01.09.2014 Views

A Brief History of the Joint Effect of Baroclinicity and Relief (JEBAR ...

A Brief History of the Joint Effect of Baroclinicity and Relief (JEBAR ...

A Brief History of the Joint Effect of Baroclinicity and Relief (JEBAR ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>Brief</strong> <strong>History</strong> <strong>of</strong> <strong>the</strong> <strong>Joint</strong> <strong>Effect</strong> <strong>of</strong><br />

<strong>Baroclinicity</strong> <strong>and</strong> <strong>Relief</strong> (<strong>JEBAR</strong>) <strong>and</strong> its<br />

Application to Gulf Stream Separation<br />

MPO 611<br />

Geophysical Fluid<br />

Dynamics II<br />

Spring 2008<br />

Benjamin Shaw


A <strong>Brief</strong> <strong>History</strong><br />

●<br />

Sverdrup ocean circulation<br />

– Considers only wind stress, ignores bottom<br />

topographic effects<br />

●<br />

Sarkisyan & Ivanov (1971), <strong>the</strong> fa<strong>the</strong>rs <strong>of</strong><br />

<strong>JEBAR</strong><br />

– Pointed out that you can't ignore bottom baroclinic<br />

or bottom topographic effects<br />

– These have tremendous impact on transport in<br />

oceanic gyres


What is <strong>JEBAR</strong>?<br />

●<br />

The <strong>Joint</strong> <strong>Effect</strong> <strong>of</strong> <strong>Baroclinicity</strong> And <strong>Relief</strong><br />

– It is now well established that <strong>the</strong> combination <strong>of</strong><br />

baroclinicity <strong>and</strong> sloping bottom topography can<br />

give rise to a driving force for <strong>the</strong> depth-averaged<br />

flow (Mertz et. al., 1992)<br />

●<br />

Generally derived through some combination <strong>of</strong> depth<br />

averaging <strong>and</strong> cross differentiating simplified<br />

equations <strong>of</strong> motion


What is <strong>JEBAR</strong>?<br />

●<br />

There are several interpretations <strong>of</strong> <strong>JEBAR</strong>. It<br />

has been described by each <strong>of</strong> <strong>the</strong> following:<br />

– Geostrophic component <strong>of</strong> <strong>the</strong> correction to <strong>the</strong><br />

topographic stretching term to account for <strong>the</strong> fact<br />

that <strong>the</strong> bottom velocity, not <strong>the</strong> depth-averaged<br />

velocity, yields topographic vortex-tube stretching<br />

(Mertz, et. al. 1992)<br />

– Relates to bottom torque (curl <strong>of</strong> horizontal force by<br />

<strong>the</strong> bottom on <strong>the</strong> fluid) (Mertz, et. al. 1992)<br />

– Difference between bottom pressure torque <strong>and</strong> <strong>the</strong><br />

corresponding torque associated with <strong>the</strong> depth<br />

averaged pressure (Myers, et. al. 1996)


Derivation <strong>of</strong> <strong>the</strong> <strong>JEBAR</strong> term<br />

●<br />

<strong>JEBAR</strong> effect obtained when a<br />

vorticity equation is formed from<br />

<strong>the</strong> depth-averaged momentum<br />

equations (Huthnance 1984)<br />

●<br />

The result is Jacobian <strong>of</strong><br />

potential energy anomaly <strong>and</strong><br />

depth


●<br />

There are several interpretations <strong>of</strong> <strong>the</strong> <strong>JEBAR</strong><br />

term,depending on <strong>the</strong> choice <strong>of</strong> derivation. This version<br />

relates (in order):<br />

1. Rate <strong>of</strong> change <strong>of</strong> vorticity <strong>of</strong> <strong>the</strong> depth averaged flow<br />

2. Transport across contours <strong>of</strong> constant planetary vorticity<br />

3. Topographic vortex stretching<br />

4. Surface forcing/bottom dampening<br />

5. <strong>JEBAR</strong> effect<br />

(Mertz, et. al. 1992)


<strong>JEBAR</strong> Skeptics<br />

●<br />

●<br />

Some disagreement exists regarding<br />

<strong>the</strong> utility <strong>of</strong> <strong>the</strong> <strong>JEBAR</strong> effect<br />

Cane et. al. 1998 argues that:<br />

1) <strong>JEBAR</strong> term cannot be calculated consistently,<br />

leading to imperfect cancellation <strong>and</strong> spurious<br />

transport values<br />

2) Calculated velocity field is very noisy with large<br />

relative errors<br />

3) <strong>JEBAR</strong> overestimates <strong>the</strong> true influence <strong>of</strong><br />

topography on oceanic transports, especially since<br />

majority <strong>of</strong> transport is confined to upper layers


Application <strong>of</strong> <strong>JEBAR</strong><br />

●<br />

Reasons for separation <strong>of</strong> Gulf Stream from North<br />

American coast are unclear<br />

– Occurs at zero wind stress curl?<br />

– Bottom topography?<br />

– DWBC effects?<br />

– Cyclonic recirculation?<br />

●<br />

●<br />

GCMs predict separation<br />

~3000 km far<strong>the</strong>r north<br />

Myers, et. al. (1996) able<br />

to accurately predict<br />

separation point using FE<br />

model including <strong>JEBAR</strong>


Myers et. al. (1996)


Separation <strong>of</strong> <strong>the</strong> Gulf Stream<br />

●<br />

Dependent on <strong>JEBAR</strong> effect in 3 key areas<br />

– Offshore <strong>of</strong> separation<br />

– North Atlantic Bight<br />

– Central Irminger Sea<br />

●<br />

●<br />

Underestimating <strong>JEBAR</strong><br />

results in overshooting<br />

<strong>the</strong> actual separation<br />

point<br />

Which comes first?<br />

Separation or <strong>JEBAR</strong>?<br />

– Observed density field already has signature <strong>of</strong><br />

<strong>the</strong> separated Gulf Stream in it Myers et. al. (1996)


Conclusions<br />

●<br />

<strong>JEBAR</strong> effect:<br />

...shows <strong>the</strong> importance <strong>of</strong> baroclinic<br />

effects near <strong>the</strong> ocean bottom<br />

...is an important factor in oceanic<br />

gyre transport<br />

...provides solution to issue <strong>of</strong> Gulf<br />

Stream separation from North<br />

American coast<br />

...may be difficult to accurately<br />

measure


References<br />

Cane, M.A., V.M. Kamenkovich, A. Krupitsky, 1998: On <strong>the</strong> Utility <strong>and</strong> Disutility<br />

<strong>of</strong> <strong>JEBAR</strong>. Journal <strong>of</strong> Physical Oceanography – Notes & Correspondence,<br />

28, 519-526.<br />

Greatbatch, R.J., A.F. Fanning, A.D. Goulding, S. Levitus, 1991: A Diagnosis <strong>of</strong><br />

Interpentadal Circulation Changes in <strong>the</strong> North Atlantic. Journal <strong>of</strong><br />

Geophysical Research, 96, 22,009-22,023.<br />

Huthnance, J.M., 1984: Slope Currents <strong>and</strong> “<strong>JEBAR</strong>”. Journal <strong>of</strong> Physical<br />

Oceanography, 14, 795-810.<br />

Mellor, G., C. Mechoso, E. Keto, 1982: A diagnostic calculation <strong>of</strong> <strong>the</strong> Atlantic<br />

Ocean. Deep Sea Research, 29, 1171-1192.<br />

Mellor, G., 1999: Comments on “On <strong>the</strong> Utility <strong>and</strong> Disutility <strong>of</strong> <strong>JEBAR</strong>”. Journal<br />

<strong>of</strong> Physical Oceanography – Notes & Correspondence, 29, 2117-2118.<br />

Mertz, G., D.G. Wright, 1992: Interpretations <strong>of</strong> <strong>the</strong> <strong>JEBAR</strong> Term. Journal <strong>of</strong><br />

Physical Oceanography – Notes & Correspondence, 22, 301-305.<br />

Myers, P.G., A.F. Fanning, A.J. Weaver, 1996: <strong>JEBAR</strong>, Bottom Pressure<br />

Torque, <strong>and</strong> Gulf Stream Separation. Journal <strong>of</strong> Physical Oceanography, 26,<br />

671-683.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!