong>. 1. U.C.N. Pub/. (N.S.) SlIppl. 32, 98-101.<br />

Yntema, C. L. (1968). A series <strong>of</strong> stages in <strong>the</strong> embryonic development <strong>of</strong> Chelydra serpentina. ].<br />

Morph. 125, 219-252.<br />

Yntema, C. L. (1976). Effects <strong>of</strong> incubation temperatures on sexual differentiation in <strong>the</strong> turtle<br />

Chelydra serpentina. ]. Morph. 150, 453-462.<br />

Yntema, C. L. (1979). Temperature levels <strong>and</strong> periods <strong>of</strong> sex determination during incubation<br />

<strong>of</strong> eggs <strong>of</strong> Chelydra serpentina. J. Morph. 159, 17-28.<br />

Young, J. D. (1950). The structure <strong>and</strong> some physical properties <strong>of</strong> <strong>the</strong> testudinian eggshell.<br />

Proc. zool. Soc. Lond. 120, 455-469.<br />

Zehr, D. R. (1962). Stages in <strong>the</strong> normal development <strong>of</strong> <strong>the</strong> common garter snake, Thamnophis<br />

sirtalis sirtalis. Copeia 2, 322-329.<br />

Zuckerk<strong>and</strong>l, E. (1895a). Zur Anatomie und Entwicklungsgeschichte der Arterien des Vorderarmes.<br />

2 Teil. Anat. Hefte 1(5), 157-205.<br />

Zuckerk<strong>and</strong>l, E. (1895b). Zur Anatomie und Entwicklungsgeschichte der Arterien des Unterschenkels<br />

und des Fusses. Anat. Hefte 1(5), 207-291.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!