14.07.2014 Views

Lithocap Structure-controlled feeder zone Lithology-controlled ...

Lithocap Structure-controlled feeder zone Lithology-controlled ...

Lithocap Structure-controlled feeder zone Lithology-controlled ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Zhaoshan Chang, Noel White,<br />

Jeffrey Hedenquist, David<br />

Cooke, Ana Liza Cuison, Joey<br />

Garcia, Jr., Cari Deyell<br />

NW end of lithocap<br />

FSE porphyry<br />

Sociedad Geológica de Chile: July 2011<br />

SE end of lithocap<br />

http://<br />

www.ngdc.noaa.go<br />

v/mgg/image/<br />

2minrelief.html<br />

" <strong>Structure</strong>-<strong>controlled</strong><br />

<strong>feeder</strong> <strong>zone</strong><br />

" <strong>Lithology</strong>-<strong>controlled</strong><br />

lithocap horizon<br />

<strong>Lithocap</strong><br />

<strong>Lithocap</strong><br />

Mineralization<br />

<strong>Structure</strong><strong>controlled</strong><br />

! Horizontal to sub-horizontal body<br />

! Residual silicic core (± ore), halo of<br />

advance argillic (AA) alteration<br />

NW end of lithocap<br />

FSE porphyry


Cretaceous-<br />

Paleogene<br />

Lepanto<br />

metavolcanics<br />

12-13 Ma Bagon<br />

intrusive complex<br />

Late Oligocene to mid-<br />

Miocene Apaoan<br />

volcaniclastics<br />

Slightly younger Balili<br />

volcaniclastics<br />

Qtz diorite<br />

1 km<br />

porphyry<br />

Imbanguila<br />

dacite<br />

Imbanguila<br />

pyroclastics<br />

(3.3-1.8 Ma)<br />

Qtz diorite<br />

1 km porphyry<br />

Cretaceous-<br />

Paleogene<br />

Lepanto<br />

metavolcanics<br />

12-13 Ma Bagon<br />

intrusive complex<br />

Late Oligocene to mid-<br />

Miocene Apaoan<br />

volcaniclastics<br />

Slightly younger Balili<br />

volcaniclastics<br />

porphyry<br />

(3.3-1.8 Ma)<br />

Pliocene<br />

volcanism<br />

3.3 - 1.8 Ma,<br />

multiple eruptions<br />

Imbanguila<br />

dacite<br />

Imbanguila<br />

pyroclastics<br />

(3.3-1.8 Ma)<br />

Qtz diorite<br />

1 km porphyry<br />

Cretaceous-<br />

Paleogene<br />

Lepanto<br />

metavolcanics<br />

12-13 Ma Bagon<br />

intrusive complex<br />

Bato pyroclastics<br />

(1.2 Ma)<br />

Bato dacite<br />

porphyry (1.2 Ma)<br />

Lapangan Tuff<br />

(0.19 Ma)<br />

Late Oligocene to mid-<br />

Miocene Apaoan<br />

volcaniclastics<br />

Slightly younger Balili<br />

volcaniclastics<br />

porphyry<br />

(3.3-1.8 Ma)<br />

Young<br />

cover:<br />


50 ppb Au<br />

X Small<br />

workings<br />

Breccias<br />

NW end of lithocap:<br />

qtz-alunite cliffs at<br />

unconformity, with<br />

kaolinite halo<br />

Buaki<br />

porphyry<br />

Lepanto HS:> 0.9<br />

Mt Cu & 102 t Au<br />

FSE porphyry:<br />

650 Mt @ 0.65%<br />

Cu & 1.2 g/t Au<br />

<strong>Lithocap</strong><br />

geometry<br />

and base of<br />

the<br />

Imbanguila<br />

units<br />

Victoria veins, 11<br />

Mt @ 7.3 g/t Au +<br />

Ag-Cu-Pb-Zn<br />

Teresa veins, 0.8<br />

Mt @ 5.74 g/t Au<br />

1 km<br />

Nayak veins<br />

Mohong Hill<br />

porphyry + HS<br />

Guinaoang<br />

porphyry, 500<br />

Mt @ 0.4% Cu<br />

& 0.4 g/t Au<br />

Contour of the<br />

Imbanguila base from<br />

Garcia (1991)


Mankayan district, Philippines<br />

Mohong Hill<br />

quartz-alunite<br />

lithocap<br />

Lepanto fault<br />

Looking NNW<br />

Most ore<br />

(~70%) in<br />

root <strong>zone</strong> of<br />

lithocap, in<br />

Lepanto fault<br />

or its splay<br />

branches<br />

Dickite ± kaolinite<br />

Lepanto<br />

fault<br />

Quartz-alunite<br />

Dickite ± kaolinite<br />

Hedenquist et al., 1998; Chang et al., 2011<br />

Hedenquist et al., 1998;<br />

Chang et al., 2011


1.41 Ma<br />

1.35 Ma<br />

1.42 Ma<br />

FSE – Lepanto alteration:<br />

Coupled potassic and quartz-alunite<br />

(lithocap), later phyllic overprint<br />

Early alteration:<br />

AA: Quartz – alunite – pyrite ±<br />

pyrophyllite ± diaspore ± dickite ±<br />

kaolinite lithocap<br />

Locally silicic: Vuggy quartz – pyrite<br />

Later mineralization + silicification<br />

! Pyrite<br />

! Pyrite, enargite, luzonite<br />

! Tennantite, chalcopyrite, sphalerite,<br />

galena, tellurides, selenides, native Au<br />

Hedenquist et al., 1998<br />

Gonzalez, 1959; Tejada, 1989; Claveria, 1997, 1998, 2001<br />

Early convecting magma,<br />

rapid crystallization =<br />

High rate of fluid advection, fluid<br />

rises rapidly with little cooling,<br />

and intersects its solvus<br />

High-temperature, ductile<br />

conditions at shallow depth<br />

Brine forms deep potassic <strong>zone</strong>,<br />

vapor separates from brine and<br />

discharges through ductile <strong>zone</strong>:<br />

part of vapor condenses near<br />

the surface to acidic liquid,<br />

creating lithocap<br />

Shinohara & Hedenquist, 1997


Early convecting magma (30 -<br />

50 % crystals), flux ~ equal to<br />

White Island quiescent eruption<br />

Later stagnant magma,<br />

slow crystallization =<br />

Low rate of fluid advection, fluid<br />

rises slowly and loses heat, such<br />

that it does not intersect solvus<br />

Lower temperature, brittle<br />

conditions at shallow depth<br />

Late stagnant magma (>50%<br />

crystals, advective flux sharply<br />

decreases ~ 10x<br />

Creation of the phyllic<br />

(muscovite, “sericite”) stage<br />

Shinohara & Hedenquist, 1997<br />

Effect on fluid exsolution,<br />

advection, and nature of fluid<br />

ascent?<br />

Early magmatic fluid =<br />

Hot, plastic, lithostatic P (potassic,<br />

A veins)<br />

Rapid ascent, intersection of<br />

solvus, forms brine plus vapor<br />

Later magmatic fluid =<br />

Cooler, brittle, hydrostatic P<br />

(muscovite, D veins)<br />

Critical fluid never intersects<br />

solvus due to slow ascent and<br />

cooling<br />

Normal progression of exsolving<br />

magma chambers, magma<br />

convection early (fast<br />

crystallization), to later stagnant<br />

xstallization (conductive heat loss)<br />

Shinohara and Hedenquist, 1997;<br />

Hedenquist et al., 1998<br />

Chang et al., 2011


- Related to Na content<br />

Chang et al., 2011<br />

Higher Na/(Na+K) ratio<br />

indicates higher formation<br />

temperature (Stoffregen<br />

and Cygan, 1990)<br />

Milagros: Garcia, 2009<br />

Chang et al., 2011<br />

Whole rock<br />

Cu


Decrease:<br />

Alunite Pb, Ag/Au<br />

Whole-rock (alunite-bearing only): Pb, Ag, Ag/Au, Hg<br />

Lepanto<br />

FSE porphyry<br />

Lepanto<br />

Victoria veins<br />

500 m<br />

FSE<br />

Surface projections of<br />

Victoria-Teresa IS vein &<br />

Lepanto HS enargite, over<br />

Far Southeast porphyry<br />

Alunite<br />

1.40-1.45 Ma<br />

Enargite-Au<br />

IS Au-Ag veins<br />

Teresa<br />

veins<br />

Bt 2.2-1.8 Ma<br />

Porphyry Cu<br />

Hydro Biot<br />

1.40-1.45 Ma<br />

Illite ~1.35 Ma<br />

X Horn<br />

1.45 Ma<br />

X Biot<br />

1.18 Ma<br />

X Illite<br />

1.4-1.15 Ma<br />

Hedenquist et al., 2001


Weak smectite + pyrite,<br />

illite-smectite + pyrite at<br />

lower elevation<br />

DNK: dickite, nacrite, kaolinite,<br />

or any combinations<br />

iX: illite crystallinity<br />

DNK: dickite, nacrite, kaolinite, or any combinations<br />

Upward flare of leaching due to cooling; hydraulic gradient<br />

caused offset of lithocap (and ore) from causative intrusion<br />

Hedenquist et al., 1998; Hedenquist and Taran, 2011


Modified from values compiled<br />

by B. Gemmell, in prep.<br />

Billion $ (US)<br />

25!<br />

17!<br />

8.5!<br />

Ag $!<br />

Au $!<br />

M: Mexico<br />

Au $700 US/oz<br />

Ag $10 US/oz<br />

D: diatreme related<br />

Intermediate<br />

sulfidation<br />

D<br />

N=12<br />

M D<br />

M<br />

D<br />

M<br />

M<br />

D<br />

M<br />

Low sulfidation<br />

LS (alkalic)<br />

N=6<br />

~5 Moz Au eq.<br />

N=4<br />

D<br />

0!<br />

Baia<br />

Creede!<br />

Mare!<br />

Mt<br />

Aurora!<br />

Muro!<br />

Sacarimb!<br />

Aracata!<br />

Victoria!<br />

Gunung<br />

Tonapah!<br />

Pongkor!<br />

Fresnillo!<br />

Kelian!<br />

San Cristobal!<br />

Comstock<br />

Zacatecas!<br />

Lode!<br />

Rosia<br />

Beregovo!<br />

Montana!<br />

Tayotita!<br />

Guanajuato!<br />

Baguio!<br />

Pacucha-Real!<br />

Sunnyside!<br />

Milos!<br />

Golden Cross!<br />

Profitis Mogollon! Illias!<br />

Cracow!<br />

El Bronce!<br />

Karangahake!<br />

Ovacik!<br />

Takatama!<br />

Baia<br />

Gosowong!<br />

Mare!<br />

Lebong<br />

Perama!<br />

Tandai!<br />

Thames!<br />

Kushikino!<br />

Bodie!<br />

Oatman!<br />

Montana<br />

Bullfrog!<br />

Tunnels!<br />

Konomai!<br />

Sleeper!<br />

El Limon!<br />

Republic!<br />

Misima!<br />

Pajingo!<br />

McLaughlin!<br />

Midas!<br />

Esquel!<br />

El Penon!<br />

Cerro Vanguardia!<br />

Hishikari!<br />

Waihi!<br />

Round<br />

Baley!<br />

Mtn!<br />

Emperor!<br />

Porgera!<br />

Cripple<br />

Ladolam!<br />

Creek!<br />

100 Au<br />

Au-Ag (LS)<br />

Au-Te (alkalic)<br />

Ag-(Au)-Pb-Zn (IS)<br />

Au-Cu (HS)<br />


Geologic setting of intermediate- (and low-)<br />

sulfidation vein deposits (Americas, SW Pacific)<br />

<br />

LS: Rhyolite-basalt association in extensional settings:<br />

Intra, near, and backarc; postcollision rifts (non porphyry)


S Kyushu, looking south<br />

Kushikino: Mt Kamuridake to east<br />

capped by silicic <strong>zone</strong>s, adv. argillic halos<br />

Tectonics determine<br />

type of epithermal Au<br />

deposits (early HS, IS,<br />

later LS)<br />

Kushikino IS veins:<br />

qtz-calcite-Au<br />

migration<br />

of volcanism<br />

Kushikino IS<br />

veins 2 km west


OR, perched, barren lithocap, marginal intermediate sulf’n veins<br />

2 km<br />

barren<br />

Muscovite halo, Ag-Au w/ spl, ccp, tn<br />

2M mica<br />

Hudson<br />

(2003)


Dietrich et<br />

al., 2007<br />

1 km<br />

14.7-14.1 Ma<br />

13.7 Ma<br />

13.5 Ma<br />

COLQUIJIRCA MINE<br />

Modified from Petersen & Vidal (1996)


15.4-14.5 Ma<br />

14.5-14.4 Ma<br />

Colquijirca mine, Cerro de Pasco district, Merced pit (to north)<br />

S N<br />

Cerro Marcapunta<br />

Marcapunta<br />

Norte<br />

Enargite-py, cc-cv-dg<br />

Dacite flow dome<br />

Fontbote & Bendezu (1999)<br />

Bendezu et al., 2008


N<br />

Marcapunta Oeste<br />

Marcapunta Norte<br />

Dome - diatreme<br />

Smelter: pyrite + enargite<br />

Cerro Marcapunta: dacite<br />

Colquijirca<br />

Bendezu et al., 2008<br />

Alto Chicama, Peru<br />

Andean arc, Peru:<br />

75 Moz in HS deposits<br />

2001, discovery 2 km from<br />

road in mining district<br />

10 S<br />

2003, 10.5 Moz resource<br />

64 N<br />

ARUNTANI<br />

Ref: Colquijirca mine staff (Fontbote & Bendezu, 2000)<br />

Bendezu et al., 2008


Dante Loayza and Jorge Barreda (Aruntani SAC),<br />

Alvaro Crósta, Wolfgang Morche, and Jeffrey Hedenquist


Canahuire resource model & pit shell: Chucapaca JV<br />

W<br />

E<br />

Erosion level?<br />

1.3 km<br />

350 m<br />

Mineralisation<br />

g/t Au<br />

Open<br />

700W<br />

300W<br />

Looking North<br />

100E<br />

Muscovite up to<br />

pyrophyllite

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!