27.07.2014 Views

Homoclinic Bifurcations to Equilibria

Homoclinic Bifurcations to Equilibria

Homoclinic Bifurcations to Equilibria

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Homoclinic</strong> <strong>Bifurcations</strong> <strong>to</strong><br />

<strong>Equilibria</strong><br />

I. Theory and applications<br />

Alan Champneys University of Bris<strong>to</strong>l<br />

Department of Engineering Mathematics<br />

MRI Master Class Utrecht – p. 1


Outline: Lecture 1<br />

1. Introduction: solitary waves & global bifurcations<br />

2. Tame and chaotic homoclinic bifurcations <strong>to</strong> equilibria<br />

Shil’nikov’s theorems<br />

application: excitable systems<br />

3. Reversible and Hamil<strong>to</strong>nian systems<br />

hyperbolic cases ⇒ one codimension less<br />

saddle-centre homoclinics<br />

4. Simple strategies for continuation of homoclinic orbits in<br />

AUTO-07P.<br />

MRI Master Class Utrecht – p. 2


1. solitary waves.<br />

1834 J Scott-Russell observed barge on aqueduct<br />

. . . a boat drawn along a narrow channel . . . suddenly s<strong>to</strong>pped . . . the mass<br />

of water in the channel . . . accumulated around the prow [and] rolled forward<br />

with great velocity, assuming the form of a large solitary elevation, a rounded,<br />

smooth heap of water, which continued its course along the channel [at 8 or 9<br />

miles an hour for 1.5 miles] preserving its original feature some thirty feet<br />

long and a foot and a half high . . .<br />

Explanation: 1870s Bousinesq & Lord Rayleigh, theory<br />

of wall of water = ‘solitary waves’<br />

MRI Master Class Utrecht – p. 3


The ‘soli<strong>to</strong>n’<br />

1895 Korteweg & de Vries derived KdV equation<br />

∂u<br />

∂t<br />

= ∂3 u<br />

∂x<br />

+ 6u ∂u<br />

3 ∂x<br />

solution speed c<br />

u(x,t) = (−c/2)sech 2 ( √ c/2)(x − ct)<br />

sech 2 (x)<br />

x<br />

1960s Zabusky & Kruskal showed its ‘completely’<br />

stable<br />

⇒ New name for particle-like solitary waves; soli<strong>to</strong>ns<br />

1970s because KdV equation is integrable (Lax,<br />

Gardner, Zakarov ... & the ‘Clarkson mafia’)<br />

MRI Master Class Utrecht – p. 4


The ‘soli<strong>to</strong>n’<br />

1895 Korteweg & de Vries derived KdV equation<br />

∂u<br />

∂t<br />

= ∂3 u<br />

∂x<br />

+ 6u ∂u<br />

3 ∂x<br />

solution speed c<br />

u(x,t) = (−c/2)sech 2 ( √ c/2)(x − ct)<br />

sech 2 (x)<br />

x<br />

1960s Zabusky & Kruskal showed its ‘completely’<br />

stable<br />

⇒ New name for particle-like solitary waves; soli<strong>to</strong>ns<br />

1970s because KdV equation is integrable (Lax,<br />

Gardner, Zakarov ... & the ‘Clarkson mafia’)<br />

Nb. ‘Solitary killer’ waves e.g. Tsunami<br />

MRI Master Class Utrecht – p. 4


Optical soli<strong>to</strong>ns<br />

Optical fibres; means of transatlantic communication.<br />

Pulses travel at speed of light c<br />

MRI Master Class Utrecht – p. 5


Optical soli<strong>to</strong>ns<br />

Optical fibres; means of transatlantic communication.<br />

Pulses travel at speed of light c<br />

Problem: denigration due <strong>to</strong> dispersion<br />

One idea (Hasegawa & Tappert 1973) use natural Kerr<br />

nonlinearity <strong>to</strong> self-focus the light<br />

MRI Master Class Utrecht – p. 5


⇒ Nonlinear Schrödinger (NLS) equation<br />

i ∂v<br />

∂t + ∂2 v<br />

∂x<br />

+ Q|v| 2 v = 0<br />

2<br />

also integrable & explicit ‘envelope of waves’ soli<strong>to</strong>n<br />

v(x,t) = V m e ikt √<br />

sech(V m |Q|/2U(x − ct))<br />

envelope of wave<br />

oscillating wave<br />

Use soli<strong>to</strong>ns as bits of information<br />

1<br />

0<br />

1 1 1 0 1<br />

1 1 0 1 1 0 1 1<br />

MRI Master Class Utrecht – p. 6


... but<br />

KdV and NLS are leading-order approximations: ‘Most’<br />

(probability 1) nonlinear wave equations NOT integrable<br />

can exist a ‘zoo of solitary waves’:<br />

u(x,t) = U(x − ct) ⇒ ODE for U(ξ)<br />

How big is the zoo? their dynamics? (not these lectures)<br />

MRI Master Class Utrecht – p. 7


Another motivation: global bifurcation<br />

Ed Lorenz 1963 discovered chaos in simple system<br />

ẋ = σ(y − x)<br />

ẏ = x(ρ − z) − y<br />

ż = xy − βz<br />

σ = 10, β = 8/3, ρ increasing<br />

homoclinic bifurcation triggers chaos at ρ ≈ 24<br />

( Sparrow 1982 )<br />

MRI Master Class Utrecht – p. 8


Application: Chua’s electronic circuit<br />

smooth version (due <strong>to</strong> A. Khibnik 93)<br />

˙U = α(V − (1/6)(U − U 3 ))<br />

˙V = U − V + W<br />

Ẇ = −βV<br />

(α,β) = (0, 0): Z 2 -symmetric Takens Bogdanov point at<br />

0: σ(0) = {0, 0, −λ} ⇒ tame homoclinic bifurcation.<br />

Large enough α, β ‘double scroll’ chaotic attrac<strong>to</strong>r<br />

3<br />

2<br />

1<br />

z(t)<br />

0<br />

–1<br />

–2<br />

–3<br />

–2<br />

0<br />

y(t)<br />

0.2<br />

0.4<br />

2<br />

1<br />

0<br />

x(t)<br />

–1<br />

MRI Master Class Utrecht – p. 9


tame and chaotic homoclinic orbits<br />

1. at (α, β) = (1.13515, 1.07379), neutral saddle;<br />

2. at (α, β) = (1.20245, 1.14678), double real leading eigenvalue<br />

(with respect <strong>to</strong> stable eigenspace, which is non-determining);<br />

4. at (α, β) = (1.74917, 1.76178), neutral saddle-focus;<br />

δ = 1 ⇒ transition <strong>to</strong> chaotic bifurcation<br />

5. at (α, β) = (6.00000, 7.191375), neutrally-divergent saddle-focus<br />

δ = 1/2<br />

⇒ divDf(0)x < 0 ⇒ attracting (strange attrac<strong>to</strong>r)<br />

MRI Master Class Utrecht – p. 10


Later we will study a similar simple electronic circuit due <strong>to</strong><br />

Friere et al 1993<br />

...<br />

MRI Master Class Utrecht – p. 11


2. <strong>Homoclinic</strong> orbits <strong>to</strong> equilibria<br />

Heteroclinic orbit Γ connecting equilibria x 1 ,x 2 ∈ R n<br />

ẋ(t) = f(x(t),α)<br />

x(t) → x 1 , x 2<br />

as t → ±∞.<br />

‘generic’ system: no symmetry or first integrals<br />

<strong>Homoclinic</strong> orbit special case x 1 = x 2 = x 0<br />

x 0 hyperbolic ⇒ codim 1, i.e. at isolated α = α 0<br />

W<br />

u<br />

Γ<br />

W<br />

u<br />

Γ<br />

W<br />

s<br />

p<br />

O<br />

q<br />

Z<br />

W<br />

s<br />

p<br />

O<br />

q<br />

Z<br />

W<br />

ss<br />

W<br />

ss<br />

(a)<br />

(b)<br />

MRI Master Class Utrecht – p. 12


<strong>Homoclinic</strong> bifurcation as α varies<br />

Suppose ∃ Hom orbit Γ at α = α 0 . Linearisation at x 0 :<br />

σ(x 0 )<br />

Im<br />

determining<br />

Re<br />

leading<br />

Theorem 1 (Shil’nikov’s tame homoclinic bifurcation)<br />

Real determining eigenvalue ⇒ unique periodic orbit<br />

destroyed at infinite period as α → α 0 .<br />

Theorem 2 (Shil’nikov’s chaotic homoclinic bifurcation)<br />

Complex determining eigenvalue ⇒ ∞-many high-period<br />

periodic orbits in neighbourhood of Γ and α 0 .<br />

MRI Master Class Utrecht – p. 13


Exercise<br />

Proof of tame homoclinic bifurcation in 2D system using<br />

Poincaré maps.<br />

Consider<br />

ẋ = λx + nonlinear<br />

ẏ = −µy + nonlinear<br />

Make assumption that at parameter value α = 0, there is a<br />

homoclinic orbit that connects this equilibrium <strong>to</strong> itself.<br />

MRI Master Class Utrecht – p. 14


In chaotic case ∃ ∞-many N-pulse homoclinic orbits at<br />

nearby α-values. For each N<br />

Γ<br />

W u<br />

e.g. 2-pulse homoclinic orbits Gaspard<br />

more recently: Turaev , Sandstede 00 see (Shil’nikov et<br />

al 1992, 1998)<br />

Theorem 3 (<strong>Homoclinic</strong> ‘centre manifold’ theorem)<br />

There exists a C 0 manifold of dimension of the leading<br />

eigenspace in the neighbourhood of Γ that captures all<br />

nearby recurrent dynamics. MRI Master Class Utrecht – p. 15<br />

W<br />

s<br />

O


Sketch proof of Shil’nikov chaotic case<br />

saddle focus case in R 3 (Glendinning & Sparrow 84)<br />

assume ∃ α 0 = 0 at which hom orbit Γ <strong>to</strong> x 0 = 0 WLOG<br />

σ(0) = {−µ ± iω,λ} (WLOG reverse time if nec.)<br />

Construct Poincaré map close <strong>to</strong> Γ in α and x<br />

Fixed points ⇒ periodic orbits<br />

MRI Master Class Utrecht – p. 16


construct Poincaré map<br />

Γ<br />

W u<br />

W s<br />

Step 1: Set up Poincaré sections<br />

Σ in = {θ = 0}, Σ out = {z = h}<br />

MRI Master Class Utrecht – p. 17


Σ out<br />

z<br />

r<br />

θ<br />

Σ in<br />

Step 2 Linearise flow near 0 <strong>to</strong> compute Π loc : Σ in → Σ out<br />

ż = λz<br />

˙θ = ω<br />

ṙ = −µr<br />

+ h.o.t<br />

MRI Master Class Utrecht – p. 18


Σ out<br />

Π loc<br />

Σ in<br />

Step 3 z(T) = z 0 e λT , r(T) = r 0 e −µT , θ(T) = θ 0 + ωt<br />

‘time of flight’ T =<br />

λ 1 ln ( z 0<br />

)<br />

h<br />

. δ = µ/λ < 1 for chaotic case<br />

( ( r<br />

) ( ) )<br />

δ ω h<br />

⇒ Π loc : (r,θ,z) ↦→ r ,<br />

h λ ln ,h<br />

z 0<br />

MRI Master Class Utrecht – p. 19


Σ out<br />

Π glob<br />

Σ in<br />

Step 4:<br />

Computation of Π glob : Σ out → Σ in<br />

Assume diffeomorphism; expand as Taylor series<br />

⎛<br />

⎜<br />

⎝<br />

r<br />

θ<br />

h<br />

⎞<br />

⎟<br />

⎠ ↦→<br />

⎛<br />

⎜<br />

⎝<br />

r<br />

0<br />

0<br />

⎞<br />

⎟<br />

⎠ +<br />

⎛<br />

⎜<br />

⎝<br />

a<br />

0<br />

b<br />

⎞<br />

⎟<br />

⎠α +<br />

⎛<br />

⎜<br />

⎝<br />

c d<br />

0 0<br />

e f<br />

⎞⎛<br />

⎟<br />

⎠<br />

⎜<br />

⎝<br />

r cos θ<br />

0<br />

r sin θ<br />

⎞<br />

⎟<br />

⎠ + h.o.t<br />

MRI Master Class Utrecht – p. 20


Π glob<br />

Π loc<br />

Σ in<br />

Step 5 Poincaré map Π : Σ in → Σ in = Π glob ◦ Π loc<br />

( ) ( ) ( ) (<br />

r r a c 1 rz δ cos(k 1 ln z + φ 1 )<br />

↦→ + α +<br />

z 0 b c 2 rz δ cos(k 2 ln z + φ 2 )<br />

)<br />

MRI Master Class Utrecht – p. 21


dynamics of the Poincaré map<br />

search for fixed points: r-dynamics slaved <strong>to</strong> z<br />

⇒ 1D map for z (nb. period ∼ − ln z)<br />

(z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t<br />

MRI Master Class Utrecht – p. 22


dynamics of the Poincaré map<br />

search for fixed points: r-dynamics slaved <strong>to</strong> z<br />

⇒ 1D map for z (nb. period ∼ − ln z)<br />

(z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t<br />

δ > 1 (tame case)<br />

α < 0<br />

α = 0<br />

α > 0<br />

⇒<br />

period<br />

Φ(z)<br />

z<br />

α<br />

z − bα<br />

unique periodic orbit bifurcates<br />

MRI Master Class Utrecht – p. 22


dynamics of the Poincaré map<br />

search for fixed points: r-dynamics slaved <strong>to</strong> z<br />

⇒ 1D map for z (nb. period ∼ − ln z)<br />

(z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t<br />

δ < 1 (chaotic case)<br />

z<br />

Φ(z)<br />

⇒<br />

period<br />

z<br />

α<br />

infinitely many periodic orbits for α = 0<br />

MRI Master Class Utrecht – p. 22


dynamics of the Poincaré map<br />

search for fixed points: r-dynamics slaved <strong>to</strong> z<br />

⇒ 1D map for z (nb. period ∼ − ln z)<br />

(z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t<br />

δ < 1 (chaotic case)<br />

S.N.<br />

P.D.<br />

⇒<br />

period<br />

z<br />

α<br />

∞-many saddle-node & period-doubling as α → α 0<br />

MRI Master Class Utrecht – p. 22


dynamics of the Poincaré map<br />

search for fixed points: r-dynamics slaved <strong>to</strong> z<br />

⇒ 1D map for z (nb. period ∼ − ln z)<br />

(z − bα) = Φ(z) = Kz δ cos(k ln z + φ) + h.o.t<br />

δ < 1 (chaotic case)<br />

Φ(z)<br />

⇒<br />

period<br />

z − bα<br />

z<br />

α<br />

single ‘wiggly curve’ of periodic orbits. Also symbolic<br />

dynamics on ∞-many symbols<br />

MRI Master Class Utrecht – p. 22


Multi-pulses<br />

Infinitely many parameter values α (2)<br />

i<br />

, i = 1,...∞,<br />

converging as α → α 0 from both sides at which there exist<br />

2-pulse homoclinic orbits.<br />

... and N-pulses for all N ...<br />

MRI Master Class Utrecht – p. 23


A word about rigour<br />

Linearisation <strong>to</strong> compute Π loc cannot be rigorously justified<br />

in general.<br />

Hartman-Grobman Theorem gives only C 0 <strong>to</strong>pological<br />

equivalence<br />

Three rigorous approaches:<br />

Sometimes (non-resonance) can justify linearisation<br />

C 1 linearisation theorems (e.g. Belitskii)<br />

MRI Master Class Utrecht – p. 24


A word about rigour<br />

Linearisation <strong>to</strong> compute Π loc cannot be rigorously justified<br />

in general.<br />

Hartman-Grobman Theorem gives only C 0 <strong>to</strong>pological<br />

equivalence<br />

Three rigorous approaches:<br />

Sometimes (non-resonance) can justify linearisation<br />

C 1 linearisation theorems (e.g. Belitskii)<br />

Set up Π loc as BVP. Use Imp. Fun. Theorem.<br />

Shil’nikov co-ordinates ( see Shil’nikov et al 92, 98)<br />

MRI Master Class Utrecht – p. 24


A word about rigour<br />

Linearisation <strong>to</strong> compute Π loc cannot be rigorously justified<br />

in general.<br />

Hartman-Grobman Theorem gives only C 0 <strong>to</strong>pological<br />

equivalence<br />

Three rigorous approaches:<br />

Sometimes (non-resonance) can justify linearisation<br />

C 1 linearisation theorems (e.g. Belitskii)<br />

Set up Π loc as BVP. Use Imp. Fun. Theorem.<br />

Shil’nikov co-ordinates ( see Shil’nikov et al 92, 98)<br />

Use normal vec<strong>to</strong>r <strong>to</strong> homoclinic centre manifold<br />

(adjoint) <strong>to</strong> project<br />

Lin’s method or HLS: ‘<strong>Homoclinic</strong> Lyanpunov-Schmidt’<br />

‘Hale, Lin, Sandstede’ (Lin 2008)<br />

MRI Master Class Utrecht – p. 24


Application: excitable systems<br />

Small input ⇒ gradual relaxation<br />

Large enough ⇒ burst + gradual relaxation<br />

MRI Master Class Utrecht – p. 25


Application: excitable systems<br />

Small input ⇒ gradual relaxation<br />

Large enough ⇒ burst + gradual relaxation<br />

A key feature of many electrophysical systems<br />

heart tissue<br />

neurons<br />

cell signalling (calcium dynamics)<br />

MRI Master Class Utrecht – p. 25


Application: excitable systems<br />

Small input ⇒ gradual relaxation<br />

Large enough ⇒ burst + gradual relaxation<br />

A key feature of many electrophysical systems<br />

heart tissue<br />

neurons<br />

cell signalling (calcium dynamics)<br />

the ‘pendulum equation’ of excitable systems:<br />

Fitz-Hugh Nagumo (FHN) system (1961-2)<br />

v t<br />

w t<br />

= Dv xx + f α (v) − w + c<br />

= ε(v − γw)<br />

f α (v) = v(v − 1)(α − v), e.g. α = 0.1, γ = 1.0, ε = 0.001.<br />

MRI Master Class Utrecht – p. 25


example FitzHugh Nagumo equations<br />

A. spatially homogeneous (D = 0) dynamics<br />

v t<br />

w t<br />

= f α (v) − w + p<br />

= ε(v − γw)<br />

isoclines: v = γw, f α (v) + p = w. ⇒ excitable<br />

0.15<br />

w<br />

0.1<br />

0.05<br />

–0.2 0 0.2 0.4 0.6 0.8<br />

v<br />

MRI Master Class Utrecht – p. 26


B. travelling structures (for D > 0) z = x + st (· = d/dz)<br />

¨v − s˙v = −f α (v) + w − p<br />

ẇ = (ε/s)(v − γw)<br />

node → saddle: 2 kinds of travelling wave:<br />

periodic wave trains ⇐ Hopf bifurcation<br />

pulse solution ⇐ homoclinic orbit <strong>to</strong> saddle<br />

×<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

Ú1<br />

0.8<br />

0.6<br />

ÀÓÑ<br />

0.4<br />

ÀÓÔ Ú´µ<br />

Ì<br />

0.2<br />

0<br />

-0.2<br />

´µ<br />

-0.4<br />

Ô ´µ<br />

0 200 400 600 800 1000<br />

0.07<br />

Ì<br />

0.068<br />

0.066<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0 200 400 600 800 1000<br />

MRI Master Class Utrecht – p. 27


This C U structure common for excitable models<br />

But how does the Hom curve end as it approaches Hopf?<br />

More details: (p vs. wavespeed s)<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0 0.05 0.1 0.15 0.2<br />

(see Champneys, Kirk et al 07)<br />

MRI Master Class Utrecht – p. 28


The hom curve doubles back on itself(!) and gains an extra<br />

large loop in so doing (p vs. ‘norm’)<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08<br />

0.11<br />

0.11<br />

0.1<br />

0.1<br />

0.09<br />

0.09<br />

0.08<br />

0.08<br />

0.07<br />

0.07<br />

0.06<br />

0.05<br />

-0.06<br />

-0.04<br />

-0.02<br />

0<br />

0.02<br />

0<br />

-0.1<br />

0.04 -0.2<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.06<br />

0.05<br />

-0.06<br />

-0.04<br />

-0.02<br />

0<br />

0.02<br />

0<br />

-0.1<br />

0.04 -0.2<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

two homoclinics for p ≈ 0.06, s ≈ 0.894386.<br />

MRI Master Class Utrecht – p. 29


example 2: 8-variable Ca 2+ model<br />

Sneyd, Yule et al Calcium waves in pancreatic acinar<br />

cell<br />

∂c<br />

∂t<br />

dc e<br />

dt<br />

dG<br />

dt<br />

= D ∂2 c<br />

∂x<br />

+ k 2 1 (G)(c − c e ) + J 1 (c,G)<br />

= −k 2 (G)(c e − c) + J 2 (c,G)<br />

= k 3 (p,c)G<br />

c(x,t) concentration of Ca 2+ . c e (t) concentration in<br />

boundary. G(t) ∈ R 6 recep<strong>to</strong>r variables.<br />

Travelling waves ξ = x − st ⇒ 9D ODE system<br />

Bif. pars: wavespeed s, IP 3 concentration p<br />

MRI Master Class Utrecht – p. 30


× ËÄ ÀÓÑ<br />

Similar C-U bifn diagram.<br />

¹ ÀÓÔ<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Ô<br />

0 1 2 3 4 5<br />

at upper end: Hom curve passes straight through Hopf!?<br />

MRI Master Class Utrecht – p. 31


´µ<br />

And at lower<br />

ľ¹ÒÓÖÑ<br />

end, the homoclinic curve doubles back on<br />

itself ∞ many times.<br />

76.5<br />

76<br />

75.5<br />

75<br />

´µ ´µ Ô<br />

74.5<br />

74<br />

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8<br />

74.8<br />

75<br />

74.7<br />

74.6<br />

74.5<br />

74.4<br />

<br />

74.3<br />

74.2<br />

74.1<br />

74<br />

73.9<br />

0.03 0.04 0.05 0.06 0.07 0.08 0.09<br />

MRI<br />

74<br />

73<br />

72<br />

<br />

71<br />

70<br />

69<br />

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16<br />

Master Class Utrecht – p. 32


4. Reversible and Hamil<strong>to</strong>nian systems<br />

Reversible systems<br />

ẋ = f(x),x ∈ R 2n ,Rf(x) = −f(Rx),R 2 = Id, S = fix(R) ∼ = R n .<br />

⇒ symmetric homoclinic orbits are codim 0 (Devaney)<br />

γ(t) → x 0 ast → ±∞, γ(0) ∈ S, wheref(x 0 ) = 0, x 0 ∈ S.<br />

Hamil<strong>to</strong>nian systems<br />

ẋ = f(x) = J∇H(x), x ∈ R 2n , ⇒ H(x(t)) = const.<br />

⇒ W u & W s live in H −1 (x 0 ) ⇒ codim 0<br />

In either case, σ(x 0 ) symmetric w.r.t. Im-axis<br />

Everything happens with one codimension less<br />

MRI Master Class Utrecht – p. 33


a fourth-order example<br />

Buffoni, C. & Toland 96 u iv + Pu ′′ + u − u 2 = 0<br />

norm<br />

Belyakov−<br />

Devaney<br />

P<br />

−2<br />

Ham.<br />

Hopf<br />

+2<br />

saddle bi−focus centre<br />

MRI Master Class Utrecht – p. 34


Application 1: wobbly bridges<br />

Goldern gate bridge 1938, Chief Engineer R.G. Cone<br />

a wind of unusual high velocity was blowing . . . normal <strong>to</strong> the axis of the<br />

bridge . . . The suspended structure of the bridge was undulating vertically in<br />

a wave-like motion of considerable amplitude, . . . a running wave similar <strong>to</strong><br />

that made by cracking a whip. The truss would be quiet for a second, and<br />

then in the distance one could see a running wave of several nodes<br />

approaching . . .<br />

C. & McKenna 96 asymmetric beam model<br />

Stable multi-humped solitary waves (Buryak & C 96)<br />

U ′ (s)<br />

U (s)<br />

0 . 0 0 0 0 3 0<br />

0 . 0 0 0 0 2 0<br />

0 . 0 0 0 0 1 0<br />

0 . 0 0 0 0 0 0<br />

2(1)<br />

2(2)<br />

2(3)<br />

2(4)<br />

2(5)<br />

2(7)<br />

2(8) 2(9)<br />

2(6)<br />

- 0 . 0 0 0 0 1 0<br />

- 0 . 0 0 0 0 2 0<br />

0 . 5 . 1 0 . 1 5 . 2 0 . 2 5 . 3 0 . 3 5 . 4 0 .<br />

s<br />

seperation s<br />

MRI Master Class Utrecht – p. 35


Nb. R.G. Cone was sacked for ‘disloyalty <strong>to</strong> the bridge’<br />

Deck Amplitude<br />

500<br />

5<br />

150<br />

u<br />

-8<br />

-7<br />

-6<br />

-5<br />

-4<br />

-3<br />

-2<br />

-1 0123<br />

400<br />

450<br />

t<br />

u<br />

0<br />

-5<br />

-10<br />

-15<br />

100<br />

t<br />

-50<br />

0<br />

Span<br />

50<br />

100<br />

x<br />

150<br />

350<br />

time<br />

-50<br />

0<br />

50<br />

100<br />

x<br />

150<br />

0<br />

50<br />

5<br />

0<br />

-5<br />

-10<br />

-50 -15<br />

0<br />

50<br />

100<br />

150<br />

0<br />

50<br />

100<br />

150<br />

2.5<br />

1.5 2<br />

0.5 1<br />

-0.5 0<br />

-1<br />

-1.5<br />

-2<br />

-100<br />

-50<br />

0<br />

50<br />

100<br />

150<br />

200<br />

250<br />

0<br />

50<br />

100<br />

MRI Master Class Utrecht – p. 36


... add competing nonlinearity<br />

(Woods & C. 99)<br />

u xxxx + Pu xx + u − u 2 + bu 3 = 0<br />

2<br />

9<br />

< b < 38<br />

27 . b = 0.29:<br />

u<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

x<br />

L 2<br />

1<br />

0.8<br />

primary<br />

2(2)<br />

u<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

x<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

u<br />

2.5<br />

2<br />

0.4<br />

u<br />

3<br />

2.5<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

x<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

x<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

u<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

x<br />

2.5<br />

u<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

0<br />

1.3 1.4 1.5 1.6 1.8 1.9 2<br />

x<br />

2<br />

u<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

P<br />

x<br />

u<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

x<br />

u<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

x<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

-0.5<br />

-60 -40 -20 0 20 40 60<br />

-1<br />

-60 -40 -20 0 20 40 60<br />

MRI Master Class Utrecht – p. 37


a small amplitude limit<br />

b → (38/27) ⇒ narrow snake<br />

1.2<br />

L 2 2-pulse<br />

L 2<br />

primary<br />

1<br />

(a)<br />

0.7<br />

0.6<br />

(b)<br />

primary<br />

2-pulse<br />

0.8<br />

0.5<br />

0.4<br />

0.3<br />

0.4<br />

0.2<br />

0.2<br />

0.1<br />

0<br />

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2<br />

p<br />

0<br />

1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2<br />

p<br />

For P ≈ 2, b ≈ (38/27) normal form theory<br />

envelope "spatial dyanamics"<br />

decrease P<br />

FRONT<br />

...AND BACK<br />

HUMP<br />

But misses beyond-all-orders effects.<br />

MRI Master Class Utrecht – p. 38


a related problem<br />

Similar results for<br />

α = 3/10 (Hunt et al 00)<br />

u xxxx + Pu xx + u − αu 3 + u 5 = 0<br />

See also Burke & Knobloch 07<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2<br />

MRI Master Class Utrecht – p. 39


spatial dynamics explanation of snake<br />

Woods & C. 99 (cf. Coullet et al 2000)<br />

Hamil<strong>to</strong>nian case. Take 2D Poincaré section within {H = 0}:<br />

(a)<br />

u<br />

W (O)<br />

O<br />

s<br />

W (L)<br />

L<br />

S<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

O<br />

u<br />

W (O)<br />

s<br />

W (L)<br />

L<br />

S<br />

cf. Poincaré “heteroclinic tangle”<br />

MRI Master Class Utrecht – p. 40


norm<br />

(a) (b) (c) (d) (e) (f)<br />

See Burke & Knobloch 06, Beck et al 09 for application <strong>to</strong><br />

localised patterns in Swift-Hohenberg eqns. (snakes and<br />

ladders!)<br />

λ<br />

MRI Master Class Utrecht – p. 41


4. Computing homoclinic/heteroclinics<br />

- 3 simple special cases approaches in AUTO<br />

compute a periodic orbit <strong>to</strong> large period<br />

case of 1D unstable manifold<br />

reversible case<br />

Next lecture: HomCont — general AUTO-07P method for<br />

computing homoclinic orbits & detecting codimension-two<br />

points<br />

MRI Master Class Utrecht – p. 42


Computing large-period periodic orbits<br />

AUTO solves for periodic orbits via boundary-value<br />

problem<br />

ẋ = Tf(x,α), x(0) = x(1), x(0)<br />

∫ 1<br />

0<br />

(u(t) T ˙ũ)dt<br />

for x(t) in R n , parameter α ∈ R, T ∈ R.<br />

<strong>Homoclinic</strong> bifurcation ⇒ T → ∞<br />

To compute homoclinic; fix T (large), solve for<br />

α 1 ,α 2 ∈ R 2 .<br />

Can show not the optimal choice (see next lecture)<br />

this afternoon: AUTO demo pp2.<br />

MRI Master Class Utrecht – p. 43


1D unstable manifold homoclinics case<br />

Suppose A = Df(x 0 , 0) has n s = 1 unstable eigenvalue<br />

λ (and n u = n − 1 stable eigs)<br />

Let Av 1 = λv 1 , A T w 1 = λw 1 .<br />

Compute boundary value problem<br />

ẋ = 2Tf(x,α)<br />

x(0) = x 0 + εv 1<br />

0 = w T 1 (x(1) − x 0 )<br />

can show convergence as 2T → ∞ (see next lecture)<br />

⇒ continuation problem with n + 1 boundary conditions<br />

for n + 2 unknowns x(t) α 1 , α 2 .<br />

MRI Master Class Utrecht – p. 44


Reversible case<br />

Consider reversible homoclinic x(t)<br />

ẋ = f(x,α), x ∈ R 2n , x(0) ∈ fix(R), x(±∞) → x 0<br />

Truncate <strong>to</strong> [−T, 0] and solve the two-point BVP with n<br />

B.C.s:<br />

ẋ = f(x,α)<br />

L u x(−T) − x 0 = 0<br />

Dfix(R) ⊥ x(0) = 0<br />

where L u is projection on<strong>to</strong> unstable eigenspace of A (using<br />

stable eigenspace of A T<br />

e.g. for 4 th -order example x = (u,u ′ ,u ′′ ,u ′′′ ),<br />

fix R = (u, 0,u ′′ , 0). D fix (R) ⊥ = (0, 1, 0, 1).<br />

⇒ computes a curve of solutions in one parameter α 1<br />

MRI Master Class Utrecht – p. 45


What we have learnt so far:<br />

<strong>Homoclinic</strong> orbits <strong>to</strong> equilibria can be tame or chaotic<br />

Chaotic case leads <strong>to</strong> birth of multi-pulses<br />

Everything depends on linearisation (+ twistedness -<br />

see next lecture)<br />

Topological ideas can be posed rigorously analytically<br />

Hamil<strong>to</strong>nian (and reversible) case drops a co-dimension<br />

Many applications<br />

MRI Master Class Utrecht – p. 46


References<br />

Beck, M., Knobloch, J., Lloyd, D., Sandstede B. and Wagenknecht, T. Snakes, ladders<br />

and isolas of localized patterns, SIAM J. Math. Anal. (2009) appeared online<br />

Burke, J. and Knobloch, E. Localized states in the generalized Swift-Hohenberg<br />

equation, Phys. Rev. E, 73, (2006) 056211<br />

Burke, J. and Knobloch, E. Snakes and ladders: Localized states in the<br />

Swift-Hohenberg equation Phys. Lett. A, 360 (2007) 681-688.<br />

Freire, E. Rodriguez-Luis, A.J., Gamero E. and Ponce E. A case study for homoclinic<br />

chaos in an au<strong>to</strong>nomous electronic circuit Physica D 62 (1993) 230-253.<br />

Glendinning, P. and Sparrow, C. Local and Global Behaviour Near <strong>Homoclinic</strong> Orbits<br />

J. Stat. Phys. 35 (1984) 645-696.<br />

Hunt, GW; Peletier, MA; Champneys, AR, et al. Cellular buckling in long structures,<br />

Nonlinear Dynamics 21 (2000) 3-29.<br />

Lin, X.B. Lin’s method Scholarpedia, 3 (2008) 6972.<br />

www.scholarpedia.org/article/Lin’s method<br />

Sparrow, C. The Lorenz Equations: <strong>Bifurcations</strong>, Chaos and Strange Attrac<strong>to</strong>rs.<br />

Springer-Verlag, (1982)<br />

Shilnikov, L.P., Shilnikov A.L., Turaev, D.V. and Chua, L.O. Methods of qualitative<br />

theory in nonlinear dynamics. World Scientific. Part I (1992), Part II (1998). MRI Master Class Utrecht – p. 47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!