01.11.2012 Views

Dr. Hanno Scharr

Dr. Hanno Scharr

Dr. Hanno Scharr

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dr</strong>. <strong>Hanno</strong> <strong>Scharr</strong><br />

Institute for Chemistry and Dynamics of the<br />

Geosphere (ICG), Institute III: Phytosphere<br />

Research Center Jülich GmbH<br />

52425 Jülich, Germany<br />

phone: +49 (0)2461-61-5701<br />

H.<strong>Scharr</strong>@fz-juelich.de<br />

Current position<br />

Research Associate (HGF-Nachwuchswissenschaftler)<br />

Date and place of birth<br />

Sep 10, 1969 in Heilbronn, Germany<br />

Nationality and Status<br />

German, married, 2 sons<br />

Education<br />

Ruprecht-Karls-University Heidelberg<br />

- Image Processing, 11/1996-05/2000<br />

Ph.D. (German <strong>Dr</strong>. rer. nat.) 05/2000<br />

Supervisors Prof. <strong>Dr</strong>. B. Jähne and Prof. <strong>Dr</strong>. G. Wittum<br />

- Physics, 10/1990 – 09/1996<br />

B.Sc. (German Vordiplom) 06/1992<br />

M.Sc. (German Diplom) 09/1996<br />

Supervisor Prof. <strong>Dr</strong>. B. Jähne<br />

- Sports and Sports Science, 10/1992-09/1999<br />

B.Sc. (German Zwischenprüfung) 06/1996<br />

Justinus-Kerner-Gymnasium Weinsberg<br />

- Abitur (Honours), 1989<br />

Professional Experience<br />

Senior Researcher at Intel Research, Santa Clara , USA, 08/2002 – 07/2003<br />

Research Associate (HGF-Nachwuchswissenschaftler) at Research Centre Jülich,<br />

Member of the Hermann von Helmholtz Association of National Research Centres<br />

(HGF), Jülich, Germany, since 08/2001 (paused for research stay at Intel)<br />

Research Associate at Interdisciplinary Center for Scientific Computing (IWR),<br />

Heidelberg University, Germany, 11/1999 – 07/2001<br />

Consulting as software engineer, Windows NT Application with MFC for Max-


Planck-Institute (MPI) for Nuclear Physics, Heidelberg, Germany 05/1998 – 06/1998<br />

Final year project (Diplomarbeit) at ABB Corporate Research Center, Heidelberg,<br />

Germany, 09/1995 – 08/1996<br />

Scientific assistant (Wissenschaftliche Hilfskraft) as system administrator at the<br />

Institute for Sports and Sports Science, Heidelberg University, Germany, 06/1995<br />

– 06/1996<br />

Consulting as software engineer for speech pattern recognition and databases at<br />

IBM Research Center, Heidelberg, Germany, 02/1994 – 06/1995<br />

Scholarship<br />

Graduate Scholarship, Center of Excellence (Graduiertenkolleg) ”Modeling and Scientific<br />

Computing in Mathematics and Natural Sciences”, at Interdisciplinary Center<br />

for Scientific Computing IWR, University of Heidelberg, 11/1996 – 10/1999<br />

Reviewing<br />

International Conference on Computer Vision and Pattern Recognition, CVPR<br />

2003, CVPR 2004<br />

IEEE Transactions on Image Processing<br />

IEEE Transactions on Pattern Analysis and Machine Intelligence<br />

Computing and Visualization in Science<br />

Other Activities<br />

Trainer and backstage manager at the children and youth circus ”Peperoni e.V.” in<br />

Heidelberg (up to 120 children, honorary), 1993 – 2002<br />

Carer of youth groups (up to 1200 children, during summer holidays, honorary,<br />

Gaffenberg Heilbronn and other Groups), 1989 – 1998<br />

2


Research Interests<br />

My research is focused on quantitative image and image sequence processing as an<br />

analysis tool for scientific, medical and industrial data.<br />

In typical applications detailed and accurate physical, biological, medical or tech-<br />

nical models of the observed objects are available. Unfortunately, in most cases<br />

acquired images do not directly reveal the object properties of interest. In addi-<br />

tion scientific, medical or industrial imaging often operates at the sensor sensitivity<br />

limit and thus the acquired data suffers from noise. Therefore the general prob-<br />

lem addressed in my research is parameter estimation – i.e. measurement of object<br />

properties – in corrupted or noisy multidimensional data.<br />

Theoretical basis of this are fast, robust and highly accurate estimation algorithms<br />

as well as discretizations of partial differential equations and their statistical moti-<br />

vation. Parameter estimation here has to be understood as a physical measurement<br />

process where error analysis is of highest importance in order to quantify the re-<br />

liability of results. Systematical errors have to be minimized, e.g. by the use of<br />

optimized filters and the choice of appropriate numerical estimation schemes. Sta-<br />

tistical errors due to noise can be reduced by data-driven, nonlinear regularizations.<br />

For practical applicability of these schemes, and thus for medical or industrial rel-<br />

evance, a few requirements have to be met. Application specific parameters should<br />

be automatically set wherever possible in order to make high end methods available<br />

to non-expert users. This is a major challenge for most advanced algorithms, as<br />

optimal parameter settings are hard to find in nonlinear systems and, what is more,<br />

wrong settings can spoil the results. Besides this automation the algorithms have<br />

to be implemented reliable, fast, modular, well tested, well documented and they<br />

should be available on all standard computer platforms. Thus a mandatory inter-<br />

est is the development of a software library providing a flexible image processing<br />

toolbox.<br />

This generality and flexibility open a wide range of applications. Among my previ-<br />

ous and current projects are<br />

• motion estimation in fluorescent microscopic image sequences of muscle motor<br />

proteins (cooperation with Institute of Physiology and Pathophysiology, Univ.<br />

Heidelberg),<br />

• 2d texture analysis of paper formation (with ABB Research Center Heidel-<br />

berg),<br />

• 3d material testing of helicopter rotors in x-ray tomographic images (with<br />

Eurocopter),<br />

• quantitative growth and combined 3D-shape estimation of plant leaves (with<br />

Research Center Jülich GmbH)<br />

3


• motion estimation and quantitative growth analysis of plant roots in mul-<br />

tichannel, volumetric confocal microscopy image sequences (with Research<br />

Center Jülich GmbH),<br />

• 3d-shape reconstruction of plant leaves, wind generated water waves and in au-<br />

tomotive applications, using binocular and multi-camera data (with Research<br />

Center Jülich GmbH, Institute of Environmental Physics, Univ. Heidelberg<br />

and Bosch)<br />

• laser-diagnostic measurements and flame front analysis in combustion engines<br />

(with Institute for Physical Chemistry, Univ. Heidelberg),<br />

• reconstruction and analysis of silicon nano-structures in computer chips (with<br />

Intel Research and Brown University).<br />

Although they all fit seamlessly in the general framework of parameter estimation,<br />

the special demands of each of these projects gave fruitful input for the development<br />

of novel algorithms. Thus a major part of my image processing research is the tight<br />

cooperation with scientists and engineers in a variety of disciplines, as apparent<br />

from my current and former positions and cooperations.<br />

4


Publications<br />

Theses<br />

[1] H. <strong>Scharr</strong>. Optimal Operators in Digital Image Processing. PhD thesis, Interdisciplinary<br />

Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg,<br />

2000.<br />

[2] H. <strong>Scharr</strong>. Digitale Bildverarbeitung und Papier: Texturanalyse mittels Pyramiden<br />

und Grauwertstatistiken am Beispiel der Papierformation. Master’s thesis,<br />

Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität Heidelberg,<br />

1996.<br />

Book Chapters<br />

[3] H. <strong>Scharr</strong> and B. Jähne. Optimization of spatio-temporal filter families for fast<br />

and accurate motion estimation. In Image Sequence Analysis to Investigate<br />

Dynamic Processes, Lecture Notes in Computer Science. Springer, accepted.<br />

[4] H. <strong>Scharr</strong>, H. Spies, D. Uttenweiler, and B. Jähne. Noise suppression for image<br />

sequence analysis by spatiotemporal anisotropic diffusion. In Image Sequence<br />

Analysis to Investigate Dynamic Processes, Lecture Notes in Computer Science.<br />

Springer, accepted.<br />

[5] H. Haussecker, D. Fleet, B. Jähne, C. Garbe, H. <strong>Scharr</strong>, and H. Spies. A new<br />

framework for imagesequence analysis: optical flow with physics-based brightness<br />

models. In Image Sequence Analysis to Investigate Dynamic Processes,<br />

Lecture Notes in Computer Science. Springer, accepted.<br />

[6] H. Spies, C. Garbe, H. Haussecker, H. <strong>Scharr</strong>, M. Wenig, and B. Jähne. Flexible<br />

regularization schemes. In Image Sequence Analysis to Investigate Dynamic<br />

Processes, Lecture Notes in Computer Science. Springer, accepted.<br />

[7] H. Spies, H. <strong>Scharr</strong>, M. Stöhr, R. Küsters, and T. Dierig. Motion in depth<br />

and volumetric image sequences. In Image Sequence Analysis to Investigate<br />

Dynamic Processes, Lecture Notes in Computer Science. Springer, accepted.<br />

[8] F. Raisch, H. <strong>Scharr</strong>, and B. Jähne. Combining local and global motion estimation<br />

via snakes. In Image Sequence Analysis to Investigate Dynamic Processes,<br />

Lecture Notes in Computer Science. Springer, accepted.<br />

[9] A. Walter, U. Schurr, S. Terjung, D. Schmundt, N. Kirchgessner, R. Küsters,<br />

H. Spies, and H. <strong>Scharr</strong>. Analysis of growth processes in plant leaves and plant<br />

roots. In Image Sequence Analysis to Investigate Dynamic Processes, Lecture<br />

Notes in Computer Science. Springer, accepted.<br />

[10] D. Uttenweiler, M. Vogel, T. Ober, H. Haussecker, H. <strong>Scharr</strong>, F. Raisch,<br />

C. Veigel, and R.H.A. Fink. The dynamics of motor proteins: motion analysis<br />

in high resolution fluorescence microscopic image sequences. In Image Sequence<br />

Analysis to Investigate Dynamic Processes, Lecture Notes in Computer Science.<br />

Springer, accepted.<br />

[11] B. Jähne, H. <strong>Scharr</strong>, and S. Körkel. Principles of filter design. In Handbook of<br />

Computer Vision and Applications. Academic Press, 1999.<br />

5


Refereed Articles<br />

[12] D. Uttenweiler, C. Weber, B. Jähne, R.H.A. Fink, and H. <strong>Scharr</strong>. Spatiotemporal<br />

anisotropic diffusion filtering to improve signal-to-noise ratios and object<br />

restoration in fluorescence microscopic image sequences. Journal of Biomedical<br />

Optics, 8(1):40–47, Jan. 2003. see also [13].<br />

[13] D. Uttenweiler, C. Weber, B. Jähne, R.H.A. Fink, and H. <strong>Scharr</strong>. Spatiotemporal<br />

anisotropic diffusion filtering to improve signal-to-noise ratios and object<br />

restoration in fluorescence microscopic image sequences. Virtual Journal of<br />

Biological Physics Research, Jan. 15 2003. see also [12].<br />

[14] H. <strong>Scharr</strong>, M. Felsberg, and P.E. Forssén. Noise adaptive channel smoothing<br />

of low-dose images. In Workshop Computer Vision for the Nano-Scale,<br />

CVPR2003, 2003.<br />

[15] H. <strong>Scharr</strong>, M.J. Black, and H.W. Haussecker. Image statistics and anisotropic<br />

diffusion. In ICCV 2003, 2003.<br />

[16] J. Weickert and H. <strong>Scharr</strong>. A scheme for coherence-enhancing diffusion filtering<br />

with optimized rotation invariance. Journal of Visual Communication and<br />

Image Representation, Special Issue On Partial Differential Equations In Image<br />

Processing, Computer Vision, And Computer Graphics, pages 103–118, 2002.<br />

[17] H. <strong>Scharr</strong> and R. Küsters. A linear model for simultaneous estimation of<br />

3d motion and depth. In IEEE Workshop on Motion and Video Computing,<br />

Orlando, Florida, USA, December 5-6 2002.<br />

[18] N. Kirchgeßner, H. <strong>Scharr</strong>, and U. Schurr. Robust vein extraction on plant leaf<br />

images. In 2nd IASTED International Conference Visualization, Imaging and<br />

Image Processing (VIIP 2002), Malaga, Spain, September 9-12 2002.<br />

[19] F. Raisch, H. <strong>Scharr</strong>, B. Jähne, and D. Uttenweiler. Active contour segmentation<br />

in noisy fluorescence image sequences. In 2nd IASTED International<br />

Conference Visualization, Imaging and Image Processing (VIIP 2002), Malaga,<br />

Spain, September 9-12 2002.<br />

[20] H. <strong>Scharr</strong> and R. Küsters. Simultaneous estimation of motion and disparity:<br />

Comparison of 2-, 3- and 5-camera setups. In 2nd IASTED International<br />

Conference Visualization, Imaging and Image Processing (VIIP 2002), Malaga,<br />

Spain, September 9-12 2002.<br />

[21] M. Diehl, R. Küsters, and H. <strong>Scharr</strong>. Simultaneous estimation of local and<br />

global parameters in image sequences. In 4. Workshop Dynamic Perception,<br />

Bochum, Germany, 14-15 November 2002.<br />

[22] J. Gronki, C. Schulz, and H. <strong>Scharr</strong>. Correction of beam steering effects in 2dlaser-diagnostic<br />

measurements in combustion engines by image postprocessing.<br />

In Eurotherm 2002, Seminar 71: Visualization, imaging and data analysis in<br />

convective heat and mass transfer, Reims, France, October 28-30 2002.<br />

[23] U. Schurr, A. Walter, S. Wilms, H. Spies, N. Kirchgessner, H. <strong>Scharr</strong>, and<br />

R. Küsters. Dynamics of leaf and root growth. In 12th International Congress<br />

on Photosynthesis, PS 2001, Brisbane Convention & Exhibition Centre, Brisbane,<br />

Australia, 2001.<br />

6


[24] H. <strong>Scharr</strong> and D. Uttenweiler. 3d anisotropic diffusion filtering for enhancing<br />

noisy actin filament fluorescence images. In DAGM 2001, pages 69–75,<br />

September 2001.<br />

[25] N. Kirchgeßner, H. Spies, H. <strong>Scharr</strong>, and U. Schurr. Root growth measurements<br />

in object coordinates. In DAGM 2001, pages 231–238, September 2001.<br />

[26] N. Kirchgeßner, H. Spies, H. <strong>Scharr</strong>, and U. Schurr. Root growth analysis in<br />

physiological coordinates. In ICIAP 2001, September 2001.<br />

[27] H. Spies and H. <strong>Scharr</strong>. Accurate optical flow in noisy image sequences. In<br />

ICCV 2001, Vancouver, Canada, 2001.<br />

[28] H. <strong>Scharr</strong>, B. Jähne, S. Böckle, J. Kazenwadel, T. Kunzelmann, and C. Schulz.<br />

Flame front analysis in turbulent combustion. In DAGM 2000, Mustererkennung<br />

2000, Informatik aktuell, pages 325–332. Springer, 2000.<br />

[29] H. <strong>Scharr</strong> and J. Weickert. An anisotropic diffusion algorithm with optimized<br />

rotation invariance. In DAGM 2000, September 2000.<br />

[30] H. Spies, N. Kirchgeßner, H. <strong>Scharr</strong>, and B. Jähne. Dense structure estimation<br />

via regularised optical flow. In Vision, Modeling, And Visualization 2000,<br />

Saarbrücken, 2000. Max-Planck-Institut für Informatik, Saarbrücken, Germany<br />

in cooperation with IEEE Signal Processing Society, Gesellschaft für Informatik<br />

GI.<br />

[31] N. Kirchgeßner, H. <strong>Scharr</strong>, and U. Schurr. 3D-Modellierung von<br />

Pflanzenblättern mittels eines Depth-from-Motion Verfahrens. In DAGM 2000,<br />

pages 381–388, 2000.<br />

[32] B. Jähne, H. Haußecker, H. <strong>Scharr</strong>, H. Spies, D. Schmundt, and U. Schurr.<br />

Study of dynamical processes with tensor-based spatiotemporal image processing<br />

techniques. In Computer Vision - ECCV ’98, pages 322–336. Springer-<br />

Verlag, 1998.<br />

[33] H. <strong>Scharr</strong>, S. Körkel, and B. Jähne. Numerische Isotropieoptimierung von<br />

FIR-Filtern mittels Querglättung. In DAGM’97, pages 367–374, 1997.<br />

Technical Reports<br />

[34] H. <strong>Scharr</strong>. Optimization of spatiotemporal filter families for extended optical<br />

flow. Technical report, Intel Research, 2003.<br />

[35] M. Felsberg, H. <strong>Scharr</strong>, and P.E. Forssén. B-spline channel representation.<br />

Technical report, Computer Vision Lab, Linköping, Sweden, 2002.<br />

[36] H. <strong>Scharr</strong>, R. Küsters, A. Cavallo, S. Terjung, B. Jähne, and U. Schurr. Extended<br />

optical flow in volume sequences: Unified framework and performance<br />

evaluation. Technical report, DFG research unit ”Image Sequence Analysis to<br />

Investigate Dynamic Processes”, 2002.<br />

[37] H. <strong>Scharr</strong>. Binokulare Stereoverfahren: Ein Überblick mit dem Schwerpunkt<br />

schnelle Algorithmen und Diskontinuitäten. Technical report, DFG research<br />

unit ”Image Sequence Analysis to Investigate Dynamic Processes”, 2001.<br />

[38] H. <strong>Scharr</strong>. Optimal separable interpolation of color images with bayer array<br />

format. Technical report, DFG research unit ”Image Sequence Analysis to<br />

Investigate Dynamic Processes”, 2000.<br />

7


[39] H. Spies and H. <strong>Scharr</strong>. Robust optical flow computation in noisy image sequences<br />

by anisotropic diffusion. Technical report, DFG research unit ”Image<br />

Sequence Analysis to Investigate Dynamic Processes”, 2000.<br />

[40] J. Weickert and H. <strong>Scharr</strong>. A scheme for coherence-enhancing diffusion filtering<br />

with optimized rotation invariance. Technical report, Fakultät für Mathematik<br />

und Informatik, Universität Mannheim, 2000.<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!