14.08.2014 Views

MR Spectroscopy of the brain: A practical approach for MR technologists

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CA<strong>MR</strong>T / ACMDTT, May 30, 2014<br />

Edmonton, Alberta


James N. Scott MD MSc FRCPC<br />

Clinical Associate Pr<strong>of</strong>essor<br />

Neuroradiology<br />

Diagnostic Imaging & Clinical Neurosciences<br />

Faculty <strong>of</strong> Medicine, University <strong>of</strong> Calgary<br />

Foothills Medical Centre<br />

Partner EFW Radiology


• Define <strong>the</strong> basic <strong>brain</strong> metabolites observed<br />

• Illustrate some common clinical applications <strong>of</strong> <strong>MR</strong>S<br />

• Examine <strong>the</strong> typical <strong>MR</strong>S patterns in different <strong>brain</strong><br />

pathologies


<strong>MR</strong> <strong>Spectroscopy</strong> is Different<br />

Than Conventional <strong>MR</strong>I<br />

• <strong>MR</strong>I and <strong>MR</strong>S use <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> <strong>MR</strong> signal to encode<br />

different in<strong>for</strong>mation<br />

• <strong>MR</strong>I provides spatial imaging<br />

• <strong>MR</strong>S provides chemical in<strong>for</strong>mation


When To Add <strong>Spectroscopy</strong> ?<br />

• Indications on study requisition<br />

• Imaging abnormalities identified on <strong>MR</strong> exam<br />

• <strong>MR</strong> technologist discretion<br />

• Discussion with <strong>MR</strong> radiologist


Clinical Applications <strong>of</strong> <strong>MR</strong>S<br />

• Development / Myelin Maturation<br />

• Neurodegenerative Diseases<br />

• Metabolic Diseases<br />

• Stroke / Cerebral Infarction<br />

• Hypoxic Ischemic Encephalopathy<br />

• Epilepsy<br />

• Encephalitic / Systemic Disease<br />

• Demyelination<br />

• Infections<br />

• HIV and AIDS<br />

• Intracranial Neoplasms<br />

• Head Injury<br />

• Neurocutaneous Syndromes<br />

• Psychiatric Disorders


Main Cerebral Metabolites<br />

Short Echo Times (TE 30/35)<br />

• Myoinositol<br />

• Glutamate & Glutamine<br />

• Lactate<br />

• Lipids<br />

Intermediate or Long Echo Times (TE 135/144 or TE 270)<br />

• N-acetylaspartate<br />

• Choline (& phosphorylcholine + glycerophosphorylcholine)<br />

• Creatine (& phosphocreatine)<br />

• Lactate


Main Cerebral Metabolites<br />

NAA<br />

TE 30<br />

TE 135<br />

Cho<br />

mI<br />

Cr<br />

Glx<br />

4.0<br />

3.0 2.0 1.0 ppm<br />

4.0<br />

3.0 2.0 1.0 ppm<br />

Creatine is <strong>of</strong>ten used as internal standard to measure o<strong>the</strong>r<br />

peaks against


N-Acetylaspartate (NAA)<br />

• primary peak ! = 2.0 ppm<br />

• Amino acid found in mature neurons and axons<br />

• Function is as yet undefined<br />

• Marker <strong>for</strong> neuronal and axonal integrity<br />

• Can be detected as early at 16 weeks gestation<br />

• With normal myelination <strong>the</strong>re is a rapid rise in NAA levels:<br />

! dendritic proliferation & ! synaptic density<br />

• Decreased NAA in pathologies with neuronal loss / damage<br />

2.0


Choline (Cho)<br />

• ! = 3.2 ppm<br />

• Found in both glia and neurons<br />

• Structural component <strong>of</strong> all cell membranes, including<br />

myelin<br />

• Reflects cellular proliferation<br />

• Infers in<strong>for</strong>mation about myelination and cell membrane<br />

turnover<br />

3.2


Creatine (Cr)<br />

• primary peak ! = 3.0 ppm<br />

• Creatine pool (creatine & phosphocreatine)<br />

• Found in neurons and glia<br />

• Involved in cellular ATP metabolism<br />

• Considered most stable cerebral metabolite<br />

3.0<br />

• Used as internal standard to measure o<strong>the</strong>r peaks against


Lactate (Lac)<br />

• primary peak ! = 1.3 ppm<br />

• Not measurable in normal functioning <strong>brain</strong> tissue<br />

• End product <strong>of</strong> glycolysis & indicates anaerobic metabolism<br />

• Lactate accumulates in:<br />

! necrosis & many neoplasms (especially higher grade)<br />

! stroke & seizure activity<br />

! mitochondrial defect or injury<br />

! inflammatory demyelination & infection<br />

1.3


Lipids<br />

• multiple peaks within ! = 0.8 to 1.3 ppm<br />

• Indicates necrosis and/or disruption <strong>of</strong> myelin sheath<br />

in white matter<br />

• Commonly seen due to voxel contamination from fat<br />

(eg., scalp)<br />

• Lipids may obscure o<strong>the</strong>r peaks (eg, lactate)<br />

• Best seen at short TE 35/35<br />

0.8-1.3


Myoinositol (mI)<br />

• ! = 3.6 ppm<br />

• Located primarily in astrocytes<br />

• Absent in neurons<br />

3.6<br />

• Considered important “osmolyte” or cell volume regulator<br />

• Marker <strong>for</strong> gliosis and reactive astrocytosis<br />

• Dominant peak in newborn, decreases rapidly by 6 months<br />

<strong>of</strong> age<br />

• Best seen at short TE 30/35


Glutamate & Glutamine (Glx)<br />

• ! = 2.1 to 2.5 ppm<br />

• Glutamate is an excitatory neurotransmitter<br />

• Glutamate is converted to glutamine (primarily found in<br />

astrocytes)<br />

• Conversion system can be overwhelmed in some hepatic<br />

diseases<br />

• Best seen at short TE 30/35<br />

2.1-.5


Single vs. Multivoxel Localization ?<br />

Lesion<br />

What ? Where ?


Normal Cerebral Maturation<br />

26 wk EGA preterm term newborn 2 month old 6 month old<br />

Cho<br />

NAA<br />

• In preterm infants, higher Cho levels reflect very early<br />

myelination<br />

• Cho levels normalize between 8 months and 2 years


Normal Cerebral Maturation<br />

1 year old 2 year old 7 year old<br />

30 year old<br />

• Gradual rising NAA/Cr after birth reflects neuronal maturation<br />

• After 2 years, <strong>the</strong> spectral pattern in children will be nearly<br />

identical to that <strong>of</strong> adults


Abnormal Development & Metabolic<br />

Consider adding <strong>MR</strong>S in developmental delay, metabolic, and<br />

unexplained neuromuscular disorders<br />

Place voxel in WM abnormality & “normal” WM <strong>for</strong> comparison<br />

Major Findings on 1 H <strong>MR</strong>S:<br />

• Low NAA<br />

• Excess lactate<br />

• Metabolic pr<strong>of</strong>iles unique to several common disorders:<br />

! ! NAA (Canavan’s disease)<br />

! ! Glx & " mI (Ornithine transcarbamylase (OTC) deficiency<br />

! ! mI (Metachromatic leukodystrophy)<br />

! """ Creatine (creatine deficiency syndromes)<br />

! Phenylalanine (Phenylketonuria)


Creatine Deficiency Syndromes<br />

6 y.o. male, developmental delay<br />

TE 144<br />

# Cr<br />

3.0 1.3<br />

Severe creatine deficiency or depletion, no cerebral lactate


Creatine Deficiency Syndromes<br />

Genetics confirmed X-linked creatine transporter deficiency<br />

39 y.o. mo<strong>the</strong>r - unaffected<br />

12 y.o. male, Index case<br />

TE 144<br />

# Cr<br />

9 y.o. sister - unaffected<br />

3.0<br />

3.0<br />

3.0


Metachromatic Leukodystrophy<br />

6 y.o. male, cognitive decline, loss <strong>of</strong> developmental milestones<br />

mI<br />

TE 35<br />

3.6<br />

TE 144<br />

3.2 2.0 1.3


Epilepsy – Temporal Lobe<br />

Place voxels along both hippocampal planes<br />

Major Findings on 1 H <strong>MR</strong>S:<br />

• " NAA, NAA/creatine, & NAA/(Cho + Cr) indicating neuronal loss<br />

and/or dysfunction<br />

• ! mI indicating reactive gliosis<br />

• ! Lactate & lipids $ within first 24 hours after seizure, may last <strong>for</strong> as<br />

long as 7 days


Epilepsy – Temporal Lobe<br />

NAA/Cho + Cr is most useful parameter in mesial TLE:<br />

• NAA/(Cho + Cr) < 0.71 is considered pathologic<br />

• Sensitivity <strong>of</strong> <strong>MR</strong>S to lateralize lesion is 85-92%<br />

• Asymmetry Index (AI) > 11% can lateralize epileptogenic focus<br />

• Bilateral <strong>MR</strong>S abnormalities in up to 50% TLE patients<br />

• When NAA/(Cho + Cr) is reduced in both hippocampi, index used<br />

<strong>for</strong> lateralization is halved to 5.5%<br />

Goal is to lateralize epileptogenic lesion and convert a “non-lesional”<br />

into a “lesional” <strong>MR</strong> exam


<strong>MR</strong> <strong>Spectroscopy</strong> in Hippocampal Sclerosis<br />

18 y.o. male, refractory right temporal lobe epilepsy with obvious right<br />

hippocampal sclerosis on structural <strong>MR</strong> imaging<br />

TE 135<br />

NAA<br />

= 0.20<br />

(Cho + Cr)<br />

AI = 52.3%<br />

NAA<br />

(Cho + Cr)<br />

= 0.42


<strong>MR</strong> <strong>Spectroscopy</strong> in Hippocampal Sclerosis<br />

46 y.o. male, chronic left temporal lobe epilepsy, increased left<br />

hippocampal T2/FLAIR signal without hippocampal atrophy<br />

TE 135<br />

NAA<br />

(Cho + Cr)<br />

= 0.61<br />

NAA<br />

= 0.39<br />

(Cho + Cr)<br />

AI = 22.0%


<strong>MR</strong> <strong>Spectroscopy</strong> in Hippocampal Sclerosis<br />

27 y.o. female, nocturnal seizures x 5 yrs, left mesial temporal lobe seizures on<br />

EEG but with normal anatomical <strong>MR</strong> imaging<br />

TE 135<br />

NAA<br />

(Cho + Cr)<br />

= 0.67<br />

NAA<br />

= 0.59<br />

(Cho + Cr)<br />

AI = 8.0%


Amygdaloid Sclerosis<br />

55 y.o. female, anterior right temporal lobe seizures with prominent fear and<br />

panic semiology<br />

TE 30<br />

3.6<br />

Place TE 30/35 single voxel (~ 1.5 x 1.5 cm) over each amygdala<br />

Lateralized % myoinositol (3.6 ppm) to “gliotic” amygdala


Neuro-Oncology<br />

Common Indications:<br />

• Differentiate neoplastic vs. non-neoplastic lesion<br />

• Establish etiology – primary neoplasm vs. metastasis<br />

• Suggest histologic grade<br />

• Assess tumor boundaries<br />

• Indicate preferred biopsy target(s)<br />

• Assess <strong>the</strong>rapeutic response (recurrence, post-RT necrosis)<br />

• Differing roles <strong>for</strong> single- and multi-voxel sampling


Brain Neoplasm<br />

Place SV at edge <strong>of</strong> enhancement, or CSI to<br />

cover mass and surrounding parenchyma<br />

• Intermediate TE 135 is most useful<br />

Major Findings on 1 H <strong>MR</strong>S:<br />

• " NAA (NAA implies CNS origin)<br />

• ! Choline (main metabolite to be assessed in neoplasms)<br />

• " Creatine<br />

• ! Lactate<br />

• ! Lipids


Brain Neoplasm<br />

Differential Diagnosis <strong>of</strong> Tumor Grading:<br />

• Lower NAA occurs in higher-grade tumors<br />

• Higher choline is found in high-grade tumors<br />

• ! myoinositol in low-grade (benign) > high-grade tumors<br />

• Higher lactate found in high-grade tumors (ischemia)<br />

• Lipids are typically found in high-grade tumors with necrosis<br />

• Reduction <strong>of</strong> all metabolites (+/- lipids/lactate) is indicative <strong>of</strong><br />

radiation necrosis


Mixed Oligoastocytoma<br />

WHO grade II<br />

TE 135<br />

NAA<br />

+Gd<br />

Residual NAA implies CNS origin (i.e., not metastatic)


Oligodendroglioma<br />

WHO grade II<br />

NAA<br />

TE 30<br />

Cho/NAA & Cho/Cr both increase with cellular density and mitotic index<br />

Often increased mI in low grade tumors at short TEs


Glioblastoma Multi<strong>for</strong>me<br />

WHO grade IV<br />

T2W<br />

!!! Choline, ! lipids & lactate, and " NAA from necrosis<br />

Peri-insular ! choline represents ‘infiltrative’ edema and tumor


Always Review <strong>MR</strong>S Alongside Structural Images<br />

Example: Central Neurocytoma<br />

Cho<br />

TE 30<br />

TE 135<br />

Lactate<br />

NAA<br />

Some benign tumors have ‘aggressive & hypermetabolic’ spectra


Meningioma<br />

WHO grade II<br />

TE 30<br />

TE 135<br />

Alanine<br />

! Alanine (doublet at 1.4 ppm inverts at TE 135)<br />

No NAA<br />

!! Choline<br />

Alanine


Primary Neoplasm vs. Metastases<br />

Place multivoxel (TE 135) to sample <strong>the</strong> enhancing<br />

lesion and its “perilesional edema”<br />

Major Findings on 1 H <strong>MR</strong>S:<br />

• Absent or """ NAA and Cr suggestive <strong>of</strong> metastatic lesion<br />

• ! choline within both metastatic lesion and glioma<br />

• ! choline in “perilesional edema” suggests infiltrating tumor


Metastatic Adenocarcinoma<br />

Lung Primary Malignancy<br />

Cho<br />

TE 135<br />

# Cr<br />

# NAA<br />

3.0 2.0<br />

No NAA implies tumor is <strong>of</strong> non-CNS origin<br />

Avoid including cystic component in voxel


Metastatic Squamous Cell Carcinoma<br />

Lung Primary Malignancy<br />

*<br />

TE 135<br />

*<br />

Metastatic perilesional “vasogenic” edema lacks ! choline (*)


! Cho<br />

TE 135<br />

Malignant Glioma<br />

WHO grade III<br />

! Cho<br />

‘Infiltrative’ or ‘cellular’ edema shows ! choline from infiltrating tumor


Preferred Biopsy Target(s)<br />

Use multi-voxel <strong>MR</strong>S (TE 135) over lesion<br />

Major Findings on 1 H <strong>MR</strong>S:<br />

• Identify area with greatest increase in Cho levels<br />

• ! Cho indicates areas <strong>of</strong> ‘higher cellularity’<br />

• Biopsy should show high tumor infiltration


Malignant Mixed Oligoastrocytoma<br />

WHO grade III<br />

!! Cho<br />

! Choline indicates areas <strong>of</strong> higher cellularity and tumor grade


Inflammatory Demyelination vs. Neoplasm<br />

37 y.o. female, subacute progressive right-sided hemiparesis, enhancing left<br />

hemispheric mass lesion<br />

Cho<br />

TE 30<br />

NAA<br />

TE 135<br />

mI<br />

3.2<br />

2.0<br />

3.2<br />

2.0<br />

! Choline, " NAA, ! lactate and myoinositol<br />

Demyelination spectra may look very similar to neoplasm


Cerebral Abscess vs. Neoplasm<br />

35 y.o. female, progressive headache, right-sided weakness<br />

TE 135<br />

AAs<br />

DWI +Gd<br />

1.3 0.9<br />

Doublet peak at 0.9 ppm inverts at TE 135<br />

! Cytosolic Amino Acids from proteolytic activity <strong>of</strong> PMN leukocytes<br />

Amino acid peak may be masked by lipid peaks at TE 30<br />

O<strong>the</strong>r peaks from voxel including adjacent <strong>brain</strong> parenchyma


Assessing Therapeutic Response<br />

Use multi-voxel <strong>MR</strong>S over lesion<br />

Major Findings on 1 H <strong>MR</strong>S:<br />

• Identify residual or recurrent tumor<br />

• Differentiate residual or recurrent tumor from post-treatment<br />

abnormality (i.e., radiation necrosis)<br />

! Evidence RT necrosis typically observed within 6 months<br />

! Absent or """ NAA, Cho, Cr, mI<br />

! ! lipid and lactate levels


Radiation-Induced Necrosis<br />

Stereotactic Radiosurgery-Targeted Metastatic Breast Cancer Metastasis<br />

Baseline 6 mos post SRT 8 mos post SRT<br />

Lipids<br />

""" NAA, Cho, Cr, and !!! lipids with treatment-related necrosis


Stroke and Cerebral Ischemia<br />

Place SV voxel (TE 135) in lesion, or over basal ganglia in<br />

suspected diffuse hypoxic ischemic injuries<br />

Major Findings on 1 H <strong>MR</strong>S:<br />

• ! Lactate (most sensitive & earliest finding)<br />

• " NAA<br />

• occasional ! Glutamate<br />

• ! Lipids<br />

• Reality is that <strong>MR</strong>S has little <strong>practical</strong> role in adult stroke as<br />

DWI / PWI is faster and more specific<br />

• <strong>MR</strong>S is useful in suspected pediatric hypoxic ischemic injury


Hypoxic Ischemic Encephalopathy<br />

Term infant, suspected perinatal HIE<br />

TE 135<br />

1.3<br />

Lactate<br />

<strong>MR</strong>S can confirm HIE, as ! lactate may be only clue within first 48 hours


Hypoxic Ischemic Encephalopathy<br />

Term infant, seizures, no <strong>brain</strong>stem reflexes<br />

TE 135<br />

Lactate<br />

1.3<br />

1.1<br />

Propan-1,2-diol<br />

Beware iatrogenic peak at 1.1 ppm (related to seizure medication)


Hypoxic Ischemic Encephalopathy<br />

Term infant, seizures, possible perinatal twin-twin HIE<br />

TE 135<br />

1.1<br />

Propan-1,2-diol<br />

No increased lactate or <strong>MR</strong>/<strong>MR</strong>S evidence <strong>of</strong> HIE

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!