24.07.2014 Views

Interstellar shock waves - SRON

Interstellar shock waves - SRON

Interstellar shock waves - SRON

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The <strong>Interstellar</strong> Medium 2012<br />

Lecture 9: Shock <strong>waves</strong><br />

Principles & examples<br />

Jump conditions<br />

J-type & C-type <strong>shock</strong>s<br />

Single point explosion in a uniform medium<br />

Supernova remnant evolution


Date Topic Book chapter<br />

24-04-2012 Overview of the ISM 1, 12, 40<br />

Part 1: Regions of ionized gas<br />

26-04-2012 Pure hydrogen nebulae 3, 4, 10, 11<br />

03-05-2012 Nebulae with heavier elements 6, 14 (+ 14.3), 15 (+ 15.8)<br />

04-05-2012 Heating & cooling of H + regions 2, 27<br />

08-05-2012 Diagnostics of H + regions 17, 18 (+18.4), 28<br />

10-05-2012 Non-stellar H + regions 13, 16, 20 (+20.2, 20.3)<br />

Part 2: Regions of neutral gas<br />

15-05-2012 Observational probes of neutral gas 8, 9, 29<br />

22-05-2012 Thermal balance of neutral gas 30<br />

24-05-2012 <strong>Interstellar</strong> <strong>shock</strong> <strong>waves</strong> 35, 36 (+36.6)<br />

29-05-2012 The multi-phase ISM 34, 39<br />

Part 3: Regions of molecular gas<br />

31-05-2012 Molecular spectra 5, 7, 19, 31<br />

05-06-2012 <strong>Interstellar</strong> dust 21, 22, 23, 24, 25<br />

06-06-2012 Diffuse molecular clouds & PDRs 32, 33<br />

12-06-2012 Dense molecular clouds & star formation 41, 42<br />

14-06-2012 The extragalactic ISM<br />

19-06-2012 exam (room 5113.0201)


Lecture 8: Heating and cooling of atomic gas<br />

Heating mechanisms<br />

p.i. carbon; p.e. dust & PAH; cosmic rays; X-rays<br />

Cooling mechanisms<br />

C + 158 μm; other fine structure lines; Lyα<br />

Thermal balance & the two-phase ISM<br />

multiple solutions co-exist in pressure equilibrium<br />

Large-scale distribution of atomic gas<br />

maps: flare & warp; tangent point; l-V diagram; rotation curve<br />

Small scale features<br />

21 cm ≈ 100 μm ≈ Α V<br />

; HVCs as local DLA analogs


Homework: Draine Chapters 35, 36<br />

Fluid dynamics<br />

conservation of mass, momentum, energy<br />

relevant forces: pressure, EM, gravity, viscosity<br />

isobaric / isochoric cooling; cooling time; flux freezing<br />

Shock <strong>waves</strong><br />

many astrophysical occasions<br />

jump conditions<br />

magnetosonic speed, Mach number<br />

magnetic precursor, C-type, J-type <strong>shock</strong>s


The <strong>Interstellar</strong> Medium 2012<br />

Lecture 9: Shock <strong>waves</strong><br />

Principles & examples<br />

Jump conditions<br />

J-type & C-type <strong>shock</strong>s<br />

Single point explosion in a uniform medium<br />

Supernova remnant evolution


Shock <strong>waves</strong><br />

Shock: pressure-driven compressive disturbance<br />

traveling faster than the local signal speed<br />

Produces an irreversible change in the state of the fluid<br />

Literature:<br />

Landau & Lifschitz, Fluid Mechanics, chapter IV<br />

Dyson & Williams 1997, Chapters 6 & 7


Sound speed and Mach number<br />

Sound speed: c S<br />

2<br />

= dP / dρ<br />

Take EoS P = Kρ γ<br />

γ = 5/3 for adiabatic fluid<br />

γ = 1 for isothermal fluid<br />

Adiabatic flow: c S<br />

∼ ρ 1/3<br />

sound speed is larger in denser gas<br />

For isothermal gas in ISM<br />

c S<br />

= (kT/m) 0.5 ≈ 1 km/s (very small!)<br />

Mach number: M = V / c S


Steepening of non-linear acoustic wave<br />

Speed is larger in dense gas<br />

wave crest travels faster than trough<br />

crest catches up with troughs<br />

waveform steepens<br />

steepening halted by viscous forces<br />

development of a <strong>shock</strong>


Signal speeds in the ISM<br />

In the absence of magnetic fields, information travels at<br />

the sound speed<br />

M < 1: subsonic<br />

M > 1: supersonic → <strong>shock</strong>s<br />

If magnetic field present, disturbances travel along the<br />

field lines at the Alfvén speed<br />

<strong>Interstellar</strong> field strengths: empirical law<br />

B = 1 μG √n H<br />

for 10 < n H<br />

< 10 6 cm -3


Example 1: Cloud-cloud collisions<br />

v 0<br />

= 5 – 10 km/s; v S<br />

≈ v 0


Example 2: Expansion of an H + region<br />

(only one phase in the evolution of an H + region)


Example 3: Fast stellar wind


Speeds of stellar winds


Example 4: Supernova blast wave


Example 5: Star formation – infall & outflow


Example 6: Spiral <strong>shock</strong>s in Galactic disk


The <strong>Interstellar</strong> Medium 2012<br />

Lecture 9: Shock <strong>waves</strong><br />

Principles & examples<br />

Jump conditions<br />

J-type & C-type <strong>shock</strong>s<br />

Single point explosion in a uniform medium<br />

Supernova remnant evolution


Jump conditions for <strong>shock</strong>s<br />

Adopt reference frame where <strong>shock</strong> is stationary<br />

Consider plane-parallel <strong>shock</strong><br />

conditions depend only on distance x from front<br />

Neglect viscosity, except in transition zone:<br />

large velocity gradient<br />

viscous dissipation<br />

transform bulk kinetic energy into heat<br />

irreversible change: entropy increases


Velocity & temperature profiles (in <strong>shock</strong> frame)


More jump conditions<br />

Thickness of <strong>shock</strong> front ≤ mean free path of particles<br />

always


Mass conservation<br />

General case:<br />

For a steady plane-parallel <strong>shock</strong>:<br />

→<br />

Integrate across the <strong>shock</strong>:


Momentum conservation<br />

or using<br />

which re-writes into<br />

and assuming no change in the gravitational potential Φ


Energy conservation<br />

(heat conduction / heating / cooling)<br />

U = internal energy per unit volume = P / (γ-1)<br />

Same procedure as before:<br />

which is ≈0 if 1 and 2 are close


Magnetic field<br />

The electric field vanishes in the fluid frame<br />

The Maxwell equation then reduces to<br />

(flux freezing / field decay)<br />

The last term describes diffusion of the magnetic field<br />

vanishes if the conductivity σ → ∞ (ideal MHD)


Often-used simplifying assumptions<br />

Planar <strong>shock</strong>: v y<br />

= v z<br />

= 0<br />

No heat conduction: κ ∇T = 0<br />

No net heating or cooling: ∫ 1<br />

2<br />

(Γ −Λ) = 0<br />

No gravitational force: ∫ 1<br />

2<br />

ρv x<br />

Φ dx = 0<br />

Internal energy density U = P / (γ-1) with γ = c P<br />

/ c V<br />

Magnetic field perpendicular to flow: B x<br />

= 0<br />

may choose B y<br />

= 0<br />

Ideal MHD: ∂/∂x (v x<br />

B y<br />

−v y<br />

B x<br />

) = ∂/∂x (v z<br />

B x<br />

−v x<br />

B z<br />

) = 0


The Rankine – Hugoniot equations<br />

Follow general practice<br />

write v x<br />

= u 1<br />

(= v S<br />

)<br />

Mass conservation:<br />

ρ 1<br />

u 1<br />

= ρ 2<br />

u 2<br />

Momentum conservation:<br />

Energy conservation:<br />

Flux conservation:<br />

u 1<br />

B 1<br />

= u 2<br />

B 2


William<br />

Rankine<br />

1820 – 1872


Solving the Rankine – Hugoniot equations<br />

The jump conditions are 4 equations in 4 unknowns:<br />

ρ 2<br />

, u 2<br />

, P 2<br />

, B 2<br />

Define x = u 1<br />

/ u 2<br />

= ρ 2<br />

/ ρ 1<br />

= B 2<br />

/ B 1<br />

Now we have two equations in P 2<br />

and x:<br />

and<br />

Define “magnetic” Mach number:<br />

where


Solving the Rankine – Hugoniot equations (2)<br />

The trivial solution 1 = 2 always exists<br />

A second solution exists for M > 1<br />

Strong <strong>shock</strong> (M >> 1):<br />

= 4 for γ = 5/3<br />

and<br />

For γ = 5/3, 2 (γ−1) / (γ+1) 2 = 3/16, so


Properties of strong <strong>shock</strong>s<br />

The compression ratio x = 4<br />

If 16 B 1<br />

2<br />

/ 8ρ


Radiative vs adiabatic <strong>shock</strong>s<br />

So far considered <strong>shock</strong>s without radiative cooling<br />

“adiabatic <strong>shock</strong>s”<br />

Bad terminology: <strong>shock</strong>s are abrupt and irreversible<br />

Adiabatic means here: no heat is removed<br />

If post<strong>shock</strong> gas radiates line emission<br />

cools down in “radiative <strong>shock</strong>”<br />

If temperature in region 3 is same as in region 1:<br />

“isothermal <strong>shock</strong>”<br />

Bad terminology again:<br />

temperature always rises at <strong>shock</strong> front


Structure of “isothermal” <strong>shock</strong>s<br />

Solve jump conditions with T 3<br />

= T 1<br />

:<br />

ρ 3<br />

>> ρ 1<br />

If B = 0: ρ 3<br />

/ ρ 1<br />

= M 2<br />

compression factor can be >> 4<br />

If B > 0:<br />

where B 1<br />

= b√n 1<br />

x 10 -6 G<br />

Typical compression factors x ≈ 100


The <strong>Interstellar</strong> Medium 2012<br />

Lecture 9: Shock <strong>waves</strong><br />

Principles & examples<br />

Jump conditions<br />

J-type & C-type <strong>shock</strong>s<br />

Single point explosion in a uniform medium<br />

Supernova remnant evolution


J-type and C-type <strong>shock</strong>s<br />

So far only considered single-fluid <strong>shock</strong>s<br />

aka J-type <strong>shock</strong>s<br />

Generally, ISM gas consists of 3 fluids<br />

neutrals<br />

ions<br />

electrons<br />

which can develop different temperatures and velocities<br />

For B > 0, information travels by MHD <strong>waves</strong><br />

Perpendicular to B, the propagation speed is


Magnetic precursors<br />

Since v A<br />

∼ √ρ the Alfvén speed for decoupled ionelectron<br />

plasma can be much larger than if coupled<br />

In many cases: c S<br />

< v A,n<br />

< v S<br />

< v A,ie<br />

The ion-electron plasma sends information ahead of the<br />

disturbance and “informs” the pre-<strong>shock</strong> plasma that the<br />

compression is coming: magnetic precursor<br />

The compression is now subsonic and the transition<br />

smooth and continuous: C-type <strong>shock</strong><br />

The ions then couple to the neutrals by collisions


Comparing J- and C-<strong>shock</strong>s<br />

J-type (“jump”) <strong>shock</strong>s: v S<br />

> 50 km/s<br />

<strong>shock</strong> abrupt<br />

neutrals and ions tied into one fluid<br />

warm: T = 40 v S<br />

2<br />

[K; v in km s -1 ]<br />

most radiation in ultraviolet<br />

C-type (“continuous”) <strong>shock</strong>s: v S<br />

< 50 km/s<br />

gas variables (T, ρ, v) change gradually<br />

ions ahead of neutrals; drag modifies neutral flow<br />

T i<br />

≈ T n<br />

; both much lower than in J-<strong>shock</strong>s<br />

most radiation in infrared


Structure of J- and C-<strong>shock</strong>s


C-<strong>shock</strong> structure: Draine & Katz 1986


J-<strong>shock</strong> structure: Hollenbach & McKee 1989<br />

Three regions:<br />

hot, UV emission<br />

warm, Lyα absorption<br />

cold, molecule formation<br />

Weak gas-grain coupling:<br />

T d<br />


The <strong>Interstellar</strong> Medium 2012<br />

Lecture 9: Shock <strong>waves</strong><br />

Principles & examples<br />

Jump conditions<br />

J-type & C-type <strong>shock</strong>s<br />

Single point explosion in a uniform medium<br />

Supernova remnant evolution


Single-point explosion<br />

Idealized treatment due to Sedov (1959) and Taylor<br />

See also Chevalier (1974)<br />

Equally applicable to atomic bombs<br />

Assumptions:<br />

one-fluid treatment adequate (mean free path


Self-similar solution<br />

Characteristic quantities:<br />

explosion energy E<br />

ambient density ρ 0<br />

time since explosion t<br />

Evolution of ρ, v and T is described by universal<br />

functions of only one dimensionless parameter<br />

v (R,t) = (R / t) f v<br />

(r/R)<br />

ρ (R,t) = ρ 0<br />

f ρ<br />

(r/R)<br />

T (R,t) = (mv 2 / k) f T<br />

(r/R)


Dimensional analysis<br />

Find dependence of R(t) on E, ρ 0<br />

and t by writing<br />

R(t) = A t α E β ρ 0<br />

γ<br />

Mass: 0 = 0 + β + γ<br />

Length: 1 = 0 + 2β − 3γ<br />

Time: 0 = α − 2β + 0<br />

Result: α = 2/5, β = 1/5, γ = −1/5<br />

R(t) = A (E t 2 / ρ 0<br />

) 1/5 ∼ t 2/5


The numerical constant A<br />

To estimate value of A, consider<br />

expect A ~ 1<br />

adiabatic case: E tot<br />

= E kin<br />

+ E th<br />

= constant<br />

self-similar: E kin<br />

/ E th<br />

= constant<br />

Right behind <strong>shock</strong> (v = ¾ v S<br />

):


Detailed calculation of A<br />

Assume most mass located just behind <strong>shock</strong><br />

OK from detailed solution<br />

E kin<br />

~ E th<br />

for entire SNR<br />

E kin<br />

= ½ M v S<br />

2<br />

with M = (4π/3) R 3 ρ 0<br />

Then:<br />

E 0<br />

= 2E kin<br />

= (4π/3) R 3 ρ 0<br />

v S<br />

2<br />

Writing R = C t α we have v S<br />

= α C t α −1<br />

Then E 0<br />

= (4π/3) ρ 0<br />

C 5 α 2 t 5α−2 = constant, so α = 2/5<br />

C 5 = (3/4π) (5/2) 2 (E 0<br />

/ρ 0<br />

)<br />

C = 1.083 (E 0<br />

/ρ 0<br />

) 1/5 so A = 1.083<br />

Exact solution for γ = 5/3: A = 1.15169


Sedov solution<br />

50% of mass in outer 6% of radius<br />

T ∼ P / ρ drops from center to edge


The <strong>Interstellar</strong> Medium 2012<br />

Lecture 9: Shock <strong>waves</strong><br />

Principles & examples<br />

Jump conditions<br />

J-type & C-type <strong>shock</strong>s<br />

Single point explosion in a uniform medium<br />

Supernova remnant evolution


Evolution of supernova remnants<br />

Four phases:<br />

Early phase: M swept<br />

M ejecta<br />

and t < t cool<br />

Radiative phase: t ~ t cool<br />

Merging phase: v S<br />

< ΔV ISM


The early phase<br />

Condition: M swept<br />


The Sedov phase<br />

Condition: M swept<br />

> M ejecta<br />

but t < t rad<br />

Pressure-driven expansion:<br />

cooling inefficient as long as v S<br />

> 250 km/s<br />

full ionization at T ≈ 10 6 K<br />

Self-similar solution:<br />

R = 1.15167 (E 0<br />

t 2 / ρ 0<br />

) 1/5 ; v S<br />

= 2R / 5t<br />

Numerical calculation:


Cooling at end of Sedov phase


The end of the Sedov phase<br />

To estimate t rad<br />

note that<br />

most cooling occurs just behind <strong>shock</strong><br />

high ρ, low T<br />

Cooling rate:<br />

Half of E thermal<br />

is radiated when:<br />

Note that <strong>shock</strong> velocity almost constant


The radiative phase<br />

Cold dense shell slows down<br />

by sweeping up ambient ISM<br />

momentum is conserved<br />

Naive snowplow: neglect P i<br />

d(Mv) / dt = 0 → M v ∼ M cool<br />

v cool<br />

R 3 v = R 3 cool v cool → v ∼ R-3<br />

v ∼ R / t → R ∼ t 1/4


The Oort snowplow<br />

Include P i<br />

:<br />

d(Mv) / dt = P i<br />

4πR 2<br />

P i<br />

drops due to adiabatic expansion:<br />

P i<br />

= P cool<br />

(R / R cool<br />

) -3γ<br />

Together, using γ = 5/3:<br />

So we have:<br />

R = R cool<br />

(t / t cool<br />

) 2/7<br />

v S<br />

= v S, cool<br />

(t / t cool<br />

) -5/7


The merging phase<br />

The SNR fades away when<br />

expansion velocity ≈ velocity dispersion ambient gas<br />

Using the Oort snowplow:<br />

So we have:


Summary of supernova remnant evolution<br />

Early phase<br />

M swept<br />

M ejecta<br />

& t < t rad<br />

energy conservation: R ∼ t 2/5<br />

Radiative “snowplow” phase<br />

t > t rad<br />

momentum conservation: R ∼ t 1/4 or R ∼ t 2/7<br />

Merging phase<br />

v S<br />

drops below ΔV of ambient ISM


Overview of supernova remnant evolution<br />

200 yr 3 x 10 4 yr 3 x 10 5 yr


Leonid Ivanovitch Sedov 1907 – 1999<br />

Devised similarity solution for<br />

blast <strong>waves</strong><br />

First chairman of USSR space<br />

exploration program<br />

President of the International<br />

Astronautical Federation<br />

Played leading role in Sputnik<br />

project

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!