13.07.2014 Views

TSI - Solar Influences Data Center

TSI - Solar Influences Data Center

TSI - Solar Influences Data Center

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Can the Total <strong>Solar</strong><br />

Irradiance be reconstructed<br />

from solar activity proxies ?<br />

<strong>Solar</strong> Irradiance (Wm !2 )<br />

1369<br />

1368<br />

1367<br />

1366<br />

1365<br />

1364<br />

1363<br />

SOLAR IRRADIANCE VARIABILITY 9<br />

Days (Epoch Jan 0, 1980)<br />

0 2000 4000 6000 8000<br />

HF<br />

ACRIM I<br />

HF<br />

ACRIM I<br />

78 80 82 84 86 88 90 92 94 96 98 00 02 04<br />

Year<br />

1<br />

been improved. LPCE, Finally, Orléans, the difference 2 LPG, Grenoble, between 3 GIPSAlab, the minima Grenoble, has also 4 IRCCYN, not changed. Nantes, The 5 dates<br />

LESIA, Paris, 6 IAS, Orsay<br />

HF<br />

ACRIM II<br />

0.1%<br />

VIRGO<br />

Average minimum: 1365.560 ± 0.009 Wm !2<br />

Difference between minima: !0.016 ± 0.007 Wm !2<br />

Cycle amplitudes: 0.933 ± 0.019; 0.897 ± 0.020; 0.824 ± 0.017 Wm !2<br />

C. Fröhlich &<br />

J. Lean (2006)<br />

Figure 9. Shown<br />

T.<br />

isDudok the final<br />

de Wit<br />

version 1 , M. Kretzschmar<br />

of the PMOD 1 , J.<br />

composite.<br />

Lilensten 2 , P.-O.<br />

Compared<br />

Amblardto 3 ,<br />

the earlier<br />

versions the maximum ofS. cycle Moussaoui 21 is 4 , atJ. about Aboudarham the level 5 , F. as Auchère before, 6 but has less noise,<br />

especially in the early part. This may indicate that the early HF corrections have indeed<br />

of the maxima are 26/03/1979 – 25/12/1981, 28/04/1989 – 21/02/1992 and 19/01/2000 –


Why reconstruct the <strong>TSI</strong> ?<br />

The Sun and the Earth’s Climate<br />

Many attempts have been<br />

made to reconstruct pre-1978<br />

values of Total <strong>Solar</strong> Irradiance<br />

(<strong>TSI</strong>) from proxy data<br />

J. Haigh (2007)<br />

Figure 22: Reconstructions by various authors of total solar irradiance over the<br />

From Judith Lean, based on data from Wang et al. (2005); Lean (2000); Foster (2<br />

ESSW4, Brussels, Nov. 2007<br />

5 <strong>Solar</strong> spectral irradiance<br />

2


Why reconstruct the <strong>TSI</strong> ?<br />

The Sun and the Earth’s Climate<br />

Many attempts have been<br />

made to reconstruct pre-1978<br />

values of Total <strong>Solar</strong> Irradiance<br />

(<strong>TSI</strong>) from proxy data<br />

Such reconstruction are needed to<br />

Figure 22: Reconstructions by various authors of total solar irradiance over the<br />

From Judith Lean, based on data from Wang et al. (2005); Lean (2000); Foster (2<br />

assess solar effects on past climate changes<br />

understand what 5causes <strong>Solar</strong>the spectral weak variability irradiance of the <strong>TSI</strong><br />

J. Haigh (2007)<br />

ESSW4, Brussels, Nov. 2007<br />

2


How to reconstruct the <strong>TSI</strong><br />

Most reconstructions of the <strong>TSI</strong> use solar activity<br />

indices: sunspot number, MgII index, ...<br />

short-time reconstructions (days) have been quite<br />

successful so far...<br />

...but the (presumably important) role of the solar<br />

magnetic field is hard to include<br />

ESSW4, Brussels, Nov. 2007<br />

3


ESSW4, Brussels, Nov. 2007 J. Lean, Physics Today, 2005<br />

4


There is a problem...<br />

before determining HOW to reconstruct the <strong>TSI</strong> from proxies<br />

we need to<br />

determine IF this reconstruction can be done at all<br />

and<br />

and WHICH proxies are the best model inputs<br />

ESSW4, Brussels, Nov. 2007<br />

5


APPROPRIATIONS<br />

BUDGET<br />

ENERGY/COMMERCE<br />

VETERANS’ AFFAIRS<br />

INTELLIGENCE<br />

ARMED SERVICES<br />

HOUSE ADMINISTRATION<br />

OFFICIAL CONDUCT<br />

RULES<br />

AGRICULTURE<br />

TRANSPORTATION<br />

HOMELAND SECURITY<br />

GOVERNMENT REFORM<br />

WAYS AND MEANS<br />

RESOURCES<br />

SMALL BUSINESS<br />

EDUCATION<br />

INTERNATIONAL RELATIONS<br />

SCIENCE<br />

JUDICIARY<br />

FINANCIAL SERVICES<br />

Community structure in the 108 th U.S. house of representatives<br />

each dot represents a subcommittee<br />

(M. Porter et al., arxiv.org/physics/0602033)<br />

6


Networks : studying interactions<br />

Networks are important because structure affects function<br />

Examples<br />

spread of disease in a population<br />

robustness and stability of power grids<br />

earthquake dynamics<br />

...<br />

Networks can be studied within the frame of statistical physics<br />

(percolation, critical exponents, phase transitions, ...)<br />

ESSW4, Brussels, Nov. 2007<br />

7


Networks : studying interactions<br />

Networks are important because structure affects function<br />

Examples<br />

spread of disease in a population<br />

robustness and stability of power grids<br />

earthquake dynamics<br />

...<br />

Networks can be studied within the frame of statistical physics<br />

(percolation, critical exponents, phase transitions, ...)<br />

Here we compare the <strong>TSI</strong> against 12 solar proxies, using<br />

daily measurements from 26 Nov 1978 till 30 Sep 2007<br />

ESSW4, Brussels, Nov. 2007<br />

7


The data<br />

The 12 proxies for solar activity are:<br />

1. ISN : international sunspot number (from SIDC)<br />

2. f10.7 : solar radio flux at 10.7 cm (Penticton Obs.)<br />

3. MgII index : core to wing ratio of Mg II line (R. Viereck, NOAA)<br />

—> upper photosphere and chromosphere<br />

4. CaK index : Ca K II equivalent width (Kitt Peak Obs.)<br />

—> plages and faculae<br />

5. HeI index : equivalent width of He I line (Kitt peak Obs.)<br />

—> plages and faculae<br />

6. Lya index : composite Lyman-α irradiance (T. Woods, LASP)<br />

—> upper photosphere up to corona<br />

ESSW4, Brussels, Nov. 2007<br />

8


The data<br />

7. MPSI : magnetic plage strength index (Mt. Wilson Obs.)<br />

—> contribution from regions with 10 < |B| < 100 G<br />

8. MWSI : Mount Wilson sunspot index (Mt. Wilson Obs.)<br />

—> contribution from regions with |B| > 100 G<br />

9. DSA : daily sunspot area (Greenwich Obs.)<br />

10. Mean magnetic field of the Sun (Wilcox Obs.)<br />

11. OFI : optical flare index (Ataç and Özgüç)<br />

—> intensity x duration of flares<br />

12. Coronal index (Rybansky) —> total energy emitted by<br />

the solar corona in the FeXIV line at 530.3 nm<br />

and<br />

<strong>TSI</strong> : composite total solar irradiance (PMOD composite)<br />

ESSW4, Brussels, Nov. 2007<br />

9


The method<br />

Each proxy captures a different aspect of the solar activity<br />

Connections between proxies should reveal which<br />

mechanisms affect the <strong>TSI</strong> most<br />

We compute the mutual information I(x, y) between<br />

each pair of proxies = amount of information that proxy x<br />

reveals about proxy y<br />

I(x, y) = H(x) − H(x|y)<br />

∫<br />

H(x) = − p(x) log p(x) dx<br />

is the entropy<br />

p(x)<br />

is the probability density<br />

ESSW4, Brussels, Nov. 2007<br />

10


The data<br />

200 ISN<br />

0<br />

300<br />

200<br />

100<br />

f10.7<br />

5<br />

MPSI<br />

0<br />

4<br />

2<br />

0<br />

MWSI<br />

200 MNFLD<br />

0<br />

5000 DSA<br />

0<br />

100<br />

50<br />

OFI<br />

0<br />

20<br />

10<br />

FeXIV<br />

0.29 0<br />

0.28<br />

MgII<br />

0.27<br />

0.105<br />

0.095<br />

0.1<br />

CaK<br />

0.085<br />

0.09<br />

50 60 70 80 90<br />

HeI<br />

6<br />

5<br />

4<br />

Lya<br />

1368<br />

1366<br />

1364<br />

1362<br />

1975 1980 1985 1990 1995 2000 2005 2010<br />

ESSW4, Brussels, Nov. 2007<br />

<strong>TSI</strong><br />

11


Excerpt<br />

100 150 200 250<br />

50<br />

300<br />

200<br />

100<br />

3<br />

2<br />

1<br />

ESSW4, Brussels, Nov. 2007<br />

ISN<br />

f10.7<br />

MPSI<br />

1 MWSI<br />

0<br />

100 MNFLD<br />

0<br />

6000<br />

4000<br />

2000<br />

DSA<br />

50 OFI<br />

0<br />

20<br />

15<br />

10<br />

FeXIV<br />

0.285<br />

0.275<br />

0.28<br />

0.27<br />

MgII<br />

0.1 CaK<br />

0.09<br />

80<br />

70<br />

HeI<br />

60<br />

6<br />

5<br />

4<br />

Lya<br />

1368<br />

1366<br />

1364<br />

1988 1989 1990<br />

<strong>TSI</strong><br />

12


Different scales<br />

The analysis is done separately for<br />

short scale fluctuations<br />

< 80 days<br />

effect of solar rotation,<br />

center-to-limb effects, ...<br />

long scale fluctuations<br />

> 80 days<br />

effect of solar magnetic<br />

cycle + trend<br />

ESSW4, Brussels, Nov. 2007<br />

13


Connections for short time scales<br />

line thickness<br />

reflects level of<br />

mutual information<br />

MNFLD<br />

FeXIV<br />

HeI<br />

MPSI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

14


Connections for short time scales<br />

line thickness<br />

reflects level of<br />

mutual information<br />

MNFLD<br />

FeXIV<br />

Plages,<br />

faculae, ...<br />

HeI<br />

MPSI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

Active regions<br />

14


Connections for long time scales<br />

OFI<br />

DSA<br />

MWSI<br />

ISN<br />

CaK<br />

f10.7<br />

MPSI<br />

FeXIV<br />

Lya<br />

MNFLD<br />

HeI<br />

MgII<br />

ESSW4, Brussels, Nov. 2007<br />

<strong>TSI</strong><br />

15


Connections for long time scales<br />

OFI<br />

DSA<br />

MWSI<br />

Active regions<br />

ISN<br />

CaK<br />

f10.7<br />

MPSI<br />

FeXIV<br />

Lya<br />

MNFLD<br />

Plages,<br />

faculae, ...<br />

HeI<br />

MgII<br />

ESSW4, Brussels, Nov. 2007<br />

<strong>TSI</strong><br />

15


Conclusions (1/3)<br />

Which mechanisms contribute to the variability of the <strong>TSI</strong> ?<br />

for short time scales : regions with intense magnetic fields<br />

because they describe the cooling effect of sunspots<br />

for long time scales : ”irradiance” proxies which describe<br />

faculae and plages<br />

ESSW4, Brussels, Nov. 2007<br />

16


Conclusions (1/3)<br />

Which mechanisms contribute to the variability of the <strong>TSI</strong> ?<br />

for short time scales : regions with intense magnetic fields<br />

because they describe the cooling effect of sunspots<br />

for long time scales : ”irradiance” proxies which describe<br />

faculae and plages<br />

➔ the variability is dominated by the photosphere and the<br />

chromosphere<br />

➔ flares do contribute to the variability (poster by M. Kretzschmar)<br />

ESSW4, Brussels, Nov. 2007<br />

16


Conclusions (2/3)<br />

Can the <strong>TSI</strong> be reconstructed from a linear or a nonlinear<br />

combination of solar proxies ?<br />

MNFLD<br />

FeXIV<br />

HeI<br />

MPSI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

17


Conclusions (2/3)<br />

Can the <strong>TSI</strong> be reconstructed from a linear or a nonlinear<br />

combination of solar proxies ?<br />

Very unlikely.<br />

MNFLD<br />

FeXIV<br />

HeI<br />

MPSI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

17


Conclusions (2/3)<br />

Can the <strong>TSI</strong> be reconstructed from a linear or a nonlinear<br />

combination of solar proxies ?<br />

Very unlikely.<br />

FeXIV<br />

➔ archives are important for<br />

developing new proxies from<br />

historic data (photospheric<br />

sunspot index, facular<br />

index, ...)<br />

MNFLD<br />

MPSI<br />

HeI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

17


Conclusions (3/3)<br />

From what solar proxies can the <strong>TSI</strong> then be reconstructed ?<br />

MNFLD<br />

FeXIV<br />

HeI<br />

MPSI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

18


Conclusions (3/3)<br />

From what solar proxies can the <strong>TSI</strong> then be reconstructed ?<br />

The direction to go is a measurement of the spatial<br />

distribution of the (weak) solar magnetic field<br />

MNFLD<br />

FeXIV<br />

HeI<br />

MPSI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

18


Conclusions (3/3)<br />

From what solar proxies can the <strong>TSI</strong> then be reconstructed ?<br />

The direction to go is a measurement of the spatial<br />

distribution of the (weak) solar magnetic field<br />

➔ include causality: in this<br />

coupled system, what causes<br />

what ?<br />

MNFLD<br />

MPSI<br />

FeXIV<br />

HeI<br />

<strong>TSI</strong><br />

MWSI<br />

f10.7<br />

MgII<br />

Lya<br />

DSA<br />

ISN<br />

CaK<br />

ESSW4, Brussels, Nov. 2007<br />

OFI<br />

18


Network structure of<br />

RP<br />

COST724 team<br />

WS<br />

BZ<br />

DL<br />

AT<br />

AV<br />

AW<br />

PWHL<br />

FZ<br />

MC<br />

BS<br />

CC<br />

MM<br />

JW<br />

ABIS<br />

JL<br />

PGMK TD YT FS<br />

AC<br />

ML<br />

DH<br />

RVFJ<br />

CH<br />

GC<br />

EA<br />

RH<br />

KK<br />

LD<br />

EF<br />

MS<br />

HR<br />

EC<br />

19


ESSW4, Brussels, Nov. 2007 20


<strong>Data</strong> : lowpass<br />

150<br />

100<br />

50<br />

200<br />

150<br />

100<br />

4<br />

2<br />

1.5<br />

0.5 1<br />

60<br />

40<br />

20<br />

3000<br />

2000<br />

1000<br />

10<br />

15<br />

20<br />

5<br />

15<br />

10<br />

5<br />

0.28<br />

0.275<br />

0.27<br />

0.265<br />

0.1<br />

0.095<br />

0.09<br />

80<br />

60<br />

6<br />

5<br />

4<br />

1366.5<br />

1366<br />

1365.5<br />

1975 1980 1985 1990 1995 2000 2005 2010<br />

ESSW4, Brussels, Nov. 2007<br />

ISN<br />

f10.7<br />

MPSI<br />

MWSI<br />

MNFLD<br />

DSA<br />

OFI<br />

FeXIV<br />

MgII<br />

CaK<br />

HeI<br />

Lya<br />

<strong>TSI</strong><br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!