05.07.2014 Views

Lectures Part#1 - Department of Mechanical Engineering

Lectures Part#1 - Department of Mechanical Engineering

Lectures Part#1 - Department of Mechanical Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Dr. Mostafa Ranjbar<br />

Fundamentals <strong>of</strong> Vibration<br />

1


-<br />

Outline<br />

• Why vibration is important?<br />

• Definition; mass, spring (or stiffness)<br />

dashpot<br />

• Newton’s laws <strong>of</strong> motion, 2 nd order ODE<br />

• Three types <strong>of</strong> vibration for SDOF sys.<br />

• Alternative way to find eqn <strong>of</strong> motion:<br />

energy methods<br />

• Examples<br />

2


-<br />

Why to study vibration<br />

• Vibrations can lead to excessive deflections<br />

and failure on the machines and structures<br />

• To reduce vibration through proper design <strong>of</strong><br />

machines and their mountings<br />

• To utilize pr<strong>of</strong>itably in several consumer and<br />

industrial applications<br />

• To improve the efficiency <strong>of</strong> certain<br />

machining, casting, forging & welding<br />

processes<br />

• To stimulate earthquakes for geological<br />

research and conduct studies in design <strong>of</strong><br />

nuclear reactors<br />

3


-<br />

Why to study vibration<br />

• Imbalance in the gas or diesel engines<br />

• Blade and disk vibrations in turbines<br />

• Noise and vibration <strong>of</strong> the hard-disks in<br />

your computers<br />

• Cooling fan in the power supply<br />

4<br />

• Vibration testing for electronic<br />

packaging to conform Internatioal<br />

standard for quality control (QC)<br />

• Safety eng.: machine vibration causes<br />

parts loose from the body


-<br />

Stiffness<br />

• From strength <strong>of</strong> materials (Solid Mech) recall:<br />

Force<br />

f k<br />

10 3 N<br />

x 0<br />

x 1<br />

x 2<br />

x 3<br />

g<br />

0<br />

20 mm<br />

Displacement<br />

x<br />

5


Free-body diagram and equations <strong>of</strong> motion<br />

-<br />

• Newton’s Law:<br />

k<br />

k<br />

x(t)<br />

y<br />

x<br />

mx &&(<br />

t)<br />

= −kx(<br />

t)<br />

c=0<br />

c<br />

m<br />

Friction-free<br />

surface<br />

surface<br />

f k<br />

f c<br />

mg<br />

N<br />

mx &&(<br />

t)<br />

+<br />

kx(<br />

t)<br />

=<br />

0<br />

x(0)<br />

=<br />

x<br />

x&<br />

0<br />

, (0)<br />

=<br />

v<br />

0<br />

6


-<br />

2nd Order Ordinary Differential Equation<br />

with Constant Coefficients<br />

Divide by<br />

ω<br />

n<br />

=<br />

x(<br />

t)<br />

=<br />

2<br />

m : && x(<br />

t)<br />

+ ω x(<br />

t)<br />

=<br />

k<br />

: natural frequency in rad/s<br />

m<br />

Asin(<br />

ω t + φ)<br />

n<br />

n<br />

0<br />

7


-<br />

Periodic Motion<br />

x(t)<br />

Max velocity<br />

Initial displacement<br />

Amplitude, A<br />

Phase = φ<br />

2π<br />

ω n<br />

period<br />

Time, t<br />

8


-<br />

Periodic Motion<br />

x(t)<br />

x(t) [mm]<br />

A 1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

2 4 6 8 10 12<br />

Time, t<br />

Time [s]<br />

-A<br />

-1.5<br />

___ 2π<br />

ω 2π n<br />

ω n<br />

9


-<br />

Frequency<br />

ω n<br />

is in rad/s is the natural frequency<br />

ω<br />

f n<br />

= n<br />

rad/s<br />

2π rad/cycle = ω n<br />

cycles<br />

2π s<br />

T = 2π s is the period<br />

ω n<br />

= ω n<br />

2π Hz<br />

We <strong>of</strong>ten speak <strong>of</strong> frequency in Hertz, but we<br />

need rad/s in the arguments <strong>of</strong> the trigonometric<br />

functions (sin and cos function).<br />

10


-<br />

Amplitude & Phase from the initial<br />

conditions<br />

x 0<br />

= Asin(ω n<br />

0 + φ) = Asinφ<br />

v 0<br />

= ω n<br />

Acos(ω n<br />

0 + φ) = ω n<br />

Acosφ<br />

Solving yields<br />

A = 1 ⎛<br />

ω 2<br />

ω<br />

n<br />

x 2 2<br />

ω<br />

0<br />

+ v 0<br />

, φ = tan −1 n<br />

x 0<br />

⎞<br />

⎜ ⎟<br />

144 n<br />

v 24443<br />

⎝ 0 ⎠<br />

1442<br />

443<br />

Amplitude<br />

Phase<br />

11


-<br />

Phase Relationship between x, v, a<br />

x<br />

Displacement<br />

= A cos( ω t + φ )<br />

n<br />

Displacement<br />

x (t) = A sin(v n t + f)<br />

A<br />

O<br />

t<br />

–A<br />

x&<br />

= −ω Asin( ω t + φ )<br />

n<br />

Velocity<br />

Velocity<br />

•<br />

x (t) = v n A cos(v n t + f)<br />

n<br />

v n A<br />

O<br />

t<br />

&& x<br />

Acceleration<br />

Acceleration<br />

••<br />

x (t) = –v 2 n A sin(v n t + f)<br />

2<br />

= −ω A cos( ω t + φ )<br />

n<br />

n<br />

–v n A<br />

v n 2 A<br />

O<br />

–v 2 nA<br />

t<br />

12


-<br />

Example For m= 300 kg and ω n =10 rad/s<br />

compute the stiffness:<br />

ω n<br />

=<br />

k<br />

m ⇒ k = mω 2<br />

n<br />

= (300)10 2 kg/s 2<br />

= 3 ×10 4 N/m<br />

14


-<br />

Other forms <strong>of</strong> the solution:<br />

x(t) = Asin(ω n<br />

t + φ)<br />

x(t) = A 1<br />

sinω n<br />

t + A 2<br />

cosω n<br />

t<br />

x(t) = a 1<br />

e jω n t + a 2<br />

e − jω n t<br />

15<br />

Phasor: representation <strong>of</strong> a complex number in terms <strong>of</strong> a<br />

complex exponential<br />

Ref: 1) Sec 1.10.2, 1.10.3<br />

2) http://mathworld.wolfram.com/Phasor.html


-<br />

Some useful quantities<br />

A = peak value<br />

1<br />

x = lim<br />

T →∞<br />

T<br />

x 2<br />

= lim<br />

T→∞<br />

1<br />

T<br />

T<br />

∫<br />

0<br />

x(t)dt = average value<br />

T<br />

∫ x 2 (t)dt = mean - square value<br />

0<br />

x rms<br />

= x 2 = root mean square value<br />

16


-<br />

Peak Values<br />

max or peak value <strong>of</strong><br />

:<br />

displacement<br />

:<br />

x<br />

max<br />

=<br />

A<br />

velocity:<br />

x&<br />

max<br />

=<br />

ω<br />

A<br />

acceleration :<br />

&& x<br />

max<br />

=<br />

ω<br />

2<br />

A<br />

17


-<br />

Example Hardware store spring, bolt: m= 49.2x10 -3<br />

kg,k=857.8 N/m and x 0 =10 mm. Compute ω n and max<br />

amplitude <strong>of</strong> vibration.<br />

ω n<br />

=<br />

k<br />

m =<br />

857.8 N/m<br />

49.2 × 10 -3 kg<br />

= 132 rad/s<br />

f n<br />

= ω n<br />

= 21 Hz<br />

2π<br />

T = 2π = 1 1<br />

=<br />

ω n<br />

f n 21 cyles sec<br />

0.0476 s<br />

x(t) max<br />

= A = 1 ω n<br />

ω n2<br />

x 02<br />

+ v 02<br />

= x 0<br />

=10 mm<br />

18


Compute the solution and max velocity and<br />

acceleration<br />

-<br />

v(t) max<br />

= ω n<br />

A = 1320 mm/s = 1.32 m/s<br />

a(t) max<br />

= ω n2<br />

A = 174.24 × 10 3 mm/s 2<br />

=174.24 m/s 2 ≈17.8g!<br />

⎛ ω<br />

φ = tan −1 n<br />

x 0 ⎞<br />

⎝ 0 ⎠ = π 2 rad<br />

x(t) =10sin(132t + π /2)=10 cos(132t) mm<br />

19


21<br />

-<br />

Derivation <strong>of</strong> the solution<br />

jt<br />

jt<br />

jt<br />

jt<br />

n<br />

t<br />

t<br />

t<br />

n<br />

n<br />

n<br />

n<br />

e<br />

a<br />

a e<br />

t<br />

x<br />

e<br />

a<br />

t<br />

x<br />

a e<br />

t<br />

x<br />

j<br />

j<br />

m<br />

k<br />

m<br />

k<br />

k<br />

m<br />

kae<br />

ae<br />

m<br />

kx<br />

mx<br />

ae<br />

t<br />

x<br />

ω<br />

ω<br />

ω<br />

ω<br />

λ<br />

λ<br />

λ<br />

ω<br />

λ<br />

λ<br />

λ<br />

−<br />

−<br />

+<br />

=<br />

⇒<br />

=<br />

=<br />

⇒<br />

= ±<br />

=±<br />

−<br />

= ±<br />

⇒<br />

=<br />

+<br />

⇒<br />

=<br />

+<br />

⇒<br />

=<br />

+<br />

=<br />

2<br />

1<br />

2<br />

1<br />

2<br />

2<br />

)<br />

(<br />

)<br />

(<br />

and<br />

)<br />

(<br />

0<br />

0<br />

0<br />

into<br />

)<br />

(<br />

Substitute<br />

&<br />

&


Damping Elements<br />

-<br />

Viscous Damping:<br />

Damping force is proportional to the velocity<br />

<strong>of</strong> the vibrating body in a fluid medium such<br />

as air, water, gas, and oil.<br />

Coulomb or Dry Friction Damping:<br />

Damping force is constant in magnitude but<br />

opposite in direction to that <strong>of</strong> the motion <strong>of</strong><br />

the vibrating body between dry surfaces<br />

Material or Solid or Hysteretic Damping:<br />

Energy is absorbed or dissipated by material<br />

during deformation due to friction between<br />

internal planes<br />

22


Viscous Damping<br />

-<br />

24<br />

Shear Stress (τ ) developed in the fluid layer at a<br />

distance y from the fixed plate is:<br />

du<br />

τ = μ ( 1.26)<br />

dy<br />

where du/dy = v/h is the velocity gradient.<br />

•Shear or Resisting Force (F) developed at the bottom<br />

surface <strong>of</strong> the moving plate is:<br />

Av<br />

F = τA<br />

= μ =<br />

h<br />

( 1.27)<br />

where A is the surface area <strong>of</strong> the moving plate.<br />

c =<br />

μA<br />

h<br />

cv<br />

is the damping constant


and<br />

c<br />

=<br />

μA<br />

h<br />

Viscous Damping<br />

( 1.28)<br />

is called the damping constant.<br />

If a damper is nonlinear, a linearization process<br />

is used about the operating velocity (v*) and the<br />

equivalent damping constant is:<br />

-<br />

c =<br />

dF<br />

dv<br />

v*<br />

( 1.29)<br />

25


-<br />

Linear Viscous Damping<br />

f c<br />

=<br />

cx(t) &<br />

• A mathematical<br />

form<br />

• Called a dashpot or<br />

viscous damper<br />

• Somewhat like a<br />

shock absorber<br />

• The constant c has<br />

units: Ns/m or kg/s<br />

26


-<br />

Spring-mass-damper systems<br />

• From Newton’s law:<br />

k<br />

c<br />

k<br />

c<br />

m<br />

x(t)<br />

y<br />

Friction-free<br />

surface<br />

x<br />

Friction-free<br />

surface<br />

f k<br />

f c<br />

f k<br />

f c<br />

mg<br />

N<br />

m&&<br />

x(<br />

t)<br />

= − f<br />

= −cx&<br />

( t)<br />

− kx(<br />

t)<br />

mx &&(<br />

t)<br />

+ cx&<br />

( t)<br />

+ kx(<br />

t)<br />

= 0<br />

x(0)<br />

=<br />

c<br />

x<br />

−<br />

f<br />

&<br />

k<br />

0<br />

, x(0)<br />

=<br />

v<br />

0<br />

27


28<br />

-<br />

Derivation <strong>of</strong> the solution<br />

t<br />

t<br />

t<br />

t<br />

n<br />

t<br />

t<br />

t<br />

t<br />

e<br />

a<br />

a e<br />

t<br />

x<br />

e<br />

a<br />

t<br />

x<br />

a e<br />

t<br />

x<br />

j<br />

j<br />

m<br />

k<br />

m<br />

k<br />

k<br />

c<br />

m<br />

kae<br />

ae<br />

c<br />

ae<br />

m<br />

kx<br />

cx<br />

mx<br />

ae<br />

t<br />

x<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

2<br />

)<br />

(<br />

)<br />

(<br />

and<br />

)<br />

(<br />

0<br />

0<br />

0<br />

into<br />

)<br />

(<br />

Substitute<br />

λ<br />

λ<br />

λ<br />

λ<br />

λ<br />

λ<br />

λ<br />

λ<br />

ω<br />

λ<br />

λ<br />

λ<br />

λ<br />

λ<br />

+<br />

=<br />

⇒<br />

=<br />

=<br />

⇒<br />

= ±<br />

=±<br />

−<br />

= ±<br />

⇒<br />

=<br />

+<br />

+<br />

⇒<br />

=<br />

+<br />

+<br />

⇒<br />

=<br />

+<br />

+<br />

= &<br />

&&<br />

1<br />

2<br />

,2<br />

1 −<br />

±<br />

−<br />

= ζ<br />

ω<br />

ζω<br />

λ<br />

n<br />

n


-<br />

Solution (dates to 1743 by Euler)<br />

Divide equation <strong>of</strong> motion by m<br />

2<br />

&& x(<br />

t)<br />

+ 2ζω x&<br />

n<br />

( t)<br />

+ ωn<br />

x(<br />

t)<br />

= 0<br />

where ω = k<br />

n<br />

and<br />

m<br />

c<br />

ζ = = damping ratio (dimensionless)<br />

2 km<br />

29


-<br />

Let x(t) = ae λt<br />

& subsitute into eq. <strong>of</strong> motion<br />

λ 2 ae λt + 2ζω n<br />

λae λt + ω n 2 ae λt = 0<br />

which is now an algebraic equation in λ :<br />

λ 1,2<br />

=−ζω n<br />

± ω n<br />

ζ 2 −1<br />

from the roots <strong>of</strong> a quadratic equation<br />

Here the discriminant ζ 2 −1, determines<br />

the nature <strong>of</strong> the roots λ<br />

30


-<br />

Three possibilities:<br />

1) ζ = 1⇒<br />

roots are equal & repeated<br />

called critically damped<br />

ζ = 1⇒<br />

c =<br />

Using the initial<br />

a<br />

1<br />

x(<br />

t)<br />

=<br />

=<br />

x<br />

0<br />

,<br />

a<br />

a e<br />

2<br />

c<br />

1<br />

cr<br />

=<br />

v<br />

= 2 km =<br />

−ω<br />

t<br />

n<br />

0<br />

+<br />

a<br />

2<br />

te<br />

conditions :<br />

+ ω x<br />

n<br />

0<br />

−ω<br />

t<br />

n<br />

2mω<br />

n<br />

31<br />

Sec. 2.6


-<br />

Critical damping continued<br />

• No oscillation occurs<br />

• Useful in door mechanisms, analog gauges<br />

x(t) = [x 0<br />

+ (v 0<br />

+ ω n<br />

x 0<br />

)t]e −ω nt<br />

Displacement<br />

Displacement (mm)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

–0.2<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

Time (sec)<br />

Time, t<br />

32


33<br />

-<br />

1<br />

2<br />

1)<br />

(<br />

1<br />

2<br />

1)<br />

(<br />

where<br />

)<br />

(<br />

)<br />

(<br />

1<br />

roots :<br />

two distinct real<br />

called overdamping -<br />

1,<br />

2)<br />

2<br />

0<br />

2<br />

0<br />

2<br />

2<br />

0<br />

2<br />

0<br />

1<br />

1<br />

2<br />

1<br />

1<br />

2<br />

1,2<br />

2<br />

2<br />

−<br />

−<br />

+<br />

+<br />

=<br />

−<br />

−<br />

+<br />

−<br />

+<br />

−<br />

=<br />

+<br />

=<br />

−<br />

±<br />

= −<br />

><br />

−<br />

−<br />

−<br />

−<br />

ζ<br />

ω<br />

ω<br />

ζ<br />

ζ<br />

ζ<br />

ω<br />

ω<br />

ζ<br />

ζ<br />

ζ<br />

ω<br />

ζω<br />

λ<br />

ζ<br />

ζ<br />

ω<br />

ζ<br />

ω<br />

ζω<br />

n<br />

n<br />

n<br />

n<br />

t<br />

t<br />

t<br />

n<br />

n<br />

x<br />

v<br />

a<br />

x<br />

v<br />

a<br />

e<br />

a<br />

a e<br />

e<br />

t<br />

x<br />

n<br />

n<br />

n


-<br />

The overdamped response<br />

Displacement (mm)<br />

Displacement<br />

0.4<br />

1<br />

0.2<br />

2<br />

0.0<br />

–0.2<br />

–0.4<br />

0 1<br />

1. x 0 = 0.3,<br />

2. x 0 = 0,<br />

3. x 0 = –0.3,<br />

3<br />

v 0 = 0<br />

v 0 = 1<br />

v 0 = 0<br />

1: x 0 =0.3, v 0 = 0<br />

2: x 0 =0.0, v 0 = 1<br />

3: x 0 =-0.3, v 0 = 0<br />

2 3 4 5 6<br />

Time (sec)<br />

Time, t<br />

34


-<br />

3) ζ < 1, called underdamped motion - most common<br />

Two complex roots as conjugate pairs<br />

write roots in complex form as :<br />

λ 1,2<br />

=−ζω n<br />

± ω n<br />

j 1− ζ 2<br />

where j =<br />

−1<br />

35


-<br />

Underdamping<br />

x(t) = e − ζω n t (a 1<br />

e jω n t 1−ζ2 + a 2<br />

e − jω n t 1−ζ2 )<br />

= Ae −ζω nt<br />

sin(ω d<br />

t + φ)<br />

ω d<br />

= ω n<br />

1− ζ 2 , damped natural frequency<br />

A = 1 (v 0<br />

+ ζω n<br />

x 0<br />

) 2 + (x 0<br />

ω d<br />

) 2<br />

ω d<br />

⎛ x<br />

φ = tan −1 0<br />

ω d<br />

⎞<br />

⎜ ⎟<br />

⎝ v 0<br />

+ ζω n<br />

x 0<br />

⎠<br />

36


-<br />

Underdamped-oscillation<br />

Displacement<br />

Displacement (mm)<br />

1.0<br />

0.0<br />

–1.0<br />

10 15<br />

Time<br />

(sec)<br />

Time, t<br />

• Gives an oscillating<br />

response with<br />

exponential decay<br />

• Most natural systems<br />

vibrate with and<br />

underdamped response<br />

• See textbook for details<br />

and other<br />

representations<br />

37


-<br />

Example consider the spring in Ex., if c = 0.11 kg/s,<br />

determine the damping ratio <strong>of</strong> the spring-bolt system.<br />

m = 49.2 × 10 −3 kg, k = 857.8 N/m<br />

c cr<br />

= 2 km = 2 49.2×10 −3 ×857.8<br />

ζ = c<br />

c cr<br />

=<br />

= 12.993 kg/s<br />

0.11 kg/s<br />

12.993 kg/s = 0.0085 ⇒<br />

the motion is underdamped<br />

and the bolt will oscillate<br />

38


Example<br />

The human leg has a measured natural frequency <strong>of</strong> around<br />

20 Hz when in its rigid (knee locked) position, in the<br />

longitudinal direction (i.e., along the length <strong>of</strong> the bone) with a<br />

damping ratio <strong>of</strong> ζ = 0.224.<br />

-<br />

Calculate the response <strong>of</strong> the tip if the leg bone to v 0<br />

(t=0)= 0.6 m/s and x 0 (t=0)=0<br />

This correspond to the vibration induced while landing on your<br />

feet, with your knees locked from a height <strong>of</strong> 18 mm) and plot<br />

the response. What is the maximum acceleration<br />

experienced by the leg assuming no damping?<br />

39


-<br />

Solution:<br />

V 0 =0.6, X 0 =0, ζ = 0.224<br />

ω n<br />

= 20<br />

1<br />

cycles<br />

s<br />

2π rad<br />

cycles<br />

= 125.66 rad/s<br />

A =<br />

1<br />

ω<br />

d<br />

φ = tan<br />

−1<br />

( v<br />

⎛<br />

⎜<br />

⎝ v<br />

ω d<br />

=125.66 1− (.224) 2 = 122.467 rad/s<br />

A =<br />

2<br />

2<br />

0<br />

+ ζω<br />

n<br />

x0<br />

) + ( x0ω<br />

d<br />

)<br />

0<br />

x<br />

0<br />

ω<br />

d<br />

+ ζω x<br />

n<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

( 0.6 + ( 0.224)125.66<br />

( )()<br />

0 ) 2 + ()122.467 0<br />

122.467<br />

( )<br />

⎛ 0 ()ω<br />

φ = tan -1 ⎜<br />

d<br />

⎝ v 0<br />

+ζω n<br />

0<br />

()<br />

( ) 2<br />

⎞<br />

⎟ = 0<br />

⎠<br />

⇒ xt ()= 0.005e −28.148t sin( 122.467t)<br />

= 0.005 m<br />

40


Use undamped formula to get max acceleration:<br />

-<br />

A =<br />

max<br />

x<br />

2<br />

0<br />

2<br />

⎛ v ⎞<br />

0<br />

+<br />

⎜<br />

⎟ , ωn<br />

= 125.66, v0<br />

⎝ωn<br />

⎠<br />

v0<br />

0.6<br />

A = m = m<br />

ω ω<br />

⎛ 0.6 ⎞<br />

⎜ ⎟<br />

⎝ ωn<br />

⎠<br />

= 0.6, x<br />

2<br />

2<br />

2<br />

2<br />

(&&<br />

x) = −ω<br />

A = −ω<br />

⎜ ⎟ = ( 0.6)( 125.66 m/s ) = 75.396 m/s<br />

n<br />

n<br />

n<br />

n<br />

0<br />

= 0<br />

maximum acceleration =<br />

75.396 m/s 2<br />

9.81 m/s 2 g = 7.68g' s<br />

41


-<br />

Plot <strong>of</strong> the response:<br />

Displacement<br />

Displacement (mm)<br />

5<br />

x(<br />

t)<br />

=<br />

0.005e<br />

−28.148t<br />

sin(122.467t)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14<br />

Time, t<br />

Time (s)<br />

42


43<br />

-<br />

Example Compute the form <strong>of</strong> the response <strong>of</strong> an<br />

underdamped system using the Cartesian form<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

+<br />

+<br />

=<br />

⇒<br />

+<br />

=<br />

⇒<br />

−<br />

+<br />

+<br />

= −<br />

−<br />

+<br />

+<br />

= −<br />

=<br />

⇒<br />

+<br />

=<br />

=<br />

+<br />

=<br />

+<br />

=<br />

⇒<br />

−<br />

=<br />

+<br />

−<br />

−<br />

−<br />

−<br />

−<br />

t<br />

x<br />

t<br />

x<br />

v<br />

e<br />

t<br />

x<br />

x<br />

v<br />

A<br />

x<br />

A<br />

x<br />

A<br />

v<br />

t<br />

A<br />

t<br />

A<br />

e<br />

t<br />

A<br />

t<br />

A<br />

e<br />

x<br />

x<br />

A<br />

A<br />

A<br />

e<br />

x<br />

x<br />

t<br />

A<br />

t<br />

A<br />

e<br />

t<br />

Ae<br />

t<br />

x<br />

y<br />

x<br />

y<br />

x<br />

y<br />

x<br />

d<br />

d<br />

d<br />

n<br />

t<br />

d<br />

n<br />

d<br />

n<br />

d<br />

d<br />

t<br />

d<br />

d<br />

d<br />

t<br />

n<br />

d<br />

d<br />

t<br />

d<br />

t<br />

n<br />

n<br />

n<br />

n<br />

n<br />

ω<br />

ω<br />

ω<br />

ζω<br />

ω<br />

ζω<br />

ω<br />

ζω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

ζω<br />

ω<br />

ω<br />

φ<br />

ω<br />

ζω<br />

ζω<br />

ζω<br />

ζω<br />

ζω<br />

cos<br />

sin<br />

)<br />

(<br />

sin 0)<br />

cos0<br />

(<br />

cos0)<br />

sin 0<br />

(<br />

)<br />

sin<br />

cos<br />

(<br />

)<br />

cos<br />

sin<br />

(<br />

cos(0))<br />

sin(0)<br />

(<br />

(0)<br />

)<br />

cos<br />

sin<br />

(<br />

)<br />

sin(<br />

)<br />

(<br />

sin<br />

cos<br />

cos<br />

sin<br />

)<br />

sin(<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

2<br />

1<br />

2<br />

1<br />

0<br />

2<br />

2<br />

1<br />

0<br />

0<br />

2<br />

1<br />

&<br />

Eq. 2.72


-<br />

MODELING AND ENERGY<br />

METHODS<br />

An alternative way to determine the<br />

equation <strong>of</strong> motion and an alternative way<br />

to calculate the natural frequency<br />

44


-<br />

Modelling<br />

• Newton’s Laws<br />

∑<br />

F<br />

xi<br />

=<br />

mx &&<br />

∑<br />

M = I & θ 0 i 0<br />

45


-<br />

Energy Methods<br />

∫<br />

Fdx<br />

work done =<br />

⇒ T<br />

=<br />

+ U<br />

∫<br />

mxdx &&<br />

=<br />

⇒<br />

64748<br />

U −U<br />

Potential Energy<br />

1<br />

constant<br />

2<br />

=<br />

1<br />

2<br />

mx&<br />

2<br />

2<br />

1<br />

=<br />

T<br />

−T<br />

2 1<br />

123<br />

Kinetic Energy<br />

or<br />

d<br />

dt<br />

( T<br />

+ U )<br />

=<br />

0<br />

Alternate method <strong>of</strong> getting the eq. <strong>of</strong> motion<br />

46


-<br />

Rayleigh’s Method<br />

• T 1 + U 1 = T 2 + U 2<br />

• Let t 1 be the time at which m moves through<br />

its static equilibrium position, then<br />

• U 1 =0, reference point<br />

• Let t 2 be the time at which m undergoes its<br />

max displacement (v=0 so T 2 =0), U 2 is max<br />

(T 1 must be max ),<br />

•Thus U max =T max<br />

Ref: Section 2.5<br />

47


-<br />

Example The effect <strong>of</strong> including the mass <strong>of</strong> the<br />

spring on the value <strong>of</strong> the frequency.<br />

y<br />

y +dy<br />

m s , k<br />

l<br />

m<br />

53<br />

Ex. 2.8<br />

x(t)


-<br />

ms<br />

mass <strong>of</strong> element dy : dy<br />

l<br />

velocity <strong>of</strong> element dy : v<br />

T<br />

T<br />

U<br />

spring<br />

mass<br />

max<br />

=<br />

=<br />

=<br />

=<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

l<br />

∫<br />

0<br />

⎛<br />

⎜<br />

⎝<br />

kA<br />

m<br />

3<br />

mx&<br />

m<br />

l<br />

2<br />

2<br />

s<br />

s<br />

⎞<br />

⎟x&<br />

⎠<br />

2<br />

⇒ T<br />

tot<br />

2<br />

⎡ y ⎤<br />

⎢<br />

x&<br />

⎣ l ⎥<br />

⎦<br />

dy<br />

⎡1<br />

= ⎢<br />

⎣2<br />

dy<br />

(adds up the KE <strong>of</strong><br />

⎛<br />

⎜<br />

⎝<br />

=<br />

m<br />

3<br />

s<br />

⎫<br />

⎪<br />

⎬ assumptions<br />

y<br />

x&<br />

( t),<br />

⎪<br />

l<br />

⎭<br />

⎞<br />

⎟ +<br />

⎠<br />

⇒ ω<br />

1<br />

2<br />

n<br />

⎤<br />

m⎥x&<br />

⎦<br />

=<br />

2<br />

⇒ T<br />

k<br />

m<br />

m +<br />

3<br />

each element)<br />

s<br />

max<br />

=<br />

1<br />

2<br />

⎛<br />

⎜m<br />

+<br />

⎝<br />

m<br />

3<br />

s<br />

⎞ 2<br />

⎟ω<br />

n<br />

A<br />

⎠<br />

2<br />

n<br />

Provides some simple<br />

design and modeling<br />

guides<br />

54<br />

Ex. 2.8<br />

Effect <strong>of</strong> the spring mass = add 1/3 <strong>of</strong> its mass to the<br />

main mass


-<br />

What about gravity?<br />

kΔ<br />

mg − kΔ = 0, from FBD,<br />

and static equilibrium<br />

m<br />

k<br />

m<br />

+x(t)<br />

0<br />

Δ<br />

mg<br />

+x(t)<br />

U<br />

U<br />

spring<br />

grav<br />

1<br />

= k(<br />

Δ +<br />

2<br />

= −mgx<br />

x)<br />

2<br />

T<br />

=<br />

1<br />

2<br />

mx&<br />

2<br />

55


56<br />

-<br />

0<br />

0<br />

)<br />

(<br />

)<br />

(<br />

)<br />

(<br />

0<br />

)<br />

(<br />

2<br />

1<br />

2<br />

1<br />

0<br />

)<br />

(<br />

Now use<br />

0 from static equ.<br />

2<br />

2<br />

=<br />

+<br />

⇒<br />

=<br />

Δ −<br />

+<br />

+<br />

⇒<br />

Δ +<br />

+<br />

−<br />

⇒<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

Δ +<br />

+<br />

−<br />

⇒<br />

=<br />

+<br />

kx<br />

mx<br />

mg<br />

k<br />

x<br />

kx<br />

mx<br />

x<br />

x<br />

x<br />

k<br />

mgx<br />

mxx<br />

x<br />

k<br />

mgx<br />

mx<br />

dt<br />

d<br />

U<br />

T<br />

dt<br />

d<br />

&&<br />

4243<br />

1<br />

&<br />

&&<br />

&<br />

&<br />

&<br />

&&&<br />

&


-<br />

More on springs and stiffness<br />

l<br />

x(t)<br />

m<br />

k = EA l<br />

• Longitudinal motion<br />

• A is the cross sectional area<br />

(m 2 )<br />

• E is the elastic modulus<br />

(Pa=N/m 2 )<br />

• l is the length (m)<br />

• k is the stiffness (N/m)<br />

60


-<br />

Torsional Stiffness<br />

k = GJ p<br />

l<br />

0<br />

• J p is the polar moment <strong>of</strong><br />

inertia <strong>of</strong> the rod<br />

• J is the mass moment <strong>of</strong><br />

inertia <strong>of</strong> the disk<br />

• G is the shear modulus, l<br />

is the length<br />

J p<br />

J<br />

θ(t)<br />

61<br />

Sec. 2.3


-<br />

Example compute the frequency <strong>of</strong> a shaft/mass<br />

system {J = 0.5 kg m 2 }<br />

∑<br />

⇒ && k<br />

θ ( t)<br />

+ θ ( t)<br />

= 0<br />

J<br />

4<br />

k GJ<br />

p πd<br />

⇒ ωn<br />

= = , J<br />

p<br />

=<br />

J lJ<br />

32<br />

For a 2 m steel shaft, diameter <strong>of</strong> 0.5 cm ⇒<br />

ω<br />

n<br />

M<br />

=<br />

= J && θ ⇒ J && θ ( t)<br />

+ kθ<br />

( t)<br />

= 0<br />

GJ<br />

lJ<br />

p<br />

=<br />

=<br />

(8×<br />

10<br />

2.2 rad/s<br />

10<br />

2<br />

−2<br />

N/m )[ π (0.5×<br />

10 m)<br />

2<br />

(2 m)(0.5kg⋅m<br />

)<br />

4<br />

/ 32]<br />

62


-<br />

Transverse beam stiffness<br />

f<br />

x<br />

m<br />

• Strength <strong>of</strong> materials and<br />

experiments yield:<br />

k = 3EI<br />

l 3<br />

ω n<br />

=<br />

3EI<br />

ml 3<br />

64


-<br />

Samples <strong>of</strong> Vibrating Systems<br />

• Deflection <strong>of</strong> continuum (beams, plates,<br />

bars, etc) such as airplane wings, truck<br />

chassis, disc drives, circuit boards…<br />

• Shaft rotation<br />

• Rolling ships<br />

• See text for more examples.<br />

65


-<br />

Example : effect <strong>of</strong> fuel on<br />

frequency <strong>of</strong> an airplane wing<br />

E, I m<br />

l<br />

• Model wing as transverse<br />

beam<br />

• Model fuel as tip mass<br />

• Ignore the mass <strong>of</strong> the wing<br />

and see how the frequency<br />

<strong>of</strong> the system changes as<br />

the fuel is used up<br />

x(t)<br />

66


-<br />

Mass <strong>of</strong> pod 10 kg empty 1000 kg full<br />

I = 5.2x10 -5 m 4 , E =6.9x10 9 N/m, l = 2 m<br />

• Hence the<br />

natural<br />

frequency<br />

changes by an<br />

order <strong>of</strong><br />

magnitude<br />

while it empties<br />

out fuel.<br />

ω full<br />

=<br />

ω empty<br />

=<br />

3EI<br />

ml = 3(6.9 ×109 )(5.2 ×10 −5 )<br />

3 1000 ⋅ 2 3<br />

= 11.6 rad/s = 1.8 Hz<br />

3EI<br />

ml = 3(6.9 ×10 9 )(5.2 ×10 −5 )<br />

3 10 ⋅2 3<br />

= 115 rad/s =18.5 Hz<br />

Pod= a streamlined external housing that enclose engines or fuel<br />

67


-<br />

Does gravity effect frequency?<br />

• Static equilibrium:<br />

kx<br />

mg<br />

0<br />

δ<br />

+x<br />

∑<br />

∑<br />

F = 0 = −kδ<br />

+ mg<br />

• Dynamic equation :<br />

F = mx &&<br />

mx && + kx = 0 !<br />

= −k(<br />

x<br />

+ δ ) +<br />

mx && + kx + kδ<br />

− mg = 0<br />

mg<br />

68


-<br />

Static Deflection<br />

δ , Δ = distance spring is stretched or<br />

compressed under the force <strong>of</strong><br />

gravity by attaching a mass m to it.<br />

Δ = = = mg<br />

δ δ<br />

s<br />

k<br />

Many symbols in use including x s and x 0<br />

69


-<br />

Combining Springs<br />

• Equivalent Spring<br />

series : k AC<br />

=<br />

1<br />

1<br />

k1<br />

+ 1 k 2<br />

parallel : k ab<br />

= k 1<br />

+ k 2<br />

70


-<br />

Use these to design from<br />

available parts<br />

• Discrete springs available in standard<br />

values<br />

• Dynamic requirements require specific<br />

frequencies<br />

• Mass is <strong>of</strong>ten fixed or + small amount<br />

• Use spring combinations to adjust w n<br />

• Check static deflection<br />

71


-<br />

Example Design <strong>of</strong> a spring mass system<br />

using available springs: series vs parallel<br />

k 1<br />

k 2<br />

k 4<br />

m<br />

k 3<br />

• Let m = 10 kg<br />

• Compare a series and parallel<br />

combination<br />

• a) k 1 =1000 N/m, k 2 = 3000 N/m,<br />

k 3 = k 4 =0<br />

• b) k 3 =1000 N/m, k 4 = 3000 N/m,<br />

k 1 = k 2 =0<br />

72


-<br />

Case a) parallel connection :<br />

k 3<br />

= k 4<br />

= 0,k eq<br />

= k 1<br />

+ k 2<br />

=1000 + 3000 = 4000 N/m<br />

⇒ ω parallel<br />

=<br />

k eg<br />

m = 4000 = 20 rad/s<br />

10<br />

Case b) series connection :<br />

1<br />

k 1<br />

= k 2<br />

= 0, k eq<br />

=<br />

(1 k 3<br />

) + (1 k 4<br />

) = 3000 = 750 N/m<br />

3 +1<br />

⇒ ω series<br />

=<br />

k eg<br />

m = 750<br />

10<br />

= 8.66 rad/s<br />

Same physical components, very different frequency<br />

Allows some design flexibility in using <strong>of</strong>f-the-shelf components<br />

73


-<br />

Free Vibration with Coulomb Damping<br />

Coulomb’s law <strong>of</strong> dry friction states that, when<br />

two bodies are in contact, the force required to<br />

produce sliding is proportional to the normal<br />

force acting in the plane <strong>of</strong> contact. Thus, the<br />

friction force F is given by:<br />

F<br />

= μ N = μW<br />

= μmg<br />

(2.106)<br />

where N is normal force,<br />

μ is the coefficient <strong>of</strong> sliding or kinetic friction<br />

μ is usu 0.1 for lubricated metal, 0.3 for nonlubricated<br />

metal on metal, 1.0 for rubber on metal<br />

Coulomb damping is sometimes called constant<br />

damping<br />

74


-<br />

Free Vibration with Coulomb Damping<br />

• Equation <strong>of</strong> Motion:<br />

Consider a single degree <strong>of</strong> freedom system with<br />

dry friction as shown in Fig.(a) below.<br />

Since friction force varies with the direction <strong>of</strong><br />

velocity, we need to consider two cases as<br />

indicated in Fig.(b) and (c).<br />

75


-<br />

Free Vibration with Coulomb Damping<br />

Case 1. When x is positive and dx/dt is positive or<br />

when x is negative and dx/dt is positive (i.e., for<br />

the half cycle during which the mass moves from<br />

left to right) the equation <strong>of</strong> motion can be<br />

obtained using Newton’s second law (Fig.b):<br />

m&&<br />

x = −kx<br />

− μN<br />

or mx &<br />

+ kx<br />

Hence,<br />

x( t)<br />

= A1<br />

cosωnt<br />

+ A2<br />

=<br />

sinω<br />

t<br />

−μN<br />

n<br />

−<br />

μN<br />

k<br />

where ω n = √k/m is the frequency <strong>of</strong> vibration<br />

A 1 & A 2 are constants<br />

(2.107)<br />

(2.108)<br />

76


-<br />

Free Vibration with Coulomb Damping<br />

Case 2. When x is positive and dx/dt is negative or<br />

when x is negative and dx/dt is negative (i.e., for<br />

the half cycle during which the mass moves from<br />

right to left) the equation <strong>of</strong> motion can be derived<br />

from Fig. (c):<br />

− kx + μ N = mx && or mx &<br />

+ kx = μN<br />

(2.109)<br />

The solution <strong>of</strong> the equation is given by:<br />

μN<br />

x( t)<br />

= A3<br />

cosω nt<br />

+ A4<br />

sinωnt<br />

+<br />

k<br />

(2.110)<br />

where A 3 & A 4 are constants<br />

77


-<br />

Free Vibration with Hysteretic Damping<br />

Consider the spring-viscous damper arrangement<br />

shown in the figure below. The force needed to<br />

cause a displacement:<br />

F = kx + cx&<br />

(2.122)<br />

cωX<br />

cω<br />

For a harmonic motion<br />

<strong>of</strong> frequency ω and<br />

amplitude X,<br />

x( t)<br />

= X sinωt<br />

(2.123)<br />

x(t)<br />

F(t)<br />

− cωX<br />

X<br />

2<br />

− x<br />

2<br />

∴<br />

F(<br />

t)<br />

=<br />

kX<br />

sinωt<br />

+<br />

cXω<br />

cosωt<br />

=<br />

kx<br />

±<br />

cω<br />

X<br />

2<br />

− ( X<br />

sinωt)<br />

2<br />

85<br />

=<br />

kx<br />

±<br />

cω<br />

X<br />

2<br />

−<br />

x<br />

2<br />

(2.124)


-<br />

86<br />

Free Vibration with Hysteretic Damping<br />

When F versus x is plotted, Eq.(2.124) represents<br />

a closed loop, as shown in Fig(b). The area <strong>of</strong> the<br />

loop denotes the energy dissipated by the<br />

damper in a cycle <strong>of</strong> motion and is given by:<br />

ΔW<br />

=<br />

∫<br />

Fdx<br />

=<br />

∫<br />

2π<br />

/ ω<br />

0<br />

= πωcX<br />

Fig.2.36 Hysteresis loop<br />

( kX sinωt<br />

+ cXω<br />

cosωt)( ωX<br />

cosωt)<br />

2<br />

Hence, the damping<br />

coefficient:<br />

c =<br />

h<br />

ω<br />

dt<br />

(2.125)<br />

(2.126)<br />

where h is called the hysteresis<br />

damping constant.


-<br />

Free Vibration with Hysteretic Damping<br />

Eqs.(2.125) and (2.126) gives<br />

2<br />

ΔW = πhX<br />

(2.127)<br />

Complex Stiffness.<br />

iωt<br />

For general harmonic motion, x = Xe , the force<br />

is given by<br />

F<br />

=<br />

kXe<br />

iωt<br />

+ cωiXe<br />

iωt<br />

= ( k + iωc)<br />

x<br />

(2.128)<br />

87<br />

Thus, the force-displacement relation:<br />

where<br />

k<br />

F = ( k + ih)<br />

x<br />

⎛ h ⎞<br />

+ ih = k⎜1<br />

+ i ⎟ = k(1<br />

+ iβ )<br />

⎝ k ⎠<br />

(2.129)<br />

(2.130)


-<br />

2.6.4 Energy dissipated in Viscous Damping:<br />

In a viscously damped system, the rate <strong>of</strong> change<br />

<strong>of</strong> energy with time is given by:<br />

dW<br />

dt<br />

= force×<br />

velocity<br />

=<br />

Fv = −cv<br />

The energy dissipated in a complete cycle is:<br />

ΔW<br />

(2π<br />

/ ωd<br />

) ⎛<br />

= ∫ c<br />

t =<br />

⎜<br />

0<br />

⎝<br />

2<br />

= πcω<br />

X<br />

d<br />

dx<br />

dt<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

dt<br />

=<br />

∫<br />

2π<br />

0<br />

cX<br />

2<br />

2<br />

ω<br />

⎛<br />

= −c⎜<br />

⎝<br />

d<br />

cos<br />

2<br />

dx<br />

dt<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

ω t ⋅d(<br />

ω t)<br />

d<br />

d<br />

(2.93)<br />

(2.94)<br />

94


-<br />

95<br />

Energy dissipation<br />

Consider the system shown in the figure below.<br />

The total force resisting the motion is:<br />

F = −kx<br />

− cv = −kx<br />

− cx&<br />

(2.95)<br />

If we assume simple harmonic motion:<br />

x( t)<br />

= X sinω<br />

t (2.96)<br />

Thus, Eq.(2.95) becomes<br />

F<br />

= −kX<br />

sinω<br />

t<br />

d<br />

d<br />

− cω<br />

X<br />

cosω<br />

t<br />

(2.97)<br />

The energy dissipated in a complete cycle will be<br />

ΔW<br />

=<br />

=<br />

+<br />

∫<br />

∫<br />

2π<br />

/ ω<br />

t=<br />

0<br />

2π<br />

/ ω<br />

t=<br />

0<br />

∫<br />

2π<br />

/ ω<br />

t=<br />

0<br />

d<br />

d<br />

d<br />

Fvdt<br />

kX<br />

cos<br />

d<br />

ω sinω<br />

t ⋅cosω<br />

t ⋅d(<br />

ω t)<br />

2<br />

cω<br />

X<br />

d<br />

d<br />

2<br />

2<br />

d<br />

ω t ⋅d(<br />

ω t)<br />

d<br />

d<br />

d<br />

d<br />

d<br />

= πcω<br />

X<br />

d<br />

2<br />

(2.98)


-<br />

Energy dissipation and Loss Coefficient<br />

Computing the fraction <strong>of</strong> the total energy <strong>of</strong> the<br />

vibrating system that is dissipated in each cycle <strong>of</strong><br />

motion, Specific Damping Capacity<br />

2<br />

ΔW<br />

πcω<br />

⎛ 2 ⎞<br />

d<br />

X π ⎛ c ⎞<br />

=<br />

1 = 2<br />

⎜<br />

⎟⎜<br />

⎟ = 2δ<br />

≈ 4πζ<br />

= constant<br />

W<br />

2<br />

mω<br />

X<br />

2 ⎝ ωd<br />

⎠⎝<br />

2m<br />

⎠<br />

d<br />

2<br />

where W is either the max potential energy or the max<br />

kinetic energy.<br />

The loss coefficient, defined as the ratio <strong>of</strong> the<br />

energy dissipated per radian and the total strain<br />

energy:<br />

( ΔW<br />

/ 2π<br />

) ΔW<br />

loss coefficient = =<br />

π<br />

W<br />

2<br />

W<br />

(2.99)<br />

(2.100)<br />

96

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!