18.07.2014 Views

57-th Romanian Mathematical Olympiad 2006 - of / [ohkawa.cc.it ...

57-th Romanian Mathematical Olympiad 2006 - of / [ohkawa.cc.it ...

57-th Romanian Mathematical Olympiad 2006 - of / [ohkawa.cc.it ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>57</strong>-<strong>th</strong> <strong>Romanian</strong> Ma<strong>th</strong>ematical <strong>Olympiad</strong> <strong>2006</strong><br />

Final Round<br />

Iaşi, April 17, <strong>2006</strong><br />

7-<strong>th</strong> Form<br />

1. Consider points M and N on respective sides AB and BC <strong>of</strong> a triangle<br />

ABC such <strong>th</strong>at 2CN/BC = AM/AB. Let P be a point on line AC.<br />

Prove <strong>th</strong>at lines MN and NP are perpendicular if and only if PN bisects<br />

∠MPC.<br />

2. A square <strong>of</strong> side n is divided into n 2 un<strong>it</strong> squares each <strong>of</strong> which is colored<br />

red, yellow or green. Find <strong>th</strong>e smallest value <strong>of</strong> n such <strong>th</strong>at, for any<br />

coloring, <strong>th</strong>ere exist a row and a column having at least <strong>th</strong>ree equally<br />

colored un<strong>it</strong> squares.<br />

3. In an acute triangle ABC, <strong>th</strong>e angle at C equals 45 ◦ . Points A 1 and<br />

B 1 are <strong>th</strong>e feet <strong>of</strong> <strong>th</strong>e alt<strong>it</strong>udes from A and B respectively, and H is<br />

<strong>th</strong>e or<strong>th</strong>ocenter. Points D and E are taken on segments AA 1 and BC<br />

respectively such <strong>th</strong>at A 1 D = A 1 E = A 1 B 1 . Show <strong>th</strong>at<br />

√<br />

A1 B<br />

(a) A 1 B 1 =<br />

2 + A 1 C 2<br />

;<br />

2<br />

(b) CH = DE.<br />

4. Let A be a set <strong>of</strong> at least two pos<strong>it</strong>ive integers. Suppose <strong>th</strong>at for each<br />

a, b ∈ A wi<strong>th</strong> a > b we have [a,b]<br />

a−b<br />

∈ A. Show <strong>th</strong>at set A has exactly two<br />

elements.<br />

8-<strong>th</strong> Form<br />

1. In a hexagonal prisma, five <strong>of</strong> <strong>th</strong>e six lateral faces are cyclic quadrilateral.<br />

Prove <strong>th</strong>at <strong>th</strong>e remaining lateral face is also a cyclic quadrilateral.<br />

2. Let n be a pos<strong>it</strong>ive integer. Show <strong>th</strong>at <strong>th</strong>ere exist an integer k ≥ 2 and<br />

numbers a 1 , a 2 , . . .,a k ∈ {−1, 1} such <strong>th</strong>at<br />

n =<br />

∑<br />

a i a j .<br />

1≤i


(b) Find <strong>th</strong>e smallest measure <strong>of</strong> <strong>th</strong>e angle between MN and BC ′ .<br />

4. Prove <strong>th</strong>at if 1 2<br />

≤ a, b, c ≤ 1, <strong>th</strong>en<br />

2 ≤ a + b<br />

1 + c + b + c<br />

1 + a + c + a<br />

1 + b ≤ 3.<br />

9-<strong>th</strong> Form<br />

1. Find <strong>th</strong>e maximum value <strong>of</strong> <strong>th</strong>e expression (x 3 + 1)(y 3 + 1) if x and y are<br />

real numbers wi<strong>th</strong> x + y = 1.<br />

2. The isosceles triangles ABC and DBC have <strong>th</strong>e common base BC and<br />

∠ABD = 90 ◦ . Let M be <strong>th</strong>e midpoint <strong>of</strong> BC. Points E, F, P are such <strong>th</strong>at<br />

E, P and C are interior to <strong>th</strong>e segments AB, MC and AF respectively,<br />

and ∠BDE = ∠ADP = ∠CDF. Show <strong>th</strong>at P is <strong>th</strong>e midpoint <strong>of</strong> EF and<br />

DP ⊥ EF.<br />

3. A quadrilateral ABCD is inscribed in a circle <strong>of</strong> radius r so <strong>th</strong>at <strong>th</strong>ere<br />

exists a point P on side CD satisfying CB = BP = PA = AB.<br />

(a) Show <strong>th</strong>at such points A, B, C, D, P indeed exist.<br />

(b) Prove <strong>th</strong>at PD = r.<br />

4. A tennis tournament wi<strong>th</strong> 2n participants (n ≥ 5) extends over 4 days.<br />

Each day, every participant plays exactly one match (but one pair may<br />

meet more <strong>th</strong>an once). After <strong>th</strong>e tournament, <strong>it</strong> turns out <strong>th</strong>at <strong>th</strong>ere is a<br />

single winner and <strong>th</strong>ree players sharing <strong>th</strong>e second place, and <strong>th</strong>at <strong>th</strong>ere<br />

is no player who lost all four matches. How many players did win exactly<br />

one and two matches, respectively?<br />

10-<strong>th</strong> Form<br />

1. Let M be an n-element subset and P(M) be he set <strong>of</strong> all <strong>it</strong>s subsets<br />

(including ∅ and M). Determine all functions f : P(M) → {0, 1, . . ., n}<br />

wi<strong>th</strong> <strong>th</strong>e following properties:<br />

(a) f(A) ≠ 0 for A ≠ ∅;<br />

(b) f(A ∪B) = f(A ∩B)+f(A∆B) for all A, B ∈ P(M), where A∆B =<br />

(A ∪ B) \ (A ∩ B).<br />

2. Prove <strong>th</strong>at for all a, b ∈ (0, π 4 ) and n ∈ N<br />

sin n a + sin n b<br />

(sin a + sin b) n ≥ sinn 2a + sin n 2b<br />

(sin 2a + sin 2b) n.<br />

2<br />

The IMO Compendium Group,<br />

D. Djukić, V. Janković, I. Matić, N. Petrović<br />

www.imo.org.yu


3. Show <strong>th</strong>at <strong>th</strong>e sequence given by a n = [ n √ 2 ] + [ n √ 3 ] , n = 0, 1, . . .<br />

contains infin<strong>it</strong>ely many even numbers and infin<strong>it</strong>ely many odd numbers.<br />

4. Given an integer n ≥ 2, determine n pairwise disjoint sets A i , 1 ≤ i ≤ n<br />

wi<strong>th</strong> <strong>th</strong>e following properties:<br />

(a) For every circle C in <strong>th</strong>e plane and for all i, A i ∩ Int(C) ≠ ∅;<br />

(b) For every line d in <strong>th</strong>e plane and for all i, <strong>th</strong>e projection <strong>of</strong> A i onto<br />

d is all <strong>of</strong> d.<br />

11-<strong>th</strong> Form<br />

1. Let A be a complex n × n matrix and let A ∗ be <strong>it</strong>s adjoint matrix. Prove<br />

<strong>th</strong>at if <strong>th</strong>ere exists an integer m ≥ 1 such <strong>th</strong>at (A ∗ ) m = 0, <strong>th</strong>en (A ∗ ) 2 = 0.<br />

2. We say <strong>th</strong>at a matrix B ∈ M n (C) is a pseudoinverse <strong>of</strong> A ∈ M n (C) if<br />

A = ABA and B = BAB.<br />

(a) Show <strong>th</strong>at every square matrix has a pseudoinverse.<br />

(b) For which matrices is <strong>th</strong>ere a unique pseudoinverse?<br />

3. Let A 1 , A 2 , . . .,A n and B 1 , B 2 , . . . , B n be distinct points in <strong>th</strong>e plane.<br />

Show <strong>th</strong>at <strong>th</strong>ere exists a point P such <strong>th</strong>at<br />

PA 1 + PA 2 + · · · + PA n = PB 1 + PB 2 + · · · + PB n .<br />

4. Consider a function f : [0, ∞) → R wi<strong>th</strong> <strong>th</strong>e property <strong>th</strong>at for each x > 0,<br />

<strong>th</strong>e sequence f(nx), n = 0, 1, 2, . . . is strictly increasing.<br />

(a) If f is continuous on [0, 1], is f necessarily strictly increasing?<br />

(b) The same question if f is continuous on Q + .<br />

12-<strong>th</strong> Form<br />

1. Let K be a fin<strong>it</strong>e field. Prove <strong>th</strong>at <strong>th</strong>e following statements are equivalent:<br />

(a) 1 + 1 = 0;<br />

(b) For each f ∈ K[x] wi<strong>th</strong> deg f ≥ 1, f(x 2 ) is reducible.<br />

2. Prove <strong>th</strong>at<br />

where f(x) = arctanx<br />

x<br />

( ∫ π 1<br />

lim n<br />

n→∞ 4 − n x n )<br />

0 1 + x 2n dx =<br />

∫ 1<br />

for 0 < x ≤ 1 and f(0) = 1.<br />

0<br />

f(x)dx,<br />

3<br />

The IMO Compendium Group,<br />

D. Djukić, V. Janković, I. Matić, N. Petrović<br />

www.imo.org.yu


3. Let G be an n-element group (n ≥ 2) and let p be a prime factor <strong>of</strong> n.<br />

Prove <strong>th</strong>at if G has a unique subgroup H <strong>of</strong> p elements, <strong>th</strong>en H is contained<br />

in <strong>th</strong>e center <strong>of</strong> G. (The center <strong>of</strong> G is Z(G) = {a ∈ G | ax = xa, ∀x ∈ G}.)<br />

4. A function f : [0, 1] → R satisfies<br />

c ∈ (0, 1) such <strong>th</strong>at<br />

∫ c<br />

0<br />

∫ 1<br />

0<br />

f(x)dx = 0. Prove <strong>th</strong>at <strong>th</strong>ere exists<br />

xf(x)dx = 0.<br />

4<br />

The IMO Compendium Group,<br />

D. Djukić, V. Janković, I. Matić, N. Petrović<br />

www.imo.org.yu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!