30.07.2014 Views

Influence of the North Atlantic SST tripole on northwest African rainfall

Influence of the North Atlantic SST tripole on northwest African rainfall

Influence of the North Atlantic SST tripole on northwest African rainfall

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D19, 4594, doi:10.1029/2002JD003130, 2003<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> <strong>on</strong> <strong>northwest</strong> <strong>African</strong><br />

<strong>rainfall</strong><br />

Shuanglin Li<br />

NOAA-CIRES Climate Diagnostics Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Colorado, Boulder, Colorado, USA<br />

Walter A. Robins<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois, Urbana, Illinois, USA<br />

Shiling Peng<br />

NOAA-CIRES Climate Diagnostics Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Colorado, Boulder, Colorado, USA<br />

Received 1 November 2002; revised 23 June 2003; accepted 1 August 2003; published 2 October 2003.<br />

[1] The sea-surface temperature (<str<strong>on</strong>g>SST</str<strong>on</strong>g>) <str<strong>on</strong>g>tripole</str<strong>on</strong>g>, with warm anomalies <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> east coast <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> United States and cold anomalies north <str<strong>on</strong>g>of</str<strong>on</strong>g> 40°N and south <str<strong>on</strong>g>of</str<strong>on</strong>g> 25°N, is <str<strong>on</strong>g>the</str<strong>on</strong>g> leading<br />

mode <str<strong>on</strong>g>of</str<strong>on</strong>g> interannual variability in wintertime <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g>. Its influence <strong>on</strong><br />

<strong>northwest</strong> <strong>African</strong> <strong>rainfall</strong> is investigated by using a large-ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> GCM<br />

simulati<strong>on</strong>s. Firstly <str<strong>on</strong>g>the</str<strong>on</strong>g> modeled basin-scale <strong>rainfall</strong> impact is displayed, and <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

suggest: in early-mid winter (November–January), a positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> causes a<br />

reduced <strong>rainfall</strong> extending from <str<strong>on</strong>g>the</str<strong>on</strong>g> tropical <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astward to<br />

Mediterranean while a negative <str<strong>on</strong>g>SST</str<strong>on</strong>g> causes a south-north increased <strong>rainfall</strong> across <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

central <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> subtropics to <str<strong>on</strong>g>the</str<strong>on</strong>g> midlatitude. In late winter (February–April) a<br />

positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> causes a reduced <strong>rainfall</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> subtropics<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> midlatitude while a negative <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> induces a z<strong>on</strong>al increased <strong>rainfall</strong> from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> subtropics to Mediterranean. The asymmetry and seas<strong>on</strong>al dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basin-scale <strong>rainfall</strong> is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>linear resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largescale<br />

atmospheric circulati<strong>on</strong>. Under <str<strong>on</strong>g>the</str<strong>on</strong>g> large-scale impact background, <strong>northwest</strong> Africa<br />

regi<strong>on</strong>al <strong>rainfall</strong> resp<strong>on</strong>se is also n<strong>on</strong>linear and seas<strong>on</strong>ally dependent. In early-mid winter a<br />

positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> causes reduced <strong>rainfall</strong>, while a negative <str<strong>on</strong>g>SST</str<strong>on</strong>g> has little effect. In<br />

late winter a negative <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> induces increased <strong>rainfall</strong>, while a positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> has<br />

little effect. A similarly large-scale asymmetric associati<strong>on</strong> between <str<strong>on</strong>g>SST</str<strong>on</strong>g> and <strong>rainfall</strong>circulati<strong>on</strong><br />

exists in observati<strong>on</strong>s in late winter, while <str<strong>on</strong>g>the</str<strong>on</strong>g> observed seas<strong>on</strong>al dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this associati<strong>on</strong> is relatively weak. Also, a similar <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> associati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>al<br />

<strong>rainfall</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>northwest</strong> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Africa exists in observati<strong>on</strong>s. INDEX TERMS: 3309<br />

Meteorology and Atmospheric Dynamics: Climatology (1620); 3339 Meteorology and Atmospheric<br />

Dynamics: Ocean/atmosphere interacti<strong>on</strong>s (0312, 4504); 3354 Meteorology and Atmospheric Dynamics:<br />

Precipitati<strong>on</strong> (1854); KEYWORDS: <str<strong>on</strong>g>SST</str<strong>on</strong>g>, <strong>rainfall</strong>, influence<br />

Citati<strong>on</strong>: Li, S., W. A. Robins<strong>on</strong>, and S. Peng, <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> <strong>on</strong> <strong>northwest</strong> <strong>African</strong> <strong>rainfall</strong>, J. Geophys.<br />

Res., 108(D19), 4594, doi:10.1029/2002JD003130, 2003.<br />

1. Introducti<strong>on</strong><br />

[2] The <strong>northwest</strong> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Africa is semiarid. Rain occurs<br />

<strong>on</strong>ly during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a sharp decrease in<br />

<strong>rainfall</strong> rates southward from <str<strong>on</strong>g>the</str<strong>on</strong>g> Mediterranean and Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

<str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> coasts. The regi<strong>on</strong> is vulnerable to small<br />

changes in <strong>rainfall</strong>. Frequent droughts since <str<strong>on</strong>g>the</str<strong>on</strong>g> late-1970s<br />

have adversely affected agricultural producti<strong>on</strong> and water<br />

supplies. There is, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, interest in understanding <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

l<strong>on</strong>g-term trends and variability in <strong>rainfall</strong>, and in exploring<br />

possible bases for seas<strong>on</strong>al predicti<strong>on</strong> [Lamb and Peppler,<br />

1987; Lamb et al., 1997].<br />

Copyright 2003 by <str<strong>on</strong>g>the</str<strong>on</strong>g> American Geophysical Uni<strong>on</strong>.<br />

0148-0227/03/2002JD003130$09.00<br />

[3] Within this regi<strong>on</strong>, it has been shown that variati<strong>on</strong>s<br />

in Moroccan <strong>rainfall</strong> are associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g><br />

Oscillati<strong>on</strong> (NAO). Moroccan <strong>rainfall</strong> is negatively correlated<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO index [Lamb and Peppler, 1987]. The<br />

NAO c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Moroccan precipitati<strong>on</strong> increases steadily<br />

from October until January–February, after which it<br />

decreases significantly [Lamb et al., 1997]. Although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simultaneous correlati<strong>on</strong> between Moroccan precipitati<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO is str<strong>on</strong>g, <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between <strong>rainfall</strong> in<br />

<strong>on</strong>e m<strong>on</strong>th and <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO in preceding m<strong>on</strong>ths is weak and,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>of</str<strong>on</strong>g> limited use for predicti<strong>on</strong>.<br />

[4] The NAO influences Moroccan <strong>rainfall</strong> through its<br />

modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack. Rogers [1990, 1997]<br />

dem<strong>on</strong>strated that when <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO is positive, enhanced<br />

ACL 3 - 1


ACL 3 - 2 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> [cf. Ting and Lau, 1993]), <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO covaries significantly<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> (Figure 1), <str<strong>on</strong>g>the</str<strong>on</strong>g> leading pattern <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wintertime <str<strong>on</strong>g>SST</str<strong>on</strong>g> variability in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>. The <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g> resp<strong>on</strong>ds to atmospheric forcing associated with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NAO [Cayan, 1992a, 1992b], but <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> itself induces<br />

an NAO-like atmospheric resp<strong>on</strong>se. This has been dem<strong>on</strong>strated<br />

in simulati<strong>on</strong>s [Rodwell et al., 1999; Sutt<strong>on</strong> et al.,<br />

2001; Peng et al., 2002] and in observati<strong>on</strong>s [Czaja and<br />

Frankignoul, 2002].<br />

[6] In previous papers [Peng et al., 2002, 2003] very large<br />

ensembles <str<strong>on</strong>g>of</str<strong>on</strong>g> general circulati<strong>on</strong> model (GCM) runs were<br />

used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

overlying atmospheric circulati<strong>on</strong> and to explore <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> that resp<strong>on</strong>se. Here we exploit <str<strong>on</strong>g>the</str<strong>on</strong>g> large size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

ensembles (100 members each) to investigate whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

previously dem<strong>on</strong>strated influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmospheric circulati<strong>on</strong> extends to an influence <strong>on</strong> NW<br />

<strong>African</strong> <strong>rainfall</strong>. We address two specific questi<strong>on</strong>s: (1) Does<br />

our GCM display a significant influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

<strong>on</strong> NW <strong>African</strong> <strong>rainfall</strong>? (2) Is such an influence c<strong>on</strong>sistent<br />

with <str<strong>on</strong>g>SST</str<strong>on</strong>g>-<strong>rainfall</strong> associati<strong>on</strong>s deduced from observati<strong>on</strong>s?<br />

[7] Any modeled influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest, <strong>on</strong>ly<br />

if it arises from physically reas<strong>on</strong>able and realistic interacti<strong>on</strong>s<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> large-scale atmospheric circulati<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>. Therefore, we first investigate<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r our model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> observed c<strong>on</strong>necti<strong>on</strong>s<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere internal variability and NW <strong>African</strong><br />

<strong>rainfall</strong>.<br />

[8] The paper is organized as follows: Secti<strong>on</strong> 2 describes<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experiments and analyses, and compares <str<strong>on</strong>g>the</str<strong>on</strong>g> variability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong> am<strong>on</strong>g several <strong>rainfall</strong> data sets.<br />

Secti<strong>on</strong> 3 discusses <str<strong>on</strong>g>the</str<strong>on</strong>g> internal atmospheric variability<br />

associated with NW <strong>African</strong> <strong>rainfall</strong> in our simulati<strong>on</strong>s in<br />

comparis<strong>on</strong> with observati<strong>on</strong>s. Secti<strong>on</strong> 4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated<br />

large-scale resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g>. These are again compared with observati<strong>on</strong>s. The<br />

simulated resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> regi<strong>on</strong>al <strong>rainfall</strong> and its<br />

comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s are described in secti<strong>on</strong> 5.<br />

A summary and some discussi<strong>on</strong> are provided in <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

secti<strong>on</strong>.<br />

Figure 1. The <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> (K) used in <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> leading EOF <str<strong>on</strong>g>of</str<strong>on</strong>g> observed 500 hPa heights in October–<br />

April, which is used to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> by regressi<strong>on</strong><br />

and explains 16% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total variance. The shaded is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NW Africa regi<strong>on</strong> focused in this paper.<br />

midlatitude westerlies steer synoptic-scale eddies fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> north and <str<strong>on</strong>g>the</str<strong>on</strong>g> east, giving <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack<br />

a southwest-nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast orientati<strong>on</strong> that carries synoptic systems<br />

and <strong>rainfall</strong> away from NW Africa. When <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO is<br />

negative, <str<strong>on</strong>g>the</str<strong>on</strong>g> weakened westerlies make <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g><br />

stormtrack more z<strong>on</strong>al, and more wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r systems reach <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coastal regi<strong>on</strong>, bringing enhanced <strong>rainfall</strong>. Hurrell [1995]<br />

found <str<strong>on</strong>g>the</str<strong>on</strong>g> same associati<strong>on</strong>.<br />

[5] The NAO is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant mode <str<strong>on</strong>g>of</str<strong>on</strong>g> interannual<br />

variability <str<strong>on</strong>g>of</str<strong>on</strong>g> wintertime circulati<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>.<br />

While it is primarily a dynamical mode <str<strong>on</strong>g>of</str<strong>on</strong>g> variability<br />

internal to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere (it appears in models with fixed<br />

2. Experiments and Data<br />

[9] Our GCM is a versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Centers for<br />

Envir<strong>on</strong>mental Predicti<strong>on</strong> (NCEP) operati<strong>on</strong>al seas<strong>on</strong>al forecast<br />

model, with a T42 spectral truncati<strong>on</strong> and 28 levels<br />

[Peng et al., 2002]. Three ensembles <str<strong>on</strong>g>of</str<strong>on</strong>g> 100-member runs<br />

are c<strong>on</strong>ducted using climatological seas<strong>on</strong>ally evolving <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol runs) and with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> anomaly<br />

(Figure 1) added or subtracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> climatological <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> positive/negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> runs). The model is integrated<br />

for eight m<strong>on</strong>ths (September–April) starting from 100<br />

different initial c<strong>on</strong>diti<strong>on</strong>s taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> NCEP/NCAR<br />

reanalysis from 00Z, Sept. 1–5, 1980–1999 [Kalnay,<br />

1996]. These runs form <str<strong>on</strong>g>the</str<strong>on</strong>g> 100 members <str<strong>on</strong>g>of</str<strong>on</strong>g> each ensemble.<br />

M<strong>on</strong>thly mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> geopotential heights and winds <strong>on</strong> a<br />

2.5° 2.5° grid and precipitati<strong>on</strong> rates and surface pressure<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> T42 Gaussian grid are obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> twice-daily<br />

model output. The m<strong>on</strong>thly <strong>rainfall</strong> resp<strong>on</strong>se is derived from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> ensemble averages for each<br />

m<strong>on</strong>th. A seas<strong>on</strong>al resp<strong>on</strong>se is obtained from 3-m<strong>on</strong>th<br />

average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>thly resp<strong>on</strong>ses. For early-mid winter, this


LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 3<br />

Figure 2. The grid points (denoted by solid circles) over<br />

<strong>northwest</strong> Africa with <strong>rainfall</strong> available in Hulme’s global<br />

land-area precipitati<strong>on</strong> data set. The two points denoted by<br />

pluses have <strong>rainfall</strong> available <strong>on</strong>ly in some years, and thus<br />

are not included in calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> index.<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> average from November through January, whereas for<br />

late winter it is <str<strong>on</strong>g>the</str<strong>on</strong>g> average from February through April.<br />

[10] The <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> used in <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments is determined<br />

by regressing <str<strong>on</strong>g>the</str<strong>on</strong>g> observed global <str<strong>on</strong>g>SST</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

principal comp<strong>on</strong>ent time series <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> leading empirical<br />

orthog<strong>on</strong>al functi<strong>on</strong> (EOF) <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Hemisphere 500 hPa<br />

m<strong>on</strong>thly-mean October–April geopotential heights [Peng et<br />

al., 2002]. M<strong>on</strong>thly 500 hPa heights for 1948–2000 from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NCEP/NCAR reanalysis and m<strong>on</strong>thly <str<strong>on</strong>g>SST</str<strong>on</strong>g> for 1948–<br />

1998 from <str<strong>on</strong>g>the</str<strong>on</strong>g> GI<str<strong>on</strong>g>SST</str<strong>on</strong>g> data set [Rayner et al., 1996] are<br />

used. The leading EOF <str<strong>on</strong>g>of</str<strong>on</strong>g> wintertime 500 hPA height<br />

features an NAO-like dipole over <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>. The<br />

principal comp<strong>on</strong>ent time series for this pattern is str<strong>on</strong>gly<br />

correlated with a typical NAO index denoted by sea surface<br />

pressure difference between Lisb<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Portugal and Iceland<br />

[Rogers, 1984], with a correlati<strong>on</strong> coefficient greater than<br />

0.8. The <str<strong>on</strong>g>SST</str<strong>on</strong>g> pattern obtained by regressi<strong>on</strong> against this<br />

principal comp<strong>on</strong>ent time series closely resembles that<br />

obtained by regressing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO index. Both<br />

are dominated by a <str<strong>on</strong>g>tripole</str<strong>on</strong>g> pattern in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two patterns have a spatial correlati<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.81. Thus, our <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> pattern is linearly related to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NAO. This <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> pattern is amplified to have a<br />

maximum strength <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2K (Figure 1).<br />

[11] To illustrate <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between observed NW<br />

<strong>African</strong> precipitati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric circulati<strong>on</strong>, we<br />

use m<strong>on</strong>thly mean data for 1948–2000 from <str<strong>on</strong>g>the</str<strong>on</strong>g> NCEP/<br />

NCAR reanalysis. Geopotential heights, Z, horiz<strong>on</strong>tal<br />

winds, u and v, and vertical velocities, w, at 17 vertical<br />

pressure levels are taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> 2.5° 2.5° latitudel<strong>on</strong>gitude<br />

grid, and m<strong>on</strong>thly precipitati<strong>on</strong> rates are taken<br />

from T63 Gaussian grids. To verify <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis precipitati<strong>on</strong><br />

data and to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model in<br />

simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> climatology <str<strong>on</strong>g>of</str<strong>on</strong>g> NW Africa, we use<br />

global land-area m<strong>on</strong>thly precipitati<strong>on</strong> data, gridded at 2.5°<br />

latitude by 3.75° l<strong>on</strong>gitude, from 1900–1998 [Hulme,<br />

1992], and global m<strong>on</strong>thly precipitati<strong>on</strong> data obtained by<br />

merging gauge, satellite and numerical model predicti<strong>on</strong>s,<br />

gridded at 2.5° latitude by 2.5° l<strong>on</strong>gitude, from 1979–2002<br />

[Xie and Arkin, 1997]. These two data sets are denoted<br />

Hulme’s <strong>rainfall</strong> and Xie’s <strong>rainfall</strong>. Not all land grids have<br />

values in Hulme’s <strong>rainfall</strong> data, and Figure 2 displays <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NW <strong>African</strong> grid points where values are available. Because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hulme’s <strong>rainfall</strong> value over a grid is estimated from land<br />

stati<strong>on</strong> observed <strong>rainfall</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> grid box, <str<strong>on</strong>g>the</str<strong>on</strong>g> values over<br />

several grids <str<strong>on</strong>g>of</str<strong>on</strong>g>f shore represent observed <strong>rainfall</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coastal land or island stati<strong>on</strong>s within <str<strong>on</strong>g>the</str<strong>on</strong>g> grid box [Hulme,<br />

1992]. The time series <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>thly <strong>rainfall</strong> anomalies for 17<br />

Moroccan coastal stati<strong>on</strong>s from 1948–1999 [Ward et al.,<br />

1999] are used to supplement <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitati<strong>on</strong> data. Below<br />

we compare <str<strong>on</strong>g>the</str<strong>on</strong>g>se precipitati<strong>on</strong> data, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

<strong>rainfall</strong>, in describing <str<strong>on</strong>g>the</str<strong>on</strong>g> variability <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong>.<br />

[12] A m<strong>on</strong>thly comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model’s ensemble<br />

averaged <strong>rainfall</strong> in winter (September to April) with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<strong>rainfall</strong> data sets shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> largescale<br />

distributi<strong>on</strong> and seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rainfall</strong>. NW Africa<br />

is at <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <strong>rainfall</strong> belt,<br />

which has a southwest-nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast orientati<strong>on</strong> and a maximum<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>ast <str<strong>on</strong>g>of</str<strong>on</strong>g> Newfoundland,<br />

immediately south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack. This suggests<br />

that NW <strong>African</strong> <strong>rainfall</strong> is c<strong>on</strong>trolled primarily by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>ast end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <strong>rainfall</strong> belt associated with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> stormtrack. Starting in September, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <strong>rainfall</strong> belt<br />

begins to move southward. NW <strong>African</strong> <strong>rainfall</strong> increases,<br />

reaches its peak around December, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n decreases gradually,<br />

becoming very weak by summer. Figure 3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model’s <strong>rainfall</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> NW Africa in early-mid<br />

winter and in late winter, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with that from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data<br />

sets. Rainfall over NW Africa falls mainly al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g><br />

and Mediterranean coasts and decreases rapidly inland, in<br />

both <str<strong>on</strong>g>the</str<strong>on</strong>g> model and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data sets. Rainfall in Morocco<br />

and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Algeria, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, comprises a dominant porti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong>. In early-mid winter (Figures 3a,<br />

3c, 3e, and 3g), <str<strong>on</strong>g>the</str<strong>on</strong>g> inland decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model is gentler than that in <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s, but <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

rapid decrease still occurs in Morocco and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Algeria,<br />

which is largely c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data sets. In late<br />

winter (Figures 3b, 3d, 3f, and 3h), <str<strong>on</strong>g>the</str<strong>on</strong>g> model’s <strong>rainfall</strong><br />

distributi<strong>on</strong> agrees well with <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s, even in its<br />

details. This indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> climatological distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NW Africa<br />

<strong>rainfall</strong> in early-mid winter and in late winter.<br />

[13] The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong> is described<br />

using a precipitati<strong>on</strong> index defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precipitati<strong>on</strong> rate over all data grid points within <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong><br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> shaded area in Figure 1). For <str<strong>on</strong>g>the</str<strong>on</strong>g> model <strong>rainfall</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reanalysis, Xie’s data, and Hulme’s data, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> index is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 29, 67, 38 and 16 data points, respectively over<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir grids. Figure 4 displays <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>rainfall</strong> index. Coastal Morocco c<strong>on</strong>tributes a substantial<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong> (Figure 3). For comparis<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> observed coastal Moroccan <strong>rainfall</strong>,<br />

derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1933–1983 gauge <strong>rainfall</strong> in five<br />

coastal stati<strong>on</strong>s [see Lamb and Peppler, 1987, Figure 4], is<br />

also displayed toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r (Figure 4e). Rainfall in <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

increases rapidly from a weak value in September to a much<br />

large value in November, and decreases gradually after<br />

January, c<strong>on</strong>sistent with both Hulme’s and Xie’s data. The<br />

model <strong>rainfall</strong>, however, peaks in November, <strong>on</strong>e m<strong>on</strong>th<br />

ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> model and <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis<br />

<strong>rainfall</strong> are weaker than Hulme’s and Xie’s values. For


ACL 3 - 4 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

Figure 3. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> (mm/day) over <strong>northwest</strong> Africa in early-mid winter (left panel)<br />

and late winter (right panel). (a)(b) for <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM, (c)(d) for <str<strong>on</strong>g>the</str<strong>on</strong>g> NCEP/NCAR reanalysis, (e)(f) for Xie’s<br />

global precipitati<strong>on</strong>, and (g)(h) for Hulme’s global land-area <strong>rainfall</strong>.<br />

example, <str<strong>on</strong>g>the</str<strong>on</strong>g> wintertime (October–April) mean is greater<br />

than 0.5 mm/day in both Hulme’s and Xie’s data, compared<br />

with <strong>on</strong>ly around 0.4 and 0.2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> model and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reanalysis. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis <strong>rainfall</strong> peaks in April,<br />

much later than in <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data sets. All <str<strong>on</strong>g>the</str<strong>on</strong>g>se <strong>rainfall</strong> data<br />

sets, however, show a rainy seas<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> winter half year<br />

and a very dry summer. Coastal Moroccan <strong>rainfall</strong> also has a<br />

similar seas<strong>on</strong>al cycle to that in NW Africa.<br />

[14] Figure 5 displays <str<strong>on</strong>g>the</str<strong>on</strong>g> observed interannual evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong>. In both early-mid and late winter,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> year-to-year variati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>se <strong>rainfall</strong> data are in<br />

mutual agreement. The different data sets display nearly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same extreme wet and dry years. The correlati<strong>on</strong>s<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g>se indexes are significant, with coefficient<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.62 and 0.65 in early-mid and late winter<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis and Hulme’s <strong>rainfall</strong> from 1949–<br />

1998, and greater correlati<strong>on</strong> coefficient values between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m and with Xie’s <strong>rainfall</strong> from 1979–1998.<br />

[15] Judging from <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rainfall</strong>, its<br />

seas<strong>on</strong>al march and its interannual evoluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis


LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 5<br />

Figure 4. Climatological seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>northwest</strong> <strong>African</strong> precipitati<strong>on</strong> (mm/day) from (a) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

GCM c<strong>on</strong>trol run, (b) NCEP/NCAR reanalysis, (c) Xie’s <strong>rainfall</strong> data set, and (d) Humle’s <strong>rainfall</strong> data<br />

set. For comparis<strong>on</strong>, seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> observed coastal Morocco <strong>rainfall</strong> derived from Lamb and<br />

Peppler [1987] is displayed in (e).<br />

captures <str<strong>on</strong>g>the</str<strong>on</strong>g> main characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong>,<br />

thus is appropriate for identifying dry and wet events, to be<br />

used for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> associated large-scale circulati<strong>on</strong>.<br />

3. Observed and Simulated Internal<br />

Variability Associated With NW Africa<br />

Precipitati<strong>on</strong> Anomalies<br />

[16] Here we use composites <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ths with extreme<br />

<strong>rainfall</strong> to address whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r our model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> circulati<strong>on</strong><br />

anomalies that are associated with NW <strong>African</strong> <strong>rainfall</strong><br />

in nature. M<strong>on</strong>ths with NW <strong>African</strong> precipitati<strong>on</strong> index 65%<br />

greater or less than its mean value are selected to represent<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> wettest and driest c<strong>on</strong>diti<strong>on</strong>s. Using this criteri<strong>on</strong>, we<br />

have 26 (28) wet (dry) m<strong>on</strong>ths for early-mid winter and 27<br />

(22) wet (dry) m<strong>on</strong>ths for late winter out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 159 earlymid<br />

winter or late winter m<strong>on</strong>ths within <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis<br />

period, 1948–2000.<br />

[17] Figure 6 displays composites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis precipitati<strong>on</strong><br />

rate, 500 hPa band-pass streamfuncti<strong>on</strong> variance<br />

(to represent <str<strong>on</strong>g>the</str<strong>on</strong>g> storm track), 500 hPa geopotential height,<br />

and 700 hPa pressure vertical velocity for <str<strong>on</strong>g>the</str<strong>on</strong>g> wettest and<br />

driest m<strong>on</strong>ths during early-mid winter. The band-pass<br />

streamfuncti<strong>on</strong> is calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> transient comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> horiz<strong>on</strong>tal wind, obtained using a 61-point temporal<br />

filter that extracts 3–10 day periods. NW <strong>African</strong> <strong>rainfall</strong><br />

anomalies are associated with large-scale <strong>rainfall</strong> anomalies<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> and Europe. When NW Africa is<br />

wet (Figures 6a, 6c, 6e, and 6g), <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g><br />

is dry. There are negative 500 hPa height anomalies and<br />

increased synoptic-eddy activity over NW Africa, and<br />

positive height anomalies and reduced synoptic-wave<br />

activity over <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>. These anomalies<br />

reflect a southward shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack, which corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d mode<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack variability described by Rogers<br />

[1997]. When NW Africa is dry, <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced<br />

<strong>rainfall</strong> stretches westward and eastward from coastal NW<br />

Africa. Accompanying <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced <strong>rainfall</strong> is a large scale<br />

z<strong>on</strong>al belt <str<strong>on</strong>g>of</str<strong>on</strong>g> enhanced precipitati<strong>on</strong> across <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn


ACL 3 - 6 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

Figure 5. Interannual evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>northwest</strong> <strong>African</strong> precipitati<strong>on</strong> (mm/day) in early-mid winter (a) and<br />

in late winter (b).<br />

<str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Europe. Corresp<strong>on</strong>dingly, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a dipole-like 500 hPa height anomaly al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern<br />

boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, with a str<strong>on</strong>g positive<br />

anomaly and reduced synoptic-eddy activity over NW<br />

Africa. These anomalies reflect a southwest-nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast oriented<br />

<str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack, corresp<strong>on</strong>ding to <strong>on</strong>e phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Rogers’ [1997] first mode <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack<br />

variability.<br />

[18] There are asymmetries between <str<strong>on</strong>g>the</str<strong>on</strong>g> circulati<strong>on</strong><br />

anomaly patterns when NW Africa is wet and dry. The<br />

most negative <strong>rainfall</strong> anomalies when NW Africa is wet are<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, while <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>gest positive<br />

<strong>rainfall</strong> anomalies when NW Africa is dry are over coastal<br />

<str<strong>on</strong>g>North</str<strong>on</strong>g> Europe. This asymmetry is also reflected in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

500 hPa height composites.<br />

[19] The greatest <strong>rainfall</strong> anomalies do not overlap <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

str<strong>on</strong>gest anomalies in synoptic-eddy activity for ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r wet<br />

or dry c<strong>on</strong>diti<strong>on</strong>s in NW Africa. This suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> baroclinic eddies associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> stormtrack<br />

anomalies is not directly resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong><br />

anomalies. The sec<strong>on</strong>dary circulati<strong>on</strong> associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

stormtrack anomalies, however, may explain <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong><br />

anomalies. The 700 hPa vertical velocities, w, directly<br />

corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> anomalies in both <str<strong>on</strong>g>the</str<strong>on</strong>g> wet and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dry composites.<br />

[20] Now we turn to <str<strong>on</strong>g>the</str<strong>on</strong>g> circulati<strong>on</strong> anomalies associated<br />

with NW <strong>African</strong> <strong>rainfall</strong> anomalies in <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM. Using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same criteri<strong>on</strong> as above, we have 47 (45) wet (dry) m<strong>on</strong>ths<br />

for early-mid winter and 60 (76) wet (dry) m<strong>on</strong>ths for late<br />

winter out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 300 possible m<strong>on</strong>ths for each seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>trol ensemble. These composites are computed as for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

observati<strong>on</strong>s. The <strong>on</strong>ly difference is that a ‘‘poor man’s<br />

filter’’ is used to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> synoptic comp<strong>on</strong>ents (timescales<br />

less than 9 days) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> winds. A similar filter was<br />

used by Palmer and Sun [1985], and a test shows no<br />

significant differences with <str<strong>on</strong>g>the</str<strong>on</strong>g> 61-point filter used for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

observati<strong>on</strong>s.<br />

[21] NW <strong>African</strong> <strong>rainfall</strong> and its associated circulati<strong>on</strong><br />

anomalies (Figure 7) are largely c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s,<br />

though <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> anomalies are shifted slightly<br />

southward in comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s. This is<br />

c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively slow inland decrease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

precipitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> model, in comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis<br />

(Figures 3a and 3b). When NW Africa is wet, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a<br />

negative 500 hPa height anomaly and ascending moti<strong>on</strong> at<br />

700 hPa over <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum <strong>rainfall</strong> anomaly, and vice versa


LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 7<br />

Figure 6. Composites <str<strong>on</strong>g>of</str<strong>on</strong>g> anomalous precipitati<strong>on</strong> rate (mm/day), 500 hPa transient stream functi<strong>on</strong><br />

variance (unit: 10 13 m 2 s 2 ), 500 hPa geopotential height (m) and 700 hPa vertical velocity (10 3 Pa s 1 )<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> 26 wettest (a, c, e, g) and 28 driest (b, d, f, h) early-mid winter m<strong>on</strong>ths in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1948–2000 NCEP/<br />

NCAR reanalysis.<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> dry composite. The stormtrack anomaly is displaced<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> anomaly, as was found in <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s.<br />

There is a difference from <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s, however, in that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> circulati<strong>on</strong> anomalies in <str<strong>on</strong>g>the</str<strong>on</strong>g> model are nearly symmetric<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> wet and dry composites.<br />

[22] In late winter (Figures 8 and 9), observati<strong>on</strong>al<br />

<strong>rainfall</strong> and circulati<strong>on</strong> composites str<strong>on</strong>gly resemble those<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> model, and <str<strong>on</strong>g>the</str<strong>on</strong>g> circulati<strong>on</strong> anomalies from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wet and dry composites are symmetric in both <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s. It appears that <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

captures <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric internal variability associated<br />

with NW <strong>African</strong> <strong>rainfall</strong> anomalies better in late winter<br />

than in early-mid winter. This is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

previous result that <str<strong>on</strong>g>the</str<strong>on</strong>g> observed low- frequency pattern is<br />

not well represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> model in early-mid winter<br />

[Peng et al., 2002].<br />

[23] The wettest and driest m<strong>on</strong>ths used for <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>al<br />

composites above are derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> NCEP/NCAR<br />

reanalysis. The <strong>rainfall</strong> anomaly composites for <str<strong>on</strong>g>the</str<strong>on</strong>g>se wet<br />

(dry) m<strong>on</strong>ths using Hulme’s data set suggest c<strong>on</strong>sistently<br />

more (less) <strong>rainfall</strong> compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis. Given that<br />

Moroccan precipitati<strong>on</strong> makes a large c<strong>on</strong>tributi<strong>on</strong> to NW<br />

<strong>African</strong> <strong>rainfall</strong>, similar composites are c<strong>on</strong>structed for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wettest and driest Novembers and Februaries for Morocco.


ACL 3 - 8 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

Figure 7. Same as Figure 6, but for <str<strong>on</strong>g>the</str<strong>on</strong>g> 47 wettest and 45 driest early-mid winter m<strong>on</strong>ths in <str<strong>on</strong>g>the</str<strong>on</strong>g> 100<br />

c<strong>on</strong>trol runs.<br />

The observed Moroccan <strong>rainfall</strong> is derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> timeseries<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1946–1998 Moroccan stati<strong>on</strong> <strong>rainfall</strong> [Ward et al.,<br />

1999]. The <strong>rainfall</strong> and circulati<strong>on</strong> anomalies in <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

composites (not shown) resemble that based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NCEP/NCAR reanalysis <strong>rainfall</strong> data to some extent, c<strong>on</strong>firming<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> circulati<strong>on</strong><br />

anomalies with NW Africa <strong>rainfall</strong> anomaly described<br />

above.<br />

4. Large-Scale Resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> Tripole<br />

[24] The large-scale atmospheric resp<strong>on</strong>se to <str<strong>on</strong>g>SST</str<strong>on</strong>g> anomalies<br />

creates <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text in which regi<strong>on</strong>al precipitati<strong>on</strong><br />

anomalies develop. In this secti<strong>on</strong> we c<strong>on</strong>sider this largescale<br />

resp<strong>on</strong>se, before c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> local resp<strong>on</strong>se over<br />

NW Africa in secti<strong>on</strong> 5.<br />

4.1. Simulated Resp<strong>on</strong>se<br />

[25] Figure 10 displays <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>. In early-mid winter, <str<strong>on</strong>g>the</str<strong>on</strong>g> positive<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> induces reduced <strong>rainfall</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> subtropical<br />

eastern <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> and over NW Africa (Figure 10a).<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> (Figure 10b), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a large<br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> increased <strong>rainfall</strong>, extending northward from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

subtropical <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> to midlatitudes, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no significant<br />

<strong>rainfall</strong> anomaly over NW Africa. In late winter, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> induces a large negative anomaly in <strong>rainfall</strong><br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> and a small positive anomaly


LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 9<br />

Figure 8. Same as Figure 6, but for <str<strong>on</strong>g>the</str<strong>on</strong>g> 27 wettest and 22 driest late winter m<strong>on</strong>ths in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1948–2000<br />

NCEP/NCAR reanalysis.<br />

to its nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast (Figure 10c), but, again, <str<strong>on</strong>g>the</str<strong>on</strong>g> NW <strong>African</strong><br />

<strong>rainfall</strong> resp<strong>on</strong>se is not significant. The negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in<br />

late winter induces a nearly z<strong>on</strong>al regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> increased<br />

<strong>rainfall</strong> al<strong>on</strong>g 35°N. In this case NW Africa is at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn edge <str<strong>on</strong>g>of</str<strong>on</strong>g> this wet belt, and it has significantly more<br />

<strong>rainfall</strong>. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated broad-scale <strong>rainfall</strong> resp<strong>on</strong>se to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> is n<strong>on</strong>linear and seas<strong>on</strong>al-dependent. Most<br />

noteworthy, however, is <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> negative<br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late winter produces a significantly more <strong>rainfall</strong><br />

over NW Africa and <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in early-mid<br />

winter induces a significantly less <strong>rainfall</strong>.<br />

[26] Figure 11 shows 500 hPa geopotential height<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>. These clearly exhibit an asymmetry<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>ses to <str<strong>on</strong>g>the</str<strong>on</strong>g> positive and to <str<strong>on</strong>g>the</str<strong>on</strong>g> negative<br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g>, as described by Peng et al. [2002, 2003]. In earlymid<br />

winter (Figures 11a and 11b), <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

induces a weak dipole over <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, with<br />

a positive anomaly west <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Straits <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibraltar and a<br />

str<strong>on</strong>ger negative anomaly centered west <str<strong>on</strong>g>of</str<strong>on</strong>g> Britain. The<br />

500 hPa height resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> is very<br />

different, with a negative anomaly over Eastern Europe and<br />

a weak positive anomaly across <str<strong>on</strong>g>the</str<strong>on</strong>g> Sahara.<br />

[27] In late winter (Figures 11c and 11d) <str<strong>on</strong>g>the</str<strong>on</strong>g> positive<br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g> induces a wave-train-like height anomaly, with no<br />

significant resp<strong>on</strong>se over <str<strong>on</strong>g>the</str<strong>on</strong>g> Mediterranean or Africa,<br />

c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a significant rain anomaly<br />

over NW Africa (Figure 10c). In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> negative<br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g> induces a dipolar resp<strong>on</strong>se, with a z<strong>on</strong>ally el<strong>on</strong>gated


ACL 3 - 10 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

Figure 9.<br />

Same as Figure 6, but for <str<strong>on</strong>g>the</str<strong>on</strong>g> 60 wettest and 76 driest late winter m<strong>on</strong>ths in <str<strong>on</strong>g>the</str<strong>on</strong>g> 100 c<strong>on</strong>trol runs.<br />

negative anomaly, extending from <str<strong>on</strong>g>the</str<strong>on</strong>g> east coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g><br />

America to sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Europe, and a positive anomaly centered<br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>ast <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenland, a str<strong>on</strong>g negative projecti<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO. This pattern is in agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>ally<br />

el<strong>on</strong>gated belt <str<strong>on</strong>g>of</str<strong>on</strong>g> increased rain and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in NW<br />

<strong>African</strong> <strong>rainfall</strong> (Figure 10d) in this case. The height<br />

resp<strong>on</strong>se in late winter is str<strong>on</strong>ger than in early-mid winter,<br />

and str<strong>on</strong>ger for <str<strong>on</strong>g>the</str<strong>on</strong>g> negative than for <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g>.<br />

Overall, <str<strong>on</strong>g>the</str<strong>on</strong>g> height resp<strong>on</strong>se dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> same asymmetry<br />

with respect to sign and <str<strong>on</strong>g>the</str<strong>on</strong>g> same seas<strong>on</strong>al-dependence,<br />

as does <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> resp<strong>on</strong>se.<br />

4.2. Observed Anomalies Associated With <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> Tripole<br />

[28] For comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> model resp<strong>on</strong>ses to <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

anomalies, we calculate composites <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rainfall</strong> and 500<br />

hPa height for m<strong>on</strong>ths when <str<strong>on</strong>g>the</str<strong>on</strong>g> observed <str<strong>on</strong>g>SST</str<strong>on</strong>g> has a<br />

str<strong>on</strong>g positive or negative projecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>.<br />

When calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> projecti<strong>on</strong> coefficient, grid points<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> extratropics (mainly over <str<strong>on</strong>g>the</str<strong>on</strong>g> extratropical dipole<br />

part composing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in Figure 1) are<br />

weighted by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> three. The derived <str<strong>on</strong>g>SST</str<strong>on</strong>g> composite<br />

using this weighting is more similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> than<br />

without it. Normalized projecti<strong>on</strong> coefficients greater than<br />

a threshold (or less than <str<strong>on</strong>g>the</str<strong>on</strong>g> same threshold with reversed<br />

sign) are used to define m<strong>on</strong>ths with str<strong>on</strong>gly positive and<br />

negative projecti<strong>on</strong>s. This threshold is set at 0.5. At this<br />

value <str<strong>on</strong>g>the</str<strong>on</strong>g>re are 48 (45) and 55 (58) m<strong>on</strong>ths with str<strong>on</strong>g<br />

positive (negative) projecti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> pattern in<br />

early-mid and in late winter, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are about <strong>on</strong>e<br />

third in <str<strong>on</strong>g>the</str<strong>on</strong>g> total 159 m<strong>on</strong>ths in each seas<strong>on</strong> from 1946–<br />

1998. Examining <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ths with


LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 11<br />

Figure 10. Precipitati<strong>on</strong> resp<strong>on</strong>se (mm/day) to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in a broad-scale secti<strong>on</strong> including<br />

<strong>northwest</strong> Africa. (a) To <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in early-mid winter; (b) same as (a) but to <str<strong>on</strong>g>the</str<strong>on</strong>g> negative<br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g>; (c) to <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late winter; (d) same as (c) but to <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g>. The light and<br />

dense shadings denote resp<strong>on</strong>se areas with <str<strong>on</strong>g>the</str<strong>on</strong>g> significances at <str<strong>on</strong>g>the</str<strong>on</strong>g> 90% and 95% levels, as estimated by a<br />

t-test.<br />

str<strong>on</strong>gly anomalous <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>, it is found that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

more years in which two or all three m<strong>on</strong>ths have <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same sign anomaly, than that would be expected by<br />

chance. This suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is m<strong>on</strong>th-to-m<strong>on</strong>th persistence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> anomaly. We ignore <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence<br />

and deal each m<strong>on</strong>th as an independent sample when<br />

c<strong>on</strong>ducting significance t-test for <str<strong>on</strong>g>the</str<strong>on</strong>g> composite difference<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ths to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r m<strong>on</strong>ths. The m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> a given<br />

signed anomaly are also found to cluster in particular<br />

decades, indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> interdecadal variability<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>.<br />

[29] Before using <str<strong>on</strong>g>the</str<strong>on</strong>g>se m<strong>on</strong>ths to c<strong>on</strong>struct composites,<br />

we verify that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no significant <str<strong>on</strong>g>SST</str<strong>on</strong>g> signals, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g>se m<strong>on</strong>ths. O<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise, <str<strong>on</strong>g>the</str<strong>on</strong>g> composites<br />

could reflect atmospheric anomalies associated with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> patterns. For this purpose, we calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> composite<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> anomalies for <str<strong>on</strong>g>the</str<strong>on</strong>g>se m<strong>on</strong>ths. The results (not shown)<br />

indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>gest <str<strong>on</strong>g>SST</str<strong>on</strong>g> signal is, indeed, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

for all <str<strong>on</strong>g>the</str<strong>on</strong>g>se m<strong>on</strong>ths, although <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a weakly positive<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> anomaly over <str<strong>on</strong>g>the</str<strong>on</strong>g> tropical eastern Pacific for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

negative projecti<strong>on</strong> m<strong>on</strong>ths in late winter, with its value<br />

half that <str<strong>on</strong>g>of</str<strong>on</strong>g> over <str<strong>on</strong>g>the</str<strong>on</strong>g> subtropical <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>. To fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

address whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>se m<strong>on</strong>ths include an ENSO signal, we<br />

check <str<strong>on</strong>g>the</str<strong>on</strong>g> possible clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> ENSO events in <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

negative projecti<strong>on</strong> m<strong>on</strong>ths in late winter, using <str<strong>on</strong>g>the</str<strong>on</strong>g> Climate<br />

Predicti<strong>on</strong> Center’s seas<strong>on</strong>al ENSO index from<br />

1950 to <str<strong>on</strong>g>the</str<strong>on</strong>g> present (The CPC’s seas<strong>on</strong>al ENSO index is<br />

downloaded via <str<strong>on</strong>g>the</str<strong>on</strong>g> web site: http://www.cpc.noaa.gov:80/<br />

products/analysis_m<strong>on</strong>itoring/ensostuff/ensoyears.htm).<br />

The numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> ENSO, normal and anti-ENSO m<strong>on</strong>ths are<br />

14, 35, 9, am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> 58 negative-projecti<strong>on</strong> m<strong>on</strong>ths in late<br />

winter. This indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> ENSO signal is not evident<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g>se m<strong>on</strong>ths. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> composite reveals <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmospheric anomalies associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

pattern.<br />

[30] Because Xie’s data have a short record, and Hulme’s<br />

data are available <strong>on</strong>ly over land, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r data set is<br />

appropriate for c<strong>on</strong>structing a composite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large-scale<br />

<strong>rainfall</strong> anomalies associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

period 1948–1998. Instead, <str<strong>on</strong>g>the</str<strong>on</strong>g> global precipitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reanalysis is used here. Figure 12 displays <str<strong>on</strong>g>the</str<strong>on</strong>g> composites <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>rainfall</strong> anomalies. Two features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se composites are<br />

notable. First, in distinct c<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g> model composites,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> anomalies associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> positive and<br />

negative <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> are similar in early-mid and late winter.<br />

Sec<strong>on</strong>dly, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> anomalies associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> negative<br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g> are more robust, both in magnitude and in spatial<br />

extent. In both seas<strong>on</strong>s, a negative projecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

(Figures 12b and 12d) is associated with a z<strong>on</strong>al band <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enhanced <strong>rainfall</strong> extending across <str<strong>on</strong>g>the</str<strong>on</strong>g> subtropical <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>,<br />

and touching <str<strong>on</strong>g>the</str<strong>on</strong>g> NW coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Africa. This pattern is very<br />

similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> late winter resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> model. The <strong>rainfall</strong> anomalies associated with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> (Figures 12a and 12c) show a north-south<br />

dipole in <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, with increased <strong>rainfall</strong> in mid<br />

latitudes and reduced <strong>rainfall</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> tropics, which bears<br />

some resemblance to <str<strong>on</strong>g>the</str<strong>on</strong>g> model’s resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> positive<br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g>.


ACL 3 - 12 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

Figure 11. Same as Figure 10, but for 500 hPa geopotential height (m). The shadings denote areas with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se significance at <str<strong>on</strong>g>the</str<strong>on</strong>g> 95% level, as estimated by a t-test.<br />

[31] Figure 13 displays <str<strong>on</strong>g>the</str<strong>on</strong>g> observed composite 500 hPa<br />

heights. As for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> height composites show a<br />

more robust associati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g> is negative, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are similar between early-mid<br />

and late winter. Also, as for <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> resemblance<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> observed composites and <str<strong>on</strong>g>the</str<strong>on</strong>g> modeled resp<strong>on</strong>se<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> is much greater in late than in early-mid<br />

winter. In both seas<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> el<strong>on</strong>gated subtropical ridge<br />

associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> implies a southward<br />

shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> jet and storm track, c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong><br />

anomalies shown in Figures 12b and 12d.<br />

5. NW <strong>African</strong> Regi<strong>on</strong>al Rainfall Resp<strong>on</strong>ses<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> Tripole<br />

[32] Now we examine <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>al resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> NW<br />

<strong>African</strong> <strong>rainfall</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>. During early-mid winter,<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> (Figure 10), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model produces significantly less <strong>rainfall</strong> over NW Africa.<br />

The principal resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> is an increase<br />

in <strong>rainfall</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>ses to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> positive and negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> are not complementary.<br />

This asymmetry is also evident during late winter. For <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no significant precipitati<strong>on</strong> resp<strong>on</strong>se<br />

over NW Africa, while for <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an<br />

increase in <strong>rainfall</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>northwest</strong> porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>.<br />

The n<strong>on</strong>linear and seas<strong>on</strong>ally dependent <strong>rainfall</strong> resp<strong>on</strong>ses<br />

are also reflected in NW Africa <strong>rainfall</strong> index, which will be<br />

discussed later.<br />

[33] From <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis <strong>rainfall</strong> composite (Figure 12),<br />

NW Africa is at <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale <strong>rainfall</strong> belt, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>rainfall</strong> resp<strong>on</strong>se is not as clear as in <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM simulati<strong>on</strong>s.<br />

The simulati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis are broadly c<strong>on</strong>sistent in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir <strong>rainfall</strong> resp<strong>on</strong>ses for <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in early-mid<br />

winter and <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late winter. For example,<br />

corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> significant less/more <strong>rainfall</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

GCM (Figures 10a and 10d), <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a less/more <strong>rainfall</strong>,<br />

though with a weak significance, in <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis near <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NW <strong>African</strong> coast (Figures 12a and 12d). However, evidently,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re is inc<strong>on</strong>sistence for <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r two situati<strong>on</strong>s<br />

(compare Figures 10b and 10c with Figures 12b and 12c),<br />

especially for <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late winter, in<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g>re is not significant resp<strong>on</strong>se in <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM while a<br />

more <strong>rainfall</strong> extending from Portugal Peninsula in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reanalysis.<br />

[34] Figure 14 shows similar <strong>rainfall</strong> composite, c<strong>on</strong>structed<br />

using Hulme’s data. Here, 4 more data grid points<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> shore are included, in view <str<strong>on</strong>g>of</str<strong>on</strong>g> that <str<strong>on</strong>g>the</str<strong>on</strong>g> values over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

grids represent <str<strong>on</strong>g>the</str<strong>on</strong>g> coastal land <strong>rainfall</strong>. In comparis<strong>on</strong> with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis, Hulme’s data are more c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simulati<strong>on</strong>s, for <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in early-mid winter and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late winter, especially al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> coast, as can be seen by comparing Figures 14a<br />

and 14d with Figures 10a and 10d. That <str<strong>on</strong>g>the</str<strong>on</strong>g> observed<br />

<strong>rainfall</strong> anomaly area is smaller than that in <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM is<br />

understandable, given <str<strong>on</strong>g>the</str<strong>on</strong>g> inability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM to resolve<br />

complicated small-scale topography. For <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

in early-mid winter and <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late<br />

winter, <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s are not c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> observed<br />

composite using Hulme’s data. This is similar to what is<br />

found using observed composites based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis.<br />

[35] Figures 15a and 15b display NW <strong>African</strong> m<strong>on</strong>thly<br />

precipitati<strong>on</strong> index, defined as in secti<strong>on</strong> 2 but with above 4<br />

more grid points included for Hulme’s data, and its seas<strong>on</strong>al<br />

mean for <str<strong>on</strong>g>the</str<strong>on</strong>g> two seas<strong>on</strong>s for different <str<strong>on</strong>g>SST</str<strong>on</strong>g> anomalies in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

GCM simulati<strong>on</strong>s and in Hulme’s data set. For comparis<strong>on</strong>,<br />

coastal Moroccan <strong>rainfall</strong> denoted by <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 7<br />

<str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> coastal grids in Hulme’s data set (see Figure 2) is<br />

displayed in Figure 15c. In <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM simulati<strong>on</strong>s<br />

(Figure 15a), during <str<strong>on</strong>g>the</str<strong>on</strong>g> early-mid winter m<strong>on</strong>ths, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

less precipitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> runs in comparis<strong>on</strong><br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol runs, while <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g>


LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 13<br />

Figure 12. Composite <str<strong>on</strong>g>of</str<strong>on</strong>g> reanalysis precipitati<strong>on</strong> (mm/day) for <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ths when observed <str<strong>on</strong>g>SST</str<strong>on</strong>g> has a<br />

str<strong>on</strong>gly positive/negative projecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>. (a) For <str<strong>on</strong>g>the</str<strong>on</strong>g> 48 m<strong>on</strong>ths with str<strong>on</strong>gly positive<br />

projecti<strong>on</strong> in early-mid winter; (b) as (a) but for <str<strong>on</strong>g>the</str<strong>on</strong>g> 45 m<strong>on</strong>ths with str<strong>on</strong>gly negative projecti<strong>on</strong>; (c) as in<br />

(a) but for <str<strong>on</strong>g>the</str<strong>on</strong>g> 55 m<strong>on</strong>ths with str<strong>on</strong>gly positive projecti<strong>on</strong> in late winter; (d) as (b) but for <str<strong>on</strong>g>the</str<strong>on</strong>g> 58 m<strong>on</strong>ths<br />

with a str<strong>on</strong>gly negative projecti<strong>on</strong> in late winter. The shading denotes areas significant at 90%, as<br />

estimated by a t-test.<br />

negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> runs and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol runs is small. During<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> late winter m<strong>on</strong>ths, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is more precipitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> runs while <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>trol runs and <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> runs is not clear. The<br />

seas<strong>on</strong>al mean <strong>rainfall</strong> associati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g> two<br />

seas<strong>on</strong>s is similar in <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>thly <strong>rainfall</strong> indices. T-tests for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al differences in m<strong>on</strong>thly<br />

<strong>rainfall</strong> index between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol runs and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g>A runs<br />

are carried out for both early-mid and late winter. The<br />

results suggest that in early-mid winter, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol runs and <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> runs<br />

is significant at <str<strong>on</strong>g>the</str<strong>on</strong>g> 99% level, while <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol and <str<strong>on</strong>g>the</str<strong>on</strong>g> negative runs is not significant. In late<br />

winter, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol runs and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

negative runs is significant at <str<strong>on</strong>g>the</str<strong>on</strong>g> 95% level, while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol runs and <str<strong>on</strong>g>the</str<strong>on</strong>g> positive runs is<br />

not significant. All <str<strong>on</strong>g>the</str<strong>on</strong>g>se features are c<strong>on</strong>sistent with Figure<br />

10. In <str<strong>on</strong>g>the</str<strong>on</strong>g> composite index <str<strong>on</strong>g>of</str<strong>on</strong>g> observed NW <strong>African</strong><br />

m<strong>on</strong>thly <strong>rainfall</strong> (Figure 15b), from November through<br />

February <str<strong>on</strong>g>the</str<strong>on</strong>g>re is less <strong>rainfall</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g>. This<br />

is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM simulati<strong>on</strong>s. In February, for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>re is more <strong>rainfall</strong>, which is also c<strong>on</strong>sistent<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r m<strong>on</strong>ths showed marked disagreements<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM and <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s. In particular,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> is associated with a str<strong>on</strong>g increase in<br />

April <strong>rainfall</strong>, a result not reproduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s.<br />

[36] For <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al mean observati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

corresp<strong>on</strong>ds to less <strong>rainfall</strong> in early-mid winter at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

99% significance level, and <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> corresp<strong>on</strong>ds<br />

to more <strong>rainfall</strong> in late winter, though this is barely (90%)<br />

significant. Both are c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> GCM simulati<strong>on</strong>s.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in early winter, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is more but not<br />

significantly more, <strong>rainfall</strong>, and for <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late<br />

winter, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is more <strong>rainfall</strong> with again marginal significance.<br />

Nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r result is found in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s. The<br />

observed Moroccan m<strong>on</strong>thly <strong>rainfall</strong> index (Figure 15c) is<br />

generally c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> observed NW Africa <strong>rainfall</strong><br />

index (Figure 15b), sharing <str<strong>on</strong>g>the</str<strong>on</strong>g> same m<strong>on</strong>ths and seas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agreement and disagreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s.<br />

[37] These results suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> is not <str<strong>on</strong>g>the</str<strong>on</strong>g> same in <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s<br />

and in <str<strong>on</strong>g>the</str<strong>on</strong>g> model, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re is general agreement that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

positive <str<strong>on</strong>g>tripole</str<strong>on</strong>g> suppresses NW <strong>African</strong> <strong>rainfall</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> enhances it. That <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship appears<br />

str<strong>on</strong>ger (albeit less significant) in <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s is not<br />

surprising. Assuming it is <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO that induces <str<strong>on</strong>g>the</str<strong>on</strong>g> change<br />

in NW Africa <strong>rainfall</strong>, much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> variability in <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO is<br />

intrinsic to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

observati<strong>on</strong>s includes cases in which <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere forces<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ocean, while <str<strong>on</strong>g>the</str<strong>on</strong>g> model results include <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

6. Summary and Discussi<strong>on</strong>s<br />

[38] The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> <strong>on</strong><br />

NW <strong>African</strong> <strong>rainfall</strong> is explored using a large ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g>


ACL 3 - 14 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

Figure 13. Same as Figure 12, but for 500 hPa geopotential height (m). The shading denotes areas<br />

significant at <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> 95%, as estimated by a t-test.<br />

GCM experiments. It is found that this influence is n<strong>on</strong>linear<br />

or asymmetric about <str<strong>on</strong>g>the</str<strong>on</strong>g> sign <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>, and is<br />

different in <str<strong>on</strong>g>the</str<strong>on</strong>g> early-mid and late winter. In early-mid<br />

winter (November to January), <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g><br />

induces a negative <strong>rainfall</strong> anomaly and an increased risk<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drought, while a negative <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> does not significantly<br />

enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong>. In late winter (February to<br />

April) <str<strong>on</strong>g>the</str<strong>on</strong>g> positive <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> does not induce significant<br />

<strong>rainfall</strong> anomalies, while <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> produces a<br />

significant increase in <strong>rainfall</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r diagnoses suggest<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> asymmetry and seas<strong>on</strong>al dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

influence <strong>on</strong> NW <strong>African</strong> <strong>rainfall</strong> are c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

asymmetric and seas<strong>on</strong>ally dependent resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largescale<br />

atmospheric circulati<strong>on</strong> in our model.<br />

Figure 14.<br />

As in Figure 12, but using Hulme’s global land-area <strong>rainfall</strong> data set instead <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis.


LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 15<br />

Figure 15. <str<strong>on</strong>g>North</str<strong>on</strong>g>west <strong>African</strong> m<strong>on</strong>thly precipitati<strong>on</strong> index in GCM (a) and in observati<strong>on</strong>s (b) for earlymid<br />

and late winter for <str<strong>on</strong>g>the</str<strong>on</strong>g> different <str<strong>on</strong>g>SST</str<strong>on</strong>g>. Unit: mm/day. (a) GCM c<strong>on</strong>trol runs and <str<strong>on</strong>g>the</str<strong>on</strong>g> positive/negative<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> runs. (b) Observati<strong>on</strong>al climatology and <str<strong>on</strong>g>the</str<strong>on</strong>g> composite in Hulme’s data set when observed<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> has a str<strong>on</strong>gly positive/negative projecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>. (c) As (b), but for coastal Africa<br />

(Morocco). Unit: mm/day. In (a), ‘‘trp’’ indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> run and ‘‘n_trp’’ <str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>SST</str<strong>on</strong>g><br />

<str<strong>on</strong>g>tripole</str<strong>on</strong>g> run. In (b) and (c), ‘‘clim’’ means climatology, ‘‘+trp’’/‘‘ trp’’ indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> composite when<br />

observed <str<strong>on</strong>g>SST</str<strong>on</strong>g> has a str<strong>on</strong>gly positive/negative projecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>.<br />

[39] The modeled atmospheric resp<strong>on</strong>se that produces <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

str<strong>on</strong>gest <strong>rainfall</strong> anomaly over <str<strong>on</strong>g>the</str<strong>on</strong>g> Mediterranean, that to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> negative <str<strong>on</strong>g>tripole</str<strong>on</strong>g> in late winter, is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> internal model variability that is selected by<br />

composing <str<strong>on</strong>g>the</str<strong>on</strong>g> wettest years in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol run (Figures 7<br />

and 9). This supports <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that <str<strong>on</strong>g>SST</str<strong>on</strong>g> anomalies induce<br />

changes in precipitati<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g>ir influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> jet and stormtrack, i.e.,<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g>ir influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO, an internal mode <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atmospheric variability.<br />

[40] The modeled <str<strong>on</strong>g>SST</str<strong>on</strong>g> associati<strong>on</strong> with NW Africa <strong>rainfall</strong><br />

is similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> associati<strong>on</strong> with coastal Africa


ACL 3 - 16 LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE<br />

(Morocco) <strong>rainfall</strong> in observati<strong>on</strong>s. The modeled asymmetry<br />

in large-scale circulati<strong>on</strong> and <strong>rainfall</strong> resp<strong>on</strong>ses to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> in late winter is also largely c<strong>on</strong>sistent with observati<strong>on</strong>al<br />

composites. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> model captures this relati<strong>on</strong>ship<br />

through its large-scale atmospheric resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> and through <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong><br />

<strong>rainfall</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> large-scale atmospheric<br />

flow. The latter aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se is c<strong>on</strong>sistent<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rainfall</strong> anomalies by <str<strong>on</strong>g>the</str<strong>on</strong>g> internal<br />

variability within model, and this variability is also c<strong>on</strong>sistent<br />

with observati<strong>on</strong>s. This suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> observed<br />

associati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> and precipitati<strong>on</strong>,<br />

results, at least in part, from an atmospheric resp<strong>on</strong>se to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g>. If this is indeed <str<strong>on</strong>g>the</str<strong>on</strong>g> case, because <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> evolves<br />

more slowly than <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric circulati<strong>on</strong>, it raises <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

possibility that <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> may be helpful for<br />

seas<strong>on</strong>al predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rainfall</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> NW coast <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Africa.<br />

[41] There are two significant limitati<strong>on</strong>s to this present<br />

study. The first is an issue <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial scale. NW <strong>African</strong><br />

<strong>rainfall</strong> has a complicated distributi<strong>on</strong> <strong>on</strong> small spatial<br />

scales, shaped, at least in part, by complex topography.<br />

For example, previous observati<strong>on</strong>al studies have shown a<br />

significant NAO influence <strong>on</strong>ly <strong>on</strong> Moroccan <strong>rainfall</strong>. Here,<br />

however, given <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our global model,<br />

we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> over a broad regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NW Africa.<br />

Sec<strong>on</strong>dly, our model shows significantly different seas<strong>on</strong>ality<br />

in its relati<strong>on</strong>ships between precipitati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> largescale<br />

flow, and between <str<strong>on</strong>g>the</str<strong>on</strong>g> large-scale flow and <str<strong>on</strong>g>SST</str<strong>on</strong>g> than<br />

are found in observati<strong>on</strong>s. As previously noted [Peng et al.,<br />

2002] our model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> observed structure <str<strong>on</strong>g>of</str<strong>on</strong>g> largescale<br />

internal atmospheric variability and, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmospheric resp<strong>on</strong>se to <str<strong>on</strong>g>SST</str<strong>on</strong>g>, in <str<strong>on</strong>g>the</str<strong>on</strong>g> late winter, February<br />

to April, better than in <str<strong>on</strong>g>the</str<strong>on</strong>g> early-mid winter, November to<br />

January. For this reas<strong>on</strong>, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results are shown<br />

separately for <str<strong>on</strong>g>the</str<strong>on</strong>g>se two periods. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

resembles <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s better in late than in early-mid<br />

winter.<br />

[42] Recently, Czaja and Frankignoul [2002] suggest that<br />

a pan-<str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> anomaly, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> horseshoe<br />

(NAH) may serve as a predictor for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> and<br />

NAO in winter (NDJ, corresp<strong>on</strong>ding to early-mid winter<br />

here) m<strong>on</strong>ths in advance. They also suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> tropical<br />

<str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> can influence <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO. Some studies have shown<br />

that ENSO affects tropical <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> [Marshall et al.,<br />

2001]. Based <strong>on</strong> can<strong>on</strong>ical correlati<strong>on</strong> analysis (CCA),<br />

Lamb et al. [1997] argued that tropical Pacific <str<strong>on</strong>g>SST</str<strong>on</strong>g>s can<br />

be used to predict late winter (February, and especially<br />

March–April) Moroccan precipitati<strong>on</strong>. Thus, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong> with<br />

<str<strong>on</strong>g>SST</str<strong>on</strong>g> in many locati<strong>on</strong>s, including <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, may<br />

c<strong>on</strong>tribute to improved seas<strong>on</strong>al forecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong><br />

<strong>rainfall</strong>.<br />

[43] Acknowledgments. We are grateful to Peter Lamb and Mostafa<br />

El Hamly for providing <str<strong>on</strong>g>the</str<strong>on</strong>g> time series <str<strong>on</strong>g>of</str<strong>on</strong>g> Morocco <strong>rainfall</strong>, and to Diane<br />

Portis for her helpful comments. The suggesti<strong>on</strong>s from Vincent Mor<strong>on</strong> and<br />

an an<strong>on</strong>ymous reviewer led to significant improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript.<br />

This research is supported by NSF grants ATM-9902816 and ATM-<br />

9903503.<br />

References<br />

Cayan, D. R., Latent and sensible heat-flux anomalies over <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

oceans—Driving <str<strong>on</strong>g>the</str<strong>on</strong>g> sea-surface temperature, J. Phys. Oceanogr., 22,<br />

859–881, 1992a.<br />

Cayan, D. R., Latent and sensible heat-flux anomalies over <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

oceans—The c<strong>on</strong>necti<strong>on</strong> to m<strong>on</strong>thly atmospheric circulati<strong>on</strong>, J. Clim., 5,<br />

354–369, 1992b.<br />

Czaja, A., and C. Frankignoul, Observed impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> anomalies<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> Oscillati<strong>on</strong>, J. Clim., 15(6), 606–623, 2002.<br />

Hulme, M., 1951–80 global land precipitati<strong>on</strong> climatology for <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> general circulati<strong>on</strong> models, Clim. Dyn., 7, 57–72, 1992.<br />

Hurrell, J. W., Decadal trends in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> Oscillati<strong>on</strong>: Regi<strong>on</strong>al<br />

temperatures and precipitati<strong>on</strong>, Science, 269, 676–679, 1995.<br />

Kalnay, E., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol.<br />

Soc., 77, 437–471, 1996.<br />

Lamb, P. J., and R. A. Peppler, <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> Oscillati<strong>on</strong>: C<strong>on</strong>cept and an<br />

applicati<strong>on</strong>, Bull. Am. Meteorol. Soc., 68(10), 1218–1225, 1987.<br />

Lamb, P. J., M. El Hamly, M. N. Ward, R. Sebbari, and D. H. Portis,<br />

Towards <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Moroccan precipitati<strong>on</strong>, paper presented<br />

at Twenty-Sec<strong>on</strong>d Climate Diagnostics and Predicti<strong>on</strong> Workshop,<br />

U.S. Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Commer., Berkeley, Calif., 1997.<br />

Marshall, J., Y. Kushnir, D. Battisti, P. Chang, A. Czaja, R. Dicks<strong>on</strong>,<br />

J. Hurrell, M. McCartney, R. Saravanan, and M. Visbeck, <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g><br />

climate variability: Phenomena, impacts and mechanisms, Int. J. Climatol.,<br />

21, 1863–1898, 2001.<br />

Palmer, T. N., and Z. Sun, A modeling and observati<strong>on</strong>al study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relati<strong>on</strong>ship between sea surface temperature in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>northwest</strong> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric general circulati<strong>on</strong>, Q. J. R. Meteorol. Soc., 111,<br />

947–975, 1985.<br />

Peng, S., W. A. Robins<strong>on</strong>, and S. Li, <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NAO and relati<strong>on</strong>ships with intrinsic hemispheric variability, Geophys.<br />

Res. Lett., 29(8), 117, 2002.<br />

Peng, S., W. A. Robins<strong>on</strong>, and S. Li, Mechanisms for <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO resp<strong>on</strong>ses to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g>, J. Clim., 16, 1987–2004, 2003.<br />

Rayner, N. A., E. B. Hort<strong>on</strong>, D. E. Parker, C. K. Folland, and R. B. Hackett,<br />

Versi<strong>on</strong> 2.2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global sea surface temperature data set, 1903–1994,<br />

Clim. Res. Tech. Note 74, Hadley Cent. for Clim. Predict. and Res., Met<br />

Off., Bracknell, UK, 1996.<br />

Rodwell, M. J., D. P. Rowell, and C. K. Folland, Oceanic forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wintertime <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> Oscillati<strong>on</strong> and European climate, Nature, 398,<br />

320–323, 1999.<br />

Rogers, J. C., The associati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> Oscillati<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Oscillati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere, M<strong>on</strong>. Wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r Rev.,<br />

112, 1999–2015, 1984.<br />

Rogers, J. C., Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> low-frequency m<strong>on</strong>thly sea level pressure variability<br />

(1899–1986) and associated wave cycl<strong>on</strong>e frequencies, J. Clim.,<br />

3, 1364–1379, 1990.<br />

Rogers, J. C., <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> storm track variability and its associati<strong>on</strong> to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> Oscillati<strong>on</strong> and climate variability <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Europe,<br />

J. Clim., 10, 1635– 1647, 1997.<br />

Sutt<strong>on</strong>, R. T., W. A. Nort<strong>on</strong>, and S. P. Jews<strong>on</strong>, The <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> Oscillati<strong>on</strong>—What<br />

role for <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean?, Atmos. Sci. Lett. R. Meteorol. Soc., Feb.,<br />

2001.<br />

Ting, M., and N.-C. Lau, A diagnostic and modeling study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>thly<br />

mean wintertime anomalies appearing in a 100-year GCM experiment,<br />

J. Atmos. Sci., 50, 2845–2867, 1993.<br />

Ward, M. N., P. J. Lamb, M. El Hamly, R. Sebbari, and D. H. Portis,<br />

Climate variability in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Africa: Understanding droughts in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Sahel and <str<strong>on</strong>g>the</str<strong>on</strong>g> Maghreb, in Bey<strong>on</strong>d El Niño: Decadal and Interdecadal<br />

Climate Variability, edited by A. Navara, chap. 6, pp. 119–140, Springer-<br />

Verlag, New York, 1999.<br />

Xie, P., and P. A. Arkin, Global precipitati<strong>on</strong>: A 17-year m<strong>on</strong>thly analysis<br />

based <strong>on</strong> gauge observati<strong>on</strong>s, satellite estimates and numerical model<br />

outputs, Bull. Am. Meteorol. Soc., 78, 2539–2558, 1997.<br />

S. Li and S. Peng, NOAA-CIRES Climate Diagnostics Center, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Colorado, R/CDC1, 325 Broadway, Boulder, CO 80305-3328, USA.<br />

(shuanglin.li@noaa.gov)<br />

W. A. Robins<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Atmospheric Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Illinois, Urbana, IL 61801, USA.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!