18.07.2014 Views

A NEW POINT ON EULER LINE - Geometrie

A NEW POINT ON EULER LINE - Geometrie

A NEW POINT ON EULER LINE - Geometrie

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>NEW</strong> <strong>POINT</strong> <strong>ON</strong> <strong>EULER</strong> <strong>LINE</strong><br />

FIRST SYNTHETIC PROOF<br />

†<br />

Jean - Louis AYME 1<br />

THE YAKUB ALIYEV's RESULT<br />

A<br />

B2<br />

Tc<br />

H2<br />

S1<br />

Z<br />

C2<br />

C1<br />

H3<br />

H<br />

E<br />

Ta<br />

1<br />

B1<br />

S2<br />

Tb<br />

B<br />

A1H1<br />

X<br />

S3<br />

A2<br />

C<br />

Y<br />

Hypothesis : ABC a triangle,<br />

H<br />

the orthocenter ABC,<br />

H1, H2, H3 les feet of the A, B, C-altitudes of ABC,<br />

Ta, Tb, Tc the respective parallels to BC, CA, AB trough H,<br />

B1, C2 the points of intersection of Ta wrt AC, AB,<br />

C1, A2 the points of intersection of Tb wrt BA, BC,<br />

A1, B2 the points of intersection of Tc wrt CB, CA,<br />

X, Y, Z the points of intersection of A1C2 and A2B1, of B1A2 and B2C1,<br />

of C1B2 and C2A1,<br />

1 the circumcircle of the triangle H1H2H3,<br />

S1, S2, S3 the second points of intersection of 1 wrt YZ, ZX, XY<br />

et E the Euler's line of ABC.<br />

Conclusion : XS1, YS2 and ZS3 concur on E.<br />

1<br />

St.-Denis, Île de la Réunion (France).


2<br />

A. TWO LEMMAS<br />

1. Another nature of the Euler's point<br />

A<br />

Pa<br />

B2<br />

T1<br />

H2<br />

H3<br />

C1<br />

H<br />

O<br />

1<br />

B<br />

H1<br />

C<br />

Hypothesis : ABC a triangle,<br />

H<br />

the orthocenter of ABC,<br />

H 1 , H 2 , H 3 the feet of the A, B, C-altitudes of ABC,<br />

1 The Euler's circle of ABC ABC,<br />

T 1<br />

the midpointof AH,<br />

O<br />

the center of the circumcircle of ABC,<br />

Pa the perpendicular to OT1 trough T 1<br />

and B 2 , C 1 the points of intersection of Pa wrt AC, AB.<br />

Conclusion : T 1 is the midpoint of B 2 C 1 . [1]<br />

Remark : T1 being also the "Euler's A-point of ABC", 1 goes trough T 1 . [2]<br />

Scolies : (1) another nature of B 2 and C 1<br />

2


3<br />

A<br />

B2<br />

Pa<br />

T1<br />

Tc<br />

H2<br />

C1<br />

H3<br />

Tb<br />

H<br />

O<br />

1<br />

B<br />

A1H1<br />

A2<br />

M1<br />

C<br />

The quadrilateral AB 2 HC 1 is a parallelogram; in consequence,<br />

HB 2 // AB and HC 1 // AC.<br />

Conclusion: B 2 and C 1 are the points present in the Aliyev's figure.<br />

(2) B 2 T 1 C 1 = Pa.<br />

(3) Nature of the intersection of Pa and M 1 H<br />

A<br />

B2<br />

Pa<br />

T1<br />

Tc<br />

H2<br />

C1<br />

O<br />

S1<br />

H3<br />

Tb<br />

H<br />

1<br />

B<br />

A1H1<br />

A2<br />

M1<br />

C<br />

By hypothesis, Pa OT 1 ;<br />

we know that OT 1 // M 1 H ;<br />

in consequence, Pa M 1 H.<br />

M 1 T 1 being a diameter of 1,<br />

according Thalès "Triangle inscriptible in a half cercle", Pa and M 1 H intersect on 1.<br />

Conclusion: this point of intersection is S 1 .<br />

3


4<br />

2. A point on the Euler's line<br />

A<br />

B2<br />

T1<br />

H2<br />

M3<br />

M2<br />

S1<br />

Z<br />

C2<br />

S2<br />

C1<br />

H3<br />

H<br />

T2<br />

2<br />

P<br />

N<br />

E<br />

T3<br />

1<br />

B1<br />

B<br />

A1<br />

H1<br />

X<br />

S3<br />

A2<br />

M1<br />

C<br />

Y<br />

Hypothesis:<br />

to the hypothesis and notations of Aliyiev, we add<br />

N the center of 1,<br />

M 1 , M 2 , M 3 the respective midpoints BC, CA, AB<br />

et P the point of intersection of T 1 S 3 and T 3 S 1 .<br />

Conclusion : P is on E.<br />

Proof: according to the Pascal's theorem [3], (PHN) is the Pascal's line of the T 1 S 3 M 3 T 3 S 1 M 1 T 1 .<br />

4


5<br />

B. THE FIRST SYNTHETIC PROOF<br />

A<br />

B2<br />

T1<br />

Pc<br />

H2<br />

S1<br />

Z<br />

C2<br />

C1<br />

H3<br />

H<br />

N<br />

E<br />

Pa<br />

1<br />

B1<br />

S2<br />

T2<br />

Pb<br />

T3<br />

B<br />

A1H1<br />

X<br />

S3<br />

A2<br />

C<br />

Y<br />

By hypothesis, C 2 B 1 // BC ;<br />

according to "The middle line theorem" applied to the triangle HBC, BC // T 2 T 3 ;<br />

in consequence, C 2 B 1 // T 2 T 3 .<br />

According to the Desargues theorem applied to the homothetic triangles AC 2 B 1 et HA 1 A 2 ,<br />

AH goes trough X intersection of C 2 A 1 and B 1 A 2 .<br />

Mutatis mutandis, we would prove BH goes trough Y intersection of A 2 B 1 and C 1 B 2<br />

CH goes trough Z intersection of B 2 C 1 and A 1 C 2 .<br />

5


6<br />

A<br />

B2<br />

T1<br />

Pc<br />

H2<br />

S1 C1<br />

Z<br />

H3<br />

C2<br />

U<br />

S2<br />

T2<br />

H<br />

N<br />

Pb<br />

E<br />

Pa<br />

T3<br />

1<br />

B1<br />

B<br />

A1H1<br />

X<br />

S3<br />

A2<br />

C<br />

Y<br />

According to the Terquem's theorem [4] applied to XYZ and 1,<br />

XT 1 , YT 2 and ZT 3 going trough H, XS 1 , YS 2 and ZS 3 are concurrent in U.<br />

A<br />

B2<br />

T1<br />

H2<br />

S1<br />

Z<br />

C2<br />

1<br />

3<br />

H3<br />

U H<br />

2<br />

E<br />

N<br />

P 1<br />

4<br />

5 6<br />

T3<br />

B1<br />

B<br />

A1<br />

H1<br />

X<br />

S3<br />

A2<br />

C<br />

Y<br />

Note P the point of intersection of T 1 S 3 and T 3 S 1 .<br />

6


7<br />

According to Pappus theorem [5], HUP is the Pappus line of the hexagon T 1 XS 1 T 3 Z S 3 T 1 .<br />

According to "A point on the Euler's line", E = PHN ;<br />

in consequence, U is on E.<br />

Conclusion: XS 1 , YS 2 and ZS 3 concur on E.<br />

C. REFERENCES<br />

[1] Ayme J.-L., An Euler point is midpoint; http://www.mathlinks.ro/Forum/viewtopic.php?t=336564.<br />

[2] Ayme J.-L., Les cercles de Morley, Euler,…, G.G.G. vol. 2 p. 3-5 ; http://perso.orange.fr/jl.ayme.<br />

[3] Coxeter, Greitzer, Geometry Revisited, New Mathematical Library, New York (1967) 67.<br />

[4] Terquem O., Nouvelles Annales 1 (1842) 403 ; http://www.numdam.org/numdam-bin/feuilleter?j=NAM&sl=0<br />

[5] Coxeter, Greitzer, Geometry Revisited, New Mathematical Library, New York (1967) 67.<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!