03.09.2014 Views

A Barrier Potential Calculation for Tunneling Electrons at a Metal ...

A Barrier Potential Calculation for Tunneling Electrons at a Metal ...

A Barrier Potential Calculation for Tunneling Electrons at a Metal ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

---<br />

0'1-<br />

; LE'ITERS EUROPHYSICS LETTERS<br />

ag, Ber;lin)<br />

Europhys. Lett., 3 (1), pp. 101':106 (1987)<br />

1 January 1987<br />

1985)16\0;<br />

, 54 (1985)<br />

107;JETP<br />

207.<br />

:Nf:~VLOS<br />

)NEY J. V.<br />

A <strong>Barrier</strong> <strong>Potential</strong> <strong>Calcul<strong>at</strong>ion</strong> <strong>for</strong> <strong>Tunneling</strong> <strong>Electrons</strong> <strong>at</strong> a<br />

<strong>Metal</strong>-<strong>Metal</strong> Interface.<br />

P. DE ANDRÉS(*),F. FLORES(*),P. M. ECHENIQUE(**)and R. H. RITCHIE(***)<br />

(*) Departamento de Física del Estado SólÜÜJ,Universidad Autónoma de Madrid,<br />

Cantoblanco, 28049 Madrid, Spain<br />

(**) Cavendish Labor<strong>at</strong>ory, Madingley Road, Cambridge, CB30HE, U.K.<br />

Euskal HerriJco Unibersit<strong>at</strong>ea, Quimicas, Donostia - Euzkadi, Spain<br />

(***) Health and Safety Research Division, Oak Ridge N<strong>at</strong>ional Labor<strong>at</strong>ory<br />

Oak Ridge, TN-37830, USA<br />

(received 12 May 1986; accepted in final fonn 28 August 1986)<br />

PACS. 73.20. - Electronic surface st<strong>at</strong>es.<br />

PACS. 73.40G ;...Tunnelling: general.<br />

PACS. 73.4OJ - <strong>Metal</strong>-to-metal contacts.<br />

~<br />

Abstract. - The interface potential <strong>for</strong> tunneling electrons between two interface metals has<br />

been obtained as the sum of a local and a nonlocal contribution, the last one introducing image<br />

<strong>for</strong>ce effects. Our results show th<strong>at</strong> the image potential is the dominant effect <strong>for</strong> interface<br />

distances between metal surfaces gre<strong>at</strong>er than 10 Á. For smaller distances, localeffects control<br />

the barrier height. We have calcul<strong>at</strong>ed tms barrier height <strong>for</strong> distances between 5 and 10 Á and<br />

found its value ranging between 1.2 and 2.4 eV in good agreement with other independent<br />

evidence.<br />

A complete theory of the scanning tunneling microscope [1] needs a full description oí Ole<br />

barrier th<strong>at</strong> electrons feel when they tunnel between the tipand the sample [2]. Although in<br />

some theoretical approaches [3] th<strong>at</strong> barrier has been assumed to be independent oí the<br />

distance between the two surfaces of the microscope, theoretical and experimental<br />

work [4,5] have shown th<strong>at</strong> the image <strong>for</strong>ce plays an important role lowering substantially<br />

the interface barrier height <strong>for</strong> intennedi<strong>at</strong>e distances between two metals<br />

(=(10.0+15.0)Á). A theoretical analysis oítbis problem is stilllacking: this is a cumbersome<br />

task, since a simple local <strong>for</strong>malism cannot be applied to it. Indeed, the image <strong>for</strong>ce is well<br />

known to be a nonlocal effect associ<strong>at</strong>ed with the correl<strong>at</strong>ion energy oí an electron leaving a<br />

surface. Altbougb different approacbes [6,7] are available to calcul<strong>at</strong>e tbis image potential,<br />

local effects are not negligible <strong>for</strong> tbe distances of interest between tbe' tip and tbe sample<br />

. (= 10 Á) in tbe microscope~ The difficulty of calcul<strong>at</strong>ing the barrier beigbt is, tben,<br />

associ<strong>at</strong>ed witb tbe necessity of including in tbe calcul<strong>at</strong>ion, <strong>at</strong> the same time, local and<br />

nonlocal correl<strong>at</strong>ion effects. At present, tbere is a possibility oí per<strong>for</strong>ming tbis calcul<strong>at</strong>ion<br />

by using a local density. fonnalism, supplemented witb a prescription to describe tbe<br />

. - .. -.-. - --


Ct<br />

__ A .__~<br />

i~-:.;<br />

102 EUROPHYSICS LETTERS<br />

nonlocal correl<strong>at</strong>ion energy <strong>for</strong> electrons moving away from a surface [8, 9]. This is a<br />

cumbersome self-consistent calcul<strong>at</strong>ion, and in this paper we have followed a different<br />

approach by introducing s()me reasonable approxim<strong>at</strong>ions in the general expression <strong>for</strong> the<br />

self-energy of an electron moving <strong>at</strong> the interface.<br />

Figure 1 shows OUTmodel <strong>for</strong> a Au-W interface. We have sirnul<strong>at</strong>ed the two metals by<br />

me~s of a jellium model (<strong>for</strong> Au we take Tg=3.02 and <strong>for</strong> W Ts=2:5). The electronic charge<br />

--;<br />

20<br />

::J<br />

~<br />

'" 10<br />

c:<br />

x<br />

w<br />

~ o<br />

f/ Au<br />

'- Lb'1 C'<br />

\<br />

f~';~\<br />

'---'<br />

o<br />

-12 -1. o<br />

z (a..u.)<br />

1.<br />

8 12<br />

Fig. 1. - Jellium model <strong>for</strong> the Au-Winterface showingthe electronic density, the image planes (i.p.),<br />

the jellium edges and the infinite barriers (Lb.) <strong>for</strong> each surface.<br />

<strong>at</strong> the interface can be calcul<strong>at</strong>ed by using a localdensity <strong>for</strong>malism;the results of Smith and<br />

Ferrante [10] show th<strong>at</strong> the electron density of th<strong>at</strong> case is practically the superposition of<br />

the charges of the two independent surfaces. With thrs assumption, andusing now the<br />

values calcul<strong>at</strong>ed by LANGand KOHN[11] we can obtain the local charge and the barrier<br />

potential, Vxc(z) <strong>for</strong> the interface. In fig. 2, 3 and 4 we show these potentials <strong>for</strong> three<br />

different distances between the two crystals; we take d =5.4 A, 7.6 A and 9.7 A, d being<br />

the distance between the irnage planes of both crystals [11]. Two comments are relevant <strong>at</strong><br />

this point: i) first, notice th<strong>at</strong> the barrier is substantially decreased by the overlapping of the<br />

metal electronic charges; this cre<strong>at</strong>es a deeper' potential due to the local exchange and<br />

correl<strong>at</strong>ion energy. This result shows the irnportance of local effects in lowering the barrier<br />

height <strong>for</strong> tunneling electrons. ü) On the other hand, OUTcalcul<strong>at</strong>ionsshow th<strong>at</strong> the distance<br />

between the points defined by the crossing of Vxc(z) and the Fermi l~vel is close to d as<br />

defined above. Indeed, <strong>for</strong> the three cases, we find the effective length of the barrier to be<br />

5.7 A, 8.1 A and 10.1 A, respectively.<br />

In order to calcul<strong>at</strong>e the full potential seen by a tunneling electron, we start by<br />

introducing the nonlocal self-energy [12], I(r, r'; w). We are interested in calcul<strong>at</strong>ing this<br />

quantity <strong>at</strong> the Fermi energy, w = EF. Now, we notice th<strong>at</strong>, <strong>at</strong> the interface, the electronic<br />

density, n(z), is r<strong>at</strong>her low, and defines a local plasma frequency, wp(z), and a local Fermi<br />

momentum, kF(z). We find th<strong>at</strong> the following condition is well s<strong>at</strong>isfied: wp(z)>>k¡'(z)l2m.<br />

This suggests to use Hedin's approxim<strong>at</strong>ion [12] <strong>for</strong> I(r, r'; EF), and write<br />

I(r, r'; EF)=Isx(r, r') + !ICh(r= r'; w= O)O'(r- r') ,<br />

where ~sx(r, r') is the screened exchange interaction, independent of w, and<br />

ICh(r = r'; w= O) the Coulomb-hole potential, given by the self-interaction of a st<strong>at</strong>ic<br />

charge. Equ<strong>at</strong>ion (1) holds if the time of response associ<strong>at</strong>ed with the interface dielectric<br />

(1)<br />

.~~<br />

.fJ<br />

,~<br />

¡<br />

I""<br />

i,~<br />

'!~ ?i<br />

'* ~ '"<br />

~<br />

.?J<br />

~ f;..t<br />

~<br />

':~ :A\<br />

t ~<br />

l ""<br />

.:}<br />

~<br />

,:i,<br />

'R<br />

..',<br />

~.::<br />

'..<br />

.~<br />

'?}<br />

~<br />

'!J<br />

~ '.s<br />

?j;<br />

:i<br />

~¡(:<br />

~<br />

~¡E<br />

1<br />

'¡¡'<br />

.y,<br />

¡;-<br />

;f<br />

:;,<br />

.<br />

1:-<br />

,~<br />

~<br />

off<br />

.~ ~)<br />

.~<br />

¡:y¡ ...<br />

;,


18<br />

.- ~ ._. ---- __o,___~ ~_<br />

~S LETTERS<br />

This is a<br />

\ differeJ\t<br />

ion <strong>for</strong> the<br />

metals by<br />

nie charge<br />

P. DE ANDRÉS et al.: A BARRIER POTENTIAL CALCULATION FOR TUNNELlNG ELECTRONS ETC. 103<br />

o<br />

-0.1<br />

::J<br />

l,:,;-..<br />

i':<br />

'"<br />

b><br />

c:<br />

'-" EF<br />

"<br />

-0.2<br />

....<br />

12<br />

Ianes (i.p.),<br />

8mith and<br />

position oí<br />

~ now the<br />

he barrier<br />

<strong>for</strong> three<br />

\., d being<br />

'el~?Jt <strong>at</strong><br />

Jint.,- ..the<br />

1ange and<br />

he barrier<br />

_edistanee<br />

se to d as<br />

rrier to be<br />

start by<br />

l<strong>at</strong>ingthis<br />

electronie<br />

)Ca}Fermi<br />

~F


.. . . __ - -0_"_" -~ --" .-------.<br />

104 EUROPHYSICS LETTERS<br />

o<br />

-: ::><br />

:>..<br />

o.<br />

c:<br />

..<br />

EF<br />

lk'<br />

~.<br />

'.<br />

k;¡.;....<br />

~ ''1<br />

-<br />

Z(a..u.)<br />

4. 8 12<br />

Fig. 4. - <strong>Potential</strong> barrier in the Au-W interface <strong>for</strong> a distance between the image planes equal 10<br />

9.7 Á. As fig. 2 <strong>for</strong> the differents curves.<br />

function is short compared with the time an electr(m takes to travel an inter-electronic<br />

distance. Two typical frequencies appear in the interface dielectric function: the surface<br />

plasma frequency, ws, and the local plasma frequency, wp(z); on the other hand, in the<br />

tunneling region an electron crosses the interface With a velocity given by [13] - y2mrp,<br />

where rpis the tunneling barrier height. Conditions <strong>for</strong> using eq. (1) can be written as<br />

folIows: .<br />

wp(z) or ws» y(2mrp)/rs or ki-(z)/2m .<br />

These equ<strong>at</strong>ions are equivalent to the condition rs(z)« 40 <strong>for</strong> rp== (1+ 2) eV, which is welI<br />

s<strong>at</strong>isfied if d~ (10+ 15) Á. At larger distances, however, local effects start to be negligible, .<br />

the only significant frequency is ws, and eq. (1) is a good approxim<strong>at</strong>ion to the self-energy.<br />

- Notice th<strong>at</strong> the screened exchange self-energy is a very localized interaction. This<br />

suggests to write eq. (1) as folIows:<br />

2(r, r'; EF)==2sx(r,r')+ll'ch(r=r';<br />

w=O, n(z»G(r-r')+<br />

+ UXCh(r= r'; w= O)'-!XCh(r= r'; w=O, n(z»} G(r- r') , (2)<br />

where we have introduced the Coulomb-holeinteraction associ<strong>at</strong>ed with the local density<br />

n(z). The first two terms of eq. (2) are tbe local expression of the self-energy <strong>for</strong> an electron<br />

gas having the homogeneousdensity n(z). This \ocal contribution is a good approxim<strong>at</strong>ion 10<br />

the local potential calcul<strong>at</strong>ed by using the local density <strong>for</strong>malismoAccordingly, the last two<br />

terms given by eq. (2) represent the spéci:ficcontribution associ<strong>at</strong>ed with the nonlocal selfenergy.<br />

This means' th<strong>at</strong> the results calcul<strong>at</strong>ed above <strong>for</strong> tbe local potential have to be<br />

corrected by the folIo"wg nonlocal <strong>for</strong>m: .<br />

vru(z) = 1{XCh(Z'= z; w = O)- l:Ch(ZI= z; w = O, n(z»} . (3)<br />

_._ _ ____"'0. .__ .. . ,.- -.-.-.-.--. - - _. - -_.-


-- - - -- - --<br />

~ ....-----.--.--.-- .-<br />

; LETIERS P. DE ANDRÉS et <strong>at</strong>.: A BARRIER POTENTIAL CALCULATION FORTUNNELING ELECTRONSETC. 105<br />

2<br />

....-<br />

Au ""'<br />

With eq. (3), the problem oí calcul<strong>at</strong>ing the nonlocal potential <strong>at</strong> the interface is reduced to<br />

obtaining the self-interaction oí a st<strong>at</strong>ic charge. Obviously, in the limit d~ 00, the local<br />

terms are negligible and lEch(Z' = z; W = O) goes to the classical image potential.<br />

}JCh(Z' = Z; w = O) has been calcul<strong>at</strong>ed using an infinite barrier model [14, 15] íor each metal,<br />

and by introducing a small uni<strong>for</strong>m charge <strong>at</strong> the interface, trying to simul<strong>at</strong>e the screening<br />

effect associ<strong>at</strong>ed with the tails oí the electronic st<strong>at</strong>es (see fig. 5). The infinite barrier íor<br />

each metal has been loc<strong>at</strong>ed imposing the condition th<strong>at</strong> its iInage plane coincides with the<br />

lrnown image plane oí the metal [11]. On the other hand, the small uni<strong>for</strong>m electroniccharge<br />

has been chosen to be the same as the one locally seen by the external charge. We have used<br />

the model shown in fig. 5 to calcul<strong>at</strong>e the self-energy, }JCh(Z = z'; w = O),oí a st<strong>at</strong>ic charge <strong>at</strong><br />

-;;20<br />

I I .E<br />

o<br />

- o<br />

w<br />

101 lz(K)<br />

j<br />

I<br />

lJ(K)<br />

-d Z=O d<br />

Fig. 5. - Model used to calcul<strong>at</strong>e the dielectric response in the Au-W interface. Different media are<br />

characterised by the bulk dielectric functions, t¡(k), t2(k) and t3(k).<br />

Au<br />

ll(K)<br />

,s equal to<br />

~lectronic<br />

e surface<br />

.d, in the<br />

- y2nl':?,<br />

Titten as<br />

f;~":' .~<br />

t:: ~ .<br />

ch J.\ 'ell<br />

!egligible,<br />

f-energy.<br />

ion. This<br />

(2)<br />

U density<br />

1electron<br />

m<strong>at</strong>ion to<br />

~ last two<br />

local self-<br />

¡ve to be<br />

(3)<br />

a given positionz; this is equivalentto calcul<strong>at</strong>ingthe electrost<strong>at</strong>icpotentialinducedby a<br />

unit charge <strong>at</strong> Z on itself. This has been per<strong>for</strong>med by using, <strong>for</strong> metal! and 2, the infiniiebarrier<br />

model oí reí. [14], and íor medium 3 a semi-classicalinfinitebarrier modelwith the<br />

Lindhard dielectric function corresponding to the electronic density <strong>at</strong> the point z. We<br />

remark th<strong>at</strong>, in this calcul<strong>at</strong>ion, we extend the different region 1, 2 and 3 oífig. 5 to infinite<br />

uni<strong>for</strong>m media, each one having fictitious charges adjusted to give the adequ<strong>at</strong>e electrost<strong>at</strong>ic<br />

boundary conditions <strong>at</strong> each interface (details will be published elsewhere; see also reí. [7],<br />

chapter 5).<br />

We mention th<strong>at</strong> we can only expect the simple model used here to be a good<br />

approxim<strong>at</strong>ion íor points not to close to the metal surfaces. In our calcul<strong>at</strong>ion, we have.only<br />

obtained the nonlocal contribution <strong>at</strong> the points oí the central region as shown in fig. 2, 3 and<br />

4; then, we have joined smoothly the calcul<strong>at</strong>ed total potential to the local potential near the<br />

two surfaces (note th<strong>at</strong> íor z approaching a surface, .ECh(z'= z; w = O) goes to<br />

}JCh(Z'= Z;w = O,n(z») and the nonlocal contribution goes to zero).<br />

The results oí our calcul<strong>at</strong>ions are shown in fig. 2, 3 and 4. In these figures we show the<br />

local interface potential, and the total potential, obtained by adding to the localpotential the<br />

nonlocal contribution. Notice th<strong>at</strong> in the three cases presented in this paper, we find a small<br />

wiggle in the total potential near the middle oí the interface; tbis is an effect which in our<br />

model is due to the assymetry oí the interface, since W and Au have been modelled by<br />

different electronic densities. In particular, we find the nonlocal correction to the total<br />

potential to be more important <strong>at</strong> regions oí low electronic densities: this appears not exactly<br />

<strong>at</strong> the middle oí the interface, but a little shifted toward the Au surface. A word oí caution<br />

should be added: these wiggles will be considerably reduced and may disappear if a selfconsistent<br />

calcul<strong>at</strong>ion is per<strong>for</strong>med. The main results coming out oí our calcul<strong>at</strong>ion are the<br />

following:i) the nonlocal contribution is always neg<strong>at</strong>ive and reduces tbe barrier height; ü)<br />

this nonlocal potential is a small fraction oí the correction due to the local poteiltial íor<br />

d = 5.4 Á. Nonlocal eííects do not change very much in the range oí values oí d taken in this<br />

paper; however, as local effects decrease with d, nonlocal effects become more important,


ft<br />

4t<br />

___o ...~_ _. _. k ' ~_.<br />

~..~~"f¡<br />

~:.::\<br />

\<br />

106 EUROPHYSICS LE'ITERS<br />

domin<strong>at</strong>ing the interface potential <strong>for</strong> large d. In particular, <strong>for</strong> d = 9.7 A, nonlocal effects<br />

overcome the localones. ili) Finally, our results show th<strong>at</strong> the barrier height is very much<br />

reduced <strong>for</strong> the distances considered in this paper.<br />

We have also calcul<strong>at</strong>ed the effective barrier by means of the following equ<strong>at</strong>ion:<br />

b<br />

J~j(z) dz =(b - a) ~!ff ,<br />

where ~(z) is the interface potential, and b and a are defined by the crossing of ~(z) and the<br />

Fermi leve!. We have obtained <strong>for</strong> ~effthe following values: 1.2 eV, 1.9 eV and 2.4 eV <strong>for</strong><br />

d = 5.4 A, 7.6 A and 9.7 A, respectively. These barriers are in very good agreement with<br />

the ones given in the fig. 2 ofref. [4]ifwe assume th<strong>at</strong> the barrier collapses <strong>for</strong> do=3.5 A (in<br />

ref. [4] it was found do=3.4 A).<br />

In conclusion, we have given a simple method to calcul<strong>at</strong>e the interface potential <strong>for</strong><br />

tunneling electrons between two surface metals. Our results show the importance of<br />

introducing local and nonlocal effects to obtain the interface barrier. Image potential is the<br />

dominant effect <strong>for</strong> distances between metal surfaces gre<strong>at</strong>er than 10 A. For smaller<br />

distances local effects control the interface barrier.<br />

***<br />

Partial financialsupport of this work is gr<strong>at</strong>efu1ly acknowledged to the USA-Spain Joint<br />

Committee <strong>for</strong> Scientific and Technological Cooper<strong>at</strong>ion and the C.A.I.C.Y.T. One of us<br />

(PME) gr<strong>at</strong>efully acknowledges help and support from Iberduero SA and the March<br />

Found<strong>at</strong>ion.<br />

(4)<br />

ị ",,<<br />

tf<br />

~,~<br />

.~r<br />

:~.;<br />

~<br />

~.<br />

}<br />

!i.1.<br />

...<br />

...<br />

~ .~ ,f<br />

~ '~r<br />

i<br />

.<br />

.; t::"<br />

f.¡;:~<br />

REFERENCES<br />

[1] BINNINGG., ROHRERH., GERBERCH. and WEIBELE., Appl. Phys. Lett., 40 (1982)178;Phys.<br />

Rev. Lett., 49 (1982)57.<br />

[2] BINNIGG., FRANKK. H.) FUCHSB., GARCÍAN., REIHL B., ROHRERH., SALVANF. and<br />

. WILLIAMSA. R., Phys. Rev. Lett., 55 (1985)991; ECHENIQUEP. M., FLORESF. and SOLSF.,<br />

Phys. Rev. Lett., 55 (1985)2348.<br />

[3] TERSOFFJ. and HAMMAND. R., Phys. Rev. Lett., 50 (1983) 1999.<br />

[4] BINl\'IGG., GARCÍAN., ROHRERH., SOLERJ. M. and FLORESF., Phys. Rev. B, 30 (1984)4816.<br />

[5] GARCÍAN., OCALC. and FLORESF., Phys. Rev. Lett., 50 (1983)2002.<br />

[6] RITCHIER. H., Phys. Lett. A, 38 (1972)189;ECHENIQUEP. M., RITCHIER. H., BARBERA N.<br />

.and INKSONJ., Phys. Rev. B, 23 (1981)6468;MANSONJ. R. and RITCHIER. H., Phys. Rev. B, 24<br />

(1981)4867. .<br />

[7] GARcÍA-MOLINER F. and FLOims F., Introduction to the Theory of Solid Surfaces (Cambridge<br />

University Press, Cambridge) 1979.<br />

[8] GUNNARSSONO. and JONESR. O., Phys. Ser., 21 (1980)394;ALVARELLOSJ. E., TARAZONAP.<br />

and CHACÓNE., Phys. Rev. B, to appear.<br />

[9] OSSICTh'IS., BERTONIC. M. and GIES P., Europhys. Lett., to appear.<br />

[10] FERRANTEJ. and SMITHJ. R., Phys. Rev. B, 31 (1985)3427.<br />

[11] LANGN. D., Solid St<strong>at</strong>e Physics, Vol. 28 (Academic Press, New York, N. Y.) 1973.<br />

[12] HEDINL. and LUNDQVISTS. O., Solid St<strong>at</strong>e Physics, Vol.23 (AcademicPress, New York, N. Y.)<br />

1969, pp. 1-43. .<br />

[13] BÜTTIKERM. and LANDAUER., Phys. Rev. Lett., 49 (1982) 1739.<br />

[14] GARRIDOL. M., FLORESF. and GARcÍA-MoLINERF., J. Phys. F, 9 (1979) 1097.<br />

[15]RITCHIE R. H. and MARUSAKA., Surf. Sci., 4 (1966)234.<br />

:J.<br />

:-!<br />

'~1<br />

.;1<br />

~<br />

j ;

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!