02.09.2014 Views

2-D Motion - UCF Physics

2-D Motion - UCF Physics

2-D Motion - UCF Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 3 – 2D and 3D <strong>Motion</strong><br />

I. Definitions<br />

II.<br />

Projectile motion<br />

III. Uniform circular motion<br />

IV. Relative motion


I. Definitions<br />

Position vector: extends from the origin of a coordinate system to the particle.<br />

<br />

r = xiˆ<br />

+ yj ˆ +<br />

zkˆ<br />

(4.1)<br />

Displacement vector: represents a particle’s position change during a certain<br />

time interval.<br />

<br />

∆r<br />

=<br />

<br />

r ( )ˆ ( ) ˆ ( ) ˆ<br />

2 − r1<br />

= x2<br />

− x1<br />

i + y2<br />

− y1<br />

j + z2<br />

− z1<br />

k<br />

(4.2)<br />

Average velocity:<br />

<br />

v avg<br />

=<br />

<br />

∆r<br />

∆t<br />

=<br />

∆x<br />

iˆ<br />

+<br />

∆t<br />

∆y<br />

∆t<br />

ˆj<br />

+<br />

∆z<br />

∆t<br />

kˆ<br />

(4.3)


Instantaneous velocity:<br />

<br />

v = v<br />

iˆ<br />

+ v<br />

ˆj<br />

+ v<br />

kˆ<br />

<br />

dr<br />

dt<br />

dx<br />

iˆ<br />

+<br />

dt<br />

dy<br />

dt<br />

x y z = = +<br />

ˆj<br />

dz<br />

dt<br />

kˆ<br />

(4.4)<br />

-The direction of the instantaneous velocity of a<br />

particle is always tangent to the particle’s path at<br />

the particle’s position<br />

Average acceleration:<br />

<br />

a avg<br />

=<br />

<br />

v2<br />

− v<br />

∆t<br />

1<br />

=<br />

<br />

∆v<br />

∆t<br />

(4.5)<br />

Instantaneous acceleration:<br />

<br />

a =<br />

a<br />

iˆ<br />

+ a<br />

ˆj<br />

+ a<br />

kˆ<br />

<br />

dv<br />

dt<br />

dv<br />

dt<br />

dv<br />

iˆ<br />

+<br />

dt<br />

x y<br />

x y z = =<br />

+<br />

ˆj<br />

dv<br />

dt<br />

z<br />

kˆ<br />

(4.6)


II. Projectile motion<br />

<strong>Motion</strong> of a particle launched with initial velocity, v 0 and free fall acceleration<br />

g.<br />

The horizontal and vertical motions are independent from each other.<br />

- Horizontal motion: a x =0 v x =v 0x = constant<br />

x − x0 = v0xt<br />

= ( v0<br />

cosθ0)<br />

t<br />

(4.7)<br />

Range (R): horizontal distance traveled by a<br />

projectile before returning to launch height.<br />

- Vertical motion: a y = -g = constant<br />

2<br />

1<br />

y − y0 = v0<br />

yt<br />

− gt = ( v0<br />

sinθ0)<br />

t − gt<br />

2<br />

2<br />

1 2<br />

(4.8)<br />

v y<br />

= v 0 sinθ 0 − gt (4.9)<br />

v y = ( v0<br />

sinθ0)<br />

− 2g(<br />

y − y0)<br />

(4.10)<br />

2<br />

2


- Trajectory: projectile’s path.<br />

x<br />

0 = y0<br />

=<br />

0<br />

( 4 .7 ) + ( 4 .8 ) →<br />

y = (tan<br />

θ<br />

0<br />

) x −<br />

t =<br />

v<br />

2 ( v<br />

0<br />

0<br />

gx<br />

cos<br />

x<br />

cos<br />

2<br />

θ<br />

θ<br />

0<br />

)<br />

0<br />

2<br />

→<br />

y<br />

= v<br />

0<br />

sin<br />

( 4 .11 )<br />

θ<br />

0<br />

v<br />

0<br />

x<br />

cos<br />

θ<br />

0<br />

−<br />

1<br />

2<br />

g<br />

⎛<br />

⎜<br />

⎝<br />

v<br />

0<br />

x<br />

cos<br />

θ<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

→<br />

- Horizontal range: R = x-x 0 ; y-y 0 =0.<br />

R = ( v<br />

0 = ( v<br />

0<br />

0<br />

cosθ<br />

) t<br />

sinθ<br />

) t −<br />

0<br />

0<br />

→ t =<br />

1<br />

2<br />

gt<br />

2<br />

v<br />

0<br />

R<br />

cosθ<br />

= ( v<br />

0<br />

0<br />

sinθ0)<br />

v<br />

0<br />

R<br />

cosθ<br />

0<br />

−<br />

1<br />

2<br />

⎛<br />

g<br />

⎜<br />

⎝ v<br />

0<br />

R<br />

cosθ<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

=<br />

R tanθ<br />

0<br />

−<br />

1<br />

2<br />

g<br />

v<br />

2<br />

0<br />

R<br />

2<br />

cos<br />

2<br />

θ<br />

0<br />

→<br />

R<br />

=<br />

2sinθ0<br />

cosθ0<br />

g<br />

v<br />

2<br />

0<br />

=<br />

2<br />

0<br />

v<br />

g<br />

sin 2θ<br />

0<br />

(4.12)<br />

(Maximum for a launch angle of 45º )<br />

Overall assumption: the air through which the projectile moves has no effect<br />

on its motion friction neglected.


122: A third baseman wishes to throw to first base, 127 feet distant. His best throwing speed is 85 mi/h. (a) If<br />

he throws the ball horizontally 3 ft above the ground, how far from first base will it hit the ground? (b) From<br />

the same initial height, at what upward angle must the third baseman throw the ball if the first baseman is to<br />

catch it 3 ft above the ground? (c) What will be the time of flight in that case?<br />

y<br />

h=3ft<br />

v 0<br />

B3<br />

B1<br />

x<br />

0<br />

x max x B1<br />

=38.7m<br />

⎛ mi ⎞ ⎛ 1h<br />

⎞ ⎛1609m<br />

⎞<br />

⎜85<br />

⎟⋅⎜<br />

⎟⋅⎜<br />

⎟ = 38m<br />

/ s<br />

⎝ h ⎠ ⎝ 3600s<br />

⎠ ⎝ 1mi<br />

⎠<br />

⎛ 0.305m<br />

⎞<br />

⎝ 1foot<br />

⎠<br />

( 3 feet) ⋅⎜<br />

⎟ = 0.91m<br />

h=3ft<br />

Horizontal movement<br />

Vertical movement<br />

xmax<br />

− x0<br />

= v0xt<br />

1 2<br />

y − y0<br />

= v0<br />

yt<br />

− gt<br />

xmax<br />

− 0 = 38t<br />

= (38m<br />

/ s)(0.43s)<br />

= 16.4m<br />

from B3<br />

2<br />

0 − 0.91m<br />

= −4.9t<br />

y<br />

B3<br />

v 0<br />

θ<br />

2<br />

→ t = 0.43s<br />

38.7m<br />

B1<br />

x<br />

The ball will hit ground at 22.3 m from B1<br />

1 2<br />

y − y0<br />

= 0 = v0<br />

yt<br />

− gt → v0<br />

y = 4.9t<br />

= v0<br />

sinθ<br />

→ t<br />

2<br />

38.7m<br />

38.7<br />

v0x<br />

= = v0<br />

cosθ<br />

→ t = = 1s<br />

t<br />

38cosθ<br />

38.7 38sinθ<br />

= →189.63<br />

= 1444sinθ<br />

cosθ<br />

→<br />

38cosθ<br />

4.9<br />

0.13 = 0.5sin 2θ<br />

→θ<br />

=<br />

<br />

7.6<br />

=<br />

38sinθ<br />

4.9


N7: In Galileo’s Two New Sciences, the author states that “for elevations (angles of projection) which exceed<br />

or fall short of 45º by equal amounts, the ranges are equal…” Prove this statement.<br />

y<br />

v 0<br />

θ=45º<br />

x=R=R’?<br />

sin( a + b)<br />

= sin a cosb<br />

+ cos asin<br />

b<br />

sin( a − b)<br />

= sin a cosb<br />

− cos asin<br />

b<br />

x<br />

2<br />

0<br />

v<br />

R =<br />

g<br />

2<br />

v0<br />

R'<br />

=<br />

g<br />

<br />

θ = 45<br />

θ = 45<br />

1<br />

<br />

θ = 45<br />

2<br />

<br />

+ δθ<br />

−δθ<br />

2<br />

0<br />

v<br />

R =<br />

g<br />

2<br />

v0<br />

R'<br />

=<br />

g<br />

sin<br />

sin<br />

<br />

<br />

[ sin 90 cos(2δθ<br />

) + cos90 sin(2δθ<br />

)]<br />

2<br />

0<br />

=<br />

v<br />

Range: R = sin 2θ<br />

0 → dmax<br />

at h<br />

g<br />

2<br />

v<br />

[ 2( 45 + δθ )] = sin( 90 2δθ<br />

)<br />

0 <br />

+<br />

g<br />

2<br />

v<br />

[ 2( 45 −δθ<br />

)] = sin( 90 2δθ<br />

)<br />

0 <br />

−<br />

2<br />

<br />

v<br />

[ sin 90 cos(2δθ<br />

) − cos90 sin(2δθ<br />

)] =<br />

0 cos(2δθ<br />

)<br />

g<br />

2<br />

0<br />

v<br />

= cos(2δθ<br />

)<br />

g<br />

g<br />

0


III. Uniform circular motion<br />

<strong>Motion</strong> around a circle at constant speed.<br />

Magnitude of velocity and acceleration constant.<br />

Direction varies continuously.<br />

-Velocity: tangent to circle in the direction of motion.<br />

- Acceleration: centripetal<br />

a =<br />

2<br />

v<br />

r<br />

(4.13)<br />

- Period of revolution:<br />

T<br />

=<br />

2π<br />

r<br />

v<br />

(4.14)<br />

v x<br />

v y<br />

<br />

ˆ ˆ ( sinθ<br />

)ˆ ( cosθ<br />

) ˆ<br />

⎛ − v ⋅ y<br />

v = vxi<br />

+ vy<br />

j = −v<br />

i + v j =<br />

⎜<br />

⎝ r<br />

<br />

dv ⎛ − v dy p ⎞<br />

ˆ<br />

⎛ v dx p ⎞<br />

ˆ ⎛ − v<br />

a = =<br />

⎜<br />

⎟i<br />

+<br />

⎜<br />

⎟ j = ⎜ vy<br />

dt ⎝ r dt ⎠ ⎝ r dt ⎠ ⎝ r<br />

2<br />

2 2 v 2 2 v<br />

a = ax<br />

+ ay<br />

= cos θ + sin θ =<br />

r<br />

r<br />

<br />

ay<br />

a directed along radius → tanφ<br />

= =<br />

a<br />

x<br />

2<br />

p<br />

⎞ˆ<br />

⎛ v<br />

⎟i<br />

+ ⎜<br />

⎠ ⎝ r<br />

⎞<br />

ˆ<br />

⎛ v ⋅ x<br />

⎟i<br />

+<br />

⎜<br />

⎠ ⎝ r<br />

v<br />

x<br />

sinθ<br />

= tanθ<br />

cosθ<br />

p<br />

⎞<br />

ˆ<br />

⎟ j<br />

⎠<br />

⎞ ⎛<br />

ˆ<br />

− v<br />

⎟ j = ⎜<br />

⎠<br />

⎝ r<br />

2<br />

⎞ ⎛<br />

cosθ<br />

ˆ<br />

− v<br />

⎟ + ⎜<br />

i<br />

⎠ ⎝ r<br />

2<br />

⎞<br />

sinθ<br />

⎟ ˆ<br />

j<br />


54. A cat rides a merry-go-round while turning with uniform circular motion. At time t 1<br />

= 2s, the cat’s velocity<br />

is: v 1<br />

= (3m/s)i+(4m/s)j, measured on an horizontal xy coordinate system. At time t 2<br />

=5s its velocity is:<br />

v 2<br />

= (-3m/s)i+(-4m/s)j. What are (a) the magnitude of the cat’s centripetal acceleration and (b) the cat’s<br />

average acceleration during the time interval t 2<br />

-t 1<br />

?<br />

v 1<br />

v 2<br />

x<br />

In 3s the velocity is reversed the cat reaches the opposite<br />

side of the circle<br />

y<br />

v =<br />

3<br />

2<br />

+ 4<br />

2<br />

= 5m<br />

/ s<br />

2πr<br />

πr<br />

T = → 3s<br />

= → r = 4.77m<br />

v 5m<br />

/ s<br />

2 2 2<br />

v 25m<br />

/ s<br />

2<br />

a c = = = 5.23m<br />

/ s<br />

r 4.77m<br />

<br />

a<br />

<br />

a<br />

avg<br />

avg<br />

<br />

v2<br />

− v1<br />

=<br />

∆t<br />

= 3.33m<br />

/ s<br />

( −6m<br />

/ s)ˆ<br />

i − (8m<br />

/ s)<br />

ˆj<br />

=<br />

3s<br />

2<br />

= ( −2m<br />

/ s<br />

2<br />

)ˆ i − (2.67m<br />

/ s<br />

2<br />

) ˆj


IV. Relative motion<br />

Particle’s velocity depends on reference frame<br />

v = v + v<br />

PA<br />

PB<br />

BA<br />

(4.15)<br />

1D<br />

Frame moves at constant velocity<br />

d<br />

dt<br />

d d 0<br />

( vPA)<br />

= ( vPB<br />

) + ( vBA)<br />

→ aPA<br />

= aPB<br />

dt dt<br />

(4.16)<br />

Observers on different frames of reference measure the same acceleration<br />

for a moving particle if their relative velocity is constant.


75. A sled moves in the negative x direction at speed v s<br />

while a ball of ice is shot from the sled with a velocity<br />

v 0<br />

= v 0x<br />

i+ v 0y<br />

j relative to the sled. When the ball lands, its horizontal displacement ∆x bg<br />

relative to the ground<br />

(from its launch position to its landing position) is measured. The figure gives ∆x bg<br />

as a function of v s<br />

.<br />

Assume it lands at approximately its launch height. What are the values of (a) v 0x<br />

and (b) v 0y<br />

?<br />

The ball’s displacement ∆x bs<br />

relative to the sled can also be measured. Assume that the sled’s velocity is not<br />

changed when the ball is shot. What is ∆x bs<br />

when v s<br />

is (c) 5m/s and (d) 15m/s?<br />

<br />

v<br />

<br />

v<br />

<br />

v<br />

s<br />

0g<br />

= −v<br />

iˆ<br />

0, rel<br />

s<br />

= v<br />

= ( v<br />

0x<br />

0x<br />

iˆ<br />

+ v<br />

ˆj<br />

− v )ˆ i + v<br />

s<br />

0 y<br />

0 y<br />

ˆj<br />

Launch velocity relative<br />

to ground<br />

∆x<br />

x<br />

y<br />

2v0<br />

−<br />

g<br />

bg<br />

land<br />

land<br />

y<br />

Displacements relative to ground<br />

− x<br />

− y<br />

= 0 → v<br />

launch<br />

launch<br />

= ∆x<br />

80m<br />

= − → v<br />

20m<br />

/ s<br />

s<br />

bg<br />

= 0 = v<br />

0 y<br />

= ( v<br />

0 y<br />

2v0<br />

= 10m<br />

/ s → 0 =<br />

g<br />

t<br />

0x<br />

flight<br />

= 19.6m<br />

/ s<br />

x<br />

− v ) t<br />

s<br />

flight<br />

− 0.5gt<br />

2<br />

flight<br />

2⋅(10m<br />

/ s)<br />

− → v<br />

g<br />

0x<br />

= 10m<br />

/ s<br />

0 = v<br />

∆x<br />

bg<br />

0 y<br />

t<br />

= ( v<br />

∆x bg<br />

= a+ b v s<br />

flight<br />

0x<br />

− 0.5gt<br />

2v<br />

− vs<br />

)<br />

g<br />

2<br />

flight<br />

0 y<br />

→ t =<br />

a<br />

2v0xv<br />

=<br />

g<br />

2v<br />

0 y<br />

0 y<br />

g<br />

b<br />

2v0<br />

y<br />

− v<br />

g<br />

v<br />

t<br />

2 0 y<br />

2<br />

flight = = 4s<br />

v 10 19.6<br />

2<br />

0 = + = 22m<br />

/ s<br />

g<br />

s<br />

Displacements relative to the sled<br />

∆xbs<br />

= v0 xt<br />

flight = (10m<br />

/ s)<br />

⋅4s<br />

= 40m<br />

Relative to the sled, the displacement does not depend<br />

on the sled’s speed Answer (c)= Answer (d)


(iii) A dog wishes to cross a river to a point directly opposite as shown. It can swim at<br />

2m/s in still water and the river is flowing at 1m/s. At what angle with respect to the<br />

line joining the starting and finishing points should it start swimming?<br />

1m/s<br />

y<br />

v f<br />

θ<br />

start<br />

finish<br />

v <br />

r<br />

v 0<br />

x<br />

<br />

v<br />

<br />

v<br />

f<br />

<br />

v r<br />

= (−1m<br />

/ s)<br />

iˆ<br />

= 2 sin θ iˆ<br />

+ 2 cos<br />

0 θ<br />

<br />

= v<br />

r<br />

<br />

+ v<br />

0<br />

2 sin θ −1<br />

= 0 → θ = 30<br />

ˆj<br />

= ( −iˆ<br />

+ 2sin θ iˆ<br />

+ 2 cos θ ˆ) j m / s<br />

<br />

= ( v<br />

f<br />

ˆ) j m / s<br />

2 cos θ = v<br />

f<br />

→ v<br />

f<br />

=<br />

3m<br />

/ s


(ii) A particle moves with constant speed around the circle below. When it is at<br />

point A its coordinates are x=0, y=3m and its velocity is (5m/s)i. What are its<br />

velocity and acceleration at point B? Express your answer in terms of unit<br />

vectors.<br />

<br />

a B<br />

v<br />

=<br />

r<br />

2<br />

2 2<br />

ˆ 2<br />

i<br />

25m<br />

/ s<br />

=<br />

3m<br />

iˆ<br />

= (8.3m<br />

/ s<br />

) iˆ<br />

<br />

v B<br />

= (5m<br />

/ s)<br />

ˆj<br />

B<br />

<br />

a B<br />

y<br />

A<br />

= (8.3m<br />

/ s<br />

2<br />

) iˆ<br />

<br />

v A<br />

= (5m<br />

/ s)<br />

iˆ<br />

x


120. A hang glider is 7.5 m above ground level with a velocity of 8m/s at an angle of 30º below the<br />

horizontal and a constant acceleration of 1m/s 2 , up. (a) Assume t=0 at the instant just described and write<br />

an equation for the elevation y of the hang glider as a function of t, with y=0 at ground level. (b) Use the<br />

equation to determine the value of t when y=0. (c) Explain why there are two solutions to part B. Which one<br />

represents the time it takes the hang glider to reach ground level? (d) how far does the hang glider travel<br />

horizontally during the interval between t=0 and the time it reaches the ground? For the same initial position<br />

and velocity, what constant acceleration will cause the hang glider to reach ground level with zero velocity?<br />

Express your answer in terms of unit vectors.<br />

1<br />

y − y y +<br />

2<br />

2<br />

0 = v0<br />

t + at → y = 7.5 − 4t<br />

0. 5<br />

2<br />

0 1 2<br />

y = → 0 = 7.5 − 4t<br />

+ 0.5t<br />

→ t = 5s,<br />

t = 3s<br />

t<br />

2<br />

y<br />

h=7.5m<br />

30º<br />

v 0 = 8m/s<br />

<br />

a = 1ˆj<br />

<br />

v = 8cos30<br />

o<br />

<br />

iˆ<br />

−8sin 30<br />

<br />

ˆj<br />

y(m)<br />

7.5<br />

0<br />

x<br />

0<br />

1 2 3 4 5<br />

t(s)<br />

If the ground was not solid, the glider would swoop down,<br />

passing through the surface, then back up again, with the two<br />

times of passing being t=3s, t=5s.<br />

d = v xt<br />

= (6.93m<br />

/ s)<br />

⋅(3s)<br />

20. 78m<br />

max 0<br />

=<br />

Vertical movement :<br />

<br />

<br />

y = 0 → v = v iˆ<br />

+ v ˆj<br />

= 0<br />

f<br />

fx<br />

fy<br />

Horizontal<br />

movement :<br />

v<br />

v<br />

2<br />

y<br />

y<br />

= v<br />

= v<br />

2<br />

0 y<br />

0 y<br />

+ 2a<br />

⋅(<br />

y − y<br />

−15a<br />

→ a<br />

+ a t = 0 → 0 = −4<br />

+ 1.1t<br />

→ t = 3.75s<br />

y<br />

y<br />

0<br />

) = 4<br />

2<br />

y<br />

y<br />

= 1.1m<br />

/ s<br />

2<br />

0 = vx<br />

= v0<br />

<br />

a = ( −1.85m<br />

/ s<br />

x<br />

2<br />

+ a<br />

x<br />

⋅t<br />

= 6.93 + 3.75a<br />

)ˆ i + (1.1m<br />

/ s<br />

2<br />

) ˆj<br />

x<br />

→ a<br />

x<br />

= −1.85m<br />

/ s<br />

2


40. A ball is to be shot from level ground with certain speed. The figure below shows the range R it will<br />

have versus the launch angle θ 0<br />

at which it can be launched. The choice of θ 0<br />

determines the flight time; let<br />

t max<br />

represent the maximum flight time. What is the least speed the ball will have during its flight if θ 0<br />

is<br />

chosen such as that the flight time is 0.5t max<br />

?<br />

R(m)<br />

200<br />

y − y<br />

→ t =<br />

t flight<br />

0<br />

=<br />

= 0 = v<br />

2v<br />

0<br />

0 y<br />

sinθ0<br />

g<br />

t − 0.5gt<br />

2<br />

= v<br />

→ sinθ<br />

= 1 → t<br />

0<br />

0<br />

sinθ<br />

t − 4.9t<br />

max<br />

v 0 sinθ0<br />

2v0<br />

sinθ0<br />

v0<br />

−<br />

= 0.5tmax<br />

→ = →θ0<br />

= sin 0.5<br />

g<br />

g g<br />

=<br />

2 1<br />

0<br />

2v<br />

=<br />

g<br />

0<br />

2<br />

<br />

30<br />

100<br />

θ 0<br />

The lowest speed occurs at the top of the trajectory (half of total time of<br />

flight), when the velocity has simply an x-component.<br />

v<br />

<br />

min = vx<br />

at half trajectory = v0x<br />

= v0<br />

cos30<br />

for 0. 5tmax<br />

Graph<br />

R<br />

max<br />

= 240m<br />

for θ = 45<br />

0<br />

<br />

v0<br />

R =<br />

g<br />

v<br />

min<br />

2<br />

v0<br />

sin 2θ<br />

0 → 240m<br />

=<br />

g<br />

sin 90<br />

= vx = (48.5m<br />

/ s)cos30<br />

= 42m<br />

/<br />

<br />

2<br />

<br />

2<br />

v0<br />

=<br />

g<br />

s<br />

→ v<br />

0<br />

= 48.5m<br />

/ s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!