05.09.2014 Views

MA/6/4/003: The use of quarry fines in hydraulically bound mixtures ...

MA/6/4/003: The use of quarry fines in hydraulically bound mixtures ...

MA/6/4/003: The use of quarry fines in hydraulically bound mixtures ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>MA</strong>/6/4/<strong>003</strong>: <strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong><br />

<strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> for construction<br />

applications<br />

Technical Report


Authorised by:<br />

Date: 17 March 2008<br />

Dr Joanne W<strong>in</strong>t, Senior Consultant<br />

Unless otherwise stated, all photographs courtesy <strong>of</strong> Scott Wilson.<br />

This document has been prepared <strong>in</strong> accordance with the scope <strong>of</strong> Scott Wilson's appo<strong>in</strong>tment with its<br />

client and is subject to the terms <strong>of</strong> that appo<strong>in</strong>tment. It is addressed to and for the sole and<br />

confidential <strong>use</strong> and reliance <strong>of</strong> Scott Wilson's client. Scott Wilson accepts no liability for any <strong>use</strong> <strong>of</strong><br />

this document other than by its client and only for the purposes for which it was prepared and<br />

provided. No person other than the client may copy (<strong>in</strong> whole or <strong>in</strong> part) <strong>use</strong> or rely on the contents <strong>of</strong><br />

this document, without the prior written permission <strong>of</strong> the Company Secretary <strong>of</strong> Scott Wilson Ltd. Any<br />

advice, op<strong>in</strong>ions, or recommendations with<strong>in</strong> this document should be read and relied upon only <strong>in</strong> the<br />

context <strong>of</strong> the document as a whole. <strong>The</strong> contents <strong>of</strong> this document do not provide legal or tax advice<br />

or op<strong>in</strong>ion.<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

EXECUTIVE SUM<strong>MA</strong>RY<br />

This report details the laboratory research undertaken <strong>in</strong> support <strong>of</strong> the guidance document for<br />

the <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> construction applications, specifically with<strong>in</strong> <strong>hydraulically</strong> <strong>bound</strong><br />

<strong>mixtures</strong> (HBMs).<br />

<strong>The</strong> work was funded by the M<strong>in</strong>erals Industry Susta<strong>in</strong>able Technologies (MIST) programme <strong>in</strong><br />

accordance with <strong>The</strong>matic Priority 4: Optimis<strong>in</strong>g Resource Value (<strong>quarry</strong> product application).<br />

A performance based approach has been adopted to evaluate the <strong>in</strong>corporation <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong><br />

<strong>in</strong> HBMs. Five <strong>quarry</strong> dusts were sourced from locations throughout the UK, represent<strong>in</strong>g a<br />

range <strong>of</strong> lithologies and material characteristics. <strong>The</strong> methodology comprised prelim<strong>in</strong>ary<br />

classification, test<strong>in</strong>g, iterative mixture design, mechanical performance and durability test<strong>in</strong>g.<br />

<strong>The</strong> test<strong>in</strong>g suites adopted were based upon the current HA specifications and design guidance.<br />

Due to the particle size distribution <strong>of</strong> the <strong>quarry</strong> <strong>f<strong>in</strong>es</strong>, BS EN treated soil standards appear<br />

most appropriate for the specification <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> with<strong>in</strong> HBMs, covered by the follow<strong>in</strong>g BS<br />

EN 14227 (2006) ‘Hydraulically <strong>bound</strong> <strong>mixtures</strong> – Specifications’:<br />

• Part 10: soil treated with cement (SC);<br />

• Part 11: soil treated with lime (SL);<br />

• Part 12: soil treated with slag (SS);<br />

• Part 13: soil treated with hydraulic road b<strong>in</strong>der (SHRB); and<br />

• Part 14: soil treated with fly ash (SF).<br />

<strong>The</strong> laboratory based test<strong>in</strong>g programme shows that <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs <strong>of</strong>fer viable<br />

alternatives to traditionally <strong>use</strong>d primary aggregates for pavement foundations. Furthermore, the<br />

research illustrates that the alternative hydraulic b<strong>in</strong>ders are also potentially suitable. <strong>The</strong><br />

mechanical performance <strong>of</strong> an HBM is dependent on the follow<strong>in</strong>g factors:<br />

• Strength <strong>of</strong> the component aggregate;<br />

• Type and quantity <strong>of</strong> b<strong>in</strong>der <strong>use</strong>d;<br />

• Water content and material density; and<br />

• Cur<strong>in</strong>g regime and age <strong>of</strong> the test specimen.<br />

<strong>The</strong> durability <strong>of</strong> selected HBMs was evaluated <strong>in</strong> accordance with Series 800 <strong>of</strong> the<br />

Specification for Highways Works. All these <strong>mixtures</strong> proved durable under the test conditions.<br />

A guidance document accompanies this technical report. This provides background and<br />

signposts to enable <strong>use</strong>rs to access <strong>in</strong>formation and relevant <strong>in</strong>dustry guidance, standards and<br />

specification documents.<br />

D115551 17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

ACKNOWLEDGEMENTS<br />

<strong>The</strong> work described <strong>in</strong> this research report was carried out by Scott Wilson Limited. <strong>The</strong> Project<br />

has been supported by:<br />

Bob Allen – Aggregate Industries<br />

Brian James – <strong>The</strong> Quarry Products Association<br />

David Knott – Aggregate Industries<br />

Gordon Dick – Aggregate Industries<br />

Helen Bailey – Aggregate Industries<br />

Nizar Ghazireh – Tarmac<br />

Robert Gosl<strong>in</strong>g – Lafarge<br />

Steve Mee – Lafarge<br />

Tony Parry – <strong>The</strong> University <strong>of</strong> Nott<strong>in</strong>gham<br />

D115551 17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

CONTENTS<br />

1. Introduction....................................................................................................................... 1<br />

2. Project aim ....................................................................................................................... 1<br />

3. Project objectives ............................................................................................................. 1<br />

4. Background ...................................................................................................................... 1<br />

4.1 Hydraulically <strong>bound</strong> <strong>mixtures</strong> ........................................................................................... 1<br />

4.2 Types <strong>of</strong> HBM................................................................................................................... 2<br />

5. Methodology..................................................................................................................... 2<br />

5.1 Sourc<strong>in</strong>g <strong>of</strong> materials ....................................................................................................... 2<br />

5.1.1 B<strong>in</strong>ders and activators............................................................................................. 4<br />

5.2 Aggregate classification ................................................................................................... 4<br />

5.2.1 Introduction.............................................................................................................. 4<br />

5.2.2 Particle size distribution (PSD)................................................................................ 4<br />

Petrographic description ........................................................................................................ 5<br />

5.2.3 Atterberg limits test<strong>in</strong>g ............................................................................................. 5<br />

5.2.4 Water absorption and particle density..................................................................... 5<br />

5.3 Mixture design.................................................................................................................. 6<br />

5.3.1 Test matrix............................................................................................................... 6<br />

5.4 Specimen manufacture .................................................................................................... 7<br />

5.5 Storage and cur<strong>in</strong>g........................................................................................................... 8<br />

5.6 Performance and durability test<strong>in</strong>g................................................................................... 8<br />

5.6.1 Introduction.............................................................................................................. 8<br />

5.6.2 System One test<strong>in</strong>g ................................................................................................. 9<br />

5.6.3 System Two test<strong>in</strong>g ............................................................................................... 10<br />

5.6.4 Durability test<strong>in</strong>g .................................................................................................... 11<br />

6. Results ........................................................................................................................... 12<br />

6.1 Dolomitic limestone ........................................................................................................ 13<br />

6.2 Carboniferous limestone ................................................................................................ 14<br />

6.3 Andesite ......................................................................................................................... 15<br />

6.4 Granodiorite.................................................................................................................... 16<br />

6.5 Sandstone ...................................................................................................................... 17<br />

6.6 Silt .................................................................................................................................. 18<br />

6.7 Summary........................................................................................................................ 19<br />

6.8 Durability test<strong>in</strong>g............................................................................................................. 21<br />

7. Conclusions.................................................................................................................... 22<br />

8. References and bibliography ......................................................................................... 24<br />

D115551 17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

GLOSSARY<br />

Activator<br />

Material which <strong>in</strong>itiates hydraulic reactions<br />

ASS<br />

Air-cooled steel slag<br />

BS EN<br />

European standard published by the British Standards Institution (BSI)<br />

CBGM<br />

Cement <strong>bound</strong> granular mixture<br />

CKD<br />

Cement kiln dust<br />

CEMI<br />

Class 42.5N Portland Cement<br />

CEMII<br />

Class 32.5N Portland Cement (blended with PFA)<br />

DMRB7 Design Manual for Roads and Bridges, Volume 7<br />

E c<br />

Modulus <strong>of</strong> elasticity (E) determ<strong>in</strong>ed <strong>in</strong> compression, expressed <strong>in</strong><br />

GigaPascals (GPa)<br />

FABM<br />

Fly ash <strong>bound</strong> mixture<br />

GBS<br />

Granulated blastfurnace slag<br />

GGBS<br />

Ground granulated blastfurnace slag<br />

HBM<br />

Hydraulically <strong>bound</strong> mixture<br />

HL<br />

Hydrated lime [Ca(OH) 2 ] also known as slaked hydrated lime<br />

Hydraulic B<strong>in</strong>der Cement<strong>in</strong>g materials which harden <strong>in</strong> the presence <strong>of</strong> water<br />

MCHW1 Manual <strong>of</strong> Contract Documents for Highway Works Volume 1:<br />

specification for highway works<br />

MPa MegaPascal equivalent to 1 Newton per millimetre squared (1 N/mm 2 )<br />

OWC<br />

Optimum water content<br />

Pozzolanic material A siliceous or siliceous and alum<strong>in</strong>ous material which, by itself,<br />

possesses no cementitious properties but will chemically react with<br />

lime to produce materials with cementitious properties.<br />

PI<br />

Plasticity <strong>in</strong>dex<br />

PFA<br />

Pulverized-fuel ash<br />

R c<br />

Compressive strength<br />

R c vs<br />

Coefficient <strong>of</strong> volumetric stability<br />

R it<br />

Indirect tensile strength<br />

R c imm<br />

Compressive strength after immersion <strong>in</strong> water<br />

R t<br />

Tensile strength<br />

Series 800<br />

Series 800 <strong>of</strong> MCHW1<br />

SBM<br />

Slag <strong>bound</strong> mixture<br />

SC<br />

Soil cement<br />

SFA<br />

Soil treated by fly ash<br />

SH<br />

Soil treated by hydraulic b<strong>in</strong>der<br />

SHRB<br />

Soil treated by hydraulic road b<strong>in</strong>der<br />

SL<br />

Soil treated by lime<br />

SROH<br />

Specification for the re<strong>in</strong>statement <strong>of</strong> open<strong>in</strong>gs <strong>in</strong> highways<br />

SS<br />

Soil treated by slag<br />

D115551 17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

1. INTRODUCTION<br />

This research report has been produced by Scott Wilson Ltd for the M<strong>in</strong>eral Industry Research<br />

Organisation (MIRO). It presents the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> the research undertaken <strong>in</strong> l<strong>in</strong>e with the project<br />

aim and objectives. <strong>The</strong> report gives details <strong>of</strong> the sourc<strong>in</strong>g <strong>of</strong> aggregate materials and<br />

hydraulic b<strong>in</strong>ders/activators; mixture design; specimen preparation; mechanical performance;<br />

and durability test<strong>in</strong>g. <strong>The</strong> work was undertaken over a 10 month period from May 2007 to<br />

February 2008.<br />

2. PROJECT AIM<br />

<strong>The</strong> aim <strong>of</strong> this project is to identify and characterise <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> (HBMs)<br />

<strong>in</strong>corporat<strong>in</strong>g <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> suitable for <strong>use</strong> <strong>in</strong> construction applications. <strong>The</strong> project proposal was<br />

<strong>in</strong> response to the sixth call for proposals and <strong>in</strong> accordance with <strong>The</strong>matic Priority 4: Optimis<strong>in</strong>g<br />

resource value (<strong>quarry</strong> product application).<br />

<strong>The</strong> research will aid the development, and maximise the <strong>use</strong>, <strong>of</strong> <strong>quarry</strong> by-products <strong>in</strong> higher<br />

value construction applications.<br />

3. PROJECT OBJECTIVES<br />

<strong>The</strong> objectives <strong>of</strong> this project are:<br />

1. A review <strong>of</strong> exist<strong>in</strong>g studies and <strong>in</strong>formation sources;<br />

2. Laboratory research to characterise HBMs (<strong>in</strong> terms <strong>of</strong> stiffness, deformation, durability<br />

and mixture volumetric stability) and relate these to potential applications; and<br />

3. <strong>The</strong> dissem<strong>in</strong>ation <strong>of</strong> <strong>in</strong>formation to partners and <strong>in</strong>terested parties throughout the<br />

project, and the production <strong>of</strong> a guidance document and technical report detail<strong>in</strong>g the<br />

project f<strong>in</strong>d<strong>in</strong>gs.<br />

This report details the laboratory research carried out to achieve Objective 2, and discusses the<br />

results with reference to potential applications.<br />

A guidance document for <strong>use</strong> <strong>of</strong> HBMs with<strong>in</strong> construction applications (specifically with<strong>in</strong><br />

pavement foundations) accompanies this technical report.<br />

4. BACKGROUND<br />

4.1 HYDRAULICALLY BOUND MIXTURES<br />

A <strong>hydraulically</strong> <strong>bound</strong> mixture (HBM) can be def<strong>in</strong>ed as a mixture compris<strong>in</strong>g an aggregate with<br />

a controlled grad<strong>in</strong>g and one or more hydraulic b<strong>in</strong>ders that have been mixed together us<strong>in</strong>g a<br />

technique that produces a homogenous mixture (adapted from BS EN 14227-1: 2004). <strong>The</strong><br />

def<strong>in</strong>ition <strong>of</strong> HBMs can also be expanded to <strong>in</strong>clude treated and stabilised soils, s<strong>in</strong>ce the<br />

def<strong>in</strong>ition <strong>of</strong> a soil as taken from BS EN 14227-10 to BS EN 14227-14 is given as “natural,<br />

artificial or recycled material or any comb<strong>in</strong>ation <strong>of</strong> these components”.<br />

Hydraulic b<strong>in</strong>ders <strong>in</strong>clude cement, fly ash (pulverised-fuel ash) and slag (a by-product <strong>of</strong> iron<br />

smelt<strong>in</strong>g). Some <strong>of</strong> the b<strong>in</strong>ders require an activator such as lime or steel slag. Others simply<br />

require the addition <strong>of</strong> sufficient water. <strong>The</strong> rate <strong>of</strong> strength ga<strong>in</strong>, the ultimate strength and the<br />

overall performance <strong>of</strong> a HBM is dependent on its age, cur<strong>in</strong>g conditions and its component<br />

parts (compris<strong>in</strong>g the b<strong>in</strong>der and aggregate).<br />

Specifications for HBMs are covered <strong>in</strong> European harmonised standards, which were ma<strong>in</strong>ly<br />

published between 2004 and 2006. <strong>The</strong> standards for HBMs were subsequently <strong>in</strong>corporated<br />

<strong>in</strong>to the Specification for Highways Works Manual <strong>of</strong> Contract Documents for Highways Works<br />

Volume 1 (MCHW1 Series 800, 2007) and pavement foundation and structural pavement<br />

design guidance (DMRB7, Section 2, IAN73/06, 2006 and Part 3, HD26, 2006).<br />

D115551 Page 1<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

<strong>The</strong> revised specifications for HBMs and the <strong>in</strong>troduction <strong>of</strong> IAN73/06 and HD26 <strong>in</strong>to pavement<br />

design guidance now mean that the upper structural layers <strong>of</strong> a pavement are no longer<br />

<strong>in</strong>dependent <strong>of</strong> foundation quality. <strong>The</strong> quality <strong>of</strong> the pavement foundation is <strong>in</strong>corporated <strong>in</strong>to<br />

the pavement design by the <strong>in</strong>troduction <strong>of</strong> four foundation classes based upon a composite<br />

stiffness and resistance to permanent deformation. HBMs <strong>of</strong>fer the opportunity to construct<br />

foundations superior to traditional un<strong>bound</strong> granular ones. <strong>The</strong>refore, <strong>in</strong> the context <strong>of</strong> the<br />

overall pavement design, HBMs have both a technical and potential economic advantage over<br />

their un<strong>bound</strong> counterparts. An overview <strong>of</strong> the advantages and disadvantages <strong>of</strong> us<strong>in</strong>g HBMs<br />

is given <strong>in</strong> the guidance document ‘<strong>MA</strong>/6/4/<strong>003</strong>: <strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> <strong>hydraulically</strong> <strong>bound</strong><br />

<strong>mixtures</strong> for construction applications – Guidance document’.<br />

4.2 TYPES OF HBM<br />

HBMs are classified <strong>in</strong>to three groups accord<strong>in</strong>g to the type <strong>of</strong> hydraulic b<strong>in</strong>der <strong>use</strong>d <strong>in</strong> the<br />

mixture:<br />

• Cement <strong>bound</strong> granular mixture (CBGM);<br />

• Slag <strong>bound</strong> mixture (SBM); and<br />

• Fly ash <strong>bound</strong> mixture (FABM).<br />

Treated soils are also classed as HBMs, as def<strong>in</strong>ed <strong>in</strong> BS EN 14227: 2004 – Parts 10 to14.<br />

Here, soil is def<strong>in</strong>ed as “natural, artificial or recycled material or any comb<strong>in</strong>ation <strong>of</strong> these”. As <strong>in</strong><br />

the case <strong>of</strong> the previous HBMs they are def<strong>in</strong>ed by the type <strong>of</strong> hydraulic b<strong>in</strong>der <strong>use</strong>d:<br />

• Soil cement (SC);<br />

• Soil treated by hydraulic b<strong>in</strong>der (SH);<br />

• Soil treated by fly ash (SFA);<br />

• Soil treated by slag (SS);<br />

• Soil treated with hydraulic road b<strong>in</strong>der (SHRB); and<br />

• Soil treated by lime (SL).<br />

<strong>The</strong> top four treated soil options (b<strong>in</strong>ders) were considered most suitable for <strong>in</strong>clusion with<strong>in</strong> this<br />

research.<br />

5. METHODOLOGY<br />

5.1 SOURCING OF <strong>MA</strong>TERIALS<br />

A range <strong>of</strong> lithologies and material types were sourced for <strong>in</strong>clusion <strong>in</strong> the project. Locations <strong>of</strong><br />

the quarries are given <strong>in</strong> Figure 1. <strong>The</strong>y were selected beca<strong>use</strong> they <strong>of</strong>fer the greatest potential<br />

for utilisation <strong>in</strong> terms <strong>of</strong> the production volumes, and also allow assessment across a range <strong>of</strong><br />

material types.<br />

<strong>The</strong> material types sourced from the various UK wide locations were as follows:<br />

• Igneous rock – both Leicestershire sites;<br />

• Sedimentary rock (<strong>in</strong>clud<strong>in</strong>g limestones) – County Durham, South Wales and Lancashire;<br />

• Wash<strong>in</strong>gs from sand and gravel process<strong>in</strong>g – Staffordshire.<br />

In total, five different materials were <strong>use</strong>d as aggregates for the HBM mixture design and are<br />

shown <strong>in</strong> Figures 2 to 4.<br />

D115551 Page 2<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

Co. Durham<br />

Lancashire<br />

Staffordshire<br />

South<br />

Wales<br />

Leicestershire<br />

Figure 1: Locations <strong>of</strong> materials sourced for <strong>in</strong>clusion <strong>in</strong> the project.<br />

Figure 2: Andesite (left) and granodiorite (right).<br />

Figure 3: Dolomitic limestone (left) and carboniferous limestone (right).<br />

D115551 Page 3<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

Figure 4: Silt.<br />

5.1.1 B<strong>in</strong>ders and activators<br />

<strong>The</strong> follow<strong>in</strong>g pozzolanic b<strong>in</strong>ders and activators were sourced prior to design <strong>of</strong> the test matrix:<br />

• Hydrated lime (HL) – LIMBUX CL90-S lime was sourced from Buxton Lime Industry (BLI)<br />

conforms to BS EN 459-1 (2001);<br />

• Portland Cement (CEMI) – was sourced from BLI and conforms to BS EN 197-1 (2000),<br />

Class 42.5N cement;<br />

• Portland Cement (CEMII) – was sourced from Lafarge and conforms to BS EN 197-1<br />

(2000) Class 32.5N Portland cement.<br />

• Pulverized-fuel ash (PFA) – was sourced from Tilbury Power Station via the UK Quality Ash<br />

Association. <strong>The</strong> PFA was a siliceous conditioned fly ash generally compliant with BS EN<br />

14227-4, (2004), the exception be<strong>in</strong>g loss on ignition. This was reported to be <strong>in</strong> excess <strong>of</strong><br />

the upper limit <strong>of</strong> 10% by mass;<br />

• Cement Kiln Dust (CKD) – was sourced via Lafarge from their cement plant at Westbury.<br />

• Ground Granulated Blast Furnace Slag (GGBS) – was sourced through the Cementitious<br />

Slag Makers Association (CS<strong>MA</strong>). <strong>The</strong> material was classed as GG4 (Table A.4, Appendix<br />

A, BS EN 14227-2: 2004), us<strong>in</strong>g the ‘Bla<strong>in</strong>e’ f<strong>in</strong>eness test (ASTM C204-07, 2007).<br />

5.2 AGGREGATE CLASSIFICATION<br />

5.2.1 Introduction<br />

A petrographic description was conducted on each aggregate, together with laboratory<br />

characterisation compris<strong>in</strong>g particle size distribution (PSD), plasticity <strong>in</strong>dex (on material pass<strong>in</strong>g<br />

0.425 mm), particle density, and water absorption where appropriate. <strong>The</strong> PSD results were<br />

plotted aga<strong>in</strong>st the BS EN HBM envelopes to assess the suitability for <strong>in</strong>clusion <strong>in</strong> a HBM.<br />

5.2.2 Particle size distribution (PSD)<br />

<strong>The</strong> particle size distribution (PSD) was assessed for each aggregate source and <strong>in</strong>itially plotted<br />

aga<strong>in</strong>st the grad<strong>in</strong>g envelope for a CBGM, SBM and FABM as given <strong>in</strong> BS EN 14227- 1 to BS<br />

EN 14227-3 (2004). All the materials exceed the maximum limit for material pass<strong>in</strong>g the 0.063<br />

mm sieve. <strong>The</strong>refore, for their <strong>use</strong> to be permitted <strong>in</strong> Series 800 (MCHW1, 2007), they should<br />

be classed as a treated soil with the designation - SC (soil cement), SFA (soil treated by fly ash)<br />

or SS (soil treated by slag). <strong>The</strong> grad<strong>in</strong>g requirement for these materials is stated as “not less<br />

than 95% <strong>of</strong> the material pass<strong>in</strong>g a 63 mm sieve”, with which they all comply.<br />

D115551 Page 4<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


2<br />

4<br />

<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

<strong>The</strong> PSD analysis was carried out <strong>in</strong> accordance with BS EN 933-1 (1997). <strong>The</strong> results are<br />

presented <strong>in</strong> Figure 5.<br />

100<br />

90<br />

Dolomitic<br />

Limestone<br />

80<br />

Mass % pass<strong>in</strong>g<br />

70<br />

60<br />

50<br />

40<br />

Carboniferous<br />

Limestone<br />

Andesite<br />

30<br />

20<br />

Granodiorite<br />

10<br />

0<br />

Sandstone<br />

0.063<br />

0.212<br />

0.425<br />

6.3<br />

10<br />

20<br />

31.5<br />

Sieve size (mm)<br />

Figure 5: PSD <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> aggregates determ<strong>in</strong>ed <strong>in</strong> accordance with BS EN 933-1:<br />

1997.<br />

Petrographic description<br />

<strong>The</strong> petrographic description <strong>of</strong> each aggregate was conducted <strong>in</strong> accordance with BS EN 932-<br />

3: 1997 the materials were described as:<br />

• DOLOMITIC LIMESTONE occurr<strong>in</strong>g as silty f<strong>in</strong>e to coarse sand sized material with much<br />

f<strong>in</strong>e angular gravel;<br />

• CARBONIFEROUS LIMESTONE occurr<strong>in</strong>g as a grey to light brown sand sized material<br />

with some f<strong>in</strong>e angular gravel;<br />

• ANDESITE occurr<strong>in</strong>g as light grey silty f<strong>in</strong>e to coarse sand sized material with some f<strong>in</strong>e<br />

angular gravel;<br />

• GRANODIORITE occurr<strong>in</strong>g as p<strong>in</strong>k very silty f<strong>in</strong>e to coarse sand sized material with some<br />

f<strong>in</strong>e to medium angular gavel;<br />

• SANDSTONE occurr<strong>in</strong>g a slight brown silty f<strong>in</strong>e to coarse sand with some f<strong>in</strong>e to medium<br />

angular gravel; and<br />

• Light orange brown SILT with some f<strong>in</strong>e sand.<br />

5.2.3 Atterberg limits test<strong>in</strong>g<br />

Atterberg limit test<strong>in</strong>g was carried out <strong>in</strong> accordance with BS 1377-2: 1990. All the aggregates<br />

are classed as non-plastic.<br />

5.2.4 Water absorption and particle density<br />

<strong>The</strong> water absorption and particle density were determ<strong>in</strong>ed <strong>in</strong> accordance with the BS EN 1097-<br />

6: 2000 pyknometer method for aggregate between 0.063 mm and 4 mm for all the aggregates<br />

except for the sandstone and silt. Test<strong>in</strong>g was carried out on the 4 to 10 mm fraction <strong>of</strong> the<br />

sandstone. <strong>The</strong> silt was not tested due to its particle size distribution. <strong>The</strong> results are presented<br />

<strong>in</strong> Table 1.<br />

D115551 Page 5<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

Table 1: Water Absorption and Particle Density results (BS EN 1097-6: 2000).<br />

Determ<strong>in</strong>ation<br />

Apparent particle density<br />

(ρa)<br />

Particle density on ovendried<br />

basis (ρrd)<br />

Particle density on a<br />

saturated and surface dry<br />

basis (ρssd)<br />

Unit<br />

Dolomitic<br />

Limestone<br />

Carboniferous<br />

Limestone<br />

Aggregate<br />

Andesite Granodiorite Sandstone<br />

Mg/m 3 2.74 2.36 2.80 2.77 2.35<br />

Mg/m 3 2.58 2.32 2.74 2.75 2.34<br />

Mg/m 3 2.64 2.34 2.76 2.75 2.34<br />

Water absorption (WA 24) % 2.20 0.87 0.84 0.20 0.14<br />

Both aspects <strong>of</strong> this test are important to determ<strong>in</strong>e the potential durability and performance as<br />

a mixture. Water absorption <strong>of</strong> an aggregate affects the durability <strong>of</strong> the parent HBM; it is the<br />

<strong>in</strong>gress <strong>of</strong> water <strong>in</strong>to a pavement which can lead to degradation <strong>of</strong> the structure. <strong>The</strong> greater the<br />

particle density, the greater the density <strong>of</strong> the HBM; this can be associated with <strong>in</strong>creased<br />

mechanical performance.<br />

5.3 MIXTURE DESIGN<br />

A number <strong>of</strong> commonly <strong>use</strong>d and alternative b<strong>in</strong>ders such as cement kiln dust (CKD) were <strong>use</strong>d<br />

<strong>in</strong> the mixture trials. <strong>The</strong> BS EN standards for a treated soil do not specify b<strong>in</strong>der contents;<br />

however, the m<strong>in</strong>imum b<strong>in</strong>der contents are given <strong>in</strong> Series 800, these are presented <strong>in</strong> Table 2<br />

(taken from Table 8/10, Series 800 MCHW1, 2007).<br />

Table 2: M<strong>in</strong>imum b<strong>in</strong>der contents as specified for stabilised soils <strong>in</strong> the Series 800<br />

(MCHW1, 2007).<br />

HBM Designation<br />

M<strong>in</strong>imum b<strong>in</strong>der addition <strong>in</strong>clud<strong>in</strong>g activator where appropriate<br />

SC 3%<br />

SS 4%*<br />

SFA 6%** for dry FA or 8%** for conditioned FA<br />

Note: * <strong>in</strong>clud<strong>in</strong>g a m<strong>in</strong>imum <strong>of</strong> 1.5% by dry mass <strong>of</strong> the mixture for powder activators (e.g. lime or<br />

cement) and 2.5% by dry mass <strong>of</strong> the mixture for granular activators, where permitted. Percentage<br />

<strong>of</strong> activator to be <strong>in</strong>creased by 0.5% for ‘mix-<strong>in</strong>-plant’ us<strong>in</strong>g volume batch<strong>in</strong>g production and by 1%<br />

for ‘mix-<strong>in</strong>-place’ production.<br />

** <strong>in</strong>clud<strong>in</strong>g a m<strong>in</strong>imum <strong>of</strong> 2% lime by dry mass <strong>of</strong> the mixture as activator (2.5% for ‘mix-<strong>in</strong>-plant’<br />

us<strong>in</strong>g volume batch<strong>in</strong>g, 3% for ‘mix-<strong>in</strong>-place’ production). Where cement is <strong>use</strong>d <strong>in</strong>stead <strong>of</strong> lime,<br />

these percentages shall be <strong>in</strong>creased by 0.5%.<br />

Based on the particle size distribution and the m<strong>in</strong>imum b<strong>in</strong>der content specified <strong>in</strong> Series 800<br />

(MCHW1, 2007), a m<strong>in</strong>imum cement content <strong>of</strong> 3 % was adopted.<br />

5.3.1 Test matrix<br />

<strong>The</strong> aggregate and b<strong>in</strong>der/activator comb<strong>in</strong>ations assessed <strong>in</strong> the project are given <strong>in</strong> Table 3.<br />

<strong>The</strong> b<strong>in</strong>ders selected cover a range <strong>of</strong> materials, some <strong>of</strong> which are <strong>in</strong>dustrial by-products.<br />

D115551 Page 6<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

Table 3: Test matrix <strong>of</strong> aggregate b<strong>in</strong>der/activator comb<strong>in</strong>ations.<br />

Aggregate<br />

Grad<strong>in</strong>g<br />

(mm)<br />

No<br />

B<strong>in</strong>der<br />

B<strong>in</strong>der<br />

CEMI CEMII PFA/HL PFA/CKD PFA/CKD/<br />

HL<br />

CKD<br />

GGBS/HL<br />

Dolomitic<br />

Limestone<br />

0/5 - - Y Y Y Y Y -<br />

Carboniferous<br />

Limestone<br />

0/5 Y Y - - - - Y -<br />

Andesite 0/5 Y Y - Y - - Y Y<br />

Granodiorite 0/5 - Y Y - - - - -<br />

Sandstone 0/10 - Y Y - - - - -<br />

Silt < 0.063 - Y - - - - - Y<br />

5.4 SPECIMEN <strong>MA</strong>NUFACTURE<br />

<strong>The</strong> HBM specimens were manufactured <strong>in</strong> accordance with BS EN 13286-51: 2004. Cyl<strong>in</strong>drical<br />

specimens for System One and System Two performance test<strong>in</strong>g (Section 5.2) were made<br />

us<strong>in</strong>g l<strong>in</strong>ers <strong>of</strong> 4 mm thick ridged plastic pipe with a nom<strong>in</strong>al diameter <strong>of</strong> 102 mm. <strong>The</strong>y were cut<br />

to a length <strong>of</strong> 204 mm, giv<strong>in</strong>g a height to diameter (H:D) ratio <strong>of</strong> 2:1. Specimens for volumetric<br />

stability test<strong>in</strong>g had a H:D ratio <strong>of</strong> 1:1.<br />

<strong>The</strong> aggregate samples were stored <strong>in</strong> either one tonne dropsacks or metal stillages at Scott<br />

Wilson’s pavement test facility. Sub-sampl<strong>in</strong>g for each mixture was carried out us<strong>in</strong>g fractional<br />

shovell<strong>in</strong>g <strong>in</strong> accordance with BS EN 932-2: 1999. For performance test<strong>in</strong>g, each mix typically<br />

comprised ten 2:1 (H:D) specimens. <strong>The</strong> relative proportions <strong>of</strong> the HBM constituents<br />

(aggregate and b<strong>in</strong>der) were calculated on a dry weight basis to achieve the desired percentage<br />

composition for the mix.<br />

<strong>The</strong> aggregate and b<strong>in</strong>der/activator(s) were added to an electric drum mixer and blended to<br />

ensure a homogenous mix prior to the addition <strong>of</strong> water (to the target water content). <strong>The</strong> mixer<br />

was left runn<strong>in</strong>g for five m<strong>in</strong>utes to ensure complete mix<strong>in</strong>g.<br />

<strong>The</strong> specimen l<strong>in</strong>ers were fitted with a collar, to prevent damage to the l<strong>in</strong>er dur<strong>in</strong>g compaction,<br />

then fixed <strong>in</strong>to a compaction frame. <strong>The</strong> compaction hammer was supported on a frame,<br />

m<strong>in</strong>imis<strong>in</strong>g manual contact dur<strong>in</strong>g compaction, hence reduc<strong>in</strong>g the risk <strong>of</strong> vibration white f<strong>in</strong>ger<br />

to the operator. This method was also found to improve reproducibility between operators. <strong>The</strong><br />

specimens were constructed <strong>in</strong> approximately 50 mm lifts.<br />

Follow<strong>in</strong>g the placement <strong>of</strong> the loose material <strong>in</strong> the l<strong>in</strong>er, care was taken to avoid any<br />

segregation, which has been found to result <strong>in</strong> the formation <strong>of</strong> voids around the perimeter <strong>of</strong><br />

the specimen. <strong>The</strong> vibrat<strong>in</strong>g hammer was lowered onto the sample. Additional weights were<br />

then applied prior to compaction <strong>of</strong> that layer. <strong>The</strong> dead load mass <strong>of</strong> the vibrat<strong>in</strong>g hammer,<br />

shank, compaction foot and additional weights was 40 kg. <strong>The</strong> diameter <strong>of</strong> the compaction foot<br />

was 96 mm. <strong>The</strong> electric vibrat<strong>in</strong>g hammer <strong>use</strong>d was compliant with BS EN 13286-4: 2<strong>003</strong>.<br />

Each layer was compacted for sixty seconds, measured us<strong>in</strong>g an electronic timer. This was<br />

found to be a suitable period <strong>of</strong> time to ensure compaction <strong>of</strong> the material to refusal. Prior to<br />

placement <strong>of</strong> each layer, the top <strong>of</strong> the previous layer was scarified to ensure <strong>in</strong>terlock between<br />

the layers. Follow<strong>in</strong>g compaction <strong>of</strong> the f<strong>in</strong>al layer, the collar was removed and the specimen<br />

taken out <strong>of</strong> its frame. Excess material was struck <strong>of</strong>f with a straight edge and voids were filled<br />

with representative material. To f<strong>in</strong>ish the specimens, a 150 mm diameter compaction foot was<br />

employed to achieve full surface compaction. A steel float was then <strong>use</strong>d to ensure a smooth<br />

level f<strong>in</strong>ish was achieved on the specimen ends. This additional care was undertaken to avoid<br />

the need to cap the ends <strong>of</strong> the specimen. <strong>The</strong> specimens were then sealed with cl<strong>in</strong>g film and<br />

tape prior to storage for cur<strong>in</strong>g.<br />

D115551 Page 7<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

5.5 STORAGE AND CURING<br />

All specimens were sealed and cured <strong>in</strong> their l<strong>in</strong>ers. No specimens recorded a loss <strong>of</strong> more<br />

than 2% mass between manufacture and immediately prior to test<strong>in</strong>g. <strong>The</strong> samples were all<br />

stored vertically, under different conditions depend<strong>in</strong>g on the cur<strong>in</strong>g regime required.<br />

<strong>The</strong> follow<strong>in</strong>g two cur<strong>in</strong>g regimes were adopted dur<strong>in</strong>g the test<strong>in</strong>g programme:<br />

• Sealed cur<strong>in</strong>g at 20°C or 40°C (shown <strong>in</strong> Figure 6) was undertaken <strong>in</strong> a temperature<br />

controlled area <strong>of</strong> the laboratory or calibrated oven, respectively; and<br />

• Immersed cur<strong>in</strong>g <strong>in</strong> temperature controlled concrete cur<strong>in</strong>g tanks at either 20°C or 40°C.<br />

<strong>The</strong> water tanks were <strong>in</strong>sulated and covered <strong>in</strong> order to limit temperature fluctuations.<br />

Figure 6: Specimens cured at 20°C (left) and 40°C (right).<br />

5.6 PERFOR<strong>MA</strong>NCE AND DURABILITY TESTING<br />

5.6.1 Introduction<br />

<strong>The</strong> mechanical performance classification system for HBMs conta<strong>in</strong>ed with<strong>in</strong> Series 800<br />

(MCHW1, 2007) and European Standards (BS EN 13286-41 to 43, 2<strong>003</strong>) can be divided <strong>in</strong>to<br />

two systems:<br />

• System One – based on an <strong>in</strong>direct method such as compressive strength, R c ; and<br />

• System Two – based on a more fundamental comb<strong>in</strong>ation <strong>of</strong> tensile strength, R t , and<br />

modulus <strong>of</strong> elasticity, E c .<br />

<strong>The</strong> route for assess<strong>in</strong>g mechanical performance <strong>in</strong> the laboratory is shown <strong>in</strong> Figure 7.<br />

<strong>The</strong> laboratory performance test<strong>in</strong>g <strong>of</strong> HBMs <strong>in</strong> this project <strong>use</strong>d both System One (R C ) and<br />

System Two (E C and R t ) test<strong>in</strong>g methodologies. This allowed the mechanical performance <strong>of</strong><br />

each HBM to be evaluated us<strong>in</strong>g the more traditional compressive strength test, along with the<br />

derivation <strong>of</strong> a foundation class from the modulus <strong>of</strong> elasticity and tensile strength (IAN73,<br />

2006).<br />

D115551 Page 8<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

Classification Test<strong>in</strong>g<br />

Mechanical Test<strong>in</strong>g<br />

System One<br />

System Two<br />

Assesses:<br />

Compressive strength [BS EN 13286-41:<br />

2<strong>003</strong>]. Specimens <strong>of</strong> a height to diameter<br />

(h:D) ratio <strong>of</strong> 2:1 or 1:1 are subjected to a<br />

uniform load<strong>in</strong>g so failure occurs between 30<br />

and 60 seconds<br />

Assesses:<br />

Direct tensile strength (BS EN 13286-41:<br />

2<strong>003</strong>) or Indirect tensile strength [BS EN<br />

13286-42: 2<strong>003</strong>] and Modulus <strong>of</strong> Elasticity<br />

[BS EN 13286-43: 2<strong>003</strong>].<br />

Requires specimens <strong>of</strong> a h:D ratio <strong>of</strong> 2:1<br />

Durability Test<strong>in</strong>g<br />

In accordance with Series 800<br />

[SHW], NF P98 234-1:1992 and<br />

BS 812-124:1989<br />

If proved to be durable the HBM<br />

is suitable for <strong>use</strong> <strong>in</strong> a specified<br />

application area<br />

Figure 7: Route for the laboratory assessment <strong>of</strong> mechanical performance <strong>in</strong> the<br />

laboratory.<br />

5.6.2 System One test<strong>in</strong>g<br />

In accordance with BS EN 13286-41: 2<strong>003</strong>, compressive strength test<strong>in</strong>g was undertaken on<br />

cyl<strong>in</strong>ders <strong>of</strong> a 2:1 or 1:1 height to diameter ratio (H:D) (shown <strong>in</strong> Figure 8). Specimens were<br />

subjected to a cont<strong>in</strong>uous and uniform load<strong>in</strong>g so that failure occurred with<strong>in</strong> 30 to 60 seconds<br />

<strong>of</strong> the test commenc<strong>in</strong>g. Results outside this period were discarded. <strong>The</strong> strength datasets were<br />

expressed <strong>in</strong> MegaPascals (MPa). Compressive strength test<strong>in</strong>g at 28 days age, after cur<strong>in</strong>g at<br />

20 or 40°C, forms the simplest system for classify<strong>in</strong>g the performance <strong>of</strong> HBMs. However,<br />

correlations to pavement design parameters are required to predict likely performance.<br />

<strong>The</strong>refore, the Highway Agency pavement foundation performance test<strong>in</strong>g and design<br />

document (IAN73, 2006) <strong>in</strong>troduced the elastic modulus test (Figure 9) to assist <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

a design <strong>in</strong>put parameter (essentially a long term layer stiffness value), with the compressive<br />

strength test<strong>in</strong>g be<strong>in</strong>g <strong>use</strong>d for subsequent control and specification compliance test<strong>in</strong>g.<br />

D115551 Page 9<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

Figure 8: Compressive strength test<strong>in</strong>g <strong>of</strong> a 1:1 height to diameter specimen <strong>of</strong> an HBM.<br />

5.6.3 System Two test<strong>in</strong>g<br />

System Two refers to mechanical characterisation <strong>of</strong> HBMs us<strong>in</strong>g direct (BS EN 13286-41:<br />

2<strong>003</strong>) or <strong>in</strong>direct tensile strength (BS EN 13286-42: 2<strong>003</strong>) and modulus <strong>of</strong> elasticity (BS EN<br />

13286-43: 2<strong>003</strong>). All <strong>of</strong> these tests require specimens <strong>of</strong> a m<strong>in</strong>imum H:D ratio <strong>of</strong> 2:1. <strong>The</strong> exact<br />

m<strong>in</strong>imum height to diameter ratio is a function <strong>of</strong> the maximum aggregate size and specimen<br />

diameter.<br />

Figure 9: Stra<strong>in</strong> collar fitted to a 2:1 HBM specimen dur<strong>in</strong>g modulus <strong>of</strong> elasticity test<strong>in</strong>g.<br />

<strong>The</strong> modulus <strong>of</strong> elasticity test set up is shown <strong>in</strong> Figure 8. Stra<strong>in</strong> (ε) is measured over the<br />

central part <strong>of</strong> the cyl<strong>in</strong>drical specimen and the stra<strong>in</strong> at 30% <strong>of</strong> the peak force (F r ) is recorded<br />

(ε 3 ). <strong>The</strong> modulus <strong>of</strong> elasticity is calculated us<strong>in</strong>g Equation 1. <strong>The</strong> result<strong>in</strong>g modulus <strong>of</strong> elasticity<br />

measurement (E C ) is sometimes referred to as a static stiffness due to the slow load<strong>in</strong>g rate <strong>of</strong><br />

D115551 Page 10<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

the test. Test load<strong>in</strong>g is specified as a constant rate caus<strong>in</strong>g failure <strong>of</strong> the specimen with<strong>in</strong> 30 to<br />

60 seconds after the commencement <strong>of</strong> the test.<br />

Equation 1:<br />

E<br />

c =<br />

1.2F<br />

πD<br />

r<br />

2<br />

ε 3<br />

Where:<br />

E c is the modulus <strong>of</strong> elasticity <strong>in</strong> compression (MPa)<br />

F r is the peak force (N)<br />

D is the specimen diameter (mm)<br />

ε 3 is the longitud<strong>in</strong>al stra<strong>in</strong> <strong>of</strong> the specimen (at 30 % <strong>of</strong> F r )<br />

<strong>The</strong> modulus <strong>of</strong> elasticity (E c ) measures the element elastic stiffness modulus (def<strong>in</strong>ed as the<br />

secant stiffness at 30% <strong>of</strong> the peak force). <strong>The</strong> layer stiffness (IAN73, 2006) is assumed to be<br />

10% or 20% <strong>of</strong> the element stiffness (stiffness <strong>of</strong> the test specimen), it can be approximated<br />

simply us<strong>in</strong>g:<br />

Equation 2: E ( GPa) = E ( GPa) × 0.2<br />

or 0. 1<br />

l<br />

C<br />

This degradation factor is based upon overseas experience (LCPPC – SETRA, 1997) and<br />

recent work <strong>in</strong> the UK (Chaddock and Roberts, 2006).<br />

<strong>The</strong> tensile strength test is designed to model the forces exerted on a pavement layer <strong>in</strong> a<br />

direction perpendicular to the applied load, the strength datasets are expressed <strong>in</strong> MPa.<br />

However, tensile strength (R t ) is difficult to determ<strong>in</strong>e experimentally, so is derived from the<br />

<strong>in</strong>direct tensile strength (R it ) us<strong>in</strong>g established relationships (BS EN 14227-1 to 3: 2004);<br />

Equation 3: R<br />

t<br />

= R<br />

it<br />

× 0.8 ( MPa)<br />

5.6.4 Durability test<strong>in</strong>g<br />

Durability is currently assessed <strong>in</strong> Series 800 (MCHW1, 2007) us<strong>in</strong>g the procedure given <strong>in</strong><br />

cla<strong>use</strong> 880.4. Cyl<strong>in</strong>ders with a ratio <strong>of</strong> 1:1 (H:D) are prepared and cured for 14 days <strong>in</strong> air. <strong>The</strong>y<br />

are then cured for a further 14 days immersed <strong>in</strong> water. <strong>The</strong> compressive strength <strong>of</strong> these<br />

immersed samples (R C imm ) is determ<strong>in</strong>ed along with that <strong>of</strong> the control specimens (R C control ).<br />

<strong>The</strong> control specimens are cured for 28 days <strong>in</strong> a sealed condition. <strong>The</strong> mixture is considered to<br />

be durable if the follow<strong>in</strong>g applies:<br />

⎛ R ⎞<br />

⎜ c imm ⎟<br />

Equation 4: R<br />

c vs<br />

=<br />

×100 ≥ 80%<br />

⎜ R<br />

⎟<br />

⎝ c control ⎠<br />

where:<br />

R c vs<br />

is the relative volumetric stability (assumed to be durable if ≥ 80 %)<br />

D115551 Page 11<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

6. RESULTS<br />

<strong>The</strong> mixture references <strong>use</strong>d are based upon the nom<strong>in</strong>al particle size, type and quantity <strong>of</strong><br />

b<strong>in</strong>der <strong>use</strong>d. Table 4 gives further details <strong>of</strong> the abbreviations.<br />

Table 4: Explanation <strong>of</strong> mixture reference system.<br />

Aggregate Maximum aggreate size (mm) Abbreviation B<strong>in</strong>der Abbreviation<br />

Dolomitic Limestone 5 D5 CEMI C<br />

Carboniferous Limestone 5 C5 CEMII CC<br />

Andesite 5 A5 CKD K<br />

Granodiorite 5 G5 PFA P<br />

Sandstone 10 S10 HL H<br />

Silt - S GGBS G<br />

For example:<br />

• D5CC4 is dolomitic limestone with 4% CEMII<br />

• A5P10H1.5 is andesite with 10% PFA and 1.5 %HL<br />

• D5P10K6H2 is dolomitic limestone with 10% PFA, 6% CKD and 2% HL.<br />

<strong>The</strong> percentage b<strong>in</strong>der and activator comb<strong>in</strong>ations trialled for each aggregate, are presented <strong>in</strong><br />

Table 5, together with the cur<strong>in</strong>g regimes and report reference.<br />

Table 5: Cur<strong>in</strong>g regime for laboratory performance test<strong>in</strong>g <strong>of</strong> the HBM’s trialled for each<br />

aggregate source.<br />

Aggregate<br />

(grad<strong>in</strong>g/mm)<br />

Dolomitic<br />

Limestone<br />

<strong>f<strong>in</strong>es</strong>(0/5)<br />

Carboniferous<br />

Limestone (0/5)<br />

Andesite (0/5)<br />

Granodiorite<br />

(0/5)<br />

Sand (0/10)<br />

Silt (


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

6.1 DOLOMITIC LIMESTONE<br />

System One mixture test<strong>in</strong>g was carried out on three HBMs:<br />

• CKD alone;<br />

• PFA with CKD as activator; and<br />

• PFA/CKD with HL as activator.<br />

All the specimens were cured at 40°C for 7 days prior to test<strong>in</strong>g. <strong>The</strong> results are presented <strong>in</strong><br />

Table 6. <strong>The</strong> PFA/CKD (D5P10K4) comb<strong>in</strong>ation gave comparable results to that with the<br />

addition <strong>of</strong> HL (D5P10K6H2). This <strong>in</strong>dicates that the pozzolanic behaviour <strong>of</strong> the PFA is<br />

activated by CKD. <strong>The</strong> best perform<strong>in</strong>g mixture was D5K10 (10% CKD only), giv<strong>in</strong>g an average<br />

compressive strength (R C ) <strong>of</strong> 5.2 MPa.<br />

Table 6: Results <strong>of</strong> System One test<strong>in</strong>g for dolomitic limestone at 7 days age.<br />

Report<br />

Reference<br />

Water<br />

Content<br />

(%)<br />

Average<br />

Bulk<br />

Density<br />

System 1<br />

R C (MPa)<br />

(Mg/m 3 ) h/d n mean SD<br />

D5P10K4 10.60 2.33 2:1 5 2.51 0.33<br />

D5P10K6H2 10.53 2.36 2:1 5 2.29 0.10<br />

D5K10 10.38 2.42 2:1 5 5.22 0.62<br />

System Two test<strong>in</strong>g was carried out on the <strong>mixtures</strong> D5CC5, D5P8H2 and D5K5. <strong>The</strong> results<br />

are presented <strong>in</strong> Table 7.<br />

Table 7: Results <strong>of</strong> System Two test<strong>in</strong>g for dolomitic limestone at 28 days age.<br />

Report<br />

Reference<br />

Water<br />

Content<br />

(%)<br />

Average<br />

Bulk<br />

Density<br />

System 1<br />

R C (MPa)<br />

R t (MPa)<br />

System 2<br />

E C (GPa)<br />

E layer<br />

(MPa)<br />

(Mg/m 3 ) h/d n mean SD n mean SD n mean SD Mean<br />

D5CC5 8.88 2.48 2:1 5 7.41 0.74 4 0.84 0.03 4 9.87 3.75 1974<br />

D5P8H2 10.22 2.38 2:1 5 3.58 0.65 5 0.54 0.04 4 5.99 1.45 599<br />

D5K5 9.66 2.49 2:1 5 2.60 0.46 4 0.21 0.02 4 1.70 0.45 170<br />

<strong>The</strong> System One results are plotted aga<strong>in</strong>st the foundation classes given <strong>in</strong> BS EN 14227-<br />

14:2006 (Figure 10). <strong>The</strong> positions <strong>of</strong> the low limit categories are the same for SC and SFA;<br />

therefore, D5CC5 can be plotted with D5P8H2 and D5K5. It can be seen from Figure 10 that a<br />

limestone and 5 % CEMII SC gives the best perform<strong>in</strong>g HBM (class T2). <strong>The</strong> SFA (D5P8H2) is<br />

also classed as a T2, while the HBM which <strong>use</strong>d CKD as the hydraulic b<strong>in</strong>der (D5K5) was<br />

classed as a T1.<br />

D115551 Page 13<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

10<br />

D5CC5<br />

D5P8H2<br />

T5<br />

T4<br />

R t (MPa)<br />

1<br />

D5K5<br />

T3<br />

T2<br />

T1<br />

T0<br />

0.1<br />

1 10 100<br />

Ec (GPa)<br />

Figure 10: T class derived from System Two test<strong>in</strong>g <strong>of</strong> dolomitic limestone.<br />

6.2 CARBONIFEROUS LIMESTONE<br />

<strong>The</strong> carboniferous limestone was trialled with CKD (Figure 11) and GGBS/HL (report reference<br />

C5K10 and C5G4H2). <strong>The</strong> specimens were cured at 20°C and 40°C respectively and tested at<br />

28 days. It was also assessed us<strong>in</strong>g 4 % CEMI at 28 days. <strong>The</strong> results are presented <strong>in</strong> Table<br />

8, and the T class is plotted <strong>in</strong> Figure 12.<br />

Figure 11: An HBM <strong>in</strong>corporat<strong>in</strong>g carboniferous limestone and CKD.<br />

Table 8: Results <strong>of</strong> System One and Two test<strong>in</strong>g for Carboniferous Limestone.<br />

Report<br />

Reference<br />

Water<br />

Content<br />

(%)<br />

Average<br />

Bulk<br />

Density<br />

System 1 System 2<br />

R C (MPa) R t (MPa) E C (GPa)<br />

E layer<br />

(MPa)<br />

(Mg/m 3 ) h/d n mean SD n mean SD n mean SD Mean<br />

C5K5 7.35 2.44 2:1 5 1.75 0.30 5 0.14 0.01 4 0.67 0.15 67<br />

C5G4H2 6.68 2.46 2:1 5 10.21 1.17 5 1.37 0.04 4 20.34 3.88 2034<br />

C5C4 6.25 2.48 2:1 5 8.51 1.17 - - - - - - -<br />

D115551 Page 14<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

10<br />

C5G4H2<br />

T5<br />

T4<br />

R t (MPa)<br />

1<br />

T3<br />

T2<br />

T1<br />

T0<br />

0.1<br />

1 10 100<br />

Ec (GPa)<br />

Figure 12: T class derived from System Two test<strong>in</strong>g <strong>of</strong> dolomitic limestone.<br />

Only the mixture C5G4H2, designated a SS, could be plotted on the System Two chart. HBM<br />

C5K5 plotted outside <strong>of</strong> the limits for a System Two foundation classification and is, therefore,<br />

classed as a T0 by default.<br />

6.3 ANDESITE<br />

<strong>The</strong> andesite was trialled us<strong>in</strong>g CEMI cement at a range <strong>of</strong> b<strong>in</strong>der contents, alongside test<strong>in</strong>g<br />

with CKD, PFA/HL. Any self cement<strong>in</strong>g properties were also <strong>in</strong>vestigated by compact<strong>in</strong>g<br />

specimens without add<strong>in</strong>g any hydraulic b<strong>in</strong>der, (mixture A5) and subject<strong>in</strong>g them to durability<br />

test<strong>in</strong>g (see Section 5.6.4). <strong>The</strong> results are presented <strong>in</strong> Table 9 and Table 10.<br />

Table 9: Results <strong>of</strong> System One and Two test<strong>in</strong>g <strong>of</strong> andesite at 7 days age.<br />

Report<br />

Reference<br />

Water<br />

Content<br />

(%)<br />

Average<br />

Bulk<br />

Density<br />

System 1 System 2<br />

R C (MPa) R t (MPa) E C (GPa)<br />

E layer<br />

(MPa)<br />

(Mg/m 3 ) h/d n mean SD n mean SD n mean SD Mean<br />

A5K10 9.07 2.39 2:1 5 2.37 0.76 - - - - - - -<br />

A5C6 8.95 2.49 2:1 5 6.43 0.97 5 0.78 0.07 5 13.21 2.09 2642<br />

A5C7 9.25 2.49 2:1 5 6.67 0.60 5 0.84 0.08 5 12.87 6.58 2574<br />

A5P10H1.5* 7.69 2.40 2:1 5 6.29 0.64 - - - 4 4.00 0.55 400<br />

Note: * A5P10H1.5 was tested at 14 days<br />

Andesite trialled with CKD (mix ref A5K10) gave a mean compressive strength (R C ) <strong>of</strong> 2.37<br />

MPa. <strong>The</strong> mixture was cured at 40°C. This result is slightly higher than the equivalent mixture<br />

us<strong>in</strong>g carboniferous limestone (C5K R C = 1.75 MPa).<br />

Table 10: Results <strong>of</strong> System One and Two test<strong>in</strong>g <strong>of</strong> andesite at 28 days age.<br />

Average System 1 System 2<br />

Water<br />

E layer<br />

Report<br />

Bulk<br />

Content<br />

R C (MPa) R t (MPa) E C (GPa) (MPa)<br />

Reference<br />

Density<br />

(%)<br />

(Mg/m 3 ) h/d n mean SD n mean SD n mean SD Mean<br />

A5C4 7.40 2.48 2:1 5 7.22 0.83 2 0.88 0.01 4 7.54 0.01 1508<br />

D115551 Page 15<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

10<br />

A5C4<br />

T5<br />

T4<br />

R t (MPa)<br />

1<br />

T3<br />

T2<br />

T1<br />

T0<br />

0.1<br />

1 10 100<br />

Ec (GPa)<br />

Figure 13: T class derived from System Two test<strong>in</strong>g <strong>of</strong> Andesite.<br />

Andesite trialled as SC us<strong>in</strong>g 4% CEMI is designated a T3 (System Two classification), as<br />

shown <strong>in</strong> Figure 13.<br />

6.4 GRANODIORITE<br />

<strong>The</strong> granodiorite was trialled us<strong>in</strong>g CEMI and CEMII cement. All the specimens were cured at<br />

20°C for 7 or 28 days. <strong>The</strong> results <strong>of</strong> the mixture test<strong>in</strong>g are presented <strong>in</strong> Table 11 and Table<br />

12.<br />

Table 11: Results <strong>of</strong> System One and Two test<strong>in</strong>g <strong>of</strong> granodiorite at 7 days.<br />

Average<br />

Bulk<br />

Density<br />

System 1 System 2<br />

E layer<br />

(MPa)<br />

Report Water<br />

Reference Content<br />

R C (MPa) R t (MPa) E C (GPa)<br />

(Mg/mm 3 ) h/d n mean SD n mean SD n mean SD Mean<br />

G5C4 6.19 2.45 2:1 5 7.62 0.91 - - - 5 14.66 2.99 2932<br />

G5C6 5.95 2.45 2:1 5 11.78 1.12 - - - 5 29.15 6.80 5830<br />

G5CC5 6.22 2.45 2:1 5 7.29 0.73 - - - 3 15.28 1.28 3056<br />

G5CC7 5.23 2.43 2:1 4 14.25 3.73 - - - 3 22.41 4.86 4482<br />

Table 12: Results <strong>of</strong> System One and Two test<strong>in</strong>g <strong>of</strong> granodiorite at 28 days.<br />

Report<br />

Reference<br />

Water<br />

Content<br />

(%)<br />

Average<br />

Bulk<br />

Density<br />

System 1 System 2<br />

R C (MPa) R t (MPa) E C (GPa)<br />

E layer<br />

(MPa)<br />

(Mg/m 3 ) h/d n mean SD n mean SD n mean SD Mean<br />

G5C4 6.74 2.40 2:1 5 10.84 1.19 - - - 3 21.62 3.09 4324<br />

G5CC5 6.50 2.4 2:1 5 9.31 0.54 5 1.02 0.12 4 15.28 3.28 3056<br />

Mixtures G5C4 and G5CC5 both exhibited <strong>in</strong>creased compressive strength when tested at 28<br />

days compared to 7 days. For example, the mixture <strong>in</strong>corporat<strong>in</strong>g 4% CEMI, the R C at 7 days =<br />

7.6 MPa whereas, R C at 28 days = 10.84 MPa. In general, SC’s us<strong>in</strong>g granodiorite perform<br />

relatively well. This may be attributed to the m<strong>in</strong>eralogy <strong>of</strong> the component aggregate, s<strong>in</strong>ce the<br />

rock from which the <strong>f<strong>in</strong>es</strong> are derived is very strong; this is illustrated by the relatively high<br />

particle density.<br />

D115551 Page 16<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

10<br />

G5CC5<br />

T5<br />

R t (MPa)<br />

1<br />

T4<br />

T3<br />

T2<br />

T1<br />

T0<br />

0.1<br />

1 10 100<br />

Ec (GPa)<br />

Figure 14: Foundation class derived from System Two test<strong>in</strong>g <strong>of</strong> granodiorite.<br />

<strong>The</strong> granodiorite <strong>in</strong>corporated <strong>in</strong>to a SC us<strong>in</strong>g 5 % CEMII plots as a T3 (Figure 14). Based on<br />

the results <strong>of</strong> compressive strength and modulus <strong>of</strong> elasticity test<strong>in</strong>g for the other <strong>mixtures</strong> it<br />

would be reasonable to assume that the other HBM <strong>mixtures</strong> trialled would not plot lower than a<br />

T3 based on this result.<br />

6.5 SANDSTONE<br />

<strong>The</strong> sandstone was trialled with 4% CEMI and 5% CEMII. Both were cured at 20 °C and tested<br />

at 28 days. <strong>The</strong> results are presented <strong>in</strong> Table 13. <strong>The</strong> compressive strength <strong>of</strong> the <strong>mixtures</strong><br />

was comparable (~ 5 MPa). System Two test<strong>in</strong>g also gave similar results for the two <strong>mixtures</strong>.<br />

Table 13: Results <strong>of</strong> System One and Two test<strong>in</strong>g <strong>of</strong> sandstone at 28 days age.<br />

Average<br />

Bulk<br />

Density<br />

System 1 System 2<br />

E layer<br />

(MPa)<br />

Report Water<br />

Reference Content (%)<br />

R C (MPa) R t (MPa) E C (GPa)<br />

(Mg/m 3 ) h/d n mean SD n mean SD n mean SD Mean<br />

S10C4 6.13 2.20 2:1 5 5.26 1.96 5 0.51 0.08 4 10.43 4.09 1043<br />

S10CC5 6.72 2.28 2:1 5 5.34 0.30 4 0.54 0.07 4 7.88 1.10 788<br />

<strong>The</strong> HBMs <strong>in</strong>corporat<strong>in</strong>g sandstone, CEMI and CEMII, both plotted as Foundation Class T1<br />

(Figure 15).<br />

D115551 Page 17<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

10<br />

S10C4<br />

T5<br />

S10CC5<br />

T4<br />

R t (MPa)<br />

1<br />

T3<br />

T2<br />

T1<br />

T0<br />

0.1<br />

1 10 100<br />

Ec (GPa)<br />

Figure 15: T class derived from System Two test<strong>in</strong>g <strong>of</strong> sandstone.<br />

6.6 SILT<br />

<strong>The</strong> silt was trialled with 4% CEMI, cured at 20°C and 4% GGBS 2% HL, cured at 40°C. Both<br />

were tested at 28 days. <strong>The</strong> results are presented <strong>in</strong> Error! Reference source not found. <strong>The</strong><br />

slag treated material performed better than the cement treated material <strong>in</strong> both System One and<br />

Two test<strong>in</strong>g. For System One, the SC compressive strength was 1.7 MPa, while the SS gave a<br />

compressive strength <strong>of</strong> 4.8 MPa.<br />

Table 14: Results <strong>of</strong> System Two test<strong>in</strong>g <strong>of</strong> silt at 28 days age.<br />

Average<br />

Bulk<br />

Density<br />

System 1<br />

System 2<br />

E layer<br />

(MPa)<br />

Report Water<br />

R C (MPa) R t (MPa) E C (GPa)<br />

Reference Content<br />

(Mg/mm 3 )<br />

h/d<br />

n mean SD n mean SD n mean SD Mean<br />

SC4 15.38 2.00 2:1 4 1.65 0.53 4 0.12 0.03 3 1.29 0.62 129<br />

SG4H2 15.56 2.10 2:1 5 4.79 0.79 5 0.49 1.95 4 5.45 0.12 545<br />

Figure 16 shows a SC HBM <strong>in</strong>corporat<strong>in</strong>g 4% CEMI. <strong>The</strong> right hand plate shows specimens<br />

post <strong>in</strong>direct tensile strength test<strong>in</strong>g.<br />

Figure 16: A soil cement <strong>in</strong>corporat<strong>in</strong>g silt and 4 % CEMI.<br />

D115551 Page 18<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

10<br />

SG4H2<br />

T5<br />

R t (MPa)<br />

1<br />

T4<br />

T3<br />

T2<br />

T1<br />

T0<br />

0.1<br />

1 10 100<br />

Ec (GPa)<br />

Figure 17: T class derived from System Two test<strong>in</strong>g <strong>of</strong> silt.<br />

<strong>The</strong> System Two class derived for the mixture SG4H2 (4% GGBS and 2% HL) is a class T2<br />

foundation (Figure 17). <strong>The</strong> mixture SC4 (4% CEMI) does not plot on the graph and is therefore<br />

designated a T0.<br />

6.7 SUM<strong>MA</strong>RY<br />

<strong>The</strong> HBM <strong>mixtures</strong> trialled have been classified as soil cements (SC), soil fly ash (SFA) and soil<br />

slags (SS). In general, for a given b<strong>in</strong>der content, SC’s us<strong>in</strong>g CEMI cement performed better<br />

than those employ<strong>in</strong>g CEMII. <strong>The</strong> greater cement component <strong>use</strong>d <strong>in</strong> CEMI over CEMII may<br />

account for this. Typical 28 day compressive strengths range from 1.7 MPa (SC4 – silt 4%<br />

CEMI) to 7.6 MPa (G5C4 – granodiorite and 4 % CEMI). System Two test<strong>in</strong>g for the soil<br />

cements tested ranged from a T0 (SC4) to T3 (A5C4).<br />

Triall<strong>in</strong>g <strong>of</strong> the aggregates <strong>in</strong> SFA HBMs gave 28 day compressive strengths <strong>of</strong> 3.6 MPa<br />

(D5P8H2 – dolomitic limestone with 8% PFA and 2% HL) to 6.3 MPa (A5P10H1.5 – andesite<br />

with 10% PFA and 1.5% HL). D5P8H2 gave a System Two, T2 material.<br />

Soil slag HBMs produced compressive strengths rang<strong>in</strong>g from 4.8 MPa (SG4H2) to 10.2 MPa<br />

(C5G4H2 – carboniferous limestone, 4% GGBS and 2% HL). System Two classes derived for<br />

these HBMs were T3 and T2, respectively.<br />

HBMs <strong>in</strong>corporat<strong>in</strong>g alternative b<strong>in</strong>ders such as CKD gave compressive strengths from 2.4 MPa<br />

(A5K5 – andesite and 5% CKD) to 5.2 MPa (D5K10 – dolomitic limestone and 5% CKD cured at<br />

40 °C). D5K10 plots as a System Two, T2. <strong>The</strong> rate <strong>of</strong> sett<strong>in</strong>g us<strong>in</strong>g CKD as a hydraulic b<strong>in</strong>der<br />

appears to be closer to a FABM (or SFA) and SBM (or SS) than a CBGM (or SC). However,<br />

further work is required to confirm this. No improvements <strong>in</strong> performance were observed when<br />

CKD was <strong>use</strong>d <strong>in</strong> conjunction with PFA or PFA and HL.<br />

Compressive strengths for the HBMs trialled are summarised <strong>in</strong> Figure 18.<br />

D115551 Page 19<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

12<br />

10<br />

Compressive Strength R C (MPa)<br />

8<br />

6<br />

4<br />

†<br />

2<br />

0<br />

Soil Cement<br />

Soil Slag<br />

Soil Fly<br />

Ash<br />

Note: † tested at 14 days age.<br />

Figure 18: System One test<strong>in</strong>g at 28 days.<br />

<strong>The</strong> T classes derived for the HBMs trialled under System Two test<strong>in</strong>g are summarised <strong>in</strong> Table<br />

15. It can be seen that the best perform<strong>in</strong>g <strong>mixtures</strong>, <strong>in</strong> terms <strong>of</strong> System Two classes, are those<br />

<strong>in</strong>corporat<strong>in</strong>g <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> derived from igneous rock and <strong>use</strong>d <strong>in</strong> a SC. SS HBMs (C5G4H2 and<br />

SG4H2) perform relatively well, giv<strong>in</strong>g a class T3 and T2 material respectively. A HBM<br />

<strong>in</strong>corporat<strong>in</strong>g silt and GGBS and HL gave a foundation class T2 material.<br />

Table 15: Summary <strong>of</strong> the T classes derived from System Two test<strong>in</strong>g.<br />

HBM<br />

Mixture Reference<br />

System Two Class<br />

E layer<br />

(MPa)<br />

A5C4 T3 1508<br />

G5CC5 T3 3056<br />

D5CC5 T2 1974<br />

SC<br />

S10CC5 T1 788<br />

S10C4 T1 1043<br />

SC4 T0 129<br />

C5K5 T0 67<br />

D5K5 T1 170<br />

SS<br />

C5G4H2 T3 2034<br />

SG4H2 T2 545<br />

SFA D5P8H2 T2 599<br />

D115551 Page 20<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

6.8 DURABILITY TESTING<br />

Durability test<strong>in</strong>g was carried out on selected aggregates us<strong>in</strong>g CEMI cement. Both andesite<br />

and carboniferous limestone were also trialled without a b<strong>in</strong>der. Carboniferous limestone is<br />

known to conta<strong>in</strong> calcium oxide (CaO) which may exhibit self-cement<strong>in</strong>g properties on<br />

hydration. Andesite was also trialled without b<strong>in</strong>der as a control, s<strong>in</strong>ce it does not conta<strong>in</strong> CaO.<br />

<strong>The</strong> procedure followed is specified <strong>in</strong> Cla<strong>use</strong> 880.4 (Series 800 MCHW1: 2007). <strong>The</strong> <strong>mixtures</strong><br />

tested are given <strong>in</strong> Table 16. <strong>The</strong> results are presented <strong>in</strong> Table 17.<br />

Table 16: Mixtures selected for durability test<strong>in</strong>g.<br />

Aggregate<br />

B<strong>in</strong>der<br />

%<br />

B<strong>in</strong>der<br />

Cur<strong>in</strong>g<br />

Temperature<br />

(°C)<br />

Specimen<br />

Age (days)<br />

Report<br />

Reference<br />

Dolomitic<br />

limestone<br />

Andesite<br />

CEMI 4 20 28 D5C4<br />

CEMI 3 20 28 D5C3<br />

CEMI 4 20 28 A5C4<br />

- - 20 28 A5<br />

Granodiorite CEMI 4 20 28 G5C4<br />

Carboniferous<br />

limestone<br />

- - 20 28 C5<br />

Table 17: Results <strong>of</strong> durability test<strong>in</strong>g <strong>in</strong> accordance with Series 800 (MCHW1: 2007).<br />

Report<br />

Reference<br />

Water<br />

Content<br />

(%)<br />

Average<br />

Bulk<br />

Density<br />

(Mg/m 3 )<br />

h/d n mean SD n mean SD<br />

D5C4 9.74 2.53 2:1 3 6.17 1.54 3 6.76 0.44 91<br />

D5C3 9.21 2.51 2:1 3 6.27 0.83 3 7.82 1.04 80<br />

A5C4 7.40 2.48 2:1 3 6.74 0.75 3 7.42 0.83 91<br />

A5 7.22 2.39 2:1<br />

R C imm (MPa)<br />

R C control (MPa)<br />

Specimens dis<strong>in</strong>tegrated<br />

R C vs (%)<br />

G5C4 6.52 2.37 2:1 3 7.97 0.64 3 8.47 0.97 94<br />

C5 6.08 2.53 2:1<br />

Specimens dis<strong>in</strong>tegrated<br />

All the <strong>mixtures</strong> proved durable at relatively low additions <strong>of</strong> CEMI (3% and 4%). <strong>The</strong> <strong>mixtures</strong><br />

A5 and C5 (no b<strong>in</strong>der) dis<strong>in</strong>tegrated dur<strong>in</strong>g the immersion stage <strong>of</strong> the test. This suggests these<br />

aggregates have no self cement<strong>in</strong>g properties and would not be suitable for <strong>use</strong> without<br />

employ<strong>in</strong>g a hydraulic b<strong>in</strong>der and or activator.<br />

D115551 Page 21<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

7. CONCLUSIONS<br />

Laboratory based research on a range <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> and hydraulic b<strong>in</strong>der(s) has shown that<br />

these materials, when <strong>use</strong>d <strong>in</strong> HBMs, are viable materials for construction and eng<strong>in</strong>eer<strong>in</strong>g<br />

applications (MIST, 2008).<br />

BS EN treated soil standards appear most appropriate for the specification <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> with<strong>in</strong><br />

HBMs (BS EN 14227:2004):<br />

- Part 10: soil treated with cement (SC)<br />

- Part 11: soil treated with lime (SL)<br />

- Part 12: soil treated with slag (SS)<br />

- Part 13: soil treated with hydraulic road b<strong>in</strong>der (SHRB)<br />

- Part 14: soil treated with fly ash (SF)<br />

Mechanical performance was determ<strong>in</strong>ed by a comb<strong>in</strong>ation <strong>of</strong> System One (compressive<br />

strength) and System Two (tensile strength and elastic modulus test<strong>in</strong>g). From the results<br />

obta<strong>in</strong>ed, the follow<strong>in</strong>g conclusions are made:<br />

• With respect to the soil cement <strong>mixtures</strong>, the overall strength ga<strong>in</strong> is very much a function<br />

<strong>of</strong> the aggregate type. <strong>The</strong> highest compressive strengths were achieved <strong>in</strong> HBMs<br />

<strong>in</strong>corporat<strong>in</strong>g granodiorite, followed by those <strong>in</strong>corporat<strong>in</strong>g andesite. In comparison, low<br />

strengths were achieved with silt and cement <strong>mixtures</strong>. This could be due to relatively low<br />

mechanical <strong>in</strong>terlock between the slit particles;<br />

• As expected, greater strength ga<strong>in</strong>s can be made by <strong>in</strong>creas<strong>in</strong>g the cement b<strong>in</strong>der content.<br />

<strong>The</strong> compressive strength is also dependant on the density <strong>of</strong> the specimens, which is <strong>in</strong><br />

turn dependant on the water content and grad<strong>in</strong>g pr<strong>of</strong>ile <strong>of</strong> the aggregate <strong>use</strong>d. Greater<br />

mechanical <strong>in</strong>terlock <strong>of</strong> aggregate particles <strong>in</strong> the HBM coupled with a relatively strong<br />

component aggregate results <strong>in</strong> a good perform<strong>in</strong>g HBM as demonstrated <strong>in</strong> the SC’s<br />

<strong>in</strong>corporat<strong>in</strong>g andesite;<br />

• <strong>The</strong> overall performance <strong>of</strong> a soil cement is dependent on the quantity <strong>of</strong> the cement<br />

addition. For a given addition <strong>of</strong> hydraulic b<strong>in</strong>der, CEMI gives a greater performance over<br />

CEMII, However, the rate <strong>of</strong> the pozzolanic activity <strong>of</strong> the PFA conta<strong>in</strong>ed <strong>in</strong> CEMII is slower<br />

than that <strong>of</strong> cement alone. <strong>The</strong>refore, accelerated cur<strong>in</strong>g (elevated temperature) or<br />

extended cur<strong>in</strong>g times may demonstrate that CEMI and CEMII can give equivalent<br />

performance <strong>in</strong> the long term (all SC’s tested <strong>in</strong> this project were cured at 20°C). Further<br />

work would be needed to confirm this.<br />

• Of the HBMs evaluated, those which may require pre-crack<strong>in</strong>g (that is, those obta<strong>in</strong><strong>in</strong>g 28<br />

day compressive strengths > 8 MPa) are:<br />

- SC’s <strong>of</strong> andesite and granodiorite with CEMI at additions <strong>of</strong> 4% and above; and<br />

- Carboniferous limestone with 4% GGBS and 2% HL.<br />

• Quarry <strong>f<strong>in</strong>es</strong> <strong>in</strong>corporated <strong>in</strong>to an SFA HBM also showed potential with respect to<br />

mechanical performance, although compressive strengths obta<strong>in</strong>ed were generally lower<br />

than those <strong>of</strong> the SC HBMs. This may be due to the further addition <strong>of</strong> f<strong>in</strong>e material (PFA) to<br />

the mixture, which may result <strong>in</strong> a reduction <strong>in</strong> performance over the equivalent SC by<br />

reduc<strong>in</strong>g mechanical <strong>in</strong>terlock between the aggregate particles. <strong>The</strong> <strong>use</strong> <strong>of</strong> CKD as a<br />

hydraulic b<strong>in</strong>der showed promis<strong>in</strong>g results. Further work is needed to fully evaluate the<br />

likely performance characteristics <strong>of</strong> HBM’s <strong>in</strong>corporat<strong>in</strong>g CKD. In particular, to develop<br />

cur<strong>in</strong>g regimes which reflect likely site performance and optimisation <strong>of</strong> additions <strong>of</strong> b<strong>in</strong>der,<br />

and possibly <strong>use</strong> <strong>of</strong> an activator.<br />

• Results obta<strong>in</strong>ed for SS HBMs (that is, <strong>mixtures</strong> C5GH and SGH) are surpris<strong>in</strong>g <strong>in</strong> that the<br />

performance is generally better both for System One and Two performance test<strong>in</strong>g. HBMs<br />

<strong>of</strong> T class T3 and T2 were obta<strong>in</strong>ed <strong>in</strong>clud<strong>in</strong>g <strong>use</strong> with silt. <strong>The</strong> equivalent SC (silt) plotted<br />

as a T0.<br />

D115551 Page 22<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

Durability was determ<strong>in</strong>ed <strong>in</strong> accordance with cla<strong>use</strong> 880.4 <strong>of</strong> Series 800 (MCHW1, 2007). <strong>The</strong><br />

follow<strong>in</strong>g conclusions can be made based on the results obta<strong>in</strong>ed;<br />

• <strong>The</strong> <strong>mixtures</strong> would be suitable for <strong>in</strong>corporation <strong>in</strong>to road foundations, even at the<br />

m<strong>in</strong>imum b<strong>in</strong>der contents trialled.<br />

• Further <strong>in</strong>vestigation would be required to determ<strong>in</strong>e the effect <strong>of</strong> cur<strong>in</strong>g temperature on<br />

<strong>mixtures</strong> us<strong>in</strong>g the alternative b<strong>in</strong>der comb<strong>in</strong>ations (CKD, PFA/CKD, PFA/CKD/HL and so<br />

on)<br />

• Durability test<strong>in</strong>g should be carried out on a wider range <strong>of</strong> HBMs .<br />

<strong>The</strong> guidance document that accompanies this technical report conta<strong>in</strong>s details on the <strong>use</strong> <strong>of</strong><br />

HBMs <strong>in</strong> construction applications, specifically with<strong>in</strong> pavement foundation layer construction.<br />

<strong>The</strong> guidance builds upon the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> the laboratory based study and relates it to exist<strong>in</strong>g<br />

<strong>in</strong>dustry specification and historical <strong>use</strong> <strong>of</strong> HBMs. This guidance document is aimed at<br />

producers, buyers, contractors, designers and clients, and assesses the materials aga<strong>in</strong>st<br />

<strong>in</strong>dustry recognised standards and specifications <strong>in</strong> order to dissem<strong>in</strong>ate the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> this<br />

research project <strong>in</strong>to practical and economically viable construction applications.<br />

D115551 Page 23<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

8. REFERENCES AND BIBLIOGRAPHY<br />

ASTM C204-07:2007. ASTM C204-07 Standard Test Methods for F<strong>in</strong>eness <strong>of</strong> Hydraulic<br />

Cement by Air-Permeability Apparatus. ASTM.<br />

BS 812-124 (1989). Method for determ<strong>in</strong>ation <strong>of</strong> frost heave. London: British Standards<br />

Institution.<br />

BS EN 197-1:2001. Cement. Composition, specifications and conformity criteria for common<br />

cements. London: British Standards Institution.<br />

BS EN 459-1:2001. Build<strong>in</strong>g lime. Def<strong>in</strong>itions, specifications and conformity criteria. London:<br />

British Standards Institution.<br />

BS EN 932-1:1997. Tests for general properties <strong>of</strong> aggregates. Methods for sampl<strong>in</strong>g. London:<br />

British Standards Institution.<br />

BS EN 932-2: 1999. Tests for general properties <strong>of</strong> aggregates. Methods for reduc<strong>in</strong>g laboratory<br />

samples. London: British Standards Institution.<br />

BS EN 932-3:1997 Tests for general properties <strong>of</strong> aggregates. Procedure and term<strong>in</strong>ology for<br />

simplified petrographic description (AMD 14865). London: British Standards Institution.<br />

BS EN 933-1:1997. Tests for geometrical properties <strong>of</strong> aggregates. Determ<strong>in</strong>ation <strong>of</strong> particle<br />

size distribution - Siev<strong>in</strong>g method (AMD 15907). London: British Standards Institution.<br />

BS EN 1097-6:2000. Tests for mechanical and physical properties <strong>of</strong> aggregates. Determ<strong>in</strong>ation<br />

<strong>of</strong> particle density and water absorption (AMD Corrigendum 14306) (AMD 15908). London:<br />

British Standards Institution.<br />

BS 1377-2:1990. Soils for civil eng<strong>in</strong>eer<strong>in</strong>g purposes. Classification tests (AMD 9027). London:<br />

British Standards Institution.<br />

BS EN 13286-4: 2<strong>003</strong>. Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Test methods for laboratory<br />

reference density and water content - Vibrat<strong>in</strong>g hammer. London: British Standards Institution.<br />

BS EN 13286-41:2<strong>003</strong>. Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Test method for<br />

determ<strong>in</strong>ation <strong>of</strong> the compressive strength <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. London: British<br />

Standards Institution.<br />

BS EN 13286-42: 2<strong>003</strong>. Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Test method for<br />

determ<strong>in</strong>ation <strong>of</strong> the <strong>in</strong>direct tensile strength <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. London: British<br />

Standards Institution.<br />

BS EN 13286-43:2<strong>003</strong>. Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Test method for the<br />

determ<strong>in</strong>ation <strong>of</strong> the modulus <strong>of</strong> elasticity <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. London: British<br />

Standards Institution.<br />

BS EN 13286-51:2004. Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Method for the manufacture<br />

<strong>of</strong> test specimens <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> us<strong>in</strong>g vibrat<strong>in</strong>g hammer compaction. London:<br />

British Standards Institution.<br />

BS EN 14227-1: 2004. Hydraulically <strong>bound</strong> <strong>mixtures</strong> - Specifications. Cement <strong>bound</strong> granular<br />

<strong>mixtures</strong>. London: British Standards Institution.<br />

BS EN 14227-2:2004. Hydraulically <strong>bound</strong> <strong>mixtures</strong>. Specifications. Slag <strong>bound</strong> <strong>mixtures</strong>.<br />

London: British Standards Institution.<br />

BS EN 14227-3:2004. Hydraulically <strong>bound</strong> <strong>mixtures</strong>. Specifications. Fly ash <strong>bound</strong> <strong>mixtures</strong>.<br />

London: British Standards Institution.<br />

D115551 Page 24<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Technical report<br />

BS EN 14227-10:2006. Hydraulically <strong>bound</strong> <strong>mixtures</strong>. Specifications. Soil treated by cement.<br />

London: British Standards Institution.<br />

BS EN 14227-11: 2006. Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Specifications. Soil treated<br />

by lime. London: British Standards Institution.<br />

BS EN 14227-12:2006. Hydraulically <strong>bound</strong> <strong>mixtures</strong>. Specifications. Soil treated by slag.<br />

London: British Standards Institution.<br />

BS EN 14227-13:2006. Hydraulically <strong>bound</strong> <strong>mixtures</strong>. Specifications. Soil treated by hydraulic<br />

road b<strong>in</strong>der. London: British Standards Institution.<br />

BS EN 14227-14:2006. Hydraulically <strong>bound</strong> <strong>mixtures</strong>. Specifications. Soil treated by fly ash.<br />

London: British Standards Institution.<br />

B Chaddock and C Roberts (2006). Road foundation design for major UK highways. Project<br />

report PPR 127. TRL.<br />

Highways Agency. (2001). HD26: Pavement design and ma<strong>in</strong>tenance. Pavement design<br />

andconstruction. Pavement design. Design Manual for Roads and Bridges: Volume 7 Section<br />

2Part 3. London: <strong>The</strong> Stationery Office.<br />

Highways Agency. (2006). Interim Advice Note. IAN 73/06: Design Guide for Road Pavements<br />

(Draft HD25). London: <strong>The</strong> Stationery Office<br />

Highways Agency. (2007). Manual <strong>of</strong> Contract Document for Highways Works: Volume 1,<br />

Specification for Highways Works. London: <strong>The</strong> Stationary Office.<br />

LCPC-SETRA (1997). French design manual for pavement structures. Translation <strong>of</strong> the<br />

December 1994. French version <strong>of</strong> the technical guide. Published by Laboratoire Central des<br />

Ponts et Chaussees (LCPC) and Service d’Etudes Techniques des Routes et Autoroutes<br />

(SETRA).<br />

NF P98 234 – (1992). Tests related to pavements. Freez<strong>in</strong>g behaviour <strong>of</strong> materials treated with<br />

hydraulic b<strong>in</strong>ders – Part 1: Freeze thaw test <strong>of</strong> stabilized gravel or sand. France:<br />

NormeFrancaise Homologue, ANFOR.<br />

D115551 Page 25<br />

17 March 2008<br />

© Scott Wilson Ltd 2008


M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>MA</strong>/6/4/<strong>003</strong>: <strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong><br />

<strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> for construction<br />

applications<br />

Guidance document


Written by;<br />

Carol<strong>in</strong>e Walters<br />

Assistant Scientist, Scott Wilson<br />

Paul Edwards<br />

Pr<strong>in</strong>cipal Eng<strong>in</strong>eer, Scott Wilson<br />

Tony Parry<br />

Associate Pr<strong>of</strong>essor, <strong>The</strong> University <strong>of</strong> Nott<strong>in</strong>gham<br />

Authorised by:<br />

Rebecca Hooper; Associate<br />

Date: 07 March 2008<br />

Unless otherwise stated, all photographs courtesy <strong>of</strong> Scott Wilson.<br />

This document has been prepared <strong>in</strong> accordance with the scope <strong>of</strong> Scott Wilson's appo<strong>in</strong>tment with its<br />

client and is subject to the terms <strong>of</strong> that appo<strong>in</strong>tment. It is addressed to and for the sole and<br />

confidential <strong>use</strong> and reliance <strong>of</strong> Scott Wilson's client. Scott Wilson accepts no liability for any <strong>use</strong> <strong>of</strong><br />

this document other than by its client and only for the purposes for which it was prepared and<br />

provided. No person other than the client may copy (<strong>in</strong> whole or <strong>in</strong> part) <strong>use</strong> or rely on the contents <strong>of</strong><br />

this document, without the prior written permission <strong>of</strong> the Company Secretary <strong>of</strong> Scott Wilson Ltd. Any<br />

advice, op<strong>in</strong>ions, or recommendations with<strong>in</strong> this document should be read and relied upon only <strong>in</strong> the<br />

context <strong>of</strong> the document as a whole. <strong>The</strong> contents <strong>of</strong> this document do not provide legal or tax advice<br />

or op<strong>in</strong>ion.<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

EXECUTIVE SUM<strong>MA</strong>RY<br />

This guidance document covers the <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> (HBMs)<br />

for construction applications, specifically with<strong>in</strong> pavement foundation layers.<br />

This work was funded by the M<strong>in</strong>erals Industry Susta<strong>in</strong>able Technologies (MIST) programme <strong>in</strong><br />

accordance with <strong>The</strong>matic Priority 4: Optimis<strong>in</strong>g Resource Value (<strong>quarry</strong> product application).<br />

A performance based approach is <strong>use</strong>d throughout this guide, with reference made to the<br />

project technical report and associated f<strong>in</strong>d<strong>in</strong>gs which accompanies this guidance document.<br />

This document outl<strong>in</strong>es the route for assess<strong>in</strong>g the suitability <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> (and other<br />

aggregate materials) for <strong>in</strong>clusion <strong>in</strong> HBMs for specified applications, with a range <strong>of</strong> traditional<br />

and alternative b<strong>in</strong>ders. F<strong>in</strong>d<strong>in</strong>gs from laboratory research are discussed and guidance given<br />

on the design methods, and the performance and durability test<strong>in</strong>g procedures necessary to<br />

ensure that durability requirements are met. Both environmental and non-environmental factors<br />

that could have an impact on the long-term performance <strong>of</strong> a HBM are also considered.<br />

<strong>The</strong> document addresses the follow<strong>in</strong>g areas;<br />

• <strong>The</strong> materials and applications <strong>of</strong> HBMs<br />

• Specification and compliance<br />

• Design <strong>of</strong> a HBM for durability<br />

• Application <strong>in</strong>to pavement construction<br />

• Trial sections<br />

This guide does not provide specific guidance on issues such as layer thickness design and site<br />

specific considerations. Instead, it provides the signposts and background for readers to be<br />

able to access this <strong>in</strong>formation and relevant <strong>in</strong>dustry guidance, standards and specification<br />

documents. <strong>The</strong> guide concentrates on the application <strong>of</strong> HBMs <strong>in</strong>to pavement foundation<br />

construction, with reference made to other applications areas where relevant.<br />

D115551 07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

ACKNOWLEDGEMENTS<br />

<strong>The</strong> work described <strong>in</strong> this research report was carried out by Scott Wilson Limited. <strong>The</strong> Project<br />

has been supported by:<br />

Bob Allen – Aggregate Industries<br />

Brian James – <strong>The</strong> Quarry Products Association<br />

David Knott – Aggregate Industries<br />

Gordon Dick – Aggregate Industries<br />

Helen Bailey – Aggregate Industries<br />

Nizar Ghazireh – Tarmac<br />

Robert Gosl<strong>in</strong>g – Lafarge<br />

Steve Mee – Lafarge<br />

Tony Parry – <strong>The</strong> University <strong>of</strong> Nott<strong>in</strong>gham<br />

D115551 07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

CONTENTS<br />

1. Introduction....................................................................................................................... 1<br />

1.1 Purpose <strong>of</strong> the guide ........................................................................................................ 1<br />

1.2 Scope <strong>of</strong> the guide ........................................................................................................... 1<br />

1.3 Key def<strong>in</strong>itions .................................................................................................................. 1<br />

2. Hydraulically <strong>bound</strong> <strong>mixtures</strong> ........................................................................................... 2<br />

2.1 What are HBMs? .............................................................................................................. 2<br />

2.1.1 Considerations......................................................................................................... 3<br />

2.1.2 <strong>The</strong> b<strong>in</strong>ders.............................................................................................................. 3<br />

2.1.3 HBM – Aggregates .................................................................................................. 4<br />

2.1.4 HBM – Applications ................................................................................................. 4<br />

2.2 Quarry <strong>f<strong>in</strong>es</strong>...................................................................................................................... 5<br />

2.2.1 Indicative suitability.................................................................................................. 7<br />

3. Specification and compliance........................................................................................... 8<br />

3.1 Factors to be considered.................................................................................................. 8<br />

3.1.1 Short-term performance – Workability and traffick<strong>in</strong>g ............................................. 8<br />

3.1.2 Long-term performance – Durability and degradation............................................. 8<br />

3.1.3 Economic viability .................................................................................................... 8<br />

4. Design <strong>of</strong> HBMs for durability........................................................................................... 9<br />

4.1 Factors affect<strong>in</strong>g durability ............................................................................................... 9<br />

4.1.1 Environmental factors.............................................................................................. 9<br />

4.1.2 Non-environmental factors ...................................................................................... 9<br />

4.1.3 Dra<strong>in</strong>age .................................................................................................................. 9<br />

4.2 Assess<strong>in</strong>g durability ....................................................................................................... 10<br />

4.2.1 Classification test<strong>in</strong>g.............................................................................................. 11<br />

4.3 Performance and mechanical test<strong>in</strong>g............................................................................. 12<br />

4.3.1 Introduction............................................................................................................ 12<br />

4.3.2 System One test<strong>in</strong>g ............................................................................................... 13<br />

4.3.3 System Two test<strong>in</strong>g ............................................................................................... 13<br />

4.4 Durability test<strong>in</strong>g............................................................................................................. 14<br />

5. Design and construction considerations ........................................................................ 16<br />

5.1 Lay<strong>in</strong>g <strong>of</strong> the HBM.......................................................................................................... 16<br />

5.2 On-site production control .............................................................................................. 18<br />

5.3 Crack<strong>in</strong>g and pre-crack<strong>in</strong>g ............................................................................................. 18<br />

5.4 Trial sections .................................................................................................................. 19<br />

6. Summary........................................................................................................................ 20<br />

7. Sources <strong>of</strong> further <strong>in</strong>formation........................................................................................ 21<br />

7.1 Useful websites .............................................................................................................. 23<br />

8. References and bibliography ......................................................................................... 23<br />

D115551 07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

GLOSSARY<br />

Activator<br />

Material which <strong>in</strong>itiates hydraulic reactions<br />

ASS<br />

Air-cooled Steel Slag<br />

BS EN<br />

European Standard published by the British Standards Institution (BSI)<br />

CBGM<br />

Cement Bound Granular Mixture<br />

CKD<br />

Cement Kiln Dust<br />

CEM I<br />

Class 42.5N Portland Cement<br />

CEM II<br />

Class 32.5N Portland Cement (<strong>in</strong>corporat<strong>in</strong>g PFA)<br />

DMRB7<br />

Design Manual for Roads and Bridges, Volume 7: Specification for<br />

Highways Works<br />

E c<br />

Modulus <strong>of</strong> elasticity (E) determ<strong>in</strong>ed <strong>in</strong> compression, expressed <strong>in</strong><br />

GigaPascals (GPa)<br />

FABM<br />

Fly Ash Bound Mixture<br />

GBS<br />

Granulated Blastfurnace Slag<br />

GGBS<br />

Ground Granulated Blastfurnace Slag<br />

HBM<br />

Hydraulically Bound Mixture<br />

HL<br />

Hydrated lime [Ca(OH) 2 ] also known as slaked hydrated lime<br />

Hydraulic B<strong>in</strong>der Cement<strong>in</strong>g materials which harden <strong>in</strong> the presence <strong>of</strong> water<br />

MCHW1 Manual <strong>of</strong> Contract Documents for Highway Works, Volume 1:<br />

Specification for Highway Works<br />

MPa MegaPascal equivalent to 1 Newton per millimetre squared (1 N/mm 2 )<br />

OWC<br />

Optimum Water Content<br />

QL<br />

Quicklime<br />

PI<br />

Plasticity Index<br />

PFA<br />

Pulverized-Fuel Ash<br />

R c<br />

Compressive strength<br />

R c vs<br />

Coefficient <strong>of</strong> volumetric stability<br />

R it<br />

Indirect tensile strength<br />

R c imm<br />

Compressive strength after immersion <strong>in</strong> water<br />

R t<br />

Tensile strength<br />

Series 800<br />

Series 800 <strong>of</strong> MCHW1<br />

SBM<br />

Slag Bound Mixture<br />

SHW<br />

Specification for Highways Works<br />

SROH<br />

Specification for the Re<strong>in</strong>statement <strong>of</strong> Open<strong>in</strong>gs <strong>in</strong> Highways<br />

D115551 07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

1. INTRODUCTION<br />

1.1 PURPOSE OF THE GUIDE<br />

This document provides guidance on the application <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong>to <strong>hydraulically</strong> <strong>bound</strong><br />

<strong>mixtures</strong> (HBMs) for construction applications, specifically with<strong>in</strong> pavement foundation layers.<br />

This guidance document covers a range <strong>of</strong> potential materials, their scope for <strong>use</strong>, methods for<br />

assess<strong>in</strong>g their characteristics and performance, and the general considerations and factors<br />

affect<strong>in</strong>g their potential <strong>use</strong>.<br />

Reference is given throughout the document to the f<strong>in</strong>d<strong>in</strong>gs from research and laboratory<br />

assessment carried out as part <strong>of</strong> this work. This work <strong>in</strong>volved the development <strong>of</strong> HBM<br />

specifications conta<strong>in</strong><strong>in</strong>g a range <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> and various b<strong>in</strong>ders, and subsequent<br />

mechanical test<strong>in</strong>g to assess their performance and suitability for <strong>use</strong> <strong>in</strong> HBMs. Full data and<br />

discussion <strong>of</strong> the f<strong>in</strong>d<strong>in</strong>gs can be found <strong>in</strong> the technical report which accompanies this guidance<br />

document [MIST, 2008].<br />

1.2 SCOPE OF THE GUIDE<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> with<strong>in</strong> HBMs provides decision makers with an <strong>in</strong>creased range <strong>of</strong><br />

options for mixture design and provides an alterative, and potentially large, market application<br />

for these <strong>quarry</strong> ‘by-products’. <strong>The</strong> <strong>use</strong> <strong>of</strong> these materials has potential benefits on both<br />

eng<strong>in</strong>eer<strong>in</strong>g and susta<strong>in</strong>ability terms, and this document provides guidance on how these<br />

benefits can readily be achieved. Guidance is given to producers, buyers, contractors,<br />

designers and clients on the <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications, with<br />

specific attention be<strong>in</strong>g paid to <strong>use</strong> <strong>in</strong> pavement foundation layers. It is based on a review <strong>of</strong><br />

exist<strong>in</strong>g literature and on extensive laboratory research carried out as part <strong>of</strong> this project.<br />

All guidance <strong>in</strong> this document meets <strong>in</strong>dustry recognised standards and specifications and<br />

reference is given to the relevant documents for full details <strong>of</strong> the design methods and<br />

specifications where stated.<br />

1.3 KEY DEFINITIONS<br />

Unless otherwise specified, the term ‘<strong>quarry</strong> <strong>f<strong>in</strong>es</strong>’ is <strong>use</strong>d throughout this report <strong>in</strong>stead <strong>of</strong><br />

‘dusts’, ‘by-products’, ‘wastes’, or ‘rockdusts’.<br />

• Quarry <strong>f<strong>in</strong>es</strong> – Materials typically produced as a by-product <strong>of</strong> the blast<strong>in</strong>g, crush<strong>in</strong>g and<br />

screen<strong>in</strong>g processes at quarries. F<strong>in</strong>es are classed as aggregate pass<strong>in</strong>g the 4 mm sieve<br />

for <strong>use</strong> <strong>in</strong> concrete and related materials, and pass<strong>in</strong>g the 2 mm sieve for <strong>use</strong> <strong>in</strong> asphalt [BS<br />

EN 13043: 2002]. Anyth<strong>in</strong>g larger than 4 mm is classed as coarse aggregate [BS EN 13043:<br />

2002]<br />

• Hydraulically <strong>bound</strong> <strong>mixtures</strong> (HBMs) – A mixture <strong>of</strong> aggregate or soil, with a hydraulic<br />

b<strong>in</strong>der and, where appropriate, secondary constituents, which is designed to atta<strong>in</strong> a<br />

structural <strong>in</strong>tegrity [BS EN 14227: 2004].<br />

• Hydraulic b<strong>in</strong>ders – <strong>The</strong>se are materials that can be <strong>use</strong>d to b<strong>in</strong>d aggregate or soil particles<br />

together. Some require an activator, such as lime, while others simply require the addition <strong>of</strong><br />

sufficient water for activation. Hydraulic b<strong>in</strong>ders <strong>in</strong>clude cement, fly ash and slag.<br />

D115551 Page 1<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

2. HYDRAULICALLY BOUND MIXTURES<br />

2.1 WHAT ARE HBMS?<br />

HBMs set and harden by hydraulic reaction and their classification is based on the material<br />

treated (the type <strong>of</strong> aggregate or soil), the b<strong>in</strong>der(s) <strong>use</strong>d, the process by which it has been<br />

mixed, and the end performance requirements. By comb<strong>in</strong><strong>in</strong>g an aggregate with hydraulic<br />

b<strong>in</strong>der(s), the strength, durability and volume stability <strong>of</strong> the material be<strong>in</strong>g treated can be<br />

tailored to specific requirements.<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> HBMs <strong>in</strong> construction applications can have a number <strong>of</strong> advantages and some<br />

disadvantages;<br />

Advantages<br />

• HBMs provide the opportunity for a greater number <strong>of</strong> secondary and recycled materials to<br />

be <strong>use</strong>d with<strong>in</strong> higher value applications, rather than as un<strong>bound</strong> granular fill.<br />

• HBMs reduce the demand on other construction materials, such as Type 1 aggregate.<br />

• HBMs can be produced to the specific strength and/or stiffness required by a particular<br />

eng<strong>in</strong>eer<strong>in</strong>g project.<br />

• HBMs can be <strong>use</strong>d <strong>in</strong> a cold state and they ga<strong>in</strong> strength and/or stiffness over a period <strong>of</strong><br />

time. This slow cur<strong>in</strong>g time allows for a longer time frame for lay<strong>in</strong>g, compact<strong>in</strong>g and (if<br />

required) pre-crack<strong>in</strong>g.<br />

• <strong>The</strong> high strength and stiffness values <strong>of</strong>fered by HBMs allow for a reduction <strong>in</strong> the thickness<br />

<strong>of</strong> overly<strong>in</strong>g layers <strong>in</strong> a pavement. This can help to reduce the cost <strong>of</strong> the overall project.<br />

• HBMs allow for the re-<strong>use</strong> <strong>of</strong> excavated or demolition materials on-site. This reduces the<br />

need to import materials and it reduces the transport costs and distances <strong>of</strong> material that<br />

would have needed to have been brought to or taken away from site.<br />

• <strong>The</strong> <strong>mixtures</strong> can be produced either <strong>in</strong> situ or ex situ and can be designed to have long term<br />

shelf lives. Plant required for lay<strong>in</strong>g and compaction are similar to those <strong>use</strong>d for other<br />

materials, such as un<strong>bound</strong> <strong>mixtures</strong> and bitum<strong>in</strong>ous <strong>bound</strong> <strong>mixtures</strong>.<br />

• HBMs can help organisations improve the susta<strong>in</strong>ability <strong>of</strong> their projects and help them to<br />

meet or exceed client requirements for ‘green’ procurement [WRAP, 2005].<br />

• <strong>The</strong> <strong>use</strong> <strong>of</strong> HBMs can have an energy sav<strong>in</strong>g effect on a project overall [ETSU, 1997].<br />

Disadvantages<br />

• Higher stiffness values <strong>of</strong>fered by some HBMs may lead to crack<strong>in</strong>g and deformation (for<br />

example, reflective crack<strong>in</strong>g <strong>in</strong> the overly<strong>in</strong>g asphalt layers). This can me mitigated by precrack<strong>in</strong>g.<br />

• <strong>The</strong> materials require compaction.<br />

• <strong>The</strong> <strong>use</strong> <strong>of</strong> a roller compactor or padfoot may be required dur<strong>in</strong>g lay<strong>in</strong>g and compact<strong>in</strong>g <strong>of</strong><br />

the f<strong>in</strong>e gra<strong>in</strong>ed material. This may <strong>in</strong>crease the cost and/or time required for construction.<br />

D115551 Page 2<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

2.1.1 Considerations<br />

<strong>The</strong>re are a number <strong>of</strong> key considerations that need to be taken <strong>in</strong>to account when assess<strong>in</strong>g if<br />

the <strong>use</strong> <strong>of</strong> HBMs (<strong>in</strong>clud<strong>in</strong>g those conta<strong>in</strong><strong>in</strong>g <strong>quarry</strong> <strong>f<strong>in</strong>es</strong>) is appropriate. <strong>The</strong>se <strong>in</strong>clude;<br />

• Material resource efficiency – will the HBM effectively replace or be superior to other<br />

traditionally <strong>bound</strong> or un<strong>bound</strong> materials? Will the potential requirement <strong>of</strong> high b<strong>in</strong>der<br />

contents be an issue?<br />

• Economics – Will the <strong>use</strong> <strong>of</strong> HBMs help to reduce or ma<strong>in</strong>ta<strong>in</strong> the cost <strong>of</strong> the project, when<br />

compared to traditional materials?<br />

• Haulage – Are the materials available locally?<br />

outweigh the cost sav<strong>in</strong>gs made elsewhere?<br />

Will the costs associated with haulage<br />

• Technical – HBMs <strong>of</strong>fer a superior foundation layer and so reduce the requirement for a<br />

thick surface layer. What b<strong>in</strong>der content is required for this and what are the required<br />

compaction techniques?<br />

2.1.2 <strong>The</strong> b<strong>in</strong>ders<br />

HBMs generally comprise an aggregate and b<strong>in</strong>der(s), sometimes with an activator to activate<br />

the hydraulic reaction. Typically, HBMs are classed accord<strong>in</strong>g to their b<strong>in</strong>der type, with the most<br />

common be<strong>in</strong>g;<br />

• Cement Bound Granular Mixture (CBGM) – <strong>bound</strong> us<strong>in</strong>g Portland cement<br />

• Fly Ash Bound Mixture (FABM) – <strong>bound</strong> us<strong>in</strong>g fly ash (or pulverized fuel ash (PFA)) from<br />

coal burn<strong>in</strong>g power stations<br />

• Slag Bound Mixture (SBM) – <strong>bound</strong> us<strong>in</strong>g granulated blastfurnace slag (GBS), an <strong>in</strong>dustrial<br />

by-product<br />

HBMs are aggregate and b<strong>in</strong>der <strong>mixtures</strong> that set and harden <strong>in</strong> the presence <strong>of</strong> water. Some<br />

b<strong>in</strong>ders only require the addition <strong>of</strong> a sufficient amount <strong>of</strong> water to ‘activate’ the hydraulic<br />

reaction, and harden, whereas others require an additional activator such as lime to start the<br />

process.<br />

<strong>The</strong> speed at which this process occurs largely depends upon the b<strong>in</strong>der <strong>use</strong>d, the cur<strong>in</strong>g<br />

conditions and age. Typically, HBMs with cement as the b<strong>in</strong>der (m<strong>in</strong>imum <strong>of</strong> 3% content) can<br />

be classed as ‘quick hydraulic’ (QH), as they harden quickly. Whereas those with other b<strong>in</strong>ders,<br />

such as lime/PFA or lime/GBS, are classed as ‘slow hydraulic’ (SH), as they set and harden<br />

more slowly [Merrill et al, 2004].<br />

<strong>The</strong> ma<strong>in</strong> b<strong>in</strong>ders and activators found and <strong>use</strong>d with<strong>in</strong> the UK are shown <strong>in</strong> Table 1.<br />

D115551 Page 3<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

Table 1: Traditional and alternative b<strong>in</strong>ders <strong>use</strong>d <strong>in</strong> HBMs<br />

Material Availability B<strong>in</strong>der Activator<br />

Portland Cement (PC)<br />

Yes Yes<br />

Pulverized Fuel Ash (PFA)<br />

Granulated Blastfurnace<br />

Slag (GBS)<br />

Ground Granulated<br />

Blastfurnace Slag (GGBS)<br />

Quicklime (QL)<br />

Hydrated Lime (HL)<br />

Gypsum<br />

Steel Slag<br />

Cement Kiln Dust (CKD)<br />

Paper Waste<br />

Red Gypsum<br />

By-product Lime<br />

Traditional B<strong>in</strong>ders<br />

<strong>The</strong>se b<strong>in</strong>ders are available and<br />

<strong>use</strong>d widely <strong>in</strong> the UK and are<br />

covered by the appropriate BS EN<br />

standards and specifications for<br />

HBMs.<br />

Alternative B<strong>in</strong>ders<br />

<strong>The</strong>se b<strong>in</strong>ders are not as widely<br />

<strong>use</strong>d and available <strong>in</strong> the UK and<br />

are not covered to the same extent<br />

by the appropriate BS EN<br />

standards and specifications for<br />

HBMs.<br />

Yes<br />

Yes<br />

Yes<br />

No<br />

No<br />

Yes<br />

Yes<br />

Yes<br />

Yes<br />

Yes<br />

No<br />

No<br />

No<br />

No<br />

Yes<br />

Yes<br />

Yes<br />

Yes<br />

Yes<br />

Not known<br />

No<br />

Yes<br />

2.1.3 HBM – Aggregates<br />

Aggregates for application <strong>in</strong>to HBMs can be crushed or uncrushed and should comply with BS<br />

EN 13242: 2002. <strong>The</strong> aggregate can be naturally occurr<strong>in</strong>g, recycled or manufactured, or any<br />

comb<strong>in</strong>ation <strong>of</strong> these. HBM properties depend ma<strong>in</strong>ly on the properties <strong>of</strong> the aggregate and<br />

the <strong>in</strong>teraction between the aggregate and the b<strong>in</strong>der(s), which has to be considered dur<strong>in</strong>g<br />

HBM design.<br />

<strong>The</strong> suitability <strong>of</strong> an aggregate for application <strong>in</strong>to a particular HBM is based upon the grad<strong>in</strong>g<br />

requirements specified <strong>in</strong> the relevant BS EN standard. It is also important to understand the<br />

characteristics and behaviour <strong>of</strong> the particular aggregate so as to be able to design <strong>mixtures</strong><br />

that are suitable for their purpose. <strong>The</strong>se issues are discussed further <strong>in</strong> Sections 3, 4 and 5.<br />

Materials also need to be assessed on a source and application specific basis. HD35 with<strong>in</strong> the<br />

Highways Agency’s Design Manual for Roads and Bridges, Volume 7 (DMRB) [Highways<br />

Agency, 2001] provides advice on the <strong>use</strong> <strong>of</strong> a range <strong>of</strong> primary, secondary and recycled<br />

materials <strong>in</strong>to HBMs, for pavement base and subbase applications. <strong>The</strong>se materials <strong>in</strong>clude;<br />

blastfurnace slag, pulverized fuel ash, ch<strong>in</strong>a clay sand, <strong>in</strong>c<strong>in</strong>erator bottom ash aggregate, slate<br />

and spent oil shale, and many more.<br />

2.1.4 HBM – Applications<br />

HBMs have historically been <strong>use</strong>d <strong>in</strong> construction applications <strong>in</strong> countries such as France,<br />

Holland and Germany, and to a lesser, but grow<strong>in</strong>g extent, with<strong>in</strong> the UK. S<strong>in</strong>ce the <strong>in</strong>troduction<br />

<strong>of</strong> harmonised European Standards and their adoption <strong>in</strong>to the Manual <strong>of</strong> Contract Documents<br />

for Highways Works (MCHW), the scope for the <strong>use</strong> <strong>of</strong> HBMs has <strong>in</strong>creased. HBMs are now<br />

<strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g <strong>use</strong>d for the construction <strong>of</strong> work<strong>in</strong>g platforms, l<strong>in</strong>ers, flood defences, trench<br />

re<strong>in</strong>statement, erosion protection, major and m<strong>in</strong>or roads, paved areas and heavy duty pav<strong>in</strong>g<br />

[WRAP, 2005].<br />

<strong>The</strong> key application areas for HBMs <strong>in</strong>clude;<br />

D115551 Page 4<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

• Trench Re<strong>in</strong>statement - <strong>The</strong> Specification for the Re<strong>in</strong>statement <strong>of</strong> Open<strong>in</strong>gs <strong>in</strong> Highways<br />

(SROH) [Highways Authorities and Utilities Committee, 2002] permits several types <strong>of</strong><br />

<strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> for <strong>use</strong> <strong>in</strong> trench re<strong>in</strong>statement. Confidence <strong>in</strong> the mixture’s<br />

performance and its suitability for application <strong>in</strong>to re<strong>in</strong>statement projects, is typically<br />

determ<strong>in</strong>ed by its Compressive Strength (Rc), which gives an <strong>in</strong>dication <strong>of</strong> mechanical<br />

performance.<br />

• Pavement Construction - <strong>The</strong> pavement design guidance associated with the DMRB<br />

[Highways Agency, 2001] permits a performance specification route for the design <strong>of</strong><br />

pavement foundations. This provides details <strong>of</strong> the performance measurement <strong>of</strong> materials,<br />

and design values, and <strong>in</strong>cludes an <strong>in</strong>dicative guide to the hierarchy <strong>of</strong> materials, accord<strong>in</strong>g<br />

to performance. Series 800 <strong>of</strong> the Specification for Highways Works (SHW) [Highways<br />

Agency, 2007] is based upon European harmonised standards (BS ENs) for HBMs and<br />

stabilised soils for pavement subbase and base applications. With<strong>in</strong> pavement foundation<br />

guidance, it has been recognised that the potentially superior performance <strong>of</strong> HBM layers,<br />

when compared to traditionally <strong>use</strong>d un<strong>bound</strong> materials, can now be factored <strong>in</strong>to the overall<br />

pavement design and thus, allows for reductions <strong>in</strong> the thickness and strength <strong>of</strong> overly<strong>in</strong>g<br />

layers [Highways Agency, 2006].<br />

Figure 1: A HBM be<strong>in</strong>g compacted <strong>in</strong>to a pavement foundation layer<br />

• Work<strong>in</strong>g Platforms - HBMs are commonly <strong>use</strong>d <strong>in</strong> the construction <strong>of</strong> work<strong>in</strong>g platforms.<br />

Here, the HBM <strong>use</strong>d provides a stable and durable temporary work<strong>in</strong>g surface from which<br />

mach<strong>in</strong>ery, such as pil<strong>in</strong>g rigs and cranes, can operate. Work<strong>in</strong>g platforms are required<br />

where the natural ground conditions are unsuitable for the safe operation <strong>of</strong> construction<br />

plant. <strong>The</strong> work<strong>in</strong>g platform may be <strong>in</strong>corporated <strong>in</strong>to the permanent design if dra<strong>in</strong>age, the<br />

stress and load applied and regularity <strong>of</strong> <strong>use</strong>, ma<strong>in</strong>tenance and rehabilitation are considered<br />

dur<strong>in</strong>g the design stage. This can reduce overall costs significantly [Kennedy, 2006].<br />

• Harbours and Flood Defences – HBMs can be applied as earthworks and l<strong>in</strong>ers and can<br />

act as protective barriers when placed <strong>in</strong> layers to construct an embankment.<br />

2.2 QUARRY FINES<br />

Quarry <strong>f<strong>in</strong>es</strong> typically consist <strong>of</strong> a mixture <strong>of</strong> coarse and f<strong>in</strong>e sized aggregate particles, plus a<br />

clay/silt fraction (<strong>f<strong>in</strong>es</strong>). <strong>The</strong>se aggregate <strong>f<strong>in</strong>es</strong>, <strong>in</strong> accordance with the BS EN 13242: 2002, are<br />

classed as less than 4 mm <strong>in</strong> size for <strong>use</strong> <strong>in</strong> aggregate applications such as concrete, and less<br />

than 2 mm <strong>in</strong> size for <strong>use</strong> <strong>in</strong> asphalt. However, particularly with<strong>in</strong> <strong>quarry</strong> operations, the term<br />

‘<strong>f<strong>in</strong>es</strong>’ is <strong>of</strong>ten <strong>use</strong>d to def<strong>in</strong>e all undersized material result<strong>in</strong>g from the blast<strong>in</strong>g and crush<strong>in</strong>g<br />

processes [Mann<strong>in</strong>g, 2004].<br />

<strong>The</strong> British Geological Survey [2006] estimates that there are around 41 million tonnes <strong>of</strong> f<strong>in</strong>e<br />

material produced by <strong>quarry</strong><strong>in</strong>g annually <strong>in</strong> the UK. This has <strong>in</strong>creased over recent years due to<br />

changes <strong>in</strong> the demands and specifications for aggregates, result<strong>in</strong>g <strong>in</strong> changes to crush<strong>in</strong>g and<br />

D115551 Page 5<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

process<strong>in</strong>g techniques. Currently, much <strong>of</strong> this material is stockpiled and the ma<strong>in</strong> applications<br />

to date have tended to be low value and low performance, such as <strong>in</strong> bulk fill and capp<strong>in</strong>g<br />

[British Geological Society, 2006].<br />

Figure 2: Stockpiled <strong>quarry</strong> <strong>f<strong>in</strong>es</strong><br />

In the UK, there is considerable variability <strong>in</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong>, both locally and nationally. This is<br />

dependent on lithology and the crush<strong>in</strong>g, screen<strong>in</strong>g and process<strong>in</strong>g techniques applied. <strong>The</strong><br />

range <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> available <strong>in</strong> the UK are summarised <strong>in</strong> Table 2. Although not <strong>quarry</strong> <strong>f<strong>in</strong>es</strong>,<br />

f<strong>in</strong>e aggregate and <strong>f<strong>in</strong>es</strong> from the production <strong>of</strong> Recycled Aggregates are <strong>in</strong>cluded for<br />

completeness.<br />

Table 2: Quarry <strong>f<strong>in</strong>es</strong> types found <strong>in</strong> the UK<br />

Lithologies Example Types Production<br />

Sedimentary rock<br />

Dolomitic Limestone<br />

Carboniferous Limestone<br />

Sandstone<br />

Gritstone<br />

Igneous rock<br />

Granite<br />

Diorite<br />

Andesite<br />

From the blast<strong>in</strong>g, crush<strong>in</strong>g<br />

and screen<strong>in</strong>g processes at<br />

quarries<br />

From the blast<strong>in</strong>g, crush<strong>in</strong>g<br />

and screen<strong>in</strong>g processes at<br />

quarries<br />

Recycled aggregate Various/mixed Recovered construction,<br />

demolition and excavation<br />

waste (CDEW)<br />

Superficial deposits Silt/clay Recovered from sand and<br />

gravel extraction processes<br />

As HBMs are <strong>bound</strong> materials, they must possess strong aggregate <strong>in</strong>terlock and/or a strong<br />

b<strong>in</strong>der <strong>in</strong> order to be sufficiently durable, dependent on the specified performance requirements.<br />

Quarry <strong>f<strong>in</strong>es</strong> are essentially a f<strong>in</strong>e graded material with a general absence <strong>of</strong> coarse aggregate<br />

particles, so the desired strong aggregate <strong>in</strong>terlock is likely to be miss<strong>in</strong>g. <strong>The</strong>refore, <strong>in</strong> an<br />

un<strong>bound</strong> form, <strong>f<strong>in</strong>es</strong> lack the ability to provide significant structural strength and stability. <strong>The</strong><br />

lack <strong>of</strong> a strong aggregate <strong>in</strong>terlock will also impact on the strength <strong>of</strong> the <strong>bound</strong> form.<br />

<strong>The</strong>refore, issues such as ensur<strong>in</strong>g that sufficient compaction is achieved need extra attention<br />

dur<strong>in</strong>g the design stage (see Section 3).<br />

By <strong>in</strong>corporat<strong>in</strong>g the <strong>f<strong>in</strong>es</strong> with a hydraulic b<strong>in</strong>der, the lack <strong>of</strong> potential aggregate <strong>in</strong>terlock is<br />

overcome and material strength and stiffness can be designed effectively. Additionally, by<br />

us<strong>in</strong>g a f<strong>in</strong>er aggregate, issues such as segregation dur<strong>in</strong>g transportation from <strong>quarry</strong> to site are<br />

reduced. <strong>The</strong> f<strong>in</strong>er material can also make compaction easier and can reduce the HBM’s<br />

susceptibility to penetration by water.<br />

D115551 Page 6<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

2.2.1 Indicative suitability<br />

As part <strong>of</strong> the research project, a range <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> and hydraulic b<strong>in</strong>ders were sourced and<br />

assessed for suitability for application <strong>in</strong>to HBMs for pavement foundation construction. Quarry<br />

<strong>f<strong>in</strong>es</strong> materials were sourced to represent a range <strong>of</strong> lithologies and material types and were<br />

expected to produce HBMs with a range <strong>of</strong> performance and durability characteristics. Details<br />

<strong>of</strong> the research project are reported <strong>in</strong> the project technical report [MIST, 2008].<br />

A variety <strong>of</strong> HBMs were designed and durability and mechanical performance test<strong>in</strong>g was<br />

conducted.<br />

Indicative strength values have been obta<strong>in</strong>ed from this test<strong>in</strong>g and are shown <strong>in</strong> Table 3. All<br />

Rc values are for 2:1 height to diameter specimens tested at 28-days age.<br />

Table 3: Typical compressive strength (Rc) results for tested HBM specimens<br />

B<strong>in</strong>der<br />

Generic Quarry F<strong>in</strong>e<br />

Lithologies<br />

4 to 6 % CEM I 4 to 6 % CEM II PFA* CKD* GGBS*<br />

Dolomitic Limestone 5 - 8 MPa 7 - 8 MPa 2 - 3 MPa 2 - 3 MPa<br />

Carboniferous Limestone 1 - 2 MPa 10 - 12 MPa<br />

Andesite 6 - 9 MPa 5 - 7 MPa<br />

Grandodiorite 7 - 12 MPa 7 - 10 MPa<br />

Sandstone 5 - 7 MPa 5 - 7 MPa<br />

Silt (


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

3. SPECIFICATION AND COMPLIANCE<br />

3.1 FACTORS TO BE CONSIDERED<br />

<strong>The</strong> development <strong>of</strong> a HBM design is an iterative process based on ongo<strong>in</strong>g mixture design and<br />

laboratory test<strong>in</strong>g <strong>in</strong> order to optimise performance and applicability <strong>in</strong>to real-life sett<strong>in</strong>gs.<br />

Assessment <strong>of</strong> the aggregate and b<strong>in</strong>der mix, optimis<strong>in</strong>g the grad<strong>in</strong>g and establish<strong>in</strong>g the<br />

m<strong>in</strong>imum b<strong>in</strong>der content are crucial to achiev<strong>in</strong>g a durable material suitable for <strong>use</strong>.<br />

3.1.1 Short-term performance – Workability and traffick<strong>in</strong>g<br />

Pavement construction is subject to both relevant BS EN standards and specifications and the<br />

Manual <strong>of</strong> Contract Documents for Highways Works (MCHW), which draws upon these relevant<br />

BS EN standards and specifies that the structure must fulfil its role while also be<strong>in</strong>g durable and<br />

long-last<strong>in</strong>g [Highways Agency, 2007]. HBMs tend to cure and harden slowly (specifically noncement<br />

<strong>bound</strong> materials), therefore, allow<strong>in</strong>g for a long period <strong>of</strong> workability. <strong>The</strong>ir strength ga<strong>in</strong><br />

is also typically slow and can provide the opportunity for re-work<strong>in</strong>g shortly after be<strong>in</strong>g laid, if<br />

necessary [Kennedy, 2006].<br />

Even though HBMs tend to require more time to achieve full strength, it is possible for the<br />

traffick<strong>in</strong>g <strong>of</strong> the newly laid surface to beg<strong>in</strong> immediately, without the need for a lengthy cur<strong>in</strong>g<br />

period. This depends upon the cohesive properties <strong>of</strong> the aggregate and b<strong>in</strong>der mix and it is<br />

important that a mixture design established to allow for immediate traffick<strong>in</strong>g must also ensure<br />

that there is no detrimental effect on the long-term strength ga<strong>in</strong> and traffickability <strong>of</strong> the<br />

pavement.<br />

3.1.2 Long-term performance – Durability and degradation<br />

<strong>The</strong> role <strong>of</strong> the pavement foundation is to distribute the applied vehicle loads to the underly<strong>in</strong>g<br />

subgrade, without caus<strong>in</strong>g distress to the overly<strong>in</strong>g layers. Dur<strong>in</strong>g the life <strong>of</strong> a pavement, the<br />

foundation layer has to be able to withstand a large number <strong>of</strong> repeated loads from traffic. In<br />

addition to this, it is also likely to experience forms <strong>of</strong> environmental degradation, such as the<br />

<strong>in</strong>gress <strong>of</strong> water and temperature fluctuations. It is therefore essential that the foundation can<br />

withstand degradation so that excessive deformation does not occur, which can lead to rutt<strong>in</strong>g<br />

or reflective crack<strong>in</strong>g and erosion <strong>in</strong> the surface layers.<br />

3.1.3 Economic viability<br />

<strong>The</strong> economic viability <strong>of</strong> us<strong>in</strong>g HBMs <strong>in</strong> any construction project needs to be <strong>in</strong>vestigated prior<br />

to any decisions be<strong>in</strong>g made relat<strong>in</strong>g to material selection and mixture design. Issues such as<br />

the required b<strong>in</strong>der content and expected manufacture and compact<strong>in</strong>g techniques need to be<br />

taken <strong>in</strong>to account. In addition, material availability and the associated transport costs need to<br />

be taken <strong>in</strong>to consideration and weighed up aga<strong>in</strong>st alternative material solutions.<br />

HBMs <strong>of</strong>fer a range <strong>of</strong> potential cost sav<strong>in</strong>gs for construction projects. <strong>The</strong>se <strong>in</strong>clude;<br />

• <strong>The</strong> opportunity to reduce the demand for primary materials as they allow for the greater <strong>use</strong><br />

<strong>of</strong> secondary and recycled materials. If available locally, this can also help to reduce costs<br />

associated with transportation.<br />

• <strong>The</strong> typically higher stiffness values <strong>of</strong>fered by HBMs compared to un<strong>bound</strong> materials, when<br />

<strong>use</strong>d <strong>in</strong> the foundation layers <strong>of</strong> a pavement, can allow for a reduction <strong>in</strong> the thickness <strong>of</strong> the<br />

overly<strong>in</strong>g pavement layers. This can have a cost sav<strong>in</strong>g impact on the overall project. This<br />

is particularly relevant where <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> are applied with<strong>in</strong> HBMs due to the high stiffness<br />

values that they can provide.<br />

<strong>The</strong> typically longer work<strong>in</strong>g and shelf-life than traditional materials means that they can be<br />

easier to lay and compact.<br />

D115551 Page 8<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

4. DESIGN OF HBMS FOR DURABILITY<br />

4.1 FACTORS AFFECTING DURABILITY<br />

<strong>The</strong> factors that affect HBM durability can be divided <strong>in</strong>to those attributed to environmental<br />

conditions, such as temperature, water or other deleterious substances, and those associated<br />

with the material components <strong>of</strong> the HBM itself. If the durability <strong>of</strong> the HBM is <strong>in</strong>adequate, these<br />

factors can result <strong>in</strong> shortened <strong>in</strong>-service life spans, <strong>in</strong>creased ma<strong>in</strong>tenance requirements, or,<br />

ultimately, failure <strong>of</strong> the pavement and costly remedial works.<br />

4.1.1 Environmental factors<br />

<strong>The</strong> key factors that affect the durability <strong>of</strong> a HBM are environmental and chemical.<br />

Environmental considerations <strong>in</strong>clude temperature extremes and changes, and the presence <strong>of</strong><br />

water. Chemical considerations <strong>in</strong>clude exposure to deleterious substances or substances that<br />

may lead to expansive reactions. Dimensional changes to a HBM layer <strong>of</strong> a pavement can<br />

disrupt the overall structure and/or result <strong>in</strong> reduced performance <strong>of</strong> the layer itself. Specific<br />

ca<strong>use</strong>s <strong>of</strong> dimensional change can <strong>in</strong>clude;<br />

• <strong>The</strong>rmal expansion/contraction – ca<strong>use</strong>d by excessive heat or cold<br />

• Dry<strong>in</strong>g shr<strong>in</strong>kage – can be ca<strong>use</strong>d when a material is laid ‘wet’ and then dried dur<strong>in</strong>g<br />

compaction; this is usually more associated with concrete than with HBMs<br />

• Frost-heave – when the material expands due to frost and then shr<strong>in</strong>ks when the frost<br />

disappears<br />

• Freeze-thaw – when free water <strong>in</strong> the material weakens the structure dur<strong>in</strong>g freeze-thaw<br />

• Expansive reactions ca<strong>use</strong>d by excesses <strong>of</strong> damag<strong>in</strong>g chemicals <strong>in</strong> the environment<br />

4.1.2 Non-environmental factors<br />

HBMs are only as good as their component parts and a mixture design should establish the<br />

optimum balance <strong>of</strong> b<strong>in</strong>der, aggregate and water required to produce a suitable HBM for the<br />

<strong>in</strong>tended <strong>use</strong>. In addition to the environmental and chemical factors, there are a number <strong>of</strong> nonenvironmental<br />

factors that have an impact on the durability <strong>of</strong> a HBM and should therefore be<br />

factored <strong>in</strong>to the design stage (see relevant documents <strong>in</strong> Section 7), as shown <strong>in</strong> Table 4.<br />

Table 4: Non-environmental factors affect<strong>in</strong>g the durability <strong>of</strong> a HBM<br />

Aggregate Factors B<strong>in</strong>der Factors Mixture Factors<br />

Quality and content <strong>of</strong> <strong>f<strong>in</strong>es</strong> Cur<strong>in</strong>g rates Grad<strong>in</strong>g<br />

Particle density Workability B<strong>in</strong>der type(s) and content<br />

Water absorption Mechanical performance Compaction (<strong>in</strong>clud<strong>in</strong>g density<br />

and air voids)<br />

Resistance to fragmentation Water requirements Stiffness<br />

Sulfate content Chemical content Resistance to permanent<br />

deformation<br />

Stability<br />

Potential for crack<strong>in</strong>g and the<br />

heal<strong>in</strong>g <strong>of</strong> cracks<br />

Permeability (both element<br />

and layer)<br />

4.1.3 Dra<strong>in</strong>age<br />

Surface and subsoil dra<strong>in</strong>age must be adequate to allow for the durability <strong>of</strong> a laid HBM to be<br />

ma<strong>in</strong>ta<strong>in</strong>ed. Without adequate dra<strong>in</strong>age the life-span and traffick<strong>in</strong>g ability <strong>of</strong> the pavement will<br />

be restricted. This is particularly important dur<strong>in</strong>g periods <strong>of</strong> high ra<strong>in</strong>fall when the water table<br />

will be high [Britpave, 2007].<br />

D115551 Page 9<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

4.2 ASSESSING DURABILITY<br />

<strong>The</strong> appropriate tests and requirements for determ<strong>in</strong><strong>in</strong>g the durability <strong>of</strong> a HBM are set out <strong>in</strong><br />

Figure 4. <strong>The</strong> mixture design <strong>of</strong> a HBM is an iterative process based on specific and ongo<strong>in</strong>g<br />

laboratory test<strong>in</strong>g <strong>in</strong>volv<strong>in</strong>g the assessment <strong>of</strong> both the sourced aggregate and the <strong>bound</strong><br />

mixture as a whole. Through this iterative process, optimisation <strong>of</strong> performance can be achieved<br />

through grad<strong>in</strong>g analysis and establish<strong>in</strong>g the optimum water content (OWC) and m<strong>in</strong>imum<br />

b<strong>in</strong>der(s) content.<br />

Once an aggregate and b<strong>in</strong>der(s) have been sourced, classification test<strong>in</strong>g must be carried out<br />

to determ<strong>in</strong>e the physical properties <strong>of</strong> the aggregate and identify where potential problems may<br />

lie if they were to be <strong>in</strong>corporated <strong>in</strong>to a HBM, for example, adverse chemical reactions.<br />

Subsequent mixture design should take <strong>in</strong>to account both short and long-term performance<br />

considerations and should <strong>in</strong>volve the optimisation <strong>of</strong> grad<strong>in</strong>g and b<strong>in</strong>der content as a result.<br />

Comprehensive assessment <strong>of</strong> the mechanical performance <strong>of</strong> the mixture is required to<br />

compare the HBM aga<strong>in</strong>st the specified performance criteria. Subsequent assessment to<br />

identify the durability <strong>of</strong> the particular mixture design should also be conducted. Figure 3<br />

outl<strong>in</strong>es the procedure for this assessment [WRAP, 2008].<br />

Aggregate selection<br />

Classification Test<strong>in</strong>g<br />

Grad<strong>in</strong>g<br />

Plasticity<br />

Water Absorption<br />

Organics<br />

Sulphate/Sulphide<br />

Mixture Design<br />

B<strong>in</strong>der Selection<br />

Grad<strong>in</strong>g Optimisation<br />

Production and Construction<br />

Quality Control<br />

No<br />

Mechanical Performance<br />

Test<strong>in</strong>g<br />

No<br />

Does it meet the<br />

performance criteria?<br />

Yes<br />

Will it be <strong>use</strong>d with<strong>in</strong> the<br />

depth <strong>of</strong> frost penetration?<br />

Yes<br />

No<br />

Evaluate the mechanical performance <strong>in</strong><br />

relation to exposure<br />

Evaluate Volumetric<br />

Stability<br />

Carry out 3+ month<br />

immersion test<strong>in</strong>g<br />

Yes<br />

Are there any long-term<br />

chemical reactions that<br />

could affect volumetric<br />

stability?<br />

No<br />

Carry out 28 + day<br />

immersion test<strong>in</strong>g<br />

Is Rc > 80% <strong>of</strong><br />

orig<strong>in</strong>al value?<br />

Yes<br />

<strong>The</strong> Mixture is<br />

Durable<br />

No<br />

Does it display adequate<br />

freeze thaw/frost heave<br />

resistance?<br />

Yes<br />

Figure 3. <strong>The</strong> procedure for test<strong>in</strong>g the durability <strong>of</strong> a HBM [WRAP, 2008]<br />

D115551 Page 10<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

4.2.1 Classification test<strong>in</strong>g<br />

Classification test<strong>in</strong>g determ<strong>in</strong>es the physical properties <strong>of</strong> aggregates and their potential<br />

suitability and performance if they are to be <strong>in</strong>cluded <strong>in</strong> a HBM. Grad<strong>in</strong>g <strong>of</strong> the material is<br />

carried out <strong>in</strong> order to identify whether it is well-graded; i.e. it should have a good distribution <strong>of</strong><br />

particle sizes from <strong>f<strong>in</strong>es</strong>t to coarsest, allow for efficient compaction by form<strong>in</strong>g a matrix without<br />

voids, and achieve the required level <strong>of</strong> durability when placed <strong>in</strong> a HBM.<br />

Grad<strong>in</strong>g must be carried out prior to any mixture design be<strong>in</strong>g developed, <strong>in</strong> accordance with<br />

BS EN 933-1:1997. Grad<strong>in</strong>g envelopes for CBGMs, FABMs and SBMs have been developed to<br />

provide guidance to producers, designers and specifiers [BS EN 14227: 2004]. <strong>The</strong>se<br />

envelopes are <strong>use</strong>d to assess whether or not an aggregate is suitable for its application by<br />

plott<strong>in</strong>g the mass <strong>of</strong> material that passes each sieve size aga<strong>in</strong>st the envelopes. Optimisation<br />

<strong>of</strong> the grad<strong>in</strong>g can be subsequently carried out to achieve this, <strong>of</strong>ten by add<strong>in</strong>g other size<br />

fractions <strong>of</strong> the same aggregate or other materials. This ensures that the aggregate <strong>in</strong>terlock is<br />

maximised and that a m<strong>in</strong>imum number <strong>of</strong> voids are present <strong>in</strong> the f<strong>in</strong>al HBM.<br />

In general, grad<strong>in</strong>g envelopes are narrower and more restrictive for higher performance<br />

applications, such as <strong>in</strong> pavement foundation layers, compared to general fill. Figure 4 shows<br />

the CBGM envelopes. Envelope A covers materials that are typically f<strong>in</strong>e gra<strong>in</strong>ed and are able<br />

to be suitably compacted. When an aggregate plott<strong>in</strong>g with<strong>in</strong> this envelope is <strong>use</strong>d <strong>in</strong> a CBGM,<br />

the mixture is referred to as a CBG<strong>MA</strong>. Envelope B covers only well-graded coarser aggregate<br />

that has limited <strong>f<strong>in</strong>es</strong> content. Similarly, a mixture conta<strong>in</strong><strong>in</strong>g this type <strong>of</strong> aggregate is referred<br />

to as a CBGMB<br />

In general, <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> fall with<strong>in</strong> Envelope A, or above. Above the limits <strong>of</strong> Envelope A, the<br />

HBMs are classed as treated soils [BS EN 14227-10 to 14: 2006].<br />

100<br />

90<br />

80<br />

70<br />

Envelope A<br />

60<br />

Mass %<br />

pass<strong>in</strong>g<br />

50<br />

40<br />

Envelope B<br />

30<br />

20<br />

10<br />

0<br />

0.063<br />

0.212<br />

0.425<br />

2<br />

4<br />

6.3<br />

10<br />

20<br />

31.5<br />

Sieve size (mm)<br />

Figure 4: <strong>The</strong> grad<strong>in</strong>g envelope for a HBM (specifically a CBGM). BS EN 14227-1: 2006.<br />

<strong>The</strong> suitability <strong>of</strong> an aggregate for <strong>use</strong> <strong>in</strong> a HBM also depends on its capacity for compaction,<br />

which is determ<strong>in</strong>ed by assess<strong>in</strong>g the dry density and optimum water content (OWC) <strong>of</strong> the<br />

material [BS EN 13286-1 to 5: 2<strong>003</strong>]. <strong>The</strong>se factors <strong>in</strong>fluence the result<strong>in</strong>g strength and<br />

stiffness values when the material is manufactured <strong>in</strong>to a HBM.<br />

D115551 Page 11<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

4.3 PERFOR<strong>MA</strong>NCE AND MECHANICAL TESTING<br />

4.3.1 Introduction<br />

Mechanical durability test<strong>in</strong>g evaluates whether or not the HBM has the potential to withstand<br />

long-term deleterious conditions and ma<strong>in</strong>ta<strong>in</strong> stability and the required level <strong>of</strong> performance.<br />

<strong>The</strong> mechanical performance classification system for HBMs conta<strong>in</strong>ed with<strong>in</strong> Series 800<br />

[MCHW1, 2007] and European Standards [BS EN 13286-41 to 43: 2<strong>003</strong>] can be divided <strong>in</strong>to<br />

two systems:<br />

• System One – based on an <strong>in</strong>direct method such as compressive strength, R c , and<br />

• System Two – based on a more fundamental comb<strong>in</strong>ation <strong>of</strong> tensile strength, R t , and<br />

modulus <strong>of</strong> elasticity, E c .<br />

Figure 5 shows the route for assess<strong>in</strong>g the mechanical performance <strong>of</strong> a HBM <strong>in</strong> the laboratory.<br />

Classification Test<strong>in</strong>g<br />

Mechanical Test<strong>in</strong>g<br />

System One<br />

System Two<br />

Assesses:<br />

Compressive strength [BS EN 13286-41:<br />

2<strong>003</strong>]. Specimens <strong>of</strong> a height to diameter<br />

(H:D) ratio <strong>of</strong> 2:1 are subjected to a uniform<br />

load<strong>in</strong>g so failure occurs between 30 and 60<br />

seconds<br />

Assesses:<br />

Direct tensile strength (BS EN 13286-41:<br />

2<strong>003</strong>) or Indirect tensile strength [BS EN<br />

13286-42: 2<strong>003</strong>] and Modulus <strong>of</strong> Elasticity<br />

[BS EN 13286-43: 2<strong>003</strong>].<br />

Requires specimens <strong>of</strong> a H:D ratio <strong>of</strong> 2:1<br />

Durability Test<strong>in</strong>g<br />

In accordance with Series 800<br />

[SHW], NF P98 234-1:1992 and<br />

BS 812-124:1989<br />

If proved to be durable the HBM<br />

is suitable for <strong>use</strong> <strong>in</strong> a specified<br />

application area<br />

Figure 5: Routes for assess<strong>in</strong>g the mechanical performance <strong>of</strong> a HBM (System One and<br />

System Two)<br />

<strong>The</strong> preparation and test<strong>in</strong>g <strong>of</strong> samples should be carried out <strong>in</strong> a way that reflects expected<br />

real-life conditions, such as, timescale, temperature and materials.<br />

D115551 Page 12<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

4.3.2 System One test<strong>in</strong>g<br />

A compressive strength value (System One classification) is <strong>of</strong>ten <strong>use</strong>d as the basis for generic<br />

guidance. Care should be taken <strong>in</strong> relat<strong>in</strong>g strength ga<strong>in</strong>s, mixture design, material and<br />

application specific properties to the <strong>use</strong> <strong>of</strong> any generic guidance values as the overall<br />

performance <strong>of</strong> a HBM is dependant on many factors which cannot be accounted for <strong>in</strong> such<br />

generic values.<br />

Figure 6: Compressive strength test<strong>in</strong>g <strong>of</strong> a 1:1 height to diameter specimen <strong>of</strong> HBM<br />

4.3.3 System Two test<strong>in</strong>g<br />

<strong>The</strong> tensile strength test is designed to model the forces exerted on a pavement layer <strong>in</strong> a<br />

direction perpendicular to the applied load, the strength datasets are expressed <strong>in</strong> MegaPascals<br />

(MPa). However, tensile strength (R t ) is difficult to determ<strong>in</strong>e experimentally, so is derived from<br />

the <strong>in</strong>direct tensile strength (R it ) us<strong>in</strong>g established relationships [BS EN 14227-1 to 3: 2004];<br />

Rt = Rit<br />

×<br />

0.8 ( MPa)<br />

<strong>The</strong> elastic modulus E c (also known as static stiffness) measures the element’s elastic stiffness<br />

modulus (def<strong>in</strong>ed as the secant stiffness at 30% <strong>of</strong> the peak force). <strong>The</strong> specimen is fitted with a<br />

collar (Figure 7) that measures the amount <strong>of</strong> specimen compression, <strong>in</strong> millimetres, dur<strong>in</strong>g the<br />

application <strong>of</strong> the load to the top <strong>of</strong> the specimen. <strong>The</strong> results are expressed <strong>in</strong> GigaPascals<br />

(GPa). As the layer stiffness (El) is assumed to be 20% <strong>of</strong> the element stiffness (stiffness <strong>of</strong> the<br />

test specimen), it can be approximated simply us<strong>in</strong>g:<br />

E ( GPa)<br />

= E ( GPa)<br />

× 0.2<br />

l<br />

C<br />

D115551 Page 13<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

Figure 7: Stra<strong>in</strong> collar fitted to a 2:1 HBM specimen dur<strong>in</strong>g modulus <strong>of</strong> elasticity test<strong>in</strong>g<br />

4.4 DURABILITY TESTING<br />

HBMs that exhibit compressive strengths <strong>in</strong> excess <strong>of</strong> 2 to 2.5 N/mm² are classed as <strong>bound</strong><br />

materials, and are therefore, superior to un<strong>bound</strong> materials [Kennedy, 2006]. However, <strong>in</strong><br />

recent years, durability recommendations for lower strength HBMs have emerged and these<br />

<strong>in</strong>corporate new methods <strong>of</strong> durability assessment.<br />

Durability is currently assessed <strong>in</strong> Series 800 <strong>of</strong> the Specification for Highways Works (SHW)<br />

[Highways Agency, 2007] us<strong>in</strong>g the procedure given <strong>in</strong> cla<strong>use</strong> 880.4. Specimens with a H:D <strong>of</strong><br />

1:1 are prepared and cured for 14 days <strong>in</strong> air. <strong>The</strong>y are then cured for a further 14 days<br />

immersed <strong>in</strong> water. <strong>The</strong> compressive strength <strong>of</strong> these immersed samples (R c imm ) is determ<strong>in</strong>ed<br />

along with that <strong>of</strong> control specimens (R c control ) cured for 28 days <strong>in</strong> air only. <strong>The</strong> mixture is<br />

classified as durable if the follow<strong>in</strong>g applies;<br />

R<br />

c vs<br />

⎛ R<br />

= ⎜<br />

⎝ Rc<br />

c imm<br />

control<br />

⎞<br />

⎟ ×100 ≥ 80%<br />

⎠<br />

where:<br />

R is the relative volumetric stability (assumed to be durable if ≥ 80%)<br />

c vs<br />

<strong>The</strong> durability <strong>of</strong> a HBM should also be evaluated with regard to issues such as resistance to<br />

frost heave and freeze thaw. <strong>The</strong> duration <strong>of</strong> these tests should relate to the assessed potential<br />

for the material to be susceptible to long-term deleterious reactions. <strong>The</strong> strength <strong>of</strong> the<br />

aggregate with<strong>in</strong> a HBM helps to determ<strong>in</strong>e its susceptibility to the weather<strong>in</strong>g <strong>in</strong>fluences <strong>of</strong> the<br />

freeze-thaw process and the material’s potential to lose or ga<strong>in</strong> strength over time.<br />

Table 5 summarises the durability test<strong>in</strong>g procedures for HBMs.<br />

D115551 Page 14<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

Table 5: HBM mixture durability test<strong>in</strong>g procedures<br />

Durability Test Standards Procedure Applicability<br />

1:1 sealed specimens are cured<br />

This is a required test<br />

for 14 days <strong>in</strong> air then immersed <strong>in</strong><br />

that must be carried<br />

water for 14 days at 20°C for<br />

Volumetric SHW Series<br />

out on all HBMs to be<br />

CBGMs and 40°C for FABMs and<br />

stability 800, 2007<br />

applied with<strong>in</strong><br />

SBMs. <strong>The</strong> result<strong>in</strong>g compressive<br />

pavement<br />

strength must be at least 80% <strong>of</strong><br />

construction.<br />

the strength <strong>of</strong> control specimens.<br />

Freeze thaw<br />

Frost heave<br />

NF P98 234-1:<br />

1992<br />

BS 812-124:<br />

1989<br />

2:1 specimens are cured for 28<br />

days then soaked for 24 hours<br />

before be<strong>in</strong>g sealed. <strong>The</strong><br />

specimens are then subjected to a<br />

cycle <strong>of</strong> air temperatures between<br />

-10°C and +10°C. <strong>The</strong> result<strong>in</strong>g<br />

compressive strength must be at<br />

least 80% <strong>of</strong> the average strength<br />

<strong>of</strong> the control specimens.<br />

2:1 specimens are cured for 28<br />

days and then subjected to a<br />

range <strong>of</strong> temperatures from -7.5°C<br />

to +4°C whilst be<strong>in</strong>g partially<br />

immersed <strong>in</strong> water. Over 96 hours<br />

the l<strong>in</strong>ear expansion <strong>of</strong> the<br />

samples must be


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

5. DESIGN AND CONSTRUCTION CONSIDERATIONS<br />

Pavement construction is subject to both relevant BS EN standards and the Specification for<br />

Highways Works (SHW), which specify that the structure must fulfil its role while also be<strong>in</strong>g<br />

durable and long-last<strong>in</strong>g. Details <strong>of</strong> the procedures to be followed when construct<strong>in</strong>g a HBM are<br />

given <strong>in</strong> Series 800 <strong>of</strong> the SHW [Highways Agency, 2007].<br />

<strong>The</strong> Highways Agency’s Interim Advice Note IAN 73/06 [Highways Agency, 2006] provides<br />

guidance on the design <strong>of</strong> road pavement foundations and will eventually replace the exist<strong>in</strong>g<br />

requirements set out <strong>in</strong> HD 25/94 [Highways Agency, 1994a]. New foundation classes are to be<br />

presented <strong>in</strong> two forms, these are, ‘performance designs’ and ‘restricted designs’.<br />

• Performance designs – allow a wider <strong>use</strong> <strong>of</strong> the materials but require test<strong>in</strong>g <strong>of</strong> the built<br />

pavement foundation <strong>in</strong> order to assess whether the design requirements are met. Stiffness<br />

is <strong>use</strong>d as a measure <strong>of</strong> support <strong>of</strong>fered by the foundation layer and it must meet specified<br />

target values. <strong>The</strong> foundation <strong>of</strong> a pavement is categorised <strong>in</strong>to one <strong>of</strong> four categories<br />

based on stiffness which, when assessed alongside the California Bear<strong>in</strong>g Ratio (CBR) <strong>of</strong><br />

the subgrade, gives the m<strong>in</strong>imum layer thickness for the foundation. Reference should be<br />

made to IAN 73/06 [Highways Agency, 2006] for the full design process.<br />

• Restricted designs – these are typically applied to smaller schemes where material options<br />

and performance assessment methods may be limited. <strong>The</strong>se designs are conservative and<br />

are limited to un<strong>bound</strong> <strong>mixtures</strong> or CBGMs, which allow for a level <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> design<br />

and construction.<br />

<strong>The</strong> requirements for HBM specifications for <strong>use</strong> with<strong>in</strong> pavement foundation layers are<br />

specified <strong>in</strong> the Series 800 <strong>of</strong> the SHW [Highways Agency, 2007], and <strong>in</strong> associated Notes for<br />

Guidance [Highways Agency, 2007b], which relate to the relevant and current harmonised<br />

European Standards.<br />

<strong>The</strong>re is this degree <strong>of</strong> uncerta<strong>in</strong>ty regard<strong>in</strong>g the suitability <strong>of</strong> the <strong>f<strong>in</strong>es</strong>, relat<strong>in</strong>g to their grad<strong>in</strong>g,<br />

so a laboratory test to simulate traffick<strong>in</strong>g would be required. This is known as the IBI<br />

(immediate bear<strong>in</strong>g <strong>in</strong>dex) test [Kennedy, 2006]. <strong>The</strong> IBI test is carried out at the mixture<br />

design stage and is essential for those materials that appear not to be conclusively well-graded<br />

and those where mechanical <strong>in</strong>terlock may be reduced due to, for example, smaller aggregate<br />

particles. <strong>The</strong> process is simple and effective and full details on the test method and suggested<br />

IBI values are found <strong>in</strong> Britpave’s guidance BP/14 [2005].<br />

This guide does not set out to provide a design guide for pavement layers us<strong>in</strong>g HBMs. For full<br />

details <strong>of</strong> the procedures to be carried out when construct<strong>in</strong>g, lay<strong>in</strong>g and compact<strong>in</strong>g, it is<br />

recommended that the relevant Highways Agency specifications are consulted (see Section 7).<br />

Full details on layer thickness and layer design should also be based upon these documents.<br />

5.1 LAYING OF THE HBM<br />

HBM construction is versatile <strong>in</strong> terms <strong>of</strong> plant and materials and HBMs can be produced by<br />

either ex situ or <strong>in</strong> situ methods;<br />

• Ex situ – <strong>The</strong> aggregate or soil are mixed with the hydraulic b<strong>in</strong>der(s) <strong>in</strong> a stationary mix<strong>in</strong>g<br />

plant before be<strong>in</strong>g placed and compacted. <strong>The</strong> plant <strong>use</strong>d for these activities are the same<br />

that are <strong>use</strong>d for traditional pavement materials, such as bitum<strong>in</strong>ous <strong>bound</strong> and un<strong>bound</strong><br />

materials.<br />

• In situ – <strong>The</strong> aggregate or soil are mixed with the hydraulic b<strong>in</strong>der(s) <strong>in</strong>-place us<strong>in</strong>g plant<br />

such as rotavators, before be<strong>in</strong>g compacted. <strong>The</strong> ma<strong>in</strong> benefit <strong>of</strong> this approach is that<br />

exist<strong>in</strong>g site material can be <strong>use</strong>d on site, rather than hav<strong>in</strong>g to import materials to site.<br />

D115551 Page 16<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

<strong>The</strong> construction period <strong>of</strong> a HBM denotes the time that it rema<strong>in</strong>s workable at a given<br />

temperature. For example, the construction period for cement is 35°C hours, <strong>The</strong>refore, a<br />

CBGM would be workable for one hour at 35°C, or five hours at 7°C.<br />

<strong>The</strong> construction period for a HBM varies depend<strong>in</strong>g upon the type <strong>of</strong> b<strong>in</strong>der <strong>use</strong>d and also the<br />

presence <strong>of</strong> water. Table 6 details the <strong>in</strong>dicative construction periods for HBMs conta<strong>in</strong><strong>in</strong>g<br />

different hydraulic b<strong>in</strong>ders.<br />

Table 6: Typical construction periods for HBMs (adapted from Series 800) [Highways<br />

Agency, 2007]<br />

B<strong>in</strong>der<br />

Construction Period <strong>in</strong> °C hours (for example, cement<br />

<strong>bound</strong> HBMs would be workable for one hour at 35°C,<br />

or five hours at 7°C etc)<br />

Cement alone<br />

Fly ash and/or GGBS and then<br />

cement<br />

Fly ash activated by lime/gypsum<br />

(mix-<strong>in</strong>-plant)<br />

GGBS and lime<br />

Fly ash and lime<br />

Lime alone<br />

GBS and lime (mix-<strong>in</strong>-plant)<br />

GBS activated by air-cooled steel<br />

slag (ASS) (mix-<strong>in</strong>-plant)<br />

Other comb<strong>in</strong>ations<br />

35°C hours<br />

35°C hours from the addition <strong>of</strong> cement<br />

70°C hours from the addition <strong>of</strong> lime/gypsum<br />

200°C hours from the addition <strong>of</strong> GGBS<br />

800°C hours from the addition <strong>of</strong> fly ash<br />

1200°C hours<br />

1200°C hours from the addition <strong>of</strong> GBS<br />

3000°C hours from the addition GBS<br />

<strong>The</strong> workability period at 20°C is determ<strong>in</strong>ed <strong>in</strong> accordance<br />

with BS EN 13286-45: 2<strong>003</strong><br />

<strong>The</strong> placement <strong>of</strong> HBMs should be avoided <strong>in</strong> cold weather, specifically below 3°C. This is due<br />

to the risk <strong>of</strong> frost and the potential for layer degradation.<br />

Aggregates for <strong>use</strong> <strong>in</strong> HBMs should always be stored <strong>in</strong> a clean, dry and secure environment <strong>in</strong><br />

order to prevent excessive degradation <strong>of</strong> the material or a significant change <strong>in</strong> the water<br />

content between mix<strong>in</strong>g and application.<br />

<strong>The</strong> HBM layer is laid and compacted and the result<strong>in</strong>g average bulk density <strong>of</strong> the layer should<br />

be no less than 95% <strong>of</strong> the average bulk density <strong>of</strong> the preced<strong>in</strong>g laboratory specimens.<br />

Compaction <strong>of</strong> the layer should be carried out by a typical vibrat<strong>in</strong>g or pneumatic-tyred roller.<br />

Figure 8: HBM be<strong>in</strong>g laid and compacted us<strong>in</strong>g conventional plant<br />

<strong>The</strong> compacted HBM layer should not be allowed to dry out before the overly<strong>in</strong>g layer(s) are<br />

laid. To prevent this from occurr<strong>in</strong>g, a cur<strong>in</strong>g membrane can be applied to ma<strong>in</strong>ta<strong>in</strong> an<br />

appropriate level <strong>of</strong> moisture with<strong>in</strong> the layer. Compaction should also be carried out at<br />

optimum water content (OWC) to achieve maximum density [Kennedy, 2006].<br />

D115551 Page 17<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

<strong>The</strong> application <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> with<strong>in</strong> HBMs requires specific attention dur<strong>in</strong>g the lay<strong>in</strong>g and<br />

compaction process. Predom<strong>in</strong>antly f<strong>in</strong>e material may lead to coarse aggregate particles<br />

becom<strong>in</strong>g segregated and ‘float<strong>in</strong>g’ to the surface <strong>of</strong> the mixture. As a result, compaction may<br />

benefit from the <strong>use</strong> <strong>of</strong> a Sheepsfoot Roller or a Padfoot to mix the HBM dur<strong>in</strong>g the process.<br />

<strong>The</strong>ir <strong>use</strong> can help promote a strong aggregate <strong>in</strong>terlock between the <strong>f<strong>in</strong>es</strong> and any exist<strong>in</strong>g<br />

coarser particles, which can also help to reduce susceptibility to frost heave and permanent<br />

deformation.<br />

Typically, HBMs can be open to traffick<strong>in</strong>g immediately, provided that the IBI value, grad<strong>in</strong>g and<br />

aggregate are appropriate. If any <strong>of</strong> these factors are <strong>in</strong>sufficient, immediate traffick<strong>in</strong>g should<br />

be avoided for a period <strong>of</strong> one week (longer <strong>in</strong> cooler weather).<br />

5.2 ON-SITE PRODUCTION CONTROL<br />

Production control should be carried out cont<strong>in</strong>uously dur<strong>in</strong>g the construction <strong>of</strong> a HBM layer<br />

with<strong>in</strong> a pavement. It is vital that uniformity is ensured throughout the construction process and<br />

that aspects such as the OWC and grad<strong>in</strong>g and b<strong>in</strong>der content are monitored. <strong>The</strong> water<br />

content must be monitored and adjusted where necessary to avoid the mixture becom<strong>in</strong>g too<br />

wet or dry<strong>in</strong>g out too quickly.<br />

If <strong>in</strong> situ methods <strong>of</strong> HBM construction are <strong>use</strong>d, the rate <strong>of</strong> b<strong>in</strong>der spread should be monitored.<br />

This can be done us<strong>in</strong>g a tray to catch the b<strong>in</strong>der as a spreader passes over it and then the<br />

volume <strong>of</strong> b<strong>in</strong>der caught be<strong>in</strong>g weighed to assess the rate and conformity <strong>of</strong> b<strong>in</strong>der spread.<br />

If ex situ methods <strong>of</strong> HBM construction are <strong>use</strong>d, the rate <strong>of</strong> feed <strong>of</strong> the HBM component<br />

materials should be monitored. This is to ensure that there is no change to the grad<strong>in</strong>g, b<strong>in</strong>der<br />

and activator additions or water content <strong>of</strong> the HBM mix, and that there is uniformity <strong>in</strong> the rate<br />

<strong>of</strong> feed.<br />

5.3 CRACKING AND PRE-CRACKING<br />

A key issue <strong>in</strong> pavement design and construction is the likelihood <strong>of</strong> reflective crack<strong>in</strong>g<br />

occurr<strong>in</strong>g. This is when cracks develop <strong>in</strong> the foundation layers as a result <strong>of</strong> excessive load<strong>in</strong>g<br />

or from environmental or non-environmental factors. <strong>The</strong>se cracks can then migrate <strong>in</strong>to the<br />

surface layers and lead to rutt<strong>in</strong>g and surface failure. When this happens, the whole pavement<br />

can fail and rehabilitation or reconstruction is required [Adaska and Luhr, 2004].<br />

To prevent this from occurr<strong>in</strong>g, <strong>in</strong>duced crack<strong>in</strong>g, or pre-crack<strong>in</strong>g, <strong>of</strong> the HBM foundation layer<br />

can be carried out. Induced crack<strong>in</strong>g is required if the unconf<strong>in</strong>ed compressive strength <strong>of</strong> a<br />

HBM exceeds 8 MPa, as detailed <strong>in</strong> Series 800 <strong>of</strong> the SHW [Highways Agency, 2007]. Induced<br />

crack<strong>in</strong>g is carried out with cracks be<strong>in</strong>g made at specified distances apart, and with a sand and<br />

bitumen material then be<strong>in</strong>g <strong>in</strong>serted <strong>in</strong>to the grooves prior to f<strong>in</strong>al compaction (see Figure 9).<br />

In order for this practice to be successful, the HBM must not be allowed to dry before the<br />

overly<strong>in</strong>g layer is laid and so a membrane can be applied to ma<strong>in</strong>ta<strong>in</strong> moisture with<strong>in</strong> the layer.<br />

Figure 9: Induced crack<strong>in</strong>g be<strong>in</strong>g carried out on a HBM subbase layer conta<strong>in</strong><strong>in</strong>g <strong>quarry</strong><br />

<strong>f<strong>in</strong>es</strong><br />

D115551 Page 18<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

5.4 TRIAL SECTIONS<br />

Trial sections are recommended to test traffickability prior to a full-scale project be<strong>in</strong>g carried<br />

out. This allows HBM specifications to be assessed on a site-by-site basis and for immediate<br />

and exist<strong>in</strong>g environmental and non-environmental <strong>in</strong>fluences to be taken <strong>in</strong>to account.<br />

An assessment <strong>of</strong> the ability <strong>of</strong> a HBM to withstand early traffick<strong>in</strong>g should be determ<strong>in</strong>ed <strong>in</strong><br />

order to evaluate the potential risk <strong>of</strong> rutt<strong>in</strong>g and permanent deformation <strong>of</strong> the foundation layer,<br />

lead<strong>in</strong>g to the eventual failure <strong>of</strong> the pavement. Trial sections also allow for the assessment <strong>of</strong><br />

the mixture when it is laid <strong>in</strong> large volumes and compacted us<strong>in</strong>g plant, rather than the scale<br />

encountered <strong>in</strong> the laboratory. On-site trial application means that issues such as traffic<br />

load<strong>in</strong>g, water content, water pressure and variations <strong>in</strong> temperature and surface gradient can<br />

be taken <strong>in</strong>to account.<br />

Follow<strong>in</strong>g the lay<strong>in</strong>g <strong>of</strong> a demonstration site, extensive laboratory test<strong>in</strong>g and on-site test<strong>in</strong>g<br />

should be carried out to test for compliance with specific application standards and<br />

specifications [Kennedy, 2006]. Representative samples from the full length <strong>of</strong> the laid HBM<br />

layer should be taken at regular <strong>in</strong>tervals prior to f<strong>in</strong>al compaction and these should then<br />

undergo laboratory test<strong>in</strong>g to System One and System Two (see Section 4.3). All sampl<strong>in</strong>g and<br />

test<strong>in</strong>g should be carried out to the relevant BS EN standards.<br />

On-site verification <strong>of</strong> the stiffness <strong>of</strong> the pavement can be essential, particularly when<br />

previously un-trialled HBMs have been <strong>use</strong>d. Two methods for the determ<strong>in</strong>ation <strong>of</strong> surface<br />

stiffness are (i) us<strong>in</strong>g a fall<strong>in</strong>g weight deflectometer (FWD) or (ii) us<strong>in</strong>g a lightweight<br />

deflectometer (LWD) (Figure 10). <strong>The</strong>se processes measure the surface modulus and can be<br />

carried out easily and ca<strong>use</strong> no disruption or damage to the pavement structure. <strong>The</strong> results<br />

from carry<strong>in</strong>g out these assessments <strong>in</strong>dicate the support be<strong>in</strong>g <strong>of</strong>fered by the foundation layers<br />

to the pavement structure as a whole.<br />

Figure 10: LWD test<strong>in</strong>g be<strong>in</strong>g carried out on a pavement to assess the surface modulus<br />

D115551 Page 19<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

6. SUM<strong>MA</strong>RY<br />

This guidance document provides <strong>in</strong>formation for producers, buyers, contractors, designers and<br />

clients to <strong>in</strong>crease confidence <strong>in</strong> the <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications,<br />

specifically <strong>in</strong> pavement foundation layer construction. It provides <strong>in</strong>formation on the materials<br />

available, <strong>in</strong>dicative characteristics and performance parameters. From the guidance it can be<br />

seen that;<br />

• Laboratory research on a range <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> and hydraulic b<strong>in</strong>der(s) has shown that these<br />

materials, when <strong>use</strong>d <strong>in</strong> HBMs, are viable alternatives for construction and eng<strong>in</strong>eer<strong>in</strong>g<br />

applications [MIST, 2008].<br />

• BS EN treated soil standards appear most appropriate for the specification <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong><br />

with<strong>in</strong> HBMs [BS EN 14227: 2004]:<br />

- Part 10: soil treated with cement (SC)<br />

- Part 11: soil treated with lime (SL)<br />

- Part 12: soil treated with slag (SS)<br />

- Part 13: soil treated with hydraulic road b<strong>in</strong>der (cover<strong>in</strong>g proprietary products and recycl<strong>in</strong>g<br />

processes)<br />

- Part 14: soil treated with fly ash (SF)<br />

• HBMs can be appropriately designed to provide a required strength/stiffness. <strong>The</strong>y <strong>of</strong>fer the<br />

potential for either rapid strength ga<strong>in</strong>, <strong>in</strong> the case <strong>of</strong> cement treated materials, or at a slower<br />

rate, when other b<strong>in</strong>ders are <strong>use</strong>d, such as slag and fly ash.<br />

• <strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> with<strong>in</strong> HBMs <strong>in</strong> the foundation layer <strong>of</strong> a pavement may lead to<br />

overall cost sav<strong>in</strong>gs. HBMs provide a stiffer base than foundations constructed us<strong>in</strong>g<br />

standard materials and techniques, thus the overly<strong>in</strong>g asphalt layers do not need to be as<br />

thick, reduc<strong>in</strong>g the other material costs. This whole structure and its life-cycle cost is an<br />

important issue to consider when assess<strong>in</strong>g the suitability <strong>of</strong> apply<strong>in</strong>g HBMs with<strong>in</strong> the<br />

foundation layer.<br />

• <strong>The</strong> <strong>in</strong>troduction <strong>of</strong> European harmonised standards for, and developments <strong>in</strong> the<br />

specification, test<strong>in</strong>g and design <strong>of</strong> pavement foundations, means that HBMs can be<br />

economically competitive when compared to historic un<strong>bound</strong> materials, such as Type 1.<br />

This rise <strong>in</strong> competitiveness, accompanied with an <strong>in</strong>crease <strong>in</strong> research and material<br />

understand<strong>in</strong>g, will assist <strong>in</strong> a growth <strong>in</strong> the <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> the aggregates market.<br />

• <strong>The</strong> application <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> with<strong>in</strong> HBMs has the potential for <strong>in</strong>creas<strong>in</strong>g the susta<strong>in</strong>ability<br />

<strong>of</strong> construction projects as it reduces the quantity <strong>of</strong> these materials stored <strong>in</strong> stockpiles and<br />

<strong>in</strong>creases the value <strong>of</strong> the material <strong>in</strong> terms <strong>of</strong> potential application areas.<br />

By us<strong>in</strong>g the performance approach to assess<strong>in</strong>g the suitability <strong>of</strong> materials, this guidance<br />

document provides <strong>use</strong>rs with the confidence to consider the application <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> with<strong>in</strong><br />

HBMs. Mechanical and durability test<strong>in</strong>g has shown that the trialled <strong>mixtures</strong> are viable for<br />

application <strong>in</strong>to road foundations, when assessed <strong>in</strong> l<strong>in</strong>e with current provisions, standards and<br />

specifications.<br />

Attention should always be paid to the most recent European Standards and Highways Agency<br />

specifications and requirements. Assessment on a site specific basis should be carried out<br />

prior to any material be<strong>in</strong>g applied <strong>in</strong> a real-life sett<strong>in</strong>g. This can be done through the <strong>use</strong> <strong>of</strong><br />

mixture trials and site traffick<strong>in</strong>g trials. <strong>The</strong> durability requirements <strong>of</strong> a HBM should always be<br />

addressed <strong>in</strong> relation to the environmental and non-environmental factors that could have an<br />

impact on the performance <strong>of</strong> the material dur<strong>in</strong>g its design life.<br />

For more detailed <strong>in</strong>formation on the laboratory trials carried out as part <strong>of</strong> this project, please<br />

refer to the project technical report which accompanies this guidance document [MIST, 2008].<br />

D115551 Page 20<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

7. SOURCES OF FURTHER INFOR<strong>MA</strong>TION<br />

Reference should be made to the follow<strong>in</strong>g sources <strong>of</strong> <strong>in</strong>formation;<br />

Title<br />

BS EN 14227: 2004<br />

Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> –<br />

Specifications<br />

• Part 1: Cement <strong>bound</strong> granular <strong>mixtures</strong> (CBGM)<br />

• Part 2: Slag <strong>bound</strong> <strong>mixtures</strong> (SBM)<br />

• Part 3: Fly ash <strong>bound</strong> <strong>mixtures</strong> (FABM)<br />

• Part 4: Fly ash (FA) for <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong><br />

• Part 5: Hydraulic road b<strong>in</strong>der <strong>bound</strong> <strong>mixtures</strong><br />

(HRBBM)<br />

• Part 10: Soil treated by cement (SC)<br />

• Part 11: Soil treated by lime (SL)<br />

• Part 12: Soil treated by slag (SS)<br />

• Part 13: Soil treated by hydraulic road b<strong>in</strong>der (SHBB)<br />

• Part 14: Soil treated by fly ash (SFA)<br />

BS EN 13242: 2002<br />

Aggregates for un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong><br />

<strong>mixtures</strong> for <strong>use</strong> <strong>in</strong> civil eng<strong>in</strong>eer<strong>in</strong>g work and road<br />

construction<br />

BS EN 13286: 2<strong>003</strong><br />

Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Test<br />

methods.<br />

• Part 1: Test methods for laboratory reference<br />

density and water content – Introduction, general<br />

requirements and sampl<strong>in</strong>g<br />

• Part 2: Test methods for the determ<strong>in</strong>ation <strong>of</strong> the<br />

laboratory reference density and water content –<br />

Proctor compaction<br />

• Part 3: Test methods for laboratory reference<br />

density and water content – Vibrocompression with<br />

controlled parameters<br />

• Part 4: Test methods for laboratory reference<br />

density and water content – Vibrat<strong>in</strong>g hammer<br />

• Part 5: Test methods for laboratory reference<br />

density and water content – Vibrat<strong>in</strong>g table<br />

• Part 7: Cyclic load triaxial test for un<strong>bound</strong> <strong>mixtures</strong><br />

• Part 40: Test method for determ<strong>in</strong>ation <strong>of</strong> the direct<br />

tensile strength <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong><br />

• Part 41: Test method for determ<strong>in</strong>ation <strong>of</strong> the<br />

compressive tensile strength <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong><br />

<strong>mixtures</strong><br />

• Part 42: Test method for the determ<strong>in</strong>ation <strong>of</strong> the<br />

<strong>in</strong>direct tensile strength <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong><br />

<strong>mixtures</strong><br />

• Part 43: Test methods for the determ<strong>in</strong>ation <strong>of</strong> the<br />

modulus <strong>of</strong> elasticity <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong><br />

<strong>mixtures</strong><br />

Content<br />

Specifies the types, constituents<br />

and associated performance<br />

classes <strong>of</strong> a range <strong>of</strong><br />

aggregates and soils treated<br />

with a range <strong>of</strong> different<br />

hydraulic b<strong>in</strong>der types and<br />

contents.<br />

Includes the <strong>use</strong> <strong>of</strong> primary,<br />

secondary and recycled<br />

materials <strong>in</strong> HBMS. It <strong>in</strong>cludes<br />

the mechanical, physical and<br />

chemical test methods, and the<br />

associated limit<strong>in</strong>g values.<br />

MCHW series 500, 600, 700,<br />

800 and 1000 are based on this<br />

standard.<br />

Details the test methods for<br />

assess<strong>in</strong>g the characteristics,<br />

physical and mechanical<br />

properties, and durability <strong>of</strong><br />

un<strong>bound</strong> and <strong>hydraulically</strong><br />

<strong>bound</strong> <strong>mixtures</strong>.<br />

D115551 Page 21<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

• Part 44: Test method for the determ<strong>in</strong>ation <strong>of</strong> the<br />

alpha coefficient <strong>of</strong> vitrified blastfurnace slag<br />

• Part 45: Test methods for the determ<strong>in</strong>ation <strong>of</strong> the<br />

workability period <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong><br />

• Part 46: Test method for the determ<strong>in</strong>ation <strong>of</strong> the<br />

moisture condition value<br />

• Part 47: Test method for the determ<strong>in</strong>ation <strong>of</strong><br />

California Bear<strong>in</strong>g Ratio, immediate bear<strong>in</strong>g <strong>in</strong>dex<br />

and l<strong>in</strong>ear swell<strong>in</strong>g<br />

• Part 48: Test method for the determ<strong>in</strong>ation <strong>of</strong> the<br />

degree <strong>of</strong> pulverisation<br />

• Part 49: Accelerated swell<strong>in</strong>g test for soil treated by<br />

lime and/or hydraulic b<strong>in</strong>der<br />

• Part 50: Method for the manufacture <strong>of</strong> test<br />

specimens <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> us<strong>in</strong>g<br />

Proctor equipment or vibrat<strong>in</strong>g table compaction<br />

• Part 51: Method for the manufacture <strong>of</strong> test<br />

specimens <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> us<strong>in</strong>g<br />

vibrat<strong>in</strong>g hammer compaction<br />

• Part 52: Method for the manufacture <strong>of</strong> test<br />

specimens <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> us<strong>in</strong>g<br />

vibrocompression<br />

• Part 53: Method for the manufacture <strong>of</strong> test<br />

specimens <strong>of</strong> <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> us<strong>in</strong>g<br />

axial compression<br />

ETSU General Information Report 49 – Energy<br />

m<strong>in</strong>imisation <strong>in</strong> road construction and ma<strong>in</strong>tenance<br />

Interim Advice Note 73/06 – Design guidance for road<br />

pavement foundations (Draft HD25)<br />

<strong>The</strong> Manual <strong>of</strong> Contract Documents for Highways Works<br />

(MCHW) – Series 500, 600, 700, 800 and 1000<br />

TRL Report 248 – Stabilised subbases <strong>in</strong> road foundations:<br />

structural assessment and benefits<br />

Chaddock and Roberts. PPR 127: 3/302_069 – Road<br />

foundation design for major UK highways<br />

NF P98 234-1 (1992) - Tests related to pavements. Freez<strong>in</strong>g<br />

behaviour <strong>of</strong> materials treated with hydraulic b<strong>in</strong>ders – Part<br />

1: Freeze thaw test <strong>of</strong> stabilized gravel or sand.<br />

Britpave BP/14 – <strong>The</strong> immediate traffick<strong>in</strong>g <strong>of</strong> cement<strong>bound</strong><br />

materials<br />

Discusses the energy benefits<br />

<strong>of</strong> us<strong>in</strong>g HBMs <strong>in</strong> road<br />

construction.<br />

Guidance for the design and<br />

construction <strong>of</strong> road pavement<br />

foundations.<br />

<strong>The</strong> standards and<br />

specifications that all Highways<br />

Agency highways pavements<br />

must meet.<br />

A structural comparison <strong>of</strong><br />

un<strong>bound</strong> and stabilised<br />

subbases and it provides<br />

guidance on thickness design<br />

and specification.<br />

Specification guidance on the<br />

design <strong>of</strong> flexible, rigid and<br />

composite pavements, it<br />

provides foundation designs for<br />

the four foundation classes.<br />

<strong>The</strong> procedure for carry<strong>in</strong>g out<br />

freeze-thaw test<strong>in</strong>g on HBM<br />

samples.<br />

Guidance on assess<strong>in</strong>g the<br />

immediate bear<strong>in</strong>g <strong>in</strong>dex (IBI) <strong>of</strong><br />

HBMs at the mixture design<br />

stage.<br />

D115551 Page 22<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

7.1 USEFUL WEBSITES<br />

www.aggregate.com – Aggregate Industries<br />

www.aggrega<strong>in</strong>.co.uk – <strong>The</strong> AggRega<strong>in</strong> Specifier Tool (designed, developed and hosted by<br />

WRAP)<br />

www.berr.gov.uk – Department for Bus<strong>in</strong>ess Enterprise and Regulatory Reform<br />

www.bre.co.uk – Build<strong>in</strong>g Research Establishment<br />

www.cement.org - <strong>The</strong> Portland Cement Association<br />

www.ciria.org – Construction Industry Research and Information Association<br />

www.concretecentre.com – <strong>The</strong> Concrete Centre<br />

www.good<strong>quarry</strong>.com – Part <strong>of</strong> the University <strong>of</strong> Leeds<br />

www.highways.gov.uk – <strong>The</strong> Highways Agency<br />

www.lafarge.com – <strong>The</strong> Lafarge Group<br />

www.miro.co.uk – <strong>The</strong> M<strong>in</strong>eral Industry Research Organisation<br />

www.mi-st.org.uk – <strong>The</strong> M<strong>in</strong>eral Industry Susta<strong>in</strong>able Technology Programme<br />

www.qpa.org – <strong>The</strong> Quarry Products Association<br />

www.standardsforhighways.co.uk – Standards for Highways<br />

www.tarmac.co.uk - Tarmac<br />

www.trl.co.uk – Transport Research Laboratory<br />

www.viridis.co.uk – Part <strong>of</strong> TRL. Concerned with creat<strong>in</strong>g value from waste<br />

www.wrap.org.uk – <strong>The</strong> Waste & Resources Action Programme<br />

8. REFERENCES AND BIBLIOGRAPHY<br />

Adaska, W.S. and Luhr, D.R. (2004). Control <strong>of</strong> reflective crack<strong>in</strong>g <strong>in</strong> cement stabilized<br />

pavements. 5 th Annual RILEM Conference. Limoges: RILEM. Available onl<strong>in</strong>e at:<br />

http://www.cement.org/pavements/crack<strong>in</strong>g.pdf [Accessed 02/08/08].<br />

British Geological Survey. (2006). Primary Aggregates Reserves <strong>in</strong> England 1990 – 2004.<br />

Nott<strong>in</strong>gham: <strong>The</strong> British Geological Survey<br />

Britpave. (2004). Stabilised soils: as subbase or base for roads and other pavements. Surrey:<br />

Britpave.<br />

Britpave. (2005). BP/14 – <strong>The</strong> immediate traffick<strong>in</strong>g <strong>of</strong> cement-<strong>bound</strong> materials. Technical<br />

report. Surrey: Britpave.<br />

Britpave. (2007). HBM and stabilisation - 2: <strong>The</strong> design and specification <strong>of</strong> residential and<br />

commercial road pavements. Surrey: Britpave.<br />

BS 812-124 (1989).<br />

Institution.<br />

Method for determ<strong>in</strong>ation <strong>of</strong> frost heave. London: British Standards<br />

BS EN 933-1 (1997). Tests for geometrical properties <strong>of</strong> aggregates. Determ<strong>in</strong>ation <strong>of</strong> particle<br />

size distribution – Siev<strong>in</strong>g method. London: British Standards Institution.<br />

BS EN 14227 (2004). Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> – Specifications. London:<br />

British Standards Institution.<br />

BS EN 13242 (2002). Aggregates for un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong> for <strong>use</strong> <strong>in</strong> civil<br />

eng<strong>in</strong>eer<strong>in</strong>g work and road construction. London: British Standards Institution.<br />

BS EN 13286 (2<strong>003</strong>). Un<strong>bound</strong> and <strong>hydraulically</strong> <strong>bound</strong> <strong>mixtures</strong>. Test methods. London:<br />

British Standards Institution.<br />

D115551 Page 23<br />

07 March 2008<br />

© Scott Wilson Ltd 2008


<strong>The</strong> M<strong>in</strong>eral Industry Research Organisation (MIRO)<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications – Guidance document<br />

Chaddock, B. and Roberts, C. (2006). PPR 127 3/302_069: Road foundation design for major<br />

UK highways. Wok<strong>in</strong>gham: TRL Limited.<br />

ETSU. (1997). ETSU General Information Report 49: Energy m<strong>in</strong>imisation <strong>in</strong> road construction<br />

and ma<strong>in</strong>tenance. Oxon: ETSU.<br />

Highways Agency. (1994a). HD25: Pavement design and ma<strong>in</strong>tenance. Pavement design and<br />

construction. Foundations. Design Manual for Roads and Bridges: Volume 7 Section 2 Part 2.<br />

London: <strong>The</strong> Stationery Office.<br />

Highways Agency. (1994b). HD35: Pavement design and ma<strong>in</strong>tenance. Conservation and the<br />

<strong>use</strong> <strong>of</strong> secondary and recycled materials. Design Manual for Roads and Bridges: Volume 7<br />

Section 1 Part 2. London: <strong>The</strong> Stationery Office.<br />

Highways Agency. (2001). HD26: Pavement design and ma<strong>in</strong>tenance. Pavement design and<br />

construction. Pavement design. Design Manual for Roads and Bridges: Volume 7 Section 2<br />

Part 3. London: <strong>The</strong> Stationery Office.<br />

Highways Agency. (2006). Interim Advice Note. IAN 73/06: Design Guide for Road Pavements<br />

(Draft HD25). London: <strong>The</strong> Stationery Office<br />

Highways Agency. (2007). Manual <strong>of</strong> Contract Document for Highways Works: Volume 1<br />

(MCHW1), Specification for Highways Works. London: <strong>The</strong> Stationary Office.<br />

Highways Agency (2007b). Manual <strong>of</strong> Contract Documents for Highways Works: Volume 2.<br />

Notes for Guidance. London: <strong>The</strong> Stationary Office.<br />

Highways Authorities and Utilities Committee. (2002). Specification for the Re<strong>in</strong>statement <strong>of</strong><br />

Open<strong>in</strong>gs <strong>in</strong> Highways: Second Edition. London: DfT.<br />

Kennedy, J. (2006). Hydraulically-Bound Mixtures for Pavements: Performance, behaviour,<br />

materials, mixture design, construction and control test<strong>in</strong>g. Surrey: <strong>The</strong> Concrete Centre.<br />

Mann<strong>in</strong>g, D. (2004). MIRO – F<strong>in</strong>al Report: Exploitation and <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong>. Solihull: MIRO.<br />

Available onl<strong>in</strong>e at: http://www.m<strong>in</strong>eralsolutions.co.uk/mist/mist2.pdf [Accessed 03/10/08].<br />

Merrill, D., Nunn, M and Carswell, I. (2004). A guide to the <strong>use</strong> and specification <strong>of</strong> cold<br />

recycled materials for the ma<strong>in</strong>tenance <strong>of</strong> road pavements. TRL Report TRL 611. Wok<strong>in</strong>gham:<br />

TRL Limited.<br />

MIST, (2008). <strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>quarry</strong> <strong>f<strong>in</strong>es</strong> <strong>in</strong> HBMs for construction applications: Technical Report<br />

Available onl<strong>in</strong>e at: http://www.mi-st.org.uk/section_e.htm<br />

NF P98 234 – (1992). Tests related to pavements. Freez<strong>in</strong>g behaviour <strong>of</strong> materials treated<br />

with hydraulic b<strong>in</strong>ders – Part 1: Freeze thaw test <strong>of</strong> stabilized gravel or sand. France: Norme<br />

Francaise Homologue, ANFOR.<br />

TRL. (2007). Hydraulically <strong>bound</strong> <strong>mixtures</strong> <strong>in</strong>corporat<strong>in</strong>g recycled and secondary aggregates.<br />

Banbury: WRAP.<br />

WRAP. (2005). Promot<strong>in</strong>g the <strong>use</strong> <strong>of</strong> applications <strong>in</strong>corporat<strong>in</strong>g recycled and secondary<br />

aggregates <strong>in</strong> <strong>hydraulically</strong> <strong>bound</strong> materials. Banbury: WRAP.<br />

WRAP. (2008). Development <strong>of</strong> Durability Tests for Hydraulically Bound Mixtures –<br />

unpublished report. Banbury: WRAP.<br />

D115551 Page 24<br />

07 March 2008<br />

© Scott Wilson Ltd 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!