06.09.2014 Views

Download the November/December 1990 Issue in PDF format

Download the November/December 1990 Issue in PDF format

Download the November/December 1990 Issue in PDF format

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Bought<br />

BRIDLES<br />

B CKlES<br />

CLOTHI G<br />

B.ITS<br />

* BOOKS<br />

HIGH<br />

Western<br />

& SoIJ:<br />

N'OON<br />

BELTS<br />

BOLOS<br />

CHAPS<br />

SPURS<br />

* SADDlES<br />

Collectibles<br />

(213) 202-9010 by appo<strong>in</strong>tment (111)'<br />

(213) 202·1340 (fax)<br />

CIRClE .A-5 ON IREADER REPLVCARD<br />

EDITORIAL<br />

STAFF<br />

PUBUSHER &EDITOR·IN-CHIEF<br />

Michae~ Goldste<strong>in</strong><br />

ASSOCIATE PUBLISHER. &:<br />

MANAGING EDITOR<br />

Peg Short<br />

SENIOR EDITOR<br />

Nancy Bartels<br />

ART DlRECI'OR<br />

Jean Sykes<br />

ADVERTISING SAlES .MANAGER<br />

Patricia FLam<br />

SALES COORDINATOR<br />

Mary Michelson<br />

(lRCUlATION<br />

Pamela Nolan<br />

Debbie Donigian<br />

RANDALL PUBLISHING STAFF<br />

PRESIDENT<br />

Michael Goldste<strong>in</strong><br />

VICE PRESIDENT<br />

Richard GoldsWn<br />

VICE PRESIDENT/GEN.<br />

Peg Short<br />

ACCOUNTING<br />

Laura K<strong>in</strong>nan.e<br />

ART CONSULTANT<br />

Marsha Goldste<strong>in</strong>.<br />

MGR.<br />

RAND.ALL PUBLlSHlNC CO., INC.<br />

1401 Lunt Avenue<br />

P.O .. Hox 1426<br />

Elk Grove, [L 60007<br />

(708) 437-6604<br />

2 'Geonec'hnolog:y<br />

CIRCLE A.o ON READER REPLYCARD<br />

OUR COVER<br />

'Sun and Planet" mechanism develop.ed<br />

by James Watt to modify his steam<br />

eng<strong>in</strong>e to achieve rotary motion. In this<br />

system a cog wheel is attached' to <strong>the</strong><br />

connect<strong>in</strong>g rod ,and <strong>the</strong>n married to<br />

ano<strong>the</strong>r, usually smaller, cogwheel<br />

jo<strong>in</strong>ed to a flywheel. The mach<strong>in</strong>e<br />

shown was manufactured around 1787<br />

by Boulton & Watt. Itis at <strong>the</strong> Science<br />

Museum <strong>in</strong> Ed<strong>in</strong>burgh:. Scotland'. Our<br />

thanks to Mr. Richard' E Beale of<br />

Brisbane, Australia, for use of <strong>the</strong><br />

photos and <strong>in</strong><strong>format</strong>ion Or! this early<br />

steam eng<strong>in</strong>e.


The Journal 01Gear Manufactur<strong>in</strong>g<br />

CONTENTS<br />

FEATURES<br />

.A .REVIEW OF A:CNA, ISO, AND BS GEAR STANDAR~S •<br />

.P'ART 1 - PITTINC<br />

Doug Wall:on, YUloIIen Shl, Stan Taylor,<br />

University of B<strong>in</strong>n<strong>in</strong>gnam, Birm<strong>in</strong>gham. England<br />

10<br />

THE INVOLUTE HEUOOm AND THE UNIVERSAL GEAR<br />

Leonard J. Smith. Inv<strong>in</strong>cible 'Gear Co., Livonia, M]<br />

18<br />

UMITATION OF WORM AND' WORM CEAR SURFA:CES<br />

TO AVOID UNDERCUITING •••<br />

Vadim Kill, Purdue University, Hammond, IN<br />

30<br />

ED.lTORIAL 7<br />

VIEWPOINT 9<br />

BACK, TO BAJiICS • " '.<br />

,F1JNDAMENTALS OF BEVEL 'GEAR HARD CUTnNG<br />

Yogi, Sharma. Philadelphia Gear Co., K<strong>in</strong>g of Prussia. PA<br />

36<br />

CLASS[FJEDS 46<br />

<strong>November</strong>J<strong>December</strong>, <strong>1990</strong>_' V_o_I._7_, _N_o_. _6<br />

IN'ovemoer/Decem'ber 199Qi 3


Know<strong>in</strong>g<br />

it's Ground<br />

on a<br />

••<br />

BHS-HOFLER ...<br />

Unsurpassed <strong>in</strong> quality and speed<br />

- with capability to gr<strong>in</strong>d tooth<br />

modifications required for today's<br />

and tomorrow's needs.<br />

In a world of ever grow<strong>in</strong>g competition<br />

and demand for Quality, only<br />

<strong>the</strong> best will survive. Therefore<br />

modernize your gear production<br />

now where you need it most of all<br />

- <strong>in</strong> <strong>the</strong> gear gr<strong>in</strong>d<strong>in</strong>g room.<br />

BHS-HOFLER offers gear gr<strong>in</strong>d<strong>in</strong>g<br />

mach<strong>in</strong>es <strong>in</strong> 14 sizes for gears<br />

from 1" to 160" <strong>in</strong> diameter -<br />

manual- or CNC-technology.<br />

- For <strong>the</strong> first time ever:<br />

precision pallet load<strong>in</strong>g system.<br />

- Newly developed NC-dressable<br />

gr<strong>in</strong>d<strong>in</strong>g wheels.<br />

Call or write<br />

for more <strong>in</strong><strong>format</strong>ion:<br />

BHS-HOFLER CORP.<br />

P. O.Box 127<br />

Sky Manor Road<br />

Pittstown, NJ 08867<br />

j}fj!J<br />

147<br />

.. II<br />

Telephone: 908-996-6922<br />

Teletax; 908-996-6977<br />

Telex: 380576<br />

* ..• A reference list with more than 500 satisfied<br />

customers world-wide is available for <strong>the</strong><br />

ask<strong>in</strong>g who's who <strong>in</strong> <strong>the</strong> gear <strong>in</strong>dustry.<br />

CIRClE<br />

A-7 ON READER REPLYCARD


~BS;lhiliujil<br />

The IKashifuji KN 1150CNC<br />

Gear Hobber. High aocuracy<br />

assured through Irigidconstruction.<br />

Full 5 axis eNe controls plus<br />

hob rotation. Exce'ls over a wide<br />

range ,of high speedl hobb<strong>in</strong>g<br />

applications. Small foot Ipr<strong>in</strong>t.<br />

Easy and fast changeover<br />

accommodates vary<strong>in</strong>gllproduction lots.<br />

Handl'es gear sizesfrom 3f4" to40~<br />

High production capacity<br />

with fast auto loaders ..<br />

Kashifuji KN·150eNe Gear Hobbers.<br />

Contad. Kashifuil Product Manager,<br />

Midwest Branch,<br />

Cosa Corporation<br />

1,680 S. Uvernois,<br />

IRochester" M148063<br />

Tel. 313--652·7404<br />

Fax. 313·652-1450:.<br />

COSACORPORATION"<br />

MACHINETOOLDIVISION<br />

17 P,hilips Pal'lkway, Montvale" NJ 07645 Tel. 2011-3911-0700 Fax. 2011-391-4261<br />

C'IRCLE A~e ON IREADER IREPlY CARD


. . _, f' actU r<strong>in</strong>g<br />

S'Plen-<br />

. ala, nU<br />

- p~\&\QI\. • G- e'3' r 'IVI<br />

"e.t.\-t '10' , '<br />

TOtal QUallY .<br />

- - rn. 'Start<br />

IFro ,-<br />

Part blank and<br />

gear cutt<strong>in</strong>g tools,<br />

play .cl'hical lroles ill<br />

'q,lJality contnll.<br />

,oller optional soltware<br />

packages fur <strong>in</strong>spect<strong>in</strong>g<br />

gear blanks for<br />

circular geometry and g,eer<br />

cutt<strong>in</strong>g tools, such as hobs,<br />

shaperlshaver cutters,<br />

and broaches.<br />

Gear Test<strong>in</strong>g us<strong>in</strong>g Gener:aUve Metrology techniques,<br />

is enhanced by computerized autemallon<br />

andanalys[s. Ti'ue <strong>in</strong>dex, lead,<br />

and <strong>in</strong>volute test<strong>in</strong>g are performed<br />

Index<br />

Process control' 'can be<br />

implemented by analyz<strong>in</strong>g<br />

data collected<br />

l<strong>in</strong> gear test<strong>in</strong>g., We<br />

offer SPC software,<br />

'to evaluate x-bar, R.<br />

histogram, and<br />

tooth surface<br />

topological<br />

studles,<br />

31n2-4ac 'Gear A,nalyzer Is,<br />

one of a family of our gear<br />

and 'gearClfttlng tool! analyzers.<br />

For a free'full·color brochure<br />

describ<strong>in</strong>g our Gear analyzers,<br />

write or call MI& M IPrecision<br />

Systems, 300 Progress Rd.,<br />

Wesl Carrollton, OH 45449\<br />

513f859cS273,fAX 5131859-4452.<br />

CIRCI.!E A.!9 ON<br />

REAOE.R REPLY CAiRO<br />

M&M PAsc,s"aN<br />

_SYSTEMS<br />

AN ACME-CLEVELAND<br />

COMPANY


- PART IIII<br />

Beg<strong>in</strong>n<strong>in</strong>g with our ne.xt issue', som.e of.<strong>the</strong> pr.omised changes <strong>in</strong> fo.rmat f.or Gear<br />

Technology will beg<strong>in</strong> show<strong>in</strong>g up <strong>in</strong> <strong>the</strong>se pages. As part of our commitment to pro-<br />

- vide you with important <strong>in</strong><strong>format</strong>ion about <strong>the</strong> gear and gear products <strong>in</strong>dustry,<br />

weare expand<strong>in</strong>g our coverage. In addition to cont<strong>in</strong>u<strong>in</strong>g to publish some af<strong>the</strong> best results<br />

,ofgear research and development throughout <strong>the</strong> world, we will be add<strong>in</strong>g special columns<br />

cover<strong>in</strong>g vital aspects of <strong>the</strong> gear<strong>in</strong>g bus<strong>in</strong>ess.<br />

In our Shop Floorcolumn, several well-known gear<strong>in</strong>g professionals will discuss practical<br />

design and manufactur<strong>in</strong>g problems that appear <strong>in</strong> <strong>the</strong> work place. We <strong>in</strong>vite you to<br />

submit your questions to this panel of experts.<br />

Management Maners will cover some of <strong>the</strong> challenges of runn<strong>in</strong>g a gear design or<br />

manufacturi ng busl n ss<strong>in</strong> t he 90s. We willi cover such matters asdo<strong>in</strong>g bus<strong>in</strong>ess overseas,<br />

tra<strong>in</strong><strong>in</strong>g, employee problems, product liability, market<strong>in</strong>g for your company, and o<strong>the</strong>r<br />

items of concern to gear shops, both large and small.<br />

Along with <strong>the</strong>se additions to our<br />

editorial l<strong>in</strong>e-up, wewilll conl<strong>in</strong>ueto provide<br />

several art ides on gear design,<br />

manufactur<strong>in</strong>g, and research <strong>in</strong> every<br />

issue. Thls is one part of<strong>the</strong> magaz<strong>in</strong>e that<br />

will not change. While we are undergo<strong>in</strong>g<br />

a facelift, we have not lost sight of <strong>the</strong> fact<br />

that provid<strong>in</strong>g <strong>the</strong> latest <strong>in</strong><strong>format</strong>ion about<br />

gear rnanufacturtng, research, and development<br />

is our primary goal<br />

Along with <strong>the</strong>se editorial improvem<br />

nts, we shan be mak<strong>in</strong>g some<br />

cosmetic changes to ,Gear 7:echnology.<br />

Look for some new 'type faces, headl<strong>in</strong>e<br />

styles, and design elements to appear<br />

beg<strong>in</strong>n<strong>in</strong>g with next issue. Our goal with<br />

<strong>the</strong>se changes is to make <strong>the</strong> magaz<strong>in</strong>e<br />

more contemporary, more readable, and<br />

more useful to our readers.<br />

Perhaps <strong>the</strong> most readily apparent<br />

change 1.0 Gear Technology will be on<br />

our cover. W:ith some regret, we have<br />

reached <strong>the</strong> end ofour seriesof gear draw<strong>in</strong>gs<br />

by Leonardod'a V<strong>in</strong>ci. In <strong>the</strong> course or<br />

nearly seven years of publish<strong>in</strong>g, we have<br />

used most of <strong>the</strong> artist's gear-related<br />

draw<strong>in</strong>gs, and commission<strong>in</strong>g new ones is. beyond <strong>the</strong> power of our editorial and art staff.<br />

Instead, we will be featunngfour-color art on our covers. If you or youlr company have<br />

photos of gea rs, gears <strong>in</strong> motion, or gear cutti ng that you! h<strong>in</strong>k would rnakea good cover<br />

for Gear Technology, please send <strong>the</strong>m to our art department for consideration. We will<br />

credit you or vour company as <strong>the</strong> source, and <strong>the</strong> artwork wil!1be returned to you after<br />

<strong>the</strong> magaz<strong>in</strong>e is pr<strong>in</strong>ted.<br />

Our goal <strong>in</strong>execut<strong>in</strong>g <strong>the</strong>se changes to Gear r:echnologyis to keep up with <strong>the</strong> chang<strong>in</strong>g<br />

needs and <strong>in</strong>terests of you, om readers. As you strive to rema<strong>in</strong> competitive and keep<br />

up with <strong>the</strong> chang<strong>in</strong>g bus<strong>in</strong>ess climate, we ~-<br />

want to keep <strong>in</strong> step with you and con- ~ , . ..<br />

~~~r::of~~ :el~~~~~~r::i~s:~r' ;~f:~~:~e .• -~. -- . -~ -<br />

Michael Goldste<strong>in</strong>,<br />

IEditor/Publish<br />

IT'S YOUR MOVE<br />

GIEAR TECHNOLOGY always<br />

wants 10 be responsive to its<br />

readers. Please send us your<br />

reactions to th changes <strong>in</strong> our<br />

magaz<strong>in</strong>e. If you have ideas for<br />

additional or different columns,<br />

cover art, quesuons for our columnists,<br />

or just would like <strong>the</strong><br />

opportunity to respond to<br />

someth<strong>in</strong>g you've r ad <strong>in</strong> our<br />

pages, pleas let us know. A<br />

phone call or I tter to our<br />

ed itorial offices is always<br />

welcome.<br />

We also cont<strong>in</strong>ue to rema<strong>in</strong> on<br />

<strong>the</strong> lookout (or articles on all<br />

aspens or gear manufacture and<br />

design. These articles rema<strong>in</strong> rhe<br />

heart of our magaz<strong>in</strong>e. PI ase<br />

consider shar<strong>in</strong>g any article you<br />

have writ! n with us. Call or<br />

write for a copy or our editorial<br />

guidel<strong>in</strong> s.<br />

<strong>November</strong>jDecem'berl,990 7


Great American Geannakers<br />

deserve World Class f<strong>in</strong>ish<strong>in</strong>g<br />

equipment too!<br />

That's why we feature<br />

CIMA KANZAKI 'Gear Shavers.<br />

MODEL 'GSF 400<br />

eNe,6<br />

Built tough to withstand rigorous gearmak<strong>in</strong>g<br />

conditions, C~MA KANZAKI comb<strong>in</strong>es heavy<br />

duty construction with ground and hardened<br />

slides for maximum system rigidity. The<br />

result. .. accuracy levels to ± .00004" on<br />

workpieces up to 18" O.D. Additional<br />

standard features like Vickers hydraulics, a<br />

Trahan central lubrication system and a 20<br />

gpm coolant system complete <strong>the</strong> ClMA<br />

KANZAKI gear shaver ... designed and built.<br />

to deliver years of trouble-free operation.<br />

Comb<strong>in</strong>ed with <strong>the</strong> 4, 5 or 6 axis CNC<br />

control of your choice, <strong>the</strong> CIMA KANZAKlI<br />

Gear f<strong>in</strong>ish<strong>in</strong>g system provides unparalleled<br />

operat<strong>in</strong>g flexibility, faster set-ups for greater<br />

productivity and an easy DNC <strong>in</strong>terface for<br />

improved management<strong>in</strong>fonnation.<br />

And .... CIMA KANZAKlI models can be equipped with<br />

semi- or tully-automatic tool changers and automated load/<br />

unload systems for <strong>in</strong> l<strong>in</strong>e (cell) applications.<br />

CIMA KANZAK~ is proud to serve Great American<br />

Gearmakers with equipment that REDUCES CYCLE<br />

TIMES, IMPROVES or MONITORS QUALITY and<br />

INCREASES SHOP PROFIT ABILITY. And, we support<br />

equipment with unparalleled spare parts & service<br />

capability ... if it's ever required.<br />

Ask our sales representative forfur<strong>the</strong>r details or contact<br />

CIMA-USA,lDivision of' GDPM Inc., 50] Southlake Blvd.,<br />

Richmond, VA 23236. Phone (804) 794-9764,<br />

FAX (804) 794-6187. Telex 6844252.<br />

Global Technology with a U.S..Base<br />

CIRCLE A-lOON<br />

READER REPLYCARD


VIEWPOINT<br />

THE LEADER IN<br />

GEAR<br />

DEBURRING<br />

Dear<br />

Editor:<br />

Yourartide on <strong>the</strong> ]TCs Report to <strong>the</strong> President on<br />

<strong>the</strong> condition of <strong>the</strong> U.S. gear <strong>in</strong>dustry (Sept.lOcL<br />

issue) was most <strong>in</strong>terest<strong>in</strong>g, I am wonder<strong>in</strong>g if <strong>the</strong><br />

total report neglected to mention that some of our<br />

Lnability to export gears is due to our reluctance to<br />

provide metric countries with <strong>the</strong> metric module-based<br />

gears that overseas customers demand,<br />

I also hope your readers are apprised of <strong>the</strong> fact<br />

that those <strong>in</strong>volved <strong>in</strong> furnish<strong>in</strong>g gears to <strong>the</strong> U. S.<br />

government as contractors will have to provide<br />

metric-dimensioned gears after 1992.<br />

S<strong>in</strong>cerely,<br />

Valerie Anto<strong>in</strong>e<br />

Executive Director<br />

U.S. Metric Association, Inc.<br />

EDITOR'S NOTE: The relevent portion of <strong>the</strong> Omnibus<br />

Trade and Competitiveness Act of 1988 reads as<br />

follows:<br />

"... It is <strong>the</strong>refore <strong>the</strong> declared policy of <strong>the</strong> United<br />

States {l)to designate <strong>the</strong> metric system of measurement<br />

as <strong>the</strong> preferred system of weights and measures<br />

for U.S. trade and commerce: (2) to require that each<br />

Federal. agency, by a date certa<strong>in</strong> and to <strong>the</strong> extent<br />

ecnomically feasible by <strong>the</strong> end, of <strong>the</strong> fiscal year 1992,<br />

use <strong>the</strong> metric system of measurement <strong>in</strong> its procurements"<br />

grants, and o<strong>the</strong>r bus<strong>in</strong>ess-related ,a.ctivilties,<br />

except to <strong>the</strong> extent that such use is impractical or is<br />

likely to cause significant <strong>in</strong>efficiences or loss of<br />

markets to U.S. firms ... "<br />

Readers should also note that <strong>in</strong> a july 30 letter to<br />

Secretary of Commerce Robert A. Mosbacher, NASA<br />

<strong>in</strong>formed <strong>the</strong> secretary that "Effective with <strong>the</strong> start of<br />

<strong>the</strong> new fiscal year, October 1, <strong>1990</strong>', aU Requests for<br />

Proposals for new NASA flight programs will require<br />

use of <strong>the</strong> metric system of measurement." A memo .<br />

dated July 20, <strong>1990</strong>, which sets NASA policy on<br />

metric conversion states: "Ongo<strong>in</strong>g programs may<br />

cont<strong>in</strong>ue use of <strong>the</strong> conventional <strong>in</strong>ch-pound system<br />

basel<strong>in</strong>e for hardware design, but must plan to accommodate<br />

<strong>the</strong> metric hardware that will result from this<br />

transition. "<br />

Letters for this column should be addressed to Letters<br />

to <strong>the</strong> Editor, GEAR TECHNOLOGY, P.Q. Box 1426,<br />

Elk Grove Vill'age, IL 60009. Letters sent to this column<br />

become .<strong>the</strong> property of GEAR TECHNOLOGY.<br />

Names wi1l be withheld upon request, however, no<br />

anonymous letters will' be published.<br />

"ZERO-SETUP'<br />

• Rad<strong>in</strong> Modell 24-Universal' gear chamfer<strong>in</strong>g/deburr<strong>in</strong>g<br />

mach<strong>in</strong>e - 2 models.<br />

'. Ehm<strong>in</strong>ates costly manual mach<strong>in</strong>e setup.<br />

• C.N.C. controlled - 8 or 10 axis.<br />

• Part program storage -1000 pip.<br />

• Program load<strong>in</strong>gl - M.D.I. or Disc.<br />

• S<strong>in</strong>gle or doubl'ehead mach<strong>in</strong>es.<br />

1817 - 18th Ave.<br />

Rockford. IlL 611104<br />

8115~39S~1010 IFAX.S15-398-11047<br />

DEALERS WELOOME!<br />

CIRCLE A-lION<br />

0,<br />

G~ GRINO FACLIlY· COMPlETE GEI


AGMA, ISO, and B,SGear Stan'dard's<br />

P,artI Pitt<strong>in</strong>g Resistance Rati,ngs<br />

Doug Walton, Yuwen Shi, Stan Taylor,<br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g Department<br />

University of Birm<strong>in</strong>gham, Birm<strong>in</strong>gham, U.K.<br />

Summary:<br />

A study of AGMA 218, <strong>the</strong> draft ISO standard 6336, and<br />

5S 436: 1986 methods for rat<strong>in</strong>g gear tooth strength and surface<br />

durability for metallic spur and helical gears is<br />

presented. A comparison of <strong>the</strong> standards ma<strong>in</strong>ly focuses on<br />

fundamental formulae and <strong>in</strong>fluence factors, such as <strong>the</strong><br />

load distribution factor, geometry factor, and o<strong>the</strong>rs. No attempt<br />

is made to qualify or judge <strong>the</strong> standards o<strong>the</strong>r than<br />

to comment on <strong>the</strong> facilities or lack of <strong>the</strong>m <strong>in</strong> each standard<br />

reviewed. In Part I a comparison of pitt<strong>in</strong>g resistance rat<strong>in</strong>gs<br />

is made, and <strong>in</strong> <strong>the</strong> subsequent issue, Part IIwill deal with<br />

bend<strong>in</strong>g stress rat<strong>in</strong>gs and comparisons of designs.<br />

Introduction<br />

Standard spur and helical gears are usually designed to<br />

specific standards to meet <strong>the</strong> requirements of proportions,<br />

manufactur<strong>in</strong>g accuracy, and load rat<strong>in</strong>g. The load rat<strong>in</strong>g is<br />

<strong>the</strong> most important issue discussed <strong>in</strong> AGMA (American<br />

Gear Manufacturers Association), ISO (International Standards<br />

Organization), DIN Deutsche lndustrie Norrnen) and<br />

BSI (British Standards Institution) gear standards. The standards<br />

written by <strong>the</strong>se organizations are widely used for gear<br />

design throughout <strong>the</strong> worJd and also fonn <strong>the</strong> basis of<br />

"m<strong>in</strong>ority" gear standards. Ch<strong>in</strong>a, for example, issues a gear<br />

design standard based on ISO. European gear standards are<br />

now becom<strong>in</strong>g very similar. The new BS and <strong>the</strong> draft ISO<br />

standard share much <strong>in</strong> common with DIN. This paper considers<br />

BS 436:1986, <strong>the</strong> draft ISO standard 6336, and AGMA<br />

218.01. S<strong>in</strong>ce this review was written, AGMA <strong>in</strong>troduced<br />

AGMA.2001-B88, although this new standard is not considered<br />

here. However, <strong>the</strong> trend toward a universal standard<br />

cont<strong>in</strong>ues, with AGMA 2001 publish<strong>in</strong>g rat<strong>in</strong>g factors, some<br />

of which are similar to <strong>the</strong> draft ISO standard.<br />

This article is <strong>in</strong>tended for designers who will appreciate a<br />

review of this complex subject ..Many designers <strong>in</strong> <strong>the</strong> USA<br />

will still use AGMA 218 because <strong>the</strong>y are familiar with it, and<br />

will, we suspect, cont<strong>in</strong>ue to do so for some time ..(This situation<br />

also exists <strong>in</strong> <strong>the</strong> UK with respect to <strong>the</strong> old and new<br />

British Standards on gear rat<strong>in</strong>gs.) It will take <strong>the</strong> authors<br />

some time before <strong>the</strong>y have enough experience <strong>in</strong> <strong>the</strong> use of<br />

AGMA 2001 and have been able to validate it aga<strong>in</strong>st real<br />

designs and o<strong>the</strong>r rat<strong>in</strong>g standards. While <strong>the</strong>re are marked<br />

similarities between <strong>the</strong> old and new AGMA formulas for pitt<br />

0 Gear Technology<br />

t<strong>in</strong>g resistance and bend<strong>in</strong>g strength rat<strong>in</strong>gs, we have ma<strong>in</strong>ly<br />

excluded any reference to AGMA 2001.<br />

Although, <strong>the</strong>oretically, any standard will produce a gear<br />

pair which is satisfactory, it is no longer enough to accept any<br />

standard when o<strong>the</strong>r procedures might produce more competitive<br />

designs. On <strong>the</strong> o<strong>the</strong>r hand, if <strong>the</strong> design calls for<br />

special operat<strong>in</strong>g conditions, such as shock loads or flexible<br />

drives, it may be advantageous for <strong>the</strong> designer to address a<br />

standard which deals more closely with <strong>the</strong>se conditions, In<br />

addition, <strong>the</strong> customer may specify <strong>the</strong> code to be used. A<br />

work<strong>in</strong>g knowledge of more than one standard is desirable,<br />

particularly if <strong>the</strong> product is aimed at<strong>in</strong>ternational markets.<br />

An understand<strong>in</strong>g of <strong>the</strong> differences between gear standards<br />

is, <strong>the</strong>refore, important. It should be po<strong>in</strong>ted out, however,<br />

that <strong>in</strong> a review of gear standards it is impossible to cover<br />

every aspect of each code. ISO 6336 Parts 1 to 4, for example,<br />

conta<strong>in</strong> over 90 figures and over 20 tables.<br />

Standards for Spur and Helical Gears<br />

The old British Standard, BS 436:1940, (I} <strong>in</strong> use for nearly<br />

fifty years, was a revision of <strong>the</strong> orig<strong>in</strong>al Specification for<br />

Mach<strong>in</strong>e Cut Gears first issued <strong>in</strong> 1932. Dur<strong>in</strong>g its long existence,<br />

<strong>the</strong> rat<strong>in</strong>g method rema<strong>in</strong>ed <strong>the</strong> same with only m<strong>in</strong>or<br />

revisions. Though obsolescent, it is still used extensively<br />

throughout Brita<strong>in</strong> and elsewhere, ma<strong>in</strong>ly because it is easy<br />

to use. The standard rates gears on <strong>the</strong> basis of bend<strong>in</strong>g<br />

strength and contact stresses, which are referred to as wear<br />

(mean<strong>in</strong>g non-abrasive wear). The tooth root bend<strong>in</strong>g<br />

strength is based on <strong>the</strong> Lewis equation, (2) consider<strong>in</strong>g both<br />

tangential and radial loads. The effect of stress concentrations<br />

at <strong>the</strong> root is not taken <strong>in</strong>to account directly, but allowances<br />

are made <strong>in</strong> <strong>the</strong> use of <strong>the</strong> allowable bend<strong>in</strong>g strength of <strong>the</strong><br />

gear material, values for which are supplied <strong>in</strong> <strong>the</strong> standard.<br />

The bend<strong>in</strong>g strength is also factored for runn<strong>in</strong>g speed and<br />

life. Contact stresses are based on a modified Hertz equation<br />

with allowances for speed, runn<strong>in</strong>g time, and geometry. The<br />

latter item is taken <strong>in</strong>to consideration by a zone factor, which<br />

accounts for <strong>the</strong> <strong>in</strong>fluence on <strong>the</strong> Hertzian stress of tooth flank<br />

curvature at <strong>the</strong> pitch po<strong>in</strong>t, and converts <strong>the</strong> tangential load<br />

to a normal force. No serious attempt was made to keep this<br />

standard up to date on newer gear materials and processes to<br />

predict <strong>the</strong> higher performances be<strong>in</strong>g achieved <strong>in</strong> practice.<br />

Ano<strong>the</strong>r serious deficiency is that no account was made for<br />

surface f<strong>in</strong>ish or uneven load distribution.


BS 436:1940<br />

d Pitch diameters of p<strong>in</strong>ion and wheel<br />

Ee Equivalent Young's modulus<br />

F Face width<br />

k Constant <strong>in</strong> Hertz contact stress formula<br />

K Pitch Eactor<br />

n, N P<strong>in</strong>ion and wheel runn<strong>in</strong>g speed<br />

P DiametraJ pitch<br />

R Gear ratio<br />

Rr Relative radius of curvature<br />

s Maximum contact stress set <strong>in</strong> <strong>the</strong> surface layers of<br />

<strong>the</strong> gear cyl<strong>in</strong>ders<br />

Sc Surface stress factor<br />

T Number of teeth on wheel<br />

Xc Speed factor for contact. stress<br />

Z Zone factor<br />

at Transverse pressure angle at reference cyl<strong>in</strong>der<br />

atw Transverse pressure angle at pitch cyl<strong>in</strong>der<br />

I3b Base helical angle<br />

AGMA218.01<br />

C.. Application faetar for pitt<strong>in</strong>g resistance<br />

C c Curvature factor at pitch l<strong>in</strong>e<br />

CI Surface condition factor<br />

C H Hardness ratio factor<br />

CL life factor for pitt<strong>in</strong>g resistance<br />

em Load distribution factor for pitt<strong>in</strong>g resistance<br />

NOMENCLATURE<br />

c;, Elastic coefficient<br />

C R Reliability factor for pitt<strong>in</strong>g resistance<br />

C, Size factor for pitt<strong>in</strong>g resistance<br />

CT Temperature factor for pitt<strong>in</strong>g resistance<br />

c,.. Dynamic factor for pitt<strong>in</strong>g resistance<br />

Cx Contact height factor<br />

---<br />

Smith(3) described B5 436 as "an. average experience<br />

method, wherebygear manufacturers and users collaborate<br />

to provide extremely empirical rules of thumb based on<br />

operat<strong>in</strong>g experience. Permissible loads are specified for<br />

'typical' manufacturir1g accuracies of a given class with<br />

'typical.' load<strong>in</strong>g cycles and corrections for speed, etc."<br />

Although <strong>the</strong> standard did not take <strong>in</strong>to account factors<br />

known to <strong>in</strong>fluence bend<strong>in</strong>g and contact stresses, such as application<br />

conditions (i.e., <strong>the</strong> load fluctuations caused by external<br />

sources), system dynamics and gear accuracy and <strong>the</strong><br />

benefits of surface harden<strong>in</strong>g, <strong>the</strong> standard served its users<br />

well.<br />

The orig<strong>in</strong>al AGMA standard was issued <strong>in</strong>1926, and <strong>the</strong><br />

first draft of AGMA 218.01,(4) used. <strong>in</strong> this review, was<br />

drafted <strong>in</strong> 1973 and approved for publication <strong>in</strong> 1982. AGMA<br />

218 also rates gearson <strong>the</strong> basis of bend<strong>in</strong>g strength and surface<br />

contact stresses, (referred to as surface durability or pitt<strong>in</strong>g)<br />

but also <strong>in</strong>troduces a. number of o<strong>the</strong>r factors <strong>in</strong> <strong>the</strong><br />

rat<strong>in</strong>g equations. For example, <strong>in</strong>fluence factors are used to<br />

take <strong>in</strong>to account load distribution across <strong>the</strong> face width,<br />

quality of<strong>the</strong>bcansmission drive, and transmission accuracy<br />

relat<strong>in</strong>g to manufacture, Considerable knowledge and judgment<br />

is required to determ<strong>in</strong>e values for <strong>the</strong>se factors.<br />

Compared to <strong>the</strong> old British Standard, AGMA 218 is considerably<br />

mare comprehensive. Rat<strong>in</strong>gs for pitt<strong>in</strong>g resistance<br />

are based on '<strong>the</strong> Hertzian equation for contact pressure betw'een<br />

curved surfaces, which is modified for <strong>the</strong> ,effectof load<br />

shar<strong>in</strong>g between adjacent teeth. The Lewis equation has been<br />

madified to account far ,effects, such as stress concentrations,<br />

at <strong>the</strong> tooth root, compressive stresses result<strong>in</strong>g from <strong>the</strong><br />

Cv, Helical overlap factor<br />

d Operat<strong>in</strong>g pitch diameter of p<strong>in</strong>ion<br />

F Net facewidth of <strong>the</strong> narrowest number<br />

I Geometry factor for pitt<strong>in</strong>g resistance<br />

mN Load shar<strong>in</strong>g ratio<br />

np P<strong>in</strong>ion runn<strong>in</strong>g speed<br />

P 1I Diarnetral pitch<br />

Sac Allowable contact stress number<br />

85436: 1986 and ISO/DIS 6336<br />

b Face width<br />

d 1 Reference diameter of p<strong>in</strong>ion<br />

KA Application factor<br />

KHa Transverse load factor for contact stress<br />

K H ,9 Face load factor for contact stress<br />

Kv Dynamic factor<br />

n1 P<strong>in</strong>ion runn<strong>in</strong>g speed<br />

SHmm M<strong>in</strong>imum demanded safety factor on contact stress<br />

ZM (BS only material quality factor for contact stress)<br />

ZN life factor for contact stress<br />

Zx Size factor for contact stress<br />

ZE Elasticity factor for contact stress<br />

ZH Zone factor for contact stress<br />

ZL,ZR,ZV Lubricant <strong>in</strong>fluence. roughness, and speed factor for<br />

pitt<strong>in</strong>g<br />

Zw Work-harden<strong>in</strong>g factor for contact stress<br />

Z, Contact ratio factor for contact stress<br />

Zfj Helix angle factor<br />

at Transverse pressure angle at reference cyl<strong>in</strong>der<br />

atw Transverse pressure angle at pitch cyl<strong>in</strong>der<br />

(3b Base helix angle<br />

'O'Hlim Basic endurance limit for contact stress<br />

uHP Permissible contact stress<br />

radial. component of <strong>the</strong> gear load, load distribution due to<br />

misalignment between mesh<strong>in</strong>g teeth, andload shar<strong>in</strong>g. The<br />

'Critical bend<strong>in</strong>g stress is assumed to occur at <strong>the</strong> tooth fillet<br />

but, as <strong>in</strong> <strong>the</strong> old British Standard, <strong>the</strong> effect of blank<br />

geometry (e.g., rimand web size and how <strong>the</strong> relative size of<br />

<strong>the</strong>se effects stresses at <strong>the</strong>tooth root) is not considered.<br />

The 150 standard, ISO 6336,


scuff<strong>in</strong>g ..The basic equations are modified by apply<strong>in</strong>g. <strong>in</strong>fluence<br />

factors as <strong>in</strong> A:GMA. These procedures demand a<br />

realistic appraisal of all <strong>in</strong>fluence factors, particularly those<br />

for <strong>the</strong> allowable stress, <strong>the</strong> probability of failure, and <strong>the</strong> appropriate<br />

safety factor. ISO also offers three different<br />

methods for determ<strong>in</strong><strong>in</strong>g bend<strong>in</strong>g and contact stresses and<br />

<strong>the</strong>ir <strong>in</strong>fluence factors, depend<strong>in</strong>g on <strong>the</strong> application and accuracy<br />

required. S<strong>in</strong>ce <strong>the</strong> latest German standard, DIN 3990:<br />

1987, (6) is substantially similar to ISO 6336,. a detailed discussionof<br />

DIN is excluded.<br />

The new British standard, BS 436:1986,(7) is similar to<br />

ISO / DIS 6336 and is a complete revision of <strong>the</strong> old standard.<br />

It is, however, much more user friendly than [SO. Like <strong>the</strong><br />

o<strong>the</strong>r standards, <strong>the</strong> new British standard uses modified Lewis<br />

and Hertz equations, us<strong>in</strong>g correction factors, such as <strong>the</strong><br />

dynamic factor to account for load fluctuations aris<strong>in</strong>g from<br />

manufactur<strong>in</strong>g errors, and a load distribution factor to take<br />

<strong>in</strong>to account <strong>the</strong> <strong>in</strong>crease <strong>in</strong> local load due to non-uniform<br />

load<strong>in</strong>g aris<strong>in</strong>g from conditions such as shaft stiffness and, <strong>in</strong><br />

<strong>the</strong> case of helical gears, helix error. The correction factors are<br />

<strong>the</strong> same or are similar to those used. by ISO. Geometry factors<br />

<strong>in</strong> <strong>the</strong> new BS 436 are similar to those <strong>in</strong> ISO (method B)<br />

willIe o<strong>the</strong>r methods <strong>in</strong> ISO use different approaches for<br />

geometry factors ..The new British standard, however, draws<br />

on a considerable amount of previously published research<br />

and uses additional parameters, like materia] quality factors,<br />

not allowed for by ISO or AGMA. This standard does not<br />

work on "typical" figures for each rat<strong>in</strong>g factor as <strong>in</strong> <strong>the</strong> old<br />

standard, but uses researched data to predict load <strong>in</strong>creases<br />

caused by deflections, alignment tolerances, and helix<br />

modifications. Throughout this review, <strong>the</strong> term.BS refers to<br />

<strong>the</strong> new standard, except where stated.<br />

In <strong>the</strong> stress analysis procedures of BSand ]50, bend<strong>in</strong>g<br />

and contact stresses are classified <strong>in</strong>to three groups: 1)<br />

Nom<strong>in</strong>al or basic stresses, which


COMPLE,TEWITIH ,A,LLlE,NBRADLlE,V PLe<br />

C'ONTRO!l ,A,ND CRT O'PERATOR IINTEIRFACE<br />

Ea'Syto use canned cycles <strong>in</strong>olude: Variable Hob Speeds"<br />

Variable axial a'nd radial feed rates~ Hob, shift <strong>in</strong>ct:ements<br />

and ft:equency. Dwell times, 'S<strong>in</strong>gle, dou.ble and r:adiaJ'cut<br />

cycles, Axial cycle work<strong>in</strong>g' limits, - and muoh' more!<br />

Specific p,arameters are f<strong>in</strong>,e tuned throug,h simple' M.D.!. <strong>in</strong>put.<br />

Call or write today..<br />

FAX. 203 :271110487 BOX 400' W. JOHNSON AVE. CHESHIRE, CT. 06410<br />

CIRCLE A-13 ONI READER REPLY CARD


mation is required and some, like generat<strong>in</strong>g <strong>the</strong> tooth layout<br />

to give <strong>the</strong> necessary geometry data, may be difficult to<br />

obta<strong>in</strong>.<br />

3) Each standard has its own def<strong>in</strong>itions for <strong>the</strong> <strong>in</strong>fluence<br />

factors, but factors bear<strong>in</strong>g <strong>the</strong> same names do not necessarily<br />

have <strong>the</strong> same effects. This makes direct comparisons of <strong>in</strong>fluence<br />

factors difficult. For example, although AGMA and<br />

ISO both <strong>in</strong>troduce a service factor, <strong>the</strong> values cannot be<br />

compared directly.<br />

The terms used <strong>in</strong> each standwdare listed <strong>in</strong> <strong>the</strong><br />

nomenclature .<br />

The power rat<strong>in</strong>g for contact stressesgiven by BS436: 1940<br />

XcScZFNT<br />

126000KP<br />

Equation 1can be rewritten as<br />

____ n Fd2 Rr_Xe<br />

0.8 s2<br />

126000 d k Ee<br />

For AGMA 218.01 <strong>the</strong> transmissible power based on pitt<strong>in</strong>g is<br />

n Fd<br />

e 2<br />

..<br />

126000<br />

The as 436:1986 power rat<strong>in</strong>g is<br />

b d 1<br />

2 n1 u 1<br />

126000 u+1 ZH 2 Z~<br />

and for ISO lOIS 6336 <strong>the</strong> power is<br />

bdlnl U 1<br />

126000 u+I zi Z; z3<br />

where<br />

UHP = (O"H1irn ZN). z, ZR Zv Zw z, (7)<br />

SHm<strong>in</strong><br />

From Equations 2-7 it may be seen that for a given gear<br />

ratio <strong>the</strong> transmissible power is proportional to <strong>the</strong> square<br />

of <strong>the</strong> p<strong>in</strong>ion pitch circle diameter and permissible contact<br />

stresses. Therefore, to <strong>in</strong>crease gear power capacity <strong>in</strong> terms<br />

of surface durabilty, it is more effective to <strong>in</strong>crease <strong>the</strong> p<strong>in</strong>ion<br />

peD or permissible surface stresses than to <strong>in</strong>crease <strong>the</strong> gear<br />

pair facewidth.<br />

The pitt<strong>in</strong>g resistance related factors above may be<br />

grouped <strong>in</strong>to common and non-common factors. Common<br />

factors are those which have <strong>the</strong> same mean<strong>in</strong>gs <strong>in</strong> all <strong>the</strong><br />

standards, (not all <strong>the</strong>se factors appear <strong>in</strong> <strong>the</strong> standards) and<br />

<strong>the</strong>i:r values can becompared directly. For example, <strong>the</strong><br />

dynamic factor whichallows for <strong>in</strong>ternally generated gear<br />

tooth loads <strong>in</strong>duced by non-conjugate mesh<strong>in</strong>g action of <strong>the</strong><br />

gear teeth, appears <strong>in</strong> all <strong>the</strong> standardsexcept <strong>the</strong> old BS, and<br />

values can be compared directly. Non-common factors,<br />

such as <strong>the</strong> geometry factor,are those which are only<br />

equivalent to each o<strong>the</strong>r <strong>in</strong> <strong>the</strong> sense of hav<strong>in</strong>g <strong>the</strong> same eEl'4<br />

Gear feehnology<br />

1<br />

1<br />

(1)<br />

(2)<br />

(3)<br />

fects on <strong>the</strong> rat<strong>in</strong>g results, although specific values cannot<br />

be compared.<br />

Table 1classifies all <strong>the</strong> contact stress <strong>in</strong>fluence factors <strong>in</strong>to<br />

ei<strong>the</strong>r common or non-common groups where it can be seen<br />

that <strong>the</strong> old British Standard had few parameters for comparison<br />

with o<strong>the</strong>r standards. The similarity between BSand<br />

ISO isalso apparent. A comparison between <strong>the</strong> <strong>in</strong>fl'uence<br />

factors given <strong>in</strong>each standard is made <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

paragraphs.<br />

1) Application factors. An application factor is used <strong>in</strong><br />

AGMA, ISO,. and BS to evaluate external <strong>in</strong>fluences tend<strong>in</strong>g<br />

to apply a greater load to <strong>the</strong> gear teeth than that based on<br />

steady runn<strong>in</strong>g conditions. Typical external <strong>in</strong>fluences are<br />

<strong>the</strong> drive characteristics (e..g., smoothness and load fluctuations)<br />

of <strong>the</strong> prime mover and of <strong>the</strong> driven mach<strong>in</strong>e ..Values<br />

suggested <strong>in</strong> ISO correspond to those for <strong>the</strong> overload factor<br />

<strong>in</strong> AGMA 215. While no data appears <strong>in</strong>.AGMA 218,<br />

<strong>the</strong>se factors may be found <strong>in</strong> related AGMA application<br />

standards. BS gives more detailed conditions than ISO,<br />

although values are similar.<br />

2) Dynamic factors. As discussed above, <strong>the</strong> application<br />

factor is used to handle dynamic loads unrelated to tooth accuracy.<br />

The effect of dynamic load related gear tooth accuracy<br />

is <strong>the</strong>n evaluated by <strong>the</strong> Inclusion of a dynamic factor<br />

which accounts for effects ·of gear set mass elastic effects<br />

and transmission errors. AGMA modified <strong>the</strong> experimental<br />

work of Wellauer(14l to obta<strong>in</strong> dynamic factors as a function<br />

of transmission error. These accuracy levels can under certa<strong>in</strong><br />

manufactur<strong>in</strong>g conditions be <strong>the</strong> same as <strong>the</strong> gear quality<br />

numbers given <strong>in</strong> AGMA 390. (15)<br />

ISO dynamic factors are based on Buck<strong>in</strong>gham's <strong>in</strong>crementalload<br />

method U6J and work by Weber and Banaschek.(l7J<br />

ISO (analytical) method B presents a calculation procedure<br />

for <strong>the</strong> ma<strong>in</strong> resonance speed and divides <strong>the</strong> runn<strong>in</strong>g speed<br />

<strong>in</strong>to three sectors. The dynamic factor corresponds to each<br />

of <strong>the</strong>se speed sectors and may help designers to adjust <strong>the</strong><br />

operat<strong>in</strong>g speed or alter <strong>the</strong> design to avoid critical speeds ..<br />

ISO method C is only applicable to gears with accuracy<br />

numbers of 3 to 10 and cannot be used for gears operat<strong>in</strong>g at<br />

or near <strong>the</strong> ma<strong>in</strong>. resonance speed. The dynamic factor <strong>in</strong> <strong>the</strong><br />

BS is very dose to [SO method C. In <strong>the</strong> old BS, dynamic ef-<br />

£ects were not considered. The speed factor used <strong>in</strong> <strong>the</strong> old BS<br />

is not to be confused with dynamic loads, but was <strong>in</strong>tended<br />

to allow f·or load reversals and <strong>the</strong>ir eHed on fatigue dur<strong>in</strong>g<br />

<strong>the</strong> life of <strong>the</strong> gear.<br />

It has been customary fer AGMA to put <strong>the</strong> dynamic factor<br />

<strong>in</strong> <strong>the</strong> denom<strong>in</strong>ator of <strong>the</strong> rat<strong>in</strong>g formula, whereas ISO<br />

and BS apply it to <strong>the</strong> numerator. Never<strong>the</strong>less, <strong>the</strong> dynamic<br />

factor is def<strong>in</strong>ed as a multiplier of <strong>the</strong> transmitted load <strong>in</strong> all<br />

<strong>the</strong> standards, although some believe that <strong>the</strong> effect should<br />

be additive. (18)<br />

3) Load distribution factors. A load distribution factor is<br />

used <strong>in</strong> <strong>the</strong> rat<strong>in</strong>g equations to reflect <strong>the</strong> non-uniform load<br />

distribution along <strong>the</strong> contact l<strong>in</strong>es caused by deflections,<br />

alignment, and helix modifications (<strong>in</strong>clud<strong>in</strong>g crown<strong>in</strong>g and<br />

end relief), and profile and pitch deviations ..The evaluation<br />

procedure for this factor is ra<strong>the</strong>r complex, siace many<br />

variables are <strong>in</strong>volved, and some of <strong>the</strong>m, such as <strong>the</strong> component<br />

of <strong>the</strong> gear system alignment and manufactur<strong>in</strong>g<br />

errors, are difficult to determ<strong>in</strong>e.


TABLE 1 COMPARISON OF PITTING RESISTANCE INFLUENCE FACTORS<br />

BS436:1940 AGMA21B BS 436:1986 150/0[56336<br />

Geometry<br />

R~·8<br />

u 1 u 1<br />

I<br />

Factors- - -- --- --<br />

d u + 1 Z"; Z2 u+1 Z].Z2 Z2<br />

• H , Ii<br />

Elasticity<br />

(k~}O.5 C p ZE ZE<br />

Factors"<br />

Size<br />

Factors"<br />

1 1<br />

- C s - -<br />

Z2~<br />

Z;<br />

Lubrication 1 ]<br />

Film - C~·5C T ZLZVZR ZtZVZR<br />

Factors"<br />

Application<br />

Factors]<br />

Dynamic<br />

Factors]<br />

- C a KA KA<br />

1 1<br />

- Cv<br />

- -<br />

Kv<br />

Ky<br />

Load 1 1<br />

Distribution<br />

Factorst<br />

- Cm<br />

KHaKHIl'<br />

KH ..KHIl<br />

Work<br />

Harden<strong>in</strong>g - CH Zw Zw<br />

Eactors]<br />

Life<br />

Factorst<br />

Reliability<br />

Factors]<br />

-<br />

CL ZN ZN<br />

- CR SHlim SHm<strong>in</strong><br />

Material<br />

Quality - - ZM -<br />

Factor]<br />

Speed<br />

Factor]<br />

t denotes common and .. non-common factors<br />

'""--<br />

In AGMA <strong>the</strong> load distributi.on factor is <strong>the</strong> product of <strong>the</strong><br />

face and 'transverse load distnbution ~fa.ctors.The face or<br />

Iongituil<strong>in</strong>aJ (as described <strong>in</strong> <strong>the</strong> ISO and BS) load distribution<br />

factor accounts for <strong>the</strong> non-uniform load across <strong>the</strong> face<br />

of <strong>the</strong> gear. while <strong>the</strong> transverse load factor reflects <strong>the</strong> effect<br />

of non-uniform distribution of load down <strong>the</strong> tooth flank due<br />

to profile, pitch deviations. and tooth modifications.<br />

Although AGlv1Auses this factor to allow for <strong>the</strong> effect of <strong>the</strong><br />

non-unilorm distribution of load among <strong>the</strong> teeth.which share<br />

<strong>the</strong> t.otalload, no specific wonnanon is given <strong>in</strong> <strong>the</strong> standard.<br />

The AGMA standard assumes that if <strong>the</strong> gears are accurately<br />

manufactured, <strong>the</strong> value of <strong>the</strong> transverse load distribution<br />

factor can be 'taken as unity. AGMA provides both empirical<br />

and analytical methods to.determ<strong>in</strong>e <strong>the</strong> face load distribution<br />

factor ..The empirical method is recommended for norma1,relatively<br />

stiff gear .a.ssemblies,and only a m<strong>in</strong>imum<br />

amount of <strong>in</strong><strong>format</strong>ion is required. The second method is<br />

based. on elastic and non-elastic lead mismatch and needs <strong>in</strong><strong>format</strong>ion<br />

about design. manufacture. and mount<strong>in</strong>g and is.<br />

<strong>the</strong>oretically, suitable tor any ge.ar design ..<br />

Xc - - -<br />

The ISO load distribution factor is also <strong>the</strong> product of <strong>the</strong><br />

transverseand longitud<strong>in</strong>a] load factors. Three differentappreaches<br />

have been made by ISO to detenn<strong>in</strong>e <strong>the</strong><br />

longitud<strong>in</strong>al load factor ..Method B is a f<strong>in</strong>al proof rat<strong>in</strong>g<br />

calculation method based on known manufactur<strong>in</strong>gerrors.<br />

Method C is a prelim<strong>in</strong>ary rat<strong>in</strong>g method and uses assumed<br />

values of manufactur<strong>in</strong>g errors with<strong>in</strong> limits of prescribed<br />

tolerances. Method 0 is even more simplified than method<br />

C. The transverse load factor isa function of longitud<strong>in</strong>al load<br />

factor, contact ratio, pitch tolerance, and mean load <strong>in</strong>tensity.<br />

Procedures for calculat<strong>in</strong>g <strong>the</strong> load distribution factors<br />

<strong>in</strong> ISO are <strong>the</strong> most complex and are still under revision . Load<br />

distribution factors <strong>in</strong> <strong>the</strong> BSemploy virtually <strong>the</strong> same procedure<br />

as method C <strong>in</strong> 150,. except for a diffef'ence <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

total misalignment. ISO gives .five approximation<br />

methods for this. while <strong>the</strong> BS only gives one.<br />

4) Life factors. Life factors take <strong>in</strong>to. account <strong>the</strong> effects ot<br />

<strong>in</strong>crements <strong>in</strong> permissible stresses if a limited number of load<br />

cycles is demanded, Among AGMA, ISO,. and BS,.<strong>the</strong> most<br />

dist<strong>in</strong>ct diHel'ence lies <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition. of endurance limits.<br />

<strong>November</strong>/<strong>December</strong> <strong>1990</strong> 1.5


AGMA 218 sets 10 7 load cycles as <strong>the</strong> endurance limit for<br />

hoth bend<strong>in</strong>g and pitt<strong>in</strong>g, while ISO and BS def<strong>in</strong>e limits of<br />

2x10P, 5x10 7 , and l09cyc1es for contact stresses ..Although<br />

<strong>the</strong>re is no life factor <strong>in</strong> <strong>the</strong> old BS, a procedure to calculate<br />

variable duty cycles by determm<strong>in</strong>g an equivalent runn<strong>in</strong>g<br />

time was provided. BS 436:1986 also has a procedure to deal<br />

with variable duty cycles, while this aspect of gear runn<strong>in</strong>g<br />

is not considered by ISO.<br />

5) Material quality factor. Among <strong>the</strong> four standards, only<br />

<strong>the</strong> BS <strong>in</strong>troduces material facto.rs <strong>in</strong> its bend<strong>in</strong>g and contact<br />

stress rat<strong>in</strong>gs <strong>in</strong> an attempt to allow for <strong>the</strong> higher permissible<br />

stresses to be obta<strong>in</strong>ed from us<strong>in</strong>g higher quality materials.<br />

6) Size factors ..Size factors are used <strong>in</strong> all. except '<strong>the</strong> old<br />

BS, to take <strong>in</strong>to account <strong>the</strong> <strong>in</strong>fluence of tooth size on surface<br />

fatigue strength . Values are usually taken as unity because no<br />

fur<strong>the</strong>r <strong>in</strong><strong>format</strong>ion is provided <strong>in</strong> any of <strong>the</strong> standards.<br />

7) Work-harden<strong>in</strong>g factors. When <strong>the</strong> p<strong>in</strong>ion material is<br />

substantially harder than <strong>the</strong> wheel, <strong>the</strong> effects of cold work<br />

harden<strong>in</strong>g and <strong>in</strong>ternal stress changes <strong>in</strong> <strong>the</strong> softer wheel<br />

material may occur, <strong>in</strong> which case <strong>the</strong> surface contact stresses<br />

will be reduced. These effects have been considered by<br />

AGMA, ISO., and BS by <strong>in</strong>troduc<strong>in</strong>g a hardness ratio or<br />

work-harden<strong>in</strong>g factor, In AGMA, <strong>the</strong> hardness ratio factor<br />

is a function of <strong>the</strong> gear ratio and p<strong>in</strong>ion and wheel hardness,<br />

but AGMA only applies this factor to <strong>the</strong> wheel rat<strong>in</strong>g. A<br />

guidance diagram is given by BS for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> workharden<strong>in</strong>g<br />

factor, based on surf ace roughness and haJdness,<br />

The ISO work-harden<strong>in</strong>g factor is only related to wheel<br />

hardness ..<br />

.8) Permissible stresses. Permissible bend<strong>in</strong>g and contact<br />

stresses are given <strong>in</strong> <strong>the</strong> old BS for a limited number of<br />

materials listed <strong>in</strong>.<strong>the</strong> standard. It is usually agreed that <strong>the</strong><br />

values are generally too pessimistic for snrface-hardened<br />

gears. Allowable bend<strong>in</strong>g and contact stresses, based on<br />

laboratory and field experience for each material and heat<br />

treatment condition, are provided <strong>in</strong> AGMA. For most of <strong>the</strong><br />

steels <strong>the</strong> allowable bend<strong>in</strong>g and contact stress numbers are<br />

functions only of material hardness ..<br />

In both BS and ISO <strong>the</strong> pennissible bend<strong>in</strong>g / contact stress'<br />

is based. on <strong>the</strong> bend<strong>in</strong>g/surface fatigue endurance limit for<br />

<strong>the</strong> material, tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> required life and runn<strong>in</strong>g<br />

conditions. Accord<strong>in</strong>g to <strong>the</strong> BS, for most gear materials <strong>the</strong><br />

bend<strong>in</strong>g/contact endurance limit depends only on hardness<br />

without differentiat<strong>in</strong>g between materials and heat<br />

treatments. InISO,. bend<strong>in</strong>g/ contactendurance limit is determ<strong>in</strong>ed<br />

ei<strong>the</strong>r based on experimental data for test gears of <strong>the</strong><br />

same material or on prepared, polished specimens. Values are<br />

provided <strong>in</strong> <strong>the</strong> ISO standard for a wide range of steels and<br />

heat treatments.<br />

For surface-hardened gears, <strong>the</strong> BS bend<strong>in</strong>g endurance<br />

limit is based on residual stresses and <strong>the</strong> ultimate tensile<br />

strength of <strong>the</strong> gear material. Detenn<strong>in</strong><strong>in</strong>g <strong>the</strong> residual stresses<br />

and tensile strength of surface-hardened gears is, however,<br />

difficult cast<strong>in</strong>g some doubt as to <strong>the</strong> ease with which this<br />

method can be used.<br />

9) Factors of safety and reliability. So far <strong>the</strong>re is no accepted<br />

method of relat<strong>in</strong>g gear reliability to safety factors consider<strong>in</strong>g<br />

<strong>the</strong> effect of material quality and gear accuracy. The<br />

AGMA reliability factor accounts for <strong>the</strong> effect of <strong>the</strong> normal<br />

statistical distribution of failures from <strong>the</strong> allowable stresses<br />

16 GearTechnology<br />

and can be chosen accord<strong>in</strong>g to <strong>the</strong> reliability required. BS<br />

and ISO leave <strong>the</strong> user to specify a value for this factor.<br />

M<strong>in</strong>imum demanded safety factors for bend<strong>in</strong>g strength and<br />

contact stress are recommended by both ISO and BS to reflect<br />

<strong>the</strong> confidence <strong>in</strong> <strong>the</strong> actual operat<strong>in</strong>g conditions and material<br />

properties, but <strong>the</strong> values for <strong>the</strong>se factors are different. The<br />

safety factor for bend<strong>in</strong>g strength <strong>in</strong> <strong>the</strong> old BS is def<strong>in</strong>ed as<br />

<strong>the</strong> ratio of ultimate tensile strength to <strong>the</strong> product of <strong>the</strong><br />

speed factor and bend<strong>in</strong>g stress factor.<br />

10) Non-common geometry factors. Geometry factors account<br />

for <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> helix angle, contact ratio, and<br />

tooth flank curvature at <strong>the</strong> pitch po<strong>in</strong>t on gear load capacity.<br />

Ignor<strong>in</strong>g <strong>the</strong> experimental exponent of 0.8, <strong>the</strong> geometry factor<br />

for <strong>the</strong> old BS can be written<br />

R<br />

R+l<br />

cosat cosatw<br />

2coS~b<br />

For <strong>the</strong> BS and ISO <strong>the</strong> geometry<br />

factor is<br />

(·8)<br />

1 casal smatw<br />

--=<br />

(9)<br />

2 cost3b cosa tw<br />

The similarity between Equations 8 and 9 is not apparent<br />

when expressed <strong>in</strong> <strong>the</strong> way given <strong>in</strong> <strong>the</strong> standards. (See<br />

Geometry Factors, Table 1.)<br />

The AGMA geometry Iactor.T, for contact stress is<br />

ccCxq<br />

mN<br />

(10)<br />

where C, is <strong>the</strong> curvature factor at <strong>the</strong> pitch l<strong>in</strong>e and is a<br />

function of <strong>the</strong> gear ratio and pressure angle,


218 does not consider lubrication, it does take tooth surface<br />

roughness and temperature effects <strong>in</strong>to account by <strong>in</strong>troduc<strong>in</strong>g<br />

a surface condition and a temperature factor. In <strong>the</strong> old<br />

BS, lubrication was ignored aJtoge<strong>the</strong>r. Tooth scuff<strong>in</strong>g.<br />

which is covered by ISOand DIN <strong>in</strong> separa.te parts, attempts<br />

to predict <strong>the</strong> t'emperatuN at which scuff<strong>in</strong>g will occur, This<br />

is not dealt with by any of <strong>the</strong> o<strong>the</strong>r standards and,<br />

<strong>the</strong>refore, no comparisons can be made, although scuff<strong>in</strong>g<br />

does appear <strong>in</strong> <strong>the</strong> new AGMA standard.<br />

ReferentleS:<br />

1. BR111SH STANDARDS INSTITUTION. "Spedlication for '<br />

MaCh<strong>in</strong>e Cut Gears. A. Helical and Straight Spur." BS<br />

436;1:940. London, 1973.<br />

2. LEWIS. W. Eng<strong>in</strong>eeisOubofPhiladeJ.phla. Proceed<strong>in</strong>8$ Vol.<br />

X,1893.<br />

3. SMfJ11, ~.D. Gears and Their Vibrations. The Maanillan<br />

Press Ltd, London, 1983.<br />

4. MLERICAN GEAR MANUFACTIJRERS ASSOClATION.<br />

-A:GMA Standard For Rat<strong>in</strong>g <strong>the</strong> Pitt<strong>in</strong>g Resistance and Bend<strong>in</strong>g<br />

Strength of Spur and Helical Involute Gear Teeth."AG1vfA<br />

218.01, 1982.<br />

5. ORGANIZATION FOR INTERNATIONAL STAND'AR-<br />

DIZAnON. "Calculation of Load Capacity of Spur and<br />

Helical Gears .."ISO/DlS 6336:1983, Part H, Belgium, 1983.<br />

6. DEUTSCHE lNDUSTRlE NOR1Vl:EN. "Grundlagen fur die<br />

Tragfahigkeitsberechnung von Gerad - uad Sdtragslimradem,"<br />

DIN 3990': Part 1-5,1986.<br />

7. BRITISH STANDARDS rNSTITUTION. "Spur and H.elical<br />

Gears. Pt. 3. Method for Calculation .of Contact and Root<br />

Bend<strong>in</strong>g Stress limitations for Metallic Invelute Gear." B5 436:<br />

1986. London, 1986.<br />

8. M1ERICAN GEAR J\.IfANUFAcruRERS ASSOCIATION.<br />

"1nfonnation Sheet for Surface Durability (Pitt<strong>in</strong>g) of Spur,<br />

Helical, Hen<strong>in</strong>gbone, and Bevel Gear Teeth." AGMA215.m,<br />

1966.<br />

9. AMERICAN GEAR MANUFACTIJRERS ASSOCilA110N.<br />

"In<strong>format</strong>ion Sheet .forStrength of Spur, Helica], Herr<strong>in</strong>gbone,<br />

and Bevel Gear Teeth." AGMA22S.01. 1967.<br />

10, HOFMANN, D.A. 'The Imporlance .of1111 New Standards BS<br />

436 (1986) and DIN 3990 (1986) f,orGear Design <strong>in</strong> <strong>the</strong> UK."<br />

Mar<strong>in</strong>e Gear<strong>in</strong>g and Revision of Bririsfl Standards. The ~<br />

stitute of Mar<strong>in</strong>e ElIg<strong>in</strong>eers. Mar<strong>in</strong>e Management (Hold<strong>in</strong>gs)<br />

Ltd,1987.<br />

11. RvlWALLE,D'.E.,O.A. LABATHandN. HUr'otINSON. ~A<br />

Review of Riec~nt Cear Ratiqg Dev lopmenl ,]501 AGMA<br />

Comparison Study." ASME Paper ao.C2/DET~25. 1980.<br />

iz. tMWAlLE, D.E., O.A. LABATH. "Differences Between<br />

M<br />

AGMA.and[s()Rat<strong>in</strong>gSystem. AG1vfAP per219.lS,l981.<br />

13. CASTELLANI, G. and V.P. CAS:rELU. "Rat<strong>in</strong>g Gear<br />

Strength." ASME Paper8(}Q/DET-88, 1981.<br />

14. WiELLAUER.,E.J. "Ana1ys:isof FactorsUsecHorRaI<strong>in</strong>g Helical<br />

Gears." ASME PaperS9-A-Ul, 1959.<br />

15. GEA.R HANDBOOK. Vol 1. Gear Classification, Material,<br />

and Measur<strong>in</strong>g Methods for Unassernb.led Gears. AGMA.390',<br />

Wash<strong>in</strong>gton D.C.<br />

16. BUCKINGHAM,E. "Dyn~ic Load on Gear 'Jeeth." ASME<br />

Research Publications. New York, 1931, also <strong>in</strong> Analytical<br />

Mechanics of Gears, PI' 426-452, Dover, 1963.<br />

17. WEBER C. and K.. BANASOfiEK."F.ormanderung und Pl'o~<br />

fiIrucknahme bel Gerad-undScheagveeaahnten." Radem,<br />

Schriftenreihe Anl:riebstechnik, No. 11, 1955.<br />

lB. DUDLEY, D.W.. Handbook of Practical Gear Des.ign.<br />

McGraw-HiIlBook Company, New York, 1984,<br />

UII5,-- ecify GI 'I/FH:USA<br />

C.JlJide, Ski¥i'ng hobs.<br />

Meet<strong>in</strong>g pr,ecise AGMlAto'lerances quickly and<br />

,eonsistenUy lis probably what determ<strong>in</strong>es your<br />

bonorn Il<strong>in</strong>e" tool GMI-FHUSA ,carbide skiv<strong>in</strong>gl ho'bs<br />

take ~hehassle out of m<strong>in</strong>ish<strong>in</strong>g operat,ions with:<br />

• Predictab'le pelitormance<br />

• Long servioe Ilife'<br />

• Off-<strong>the</strong> -Shelf delivery of standard sizes<br />

• Competitive, pric<strong>in</strong>g<br />

As'K your GMI·FHUSA re,presentative for a Q,uotation<br />

andl copies ot our ,quality documentation.<br />

AGMA 12<br />

+<br />

'0011,(708) '986~'1858 Fax ,(1,08)~986~0756<br />

CIRCLE A.-14 ON<br />

READER REPlY CAIRO


The Involute Helicoid<br />

and<br />

The Universal Gear<br />

Leonard J. Smith<br />

tnv<strong>in</strong>cible Gear Co., Livonia, MI.<br />

lntroduction<br />

A universal gear is one generated. by<br />

a common ra.ck on a cyl<strong>in</strong>drical, conical,<br />

or planar surface, and whose teeth<br />

can be oriented parallel or skewed.<br />

centered. or offset with r1!Speetto its<br />

axes. Mat<strong>in</strong>g gear axes can he parallel or<br />

crossed. non-<strong>in</strong>tersect<strong>in</strong>g or i.ntersect<strong>in</strong>.g,<br />

skewed or parallel. and can have<br />

any angular orientation .. (See fig. 1.)<br />

The tape!!'gear is a universal gear. It provides<br />

unique geometric properties and<br />

a range of applications unmatched by<br />

any o<strong>the</strong>r motion transmission element.<br />

(See Fig. 2.) The tapergearcan be produced<br />

by any rack-type too] generator<br />

or hobb<strong>in</strong>g mach<strong>in</strong>e which has a means<br />

of tilt<strong>in</strong>g <strong>the</strong> cutter or work axis andIor<br />

c~rd<strong>in</strong>at<strong>in</strong>g simultaneous traverse and<br />

<strong>in</strong>feed motions.<br />

Traditionally this has entailed <strong>the</strong> U~<br />

of proprietary or special mach<strong>in</strong>es -<br />

however, with <strong>the</strong> advent of numerical<br />

control for axis synchronization, conventional<br />

mach<strong>in</strong>es can be employed,<br />

These are <strong>the</strong> same mach<strong>in</strong>es used tor<br />

spur and helical gear generation.<br />

The taper gear provides features not<br />

atta<strong>in</strong>able with any o<strong>the</strong>r type of gear.<br />

It raeritseensideration for what it can<br />

do, and it may well be <strong>the</strong> answer to a<br />

problem which heretofore has eluded<br />

satisfactory resolution. .<br />

Application<br />

The tapa-gear has many familiar applications;<br />

for example, <strong>the</strong> gear shaper<br />

cutter. where <strong>the</strong> taper is employed to<br />

provide a relieved cutt<strong>in</strong>g edge. (See Fig<br />

3.) Ano<strong>the</strong>r familiar application is <strong>the</strong><br />

rack-and-p<strong>in</strong>ion automotive steer<strong>in</strong>g<br />

mechanism where a taper is used to<br />

1B Gear Technology<br />

elim<strong>in</strong>ate backlash by axial adjustment.<br />

In mar<strong>in</strong>e eng<strong>in</strong>e prop drives a tapered<br />

gear is meshed witha. cyl<strong>in</strong>drical spur or<br />

helical p<strong>in</strong>ion to provide an angular<br />

takeoff and/or to enable an optimum<br />

placement for <strong>the</strong> eng<strong>in</strong>e . The taper gear<br />

also allows several unusual gear meshes<br />

<strong>in</strong><strong>the</strong> mechanism of a well-known aircraft<br />

gun and provides a lightweight<br />

reliable design <strong>in</strong> a m<strong>in</strong>imum envelope.<br />

Taper gears have found. a niche <strong>in</strong><br />

many commercial, and military applic.ations,<br />

but have not been widely embraced<br />

by <strong>the</strong> general gear <strong>in</strong>dustry,<br />

because of a requirement for special<br />

mach<strong>in</strong>es, and because of lack of <strong>in</strong><strong>format</strong>ion<br />

<strong>in</strong><strong>the</strong> literature.<br />

The taper gear concept providesa<br />

powerful tool to <strong>the</strong> geometer. and it is<br />

hoped this article will encourage <strong>the</strong> expansion<br />

of fundamental gear <strong>the</strong>ory to,<br />

<strong>in</strong>clude this versatile mach<strong>in</strong>eelement <strong>in</strong>.<br />

<strong>the</strong> basic gear<strong>in</strong>g literature for widespreadevaluaticn,<br />

The lnvolute Heliooid<br />

The <strong>in</strong>volute helicoid which is conjugate<br />

to a straight-sided rack, when<br />

converted Ito a complex <strong>in</strong>volute helicoid<br />

by <strong>the</strong> addition of a.taper, provides<br />

<strong>the</strong> basis of a universal gear system.<br />

The spur gear is <strong>the</strong> simplest form<br />

embody<strong>in</strong>g <strong>in</strong>volute tooth surfaces.<br />

(See Fig. 4.) The helical gear adds ill helical<br />

twist to <strong>the</strong> surface which results <strong>in</strong><br />

a simple <strong>in</strong>volute helicoid ..(See Fig. 5.)<br />

The <strong>in</strong>volute helicoid has three major<br />

characteristics: <strong>the</strong> <strong>in</strong>volute <strong>in</strong> any<br />

transverse section,a helix <strong>in</strong> any cyl<strong>in</strong>drical<br />

section, and anaxvolute <strong>in</strong> any<br />

axial section.<br />

Apply<strong>in</strong>g a taper to cyl<strong>in</strong>drical spur<br />

<strong>in</strong>volute gears provides an additional<br />

degree of freedom and results <strong>in</strong> a complex,<br />

<strong>in</strong>volute helicoid surface on <strong>the</strong><br />

tooth flanks. Opposite flanks will have<br />

equal, but opposite hands of helix. and<br />

a common lead. (See Fig. 6.) The 'cyl<strong>in</strong> w<br />

drical spur gear thus may be oonsidered<br />

a. special case of <strong>the</strong> <strong>in</strong>volute helicoid<br />

with zero taper. just as <strong>the</strong> cyl<strong>in</strong>drical<br />

spur gear may be considered a special<br />

case of <strong>the</strong> <strong>in</strong>volute helicoid with zero<br />

helix; i.e., <strong>in</strong>f<strong>in</strong>ite Iead,<br />

Apply<strong>in</strong>g a taper to a cyl<strong>in</strong>drical helical<br />

gear also provides an additional<br />

degree of freedom to a gear which is InitiaUya<br />

simple <strong>in</strong>volute helicoid with<br />

equal and parallel helices of <strong>the</strong> same<br />

hand and common lead, and results <strong>in</strong><br />

a. complex <strong>in</strong>volute helicoid of compound<br />

structure.<br />

The helix resultant of <strong>the</strong> taper is additive<br />

to <strong>the</strong> orig<strong>in</strong>al helix. on one flank<br />

and is reductive to <strong>the</strong> helix on <strong>the</strong> opposite<br />

flank. There are: thus two, ,entirely<br />

different helix angles and differ<strong>in</strong>g leads<br />

on opposite flanks. Relative magnitudes<br />

of helix andtaper determ<strong>in</strong>e whe<strong>the</strong>r<br />

AUTHOR:<br />

lEONARD J. SMITH is 'Vic~president of<br />

<strong>the</strong> lrJ'o<strong>in</strong>dble Gear Co. With over a halfcentury<br />

0/ experience <strong>in</strong> precision<br />

metrology and metalwork<strong>in</strong>g, he has<br />

pioneered developments il1 mach <strong>in</strong>e design,<br />

numerical control, adaptive control, servomechanisms,<br />

electricaI discharge<br />

mach<strong>in</strong><strong>in</strong>g, abrasive mach<strong>in</strong><strong>in</strong>g, eng<strong>in</strong>eer.<br />

<strong>in</strong>g reprographics and archiv<strong>in</strong>g, and com·<br />

puter <strong>in</strong>tegratio1'!. He .Ms been active <strong>in</strong><br />

AGMA, ASME, SME, ASME-GRI, and<br />

o<strong>the</strong>r t.echnica.lassociations.


PARALLEL<br />

Spur-<br />

Hel ileal<br />

Taper<br />

INITERSECT ING<br />

Bevel<br />

T,apeol'<br />

NON-~NTE:RSECTING<br />

HVpoid<br />

Worm<br />

Taper<br />

Fig. 1-Axes Orientation<br />

Fig. 4 - Spur Gear Toath - Zero Hel ieoid<br />

..,..,<br />

'" I ,<br />

/ I ,<br />

I I \<br />

I \<br />

I<br />

F"1I.2-<br />

Taper Gear Tooth<br />

fig. 5 - Helical Gear Tooth - Simple Helicoid<br />

AXVOLUTE<br />

INVOLUTE<br />

Fig . .}- Shaper Cutter<br />

:Fig.6-SpurTaperGearTOOlh<br />

- Compi x Helicold<br />

Novem'berjDecem'berl,990 19


<strong>the</strong> flank hands are <strong>the</strong> same or opposUe.<br />

Myriad possibilities are available for<br />

unlike profiles and leads for each flank,<br />

<strong>in</strong>clud<strong>in</strong>g provid<strong>in</strong>g a spur flank on one<br />

side and a helix on <strong>the</strong> o<strong>the</strong>r. Buttress<br />

profiles and one way ratchet<strong>in</strong>g as well<br />

as back stopp<strong>in</strong>g are possible.<br />

The axvolute is <strong>the</strong> key to <strong>the</strong> univer~<br />

sality of <strong>the</strong> taper gear, s<strong>in</strong>ce it provides<br />

a three-dimensional cam or crowned<br />

surface allow<strong>in</strong>g complete freedom of<br />

mesh conditions.<br />

Comparison<br />

The superficial resemblanceof <strong>the</strong><br />

taper gear toa bevel gear is mislead<strong>in</strong>g.<br />

They are two dist<strong>in</strong>ct entities.<br />

BEVEL GEAR. The bevel gear isgenerated<br />

from a conical surface. Its tooth<br />

surfaces converge to a common .apex.<br />

Each transverse section represents a<br />

geometric reduction <strong>in</strong> a. progression<br />

from back to front. Each section represents<br />

a diHe.rent diametral pitCh, and by<br />

custom is referenced at <strong>the</strong> back cone.<br />

(See Fig. 7..)The face 'Width is restricted<br />

by <strong>the</strong> parameters of number of teeth<br />

and cone angie •.s<strong>in</strong>ce <strong>the</strong> width ,of <strong>the</strong><br />

rutt<strong>in</strong>g tool tip at I<strong>the</strong>frQnt face becomes<br />

a limit factor .. Conjugate bevel gears<br />

must have <strong>the</strong> same diametral pitch at<br />

<strong>the</strong>ir back cones, must be flush<br />

matched, have complementarycone<br />

angles equal to <strong>the</strong> sum of <strong>the</strong> :shaft<br />

angle, and have a common apex. Tooth<br />

elements <strong>in</strong> all sections have a common<br />

angclardimension. (See .Fig..8.)<br />

TAPER GEAR. The taper gear is<br />

generated from a.cyl<strong>in</strong>drical surface, <strong>the</strong><br />

base cyl<strong>in</strong>der. All straight l<strong>in</strong>e gener~<br />

atrices converge to a oommon orig<strong>in</strong> on<br />

a base plane tangent to this cyl<strong>in</strong>der.<br />

(See Fig. 9.)1 Angular symmetry of <strong>the</strong><br />

tooth does not exist, as each cross see-<br />

Han is a different angular value. s<strong>in</strong>ce<br />

each tooth section is smallerthaa its<br />

predecessor, and its tooth space is correspond<strong>in</strong>gly<br />

larger. The taper ge.ar is<br />

controlled by a tool travel<strong>in</strong>g a constant<br />

path parallel. to<strong>the</strong> cone and produces<br />

a. pitch. po<strong>in</strong>t at <strong>the</strong> center of equal<br />

velocity which corresponds to <strong>the</strong> pitch<br />

of <strong>the</strong> cutt<strong>in</strong>g teol, This is generally<br />

referenced at <strong>the</strong> center of <strong>the</strong> face<br />

width. (See Fig. 101.)<br />

like all <strong>in</strong>volute gears, <strong>the</strong> pitch and<br />

pressure angle vary accord<strong>in</strong>g to <strong>the</strong> diameter<br />

ratio to <strong>the</strong> base circle. Each<br />

cr'QSS section may be considered as a<br />

prome shift or addendu~ correction,<br />

201 Gear Technology<br />

rig. 7 - Base Cone<br />

Fig. 8-Complementary Cones<br />

fig. 9-Base Cyl<strong>in</strong>der<br />

fig. 10- Independent Cones


Anoltlhe'r TOICCIO advantage":<br />

Gra ien<br />

,(,alnadvanllceld IPlroce'ss<br />

rofile Har _-n<strong>in</strong>g<br />

for ge,ar h,arden<strong>in</strong>g)<br />

Cool Tips<br />

Substantial depth and ,extra<br />

harden<strong>in</strong>ga.t pi!tchl<strong>in</strong>e<br />

IHigh hardness and residual<br />

compressive stress<br />

Cold Core<br />

Pliog~almmedlPreheat<br />

(AF)<br />

Gradlen,t Plioflle Haliden<strong>in</strong>g<br />

IPaUel<strong>in</strong><br />

At last, .. <strong>the</strong>re's a 'gear hardenlngprccess<br />

that<br />

provides extra hardness/strengtih at <strong>the</strong> pitchl<strong>in</strong>e. and<br />

,optimum strength gradient at <strong>the</strong> root l<strong>in</strong>et - without<br />

excessive harden<strong>in</strong>g and brittleness at <strong>the</strong> tooth tip.<br />

'Gradient Profile Harden<strong>in</strong>g, a new, hig!hly automated and<br />

field proven process devel'o,ped by TOCCO. merges 3<br />

dist<strong>in</strong>ctive technologies: Programmed Preheat (AF -low<br />

frequency), High I<strong>in</strong>tensity (RF - high frequency] and<br />

I<strong>in</strong>cremental Harden<strong>in</strong>g. This comb<strong>in</strong>ation also results <strong>in</strong><br />

high residual compressive stress at <strong>the</strong> root fillet for<br />

imprevad tooth bend<strong>in</strong>gl fatigue strength. F<strong>in</strong>ally. an<br />

<strong>in</strong>duction temper<strong>in</strong>gl operation assures proper level's of<br />

hardness and toughness. All can be comprised l<strong>in</strong> a s<strong>in</strong>gle,<br />

compact, totalliy <strong>in</strong>tegrated manufactur<strong>in</strong>g cell.<br />

_ ..........-<br />

nau:I U!iN.OJIi UI---'AII,."" ~<br />

.~nI<br />

IftMI!IlJOO"TW '",",'T<br />

,1I.IIiD,...,..yo 1ITI'IR'Qi, IJItADlDn'<br />

The proprtstary TOCCO GPHI process employs reasonably<br />

sized 200-300 IKW power supplies (AF & RF), 1m'this<br />

advanced process. So'. you don't need to <strong>in</strong>stall an ,expensive<br />

substat,ion. as r,equired by older ,d'esign contour<br />

harden<strong>in</strong>g systems.<br />

GIPH also, Iprovides:<br />

• Consistent reduced distortion<br />

• Improved Metallurgy<br />

• Higher Quali,ty<br />

• Lower <strong>in</strong>staJl'alion costs<br />

• R.educed operat<strong>in</strong>gl costs per part<br />

Tables shown <strong>in</strong>dicate tooth" root and pitch l<strong>in</strong>e shear<br />

str,engths with <strong>the</strong> 'GPHllprocess ..Wouldn't you'd likie'to see<br />

<strong>the</strong>se mechanicals for your gears?<br />

Contact your TOCCO representative for detailed <strong>in</strong><strong>format</strong>ion<br />

on 'GPH ... <strong>the</strong> most advanced, select!ive or surface<br />

gear harden<strong>in</strong>g/temper<strong>in</strong>gl system availa'b'le... anywhere ..<br />

TOCCO, lne., Sales, Service and T,ec'hnology Center,<br />

30100 Stephenson Highway, Madison Hts. IMI48071.<br />

Phone 1-800-488-4932. In IMjchig~an313-399-8601. IFAX<br />

31i3-399-.8603<br />

.......- -~~~ .., -." .<br />

CIRCLE A-21 ON READER REPLYCARD


s<strong>in</strong>ce each section employs a different<br />

portion of <strong>the</strong> same <strong>in</strong>volute.<br />

.As <strong>in</strong> all <strong>in</strong>volute gears, this provides<br />

<strong>the</strong> relationship of a. whole family of<br />

racks capable of generat<strong>in</strong>g <strong>the</strong> profile<br />

or of operational mesh at any diameter.<br />

Mach<strong>in</strong><strong>in</strong>g Methods<br />

CONVENTIONAL HOBBING. In<br />

<strong>the</strong> conventional hobb<strong>in</strong>g process, <strong>the</strong><br />

basic rack, represented by <strong>the</strong> hob, traverses<br />

<strong>the</strong> gear blank <strong>in</strong> a plane parallel<br />

to <strong>the</strong> gear axis and at a fixed center<br />

distance from <strong>the</strong> gear axis, and generates<br />

a spur gear <strong>in</strong> <strong>the</strong> simplest embodiment.<br />

(See Fi~. 11.)<br />

A helical gear can be generated by<br />

skew<strong>in</strong>g '<strong>the</strong>~o.rlto. <strong>the</strong> helix angle and<br />

travers<strong>in</strong>g along <strong>the</strong> axis of <strong>the</strong> rack<br />

tooth. This is frequently 'termed oblique<br />

hobb<strong>in</strong>g and has <strong>the</strong> unique characteristic<br />

of shift<strong>in</strong>g <strong>the</strong> contact across <strong>the</strong><br />

rack. (See Fig. 12.)<br />

The more common approach skews<br />

<strong>the</strong> rack to <strong>the</strong> helix angle and requires<br />

an additive rotational tim<strong>in</strong>g to produce<br />

<strong>the</strong> helix, while travers<strong>in</strong>g along <strong>the</strong> gear<br />

axis. This method employs at fixed portion<br />

of <strong>the</strong> rack for full generation. (See<br />

fig. 13.)<br />

These methods provide a constant<br />

tooth thickness <strong>in</strong> any transverse plane,<br />

Tooth thickness <strong>in</strong>crease or decrease is<br />

obta<strong>in</strong>ed through radial. <strong>in</strong>feed of <strong>the</strong><br />

rack or hob; i.e., a change <strong>in</strong>. <strong>the</strong>ir center<br />

distance. Additional compensatory devices<br />

could be employed to impart nonuniform<br />

helix control ..<br />

TAPER HOBBING. In tapered gear<strong>in</strong>g<br />

an. additional degree of freedom is<br />

required: an angular relationship between<br />

<strong>the</strong> axis of <strong>the</strong> rack and work,<br />

which provides a uniform rate of<br />

change of center distance <strong>in</strong> relation to.<br />

<strong>the</strong> 'traverse of <strong>the</strong> face width. The radial<br />

distance of <strong>the</strong> raek from <strong>the</strong> center l<strong>in</strong>e<br />

of <strong>the</strong> work .is not constant, out dlm<strong>in</strong>ishes<br />

from <strong>the</strong> back face to <strong>the</strong> front<br />

face. As aeonsequence, <strong>the</strong> tooth thickness<br />

gradually decreases, (See Figs.<br />

14-15.)<br />

A tapered gear which is generated <strong>in</strong><br />

this manner has <strong>the</strong> superficialappearance<br />

of a bevel gear, which it is not.<br />

Each 'transverse section represents a<br />

spur gearo] differ<strong>in</strong>g tooth thickness. In<br />

digitally controlled mach<strong>in</strong>es it is possible<br />

to synchronize <strong>the</strong> traverse and <strong>in</strong>feeds<br />

as a step function to produce <strong>the</strong><br />

angular effect without requir<strong>in</strong>g <strong>the</strong><br />

22 GearTeennolOQV<br />

r-tl<br />

--~~-f-~~hF*~ ~<br />

Fig. 11- Spur Gear Hobblng<br />

I.<br />

Fig. U - Helical Oblique<br />

Hobb<strong>in</strong>g<br />

Fig. 13 - Helical Skew Hobb<strong>in</strong>g<br />

Fig. 14 - Taper Hobb<strong>in</strong>g - Till Work Axis<br />

I


Pig. 15 - Taper Hobb<strong>in</strong>g -<br />

Till Cutter Axis<br />

Hg. 16-Spur<br />

Taper Gear<br />

Fig. 17 - Helical Taper Gear<br />

Fia. 18 - Umil Geometry<br />

>>>>> -<br />

added degree of freedom <strong>in</strong> <strong>the</strong> macmn ~<br />

tool. The helix may be obta<strong>in</strong>ed byoblique<br />

orientation or by supplemental<br />

tim<strong>in</strong>g.<br />

TAPER SHAPING. By employ<strong>in</strong>g a<br />

circular gear type cutter <strong>in</strong> place of <strong>the</strong><br />

rack for generation, <strong>the</strong> sam requirements<br />

and relations as <strong>in</strong> habb<strong>in</strong>g apply.<br />

However, <strong>the</strong> resultant taper gear<br />

wiU be substantially, but nctexactlv,<br />

<strong>the</strong> same as its hobbed equjvalent.<br />

Taper Gear Geometry<br />

BASK (SPUR) GEOMETRY. The<br />

basic geometry of <strong>the</strong> spur taper gear<br />

results <strong>in</strong>a complex <strong>in</strong>volut,e helic~i.d.<br />

The tilt of <strong>the</strong> cutt<strong>in</strong>g tool path.produces<br />

a reduced transverse pressu~ angle<br />

symmetrical on both sides of <strong>the</strong> tooth<br />

and a symmetrical base circle for both<br />

flanks. The tool traverse provides<br />

reduced tooth thickness <strong>in</strong> each cross<br />

section.<br />

This uniform reduction is along a<br />

constant helix and resullts <strong>in</strong> a constant<br />

lead of <strong>the</strong> helicoid surface. It is evident<br />

that equal and opposite hand helix<br />

angles are produced. (See fig. 16.)<br />

BASIC (HELICAL) GEOMETRY.<br />

The basic geometry of <strong>the</strong> helical taper<br />

gear results <strong>in</strong>a. compound <strong>in</strong>volute helicoid.<br />

The tilt of <strong>the</strong> cutt<strong>in</strong>g tool path <strong>in</strong><br />

addition to <strong>the</strong> helix generation produces<br />

non-symmetricali Hanks 'on <strong>the</strong><br />

teeth and results <strong>in</strong> different base circles<br />

for each side.<br />

The oppos<strong>in</strong>g geometric <strong>in</strong>fluenoes.,<br />

<strong>the</strong> conventional helix generation with<br />

symmelricaJ parallel flanks and parallel<br />

leads, and <strong>the</strong> action resu,lt<strong>in</strong>g from <strong>the</strong><br />

taper produces non~symmetry, <strong>the</strong> result<br />

of which is <strong>the</strong> compound helicoid,<br />

On one flank <strong>the</strong> action of th taper<br />

produces an <strong>in</strong>creased he1Jxangle and<br />

reduced lead, and on <strong>the</strong> o<strong>the</strong>r fI~_k it<br />

decreases <strong>the</strong> hel:ix..angle and <strong>in</strong>creases<br />

lne lead. (See Fig. 17.)'<br />

UMIT ,GEOMETRY. The limit of a<br />

taper gear is identical to ,that of any <strong>in</strong>volute<br />

of a circle constra<strong>in</strong>ed by an oppos<strong>in</strong>g<br />

<strong>in</strong>volute ofopposi~e directionaJ<br />

orientation. The <strong>in</strong>volute becomes<br />

po<strong>in</strong>ted where <strong>the</strong> profile paths cross ..<br />

(See Fig. IS,)'<br />

for <strong>the</strong> spur taper gear this crossover<br />

is ,equiangular from. <strong>the</strong> center l<strong>in</strong>e of <strong>the</strong><br />

tooth, In. <strong>the</strong> case 'ofa helical taper gear,.<br />

<strong>the</strong>re is no tooth symmetry, and <strong>the</strong><br />

center of <strong>the</strong> tooth apex is <strong>the</strong> <strong>in</strong>tersection<br />

of two oppos<strong>in</strong>g <strong>in</strong>volutes struck<br />

<strong>November</strong>/<strong>December</strong> <strong>1990</strong> 2'.3


from. two different base circles. The <strong>in</strong>- It would not take a great deal of imvolute<br />

angles are obviously different forag<strong>in</strong>ationto' envision automatic means<br />

each flank. of takeup from <strong>the</strong>rmaJ variations or<br />

The o<strong>the</strong>r limit occurs at <strong>the</strong> base cir- even adjustment based en <strong>the</strong> load<br />

de of <strong>the</strong> gear where generatien orig<strong>in</strong>ates.<br />

If <strong>the</strong> generat<strong>in</strong>g too] operates <strong>in</strong> The m<strong>in</strong>imum secondary benefit of<br />

envil'onment.<br />

at zone not def<strong>in</strong>ed by <strong>the</strong> <strong>in</strong>volute, it <strong>the</strong> taper gear is that it provides for<br />

produces a degeneration of <strong>the</strong> desired manufactur<strong>in</strong>g variation without compromis<strong>in</strong>g<br />

<strong>the</strong> mesh or, conversely,<br />

profile. This is <strong>the</strong> familiar undercut of<br />

<strong>in</strong>volute gears with low tooth number allows greater latitude <strong>in</strong> toleranc<strong>in</strong>g<br />

and standard tooth proportions, both gears and hous<strong>in</strong>gs.<br />

TAPER ANGLE. For <strong>in</strong>tersect<strong>in</strong>g CONTACT. Each spur section of <strong>the</strong><br />

drives, <strong>the</strong> taper angle mayor may not<br />

be related to <strong>the</strong> ratio of <strong>the</strong> mesh ..<br />

They operateas lapelled cyl<strong>in</strong>drical<br />

gears and are <strong>in</strong>dependent of cone<br />

angles. (See Fig. 19.)<br />

For example, a 2:1 ratio set could<br />

consist of both gears with 45" cone<br />

angles, or one could be 30 Q and its mate<br />

,60,0, or any o<strong>the</strong>r comb<strong>in</strong>ation deemed<br />

suitable. There are, of course, some<br />

preferred approaches, but anyth<strong>in</strong>g is<br />

possible. There is no requirement that<br />

cone angles <strong>in</strong>tersect at a common apex.<br />

This allows multiple takeoffs from a<br />

common gear at various angles. (See<br />

Fig. 20.)'<br />

Taper gears operate on pitch<br />

cyl<strong>in</strong>ders not pitch cones ..It is obvious<br />

that as cone angles.<strong>in</strong>crease, <strong>the</strong> relative<br />

face width usable must decrease for a<br />

given number of teeth, s<strong>in</strong>ce <strong>the</strong> limit<br />

conditions of apex and undercut are met<br />

ata faster rateof change.<br />

HELIX ANGLE. Inf<strong>in</strong>ite selection of<br />

helix. angles is also permissible <strong>in</strong> cross<br />

axes ,orientation so long as <strong>the</strong> sum is<br />

correct. For parallel axis operation <strong>the</strong><br />

taper provides a third variable for maximiz<strong>in</strong>g<br />

contact ratio and allows reduction<br />

<strong>in</strong> face width for equivalent load<strong>in</strong>g<br />

toa conventional helical gear.<br />

The comb<strong>in</strong>afion of high cone angle<br />

and high helix angle provides a unique<br />

design opportunity, s<strong>in</strong>ce <strong>the</strong> high helix<br />

<strong>in</strong>creases <strong>the</strong> virtual number of teeth<br />

and allows <strong>in</strong>creased cone angle without<br />

exceed<strong>in</strong>g limits of apex and<br />

undercut.<br />

CENTER DISTANCE MATCH. The<br />

ta.per gear has <strong>the</strong> conventional advantage<br />

of ,employ<strong>in</strong>g slight changes <strong>in</strong> helix<br />

angles to provide a given.center distance<br />

while employ<strong>in</strong>g standard tools and<br />

tooth proportions.<br />

Taper gears provide even greater advantage<br />

by allow<strong>in</strong>g ax,ial change of<br />

position to accomodate variations <strong>in</strong><br />

center' distance or for adiustmeru of<br />

backlash <strong>in</strong> over- or undersize centers.<br />

24 Gear Technology<br />

taper gear is conjugate to <strong>the</strong> generat<strong>in</strong>g<br />

rack. and contacts <strong>the</strong> rack cont<strong>in</strong>uously<br />

dur<strong>in</strong>g its rotation. Henoe, <strong>the</strong> taper<br />

tooth is conjugate to <strong>the</strong> generat<strong>in</strong>g<br />

rack. Contact between <strong>the</strong> taper gear<br />

tooth and <strong>the</strong> basic rack occurs along a<br />

straight l<strong>in</strong>e common to <strong>the</strong> rack and<br />

<strong>the</strong> taper tooth, and this contact l<strong>in</strong>e is<br />

<strong>in</strong>cl<strong>in</strong>ed. aga<strong>in</strong>st <strong>the</strong> pitch plane of <strong>the</strong><br />

rack. (See Figs. 21-22.)<br />

If two taper gears are meshed at a.<br />

shaft angle equal to. <strong>the</strong> sum of <strong>the</strong><br />

generat<strong>in</strong>g angles, a hypo<strong>the</strong>tical rack<br />

surface .of zero thickness may be assumedas<br />

exist<strong>in</strong>g between <strong>the</strong> mesh<strong>in</strong>g<br />

gears. This hypo<strong>the</strong>tieal rack surface<br />

meshes with both component parts<br />

which are contacted along two strnight,<br />

non-parellel lirtes on opposite sides of<br />

<strong>the</strong> rack surface. At <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>tersection<br />

of <strong>the</strong> two contact l<strong>in</strong>es, simultaneous<br />

contact exists between each<br />

taper gear and <strong>the</strong> rack. and, <strong>the</strong>refor~,<br />

also' between <strong>the</strong> two taper gears.<br />

If <strong>the</strong> rack surfaceis ignored, it may<br />

be concluded that mat<strong>in</strong>g gears of this<br />

character which mesh at non-parallel<br />

axes are conjugate to each o<strong>the</strong>r, but<br />

contact only at a po<strong>in</strong>t which travels, as<br />

<strong>the</strong> gears rotate, on <strong>the</strong> tooth surfaces<br />

and through space. If <strong>the</strong>cone angle is<br />

small, <strong>the</strong> tapered gears approach spur<br />

gears,a~d<strong>the</strong> contact approaches l<strong>in</strong>e<br />

contact. (See Fig..23.)<br />

Contact may range from l<strong>in</strong>e contact<br />

with a rack or parallel axis mount<strong>in</strong>g to,<br />

po<strong>in</strong>t contact on cross axes similar to socalled<br />

spiral gears ..Separation of pitch<br />

planes is possible, provid<strong>in</strong>g all <strong>the</strong> leeway<br />

for match<strong>in</strong>g centers and ratios <strong>in</strong>herent<br />

<strong>in</strong> those gears, with <strong>the</strong>additional<br />

feature of backlash takeup,<br />

CROWNING. lneommen with ell<br />

<strong>in</strong>volute heliceids, <strong>the</strong> l<strong>in</strong>e of contact is<br />

<strong>in</strong>cl<strong>in</strong>ed across <strong>the</strong> face of <strong>the</strong> rack. Full<br />

face contact is obta<strong>in</strong>ed by parallel<br />

mount<strong>in</strong>g <strong>in</strong> an anti-backlash mode.<br />

Angular mesh provides a mesh<strong>in</strong>g angle<br />

equal to <strong>the</strong> sum of <strong>the</strong> taper angles, and<br />

<strong>the</strong> contact l<strong>in</strong>es are <strong>in</strong>d<strong>in</strong>ed to each<br />

o<strong>the</strong>r .. These l<strong>in</strong>esare straight l<strong>in</strong>e<br />

elements represent<strong>in</strong>g contact with <strong>the</strong><br />

rack, but provide <strong>the</strong>oretical limited<br />

contact at <strong>the</strong>ir <strong>in</strong>tersection ..IneHect <strong>the</strong><br />

tooth profile is crowned <strong>in</strong> both <strong>the</strong> pro--<br />

file and lead directions.<br />

Judicious use of mismatch <strong>in</strong> crown<strong>in</strong>g<br />

can provide all <strong>the</strong> desirable<br />

characteristics of controlled crown<strong>in</strong>g<br />

for dellection, mismatch, or load compensation,<br />

enabl<strong>in</strong>g smooth transition<br />

from no-load to load and avoid<strong>in</strong>g '<strong>the</strong><br />

harmful effects of heavy end bear<strong>in</strong>g.<br />

Taper Gear features<br />

COrvtMONAUTY. All gears generated<br />

hom <strong>the</strong> same basic rack have a<br />

common normal base pitch and are,<br />

<strong>the</strong>refore, conjugate to each o<strong>the</strong>r no<br />

matter what <strong>the</strong> 'taper <strong>in</strong>cl<strong>in</strong>alion or<br />

helix angle of an. <strong>in</strong>dividual gear.<br />

UNIVERSAUTY. With unlimited<br />

angIe selection for prOVid<strong>in</strong>g motion<br />

control between any two places <strong>in</strong> space<br />

at any ratio, <strong>the</strong>se gears have <strong>the</strong> most<br />

universal application of any motion<br />

'transmission device extant. In. parallel<br />

applications optimized <strong>in</strong>volute length<br />

and helical overlap provide E·oI' maximized<br />

power <strong>in</strong> a given face width.<br />

lNTERCHANGEABIUTY. Taper<br />

gears are <strong>in</strong>terchangeablewithout requirement<br />

for match<strong>in</strong>g or provision for<br />

pairs or sets. Because of variation <strong>in</strong>sensitivity,<br />

<strong>the</strong> only moults of mismatch are<br />

slight bacldash differences whi.ch can. be<br />

compensated for by axial shift ..Off-<strong>the</strong>shelf<br />

gear replacement is possible even<br />

<strong>in</strong> <strong>the</strong> most demand<strong>in</strong>g application.<br />

Taper gears are subject to <strong>the</strong> same <strong>in</strong>spection<br />

procedures used for spur and<br />

helical gears. They can be <strong>in</strong>spected for<br />

all elements, such as <strong>in</strong>volute, lead,<br />

spac<strong>in</strong>g, runout, and pitch, as weD as<br />

for composite operation with s<strong>in</strong>gle or<br />

double flank <strong>in</strong>spection ..<br />

NOISE REDUCIBIliTY. In parallel<br />

gears all <strong>the</strong> parameters for successful<br />

reduction of dynamic variations are<br />

available for optimiz<strong>in</strong>g. High profile<br />

contact ratio, helical overlap, and<br />

variable addendum with progression<br />

from all-recess to all-approach action,<br />

pmvide <strong>the</strong> tools from pursu<strong>in</strong>g m<strong>in</strong>imum<br />

noise design. Cross-axis .application<br />

tends to be naturally quieter as a<br />

consequence of less dynamic variation<br />

due to <strong>the</strong> natura] crown<strong>in</strong>g effect.<br />

MESH lNSENSlTIVITY. The threedimensional<br />

curvature of <strong>the</strong> taper gear


Hg.l'9-Cone/Taper<br />

Independence<br />

Fig. 22 - L<strong>in</strong>e of Contact - Taper Gear<br />

fig. 2O-Angle Independence<br />

Fig. 21-l<strong>in</strong>e<br />

of Contact - Spur/Helical<br />

Fig. 23 - L<strong>in</strong>e of Contact - Non-parallel Axes<br />

<strong>November</strong>/<strong>December</strong> <strong>1990</strong> 25


Al


Fig. 32-Skew<br />

Fig. 33- Taper Wonn<br />

Fig. 34-Worm<br />

tooth results <strong>in</strong> a remarkable ability Ito<br />

resolve angular misalignment, axis<br />

skew, deflection, twist, and positional<br />

mismatch without affect<strong>in</strong>g conjugate<br />

action. The only requirement for mesh<br />

is a common base pitch. (See Fig. 24.)<br />

Positional mismatch is limited only<br />

by <strong>the</strong> tight mesh condition, which can<br />

be relieved bya simple axial shift of<br />

ei<strong>the</strong>r member. (See Fig. 25).<br />

BACKLASH CONTROL. An outstand<strong>in</strong>g<br />

feature of taper gears is <strong>the</strong>ir<br />

ability to be set for m<strong>in</strong>imum. backlash<br />

many mode by axial adjustment of one<br />

member to take up play, without affect<strong>in</strong>gcenter<br />

distance or mesh <strong>in</strong>tegrity.<br />

For parellel-axis mode, <strong>the</strong> taper angle<br />

can be selected to provide any d~ of<br />

sensitivity ..(See Fig. 26.)<br />

Precision differentials have been construeted<br />

to pr,ovide zero backlash and<br />

essentially zero lost motion transfer between<br />

<strong>in</strong>put and output shafts. (See Fig.<br />

34.)<br />

UNUMJTED ORlENTAHON. Ta~<br />

per gears can be employed on <strong>in</strong>tersect<strong>in</strong>g<br />

or non-<strong>in</strong>tersect<strong>in</strong>g axes, parallel or<br />

non-parallel, and any ,angle of orientation.<br />

(See figs ..27-35.)<br />

Conclusi.on<br />

Given '<strong>the</strong> remarkable geometric properties<br />

accru<strong>in</strong>g from this simple conceptual<br />

change <strong>in</strong> basic gear<strong>in</strong>g fundamentals/comb<strong>in</strong>ed<br />

with <strong>the</strong><br />

availability of axis-synchronized<br />

mach<strong>in</strong>e tools, <strong>the</strong> taper gear provides<br />

a new tool to <strong>the</strong> general gear<strong>in</strong>g<br />

<strong>in</strong>dustry.<br />

Note: Taper gears are generally referred to as<br />

"Beveloids" <strong>in</strong> <strong>the</strong> literature, however. ,this a<br />

r gistered trademark of Inv<strong>in</strong>cible Gear.<br />

Re1erences:<br />

1. BEAM, A.S."Beveloid Gear<strong>in</strong>g."<br />

Mach<strong>in</strong>e Design, Dec. 1954.<br />

2. MAY, l.I, Gear Des.ign for Tapered<br />

Inuolute and RaCKand P<strong>in</strong>ion Steer~<br />

<strong>in</strong>g Gears, Ford Motor Co., 1982.<br />

3. MERRITT, H.E. Gears, 3rd edit.,<br />

Isaac Pitman and Sons, Ltd., 1954.<br />

4. VOGEL W.F. - IntJolutometry Qnd<br />

Trigonometry, Michigan Tool Co.,<br />

1945 ..<br />

Acknowledgements: Pr<strong>in</strong>ted with permissiO'l of<br />

<strong>the</strong> copyright holder. <strong>the</strong> American Gear<br />

Mal1ufactuiw5 Association. The op<strong>in</strong>ions,<br />

statements Il1'Idconclusion presented <strong>in</strong>tire paper<br />

are those of <strong>the</strong> Au thor aJld In 11.0way rep.resent<br />

,<strong>the</strong> position or op<strong>in</strong>ion .of <strong>the</strong> AMERlCAN<br />

GEAR MANUFACTURERS ASSOC1ATION.<br />

Fig. JS - Differential<br />

Zero Backlash<br />

Our thanks to MR. WlLUAM L. JANNlNC1( for<br />

'l55istll1'l£:e wilh' <strong>the</strong> technical edit<strong>in</strong>g .of this article.<br />

<strong>November</strong>I<strong>December</strong> <strong>1990</strong>27


Put:s ilt all toget:her<br />

wi'tlh excit<strong>in</strong>gl" new<br />

products to keep<br />

yOlu competitive,!<br />

Gearrnakers worldwide face customer demands for highest quality and ontime<br />

delivery at fiercely competitive prices. Meet<strong>in</strong>g <strong>the</strong>se demands requires<br />

greater flexibility, productivity and <strong>the</strong> ability to <strong>in</strong>tegrate new technology.<br />

Recogniz<strong>in</strong>g your ultimate goals - customer satisfaction and pmfitabHity -<br />

IKHngelnberg'global! technology is ready with <strong>the</strong> most advanced CNC Spilrall<br />

Bevell Gear Generators and Gr<strong>in</strong>ders, and <strong>the</strong> most complete l<strong>in</strong>e of CNC<br />

Gear Checkers avahable ... anywhere.<br />

We've ,put it all toge<strong>the</strong>r:<br />

Spiral Bevel Gear Appliicat,ions<br />

• KNC 40/60 fully GNG controlled Generators<br />

• AMK Large Gear Generators<br />

• W800CNC (Wiener System) Gr<strong>in</strong>der<br />

• CNC Inspection Equipment<br />

• Quench Presses<br />

Worm and Rotor 'Gr<strong>in</strong>d<strong>in</strong>g AppHcaUons<br />

• HNC Series of GNG controlled Gr<strong>in</strong>ders<br />

• GNG lnspection Systems<br />

Parall'el A.xisGear Applications<br />

• GNG controlled gear Inspection Systems<br />

• SNC Series of CNG Hob Sharpeners<br />

• Gear Gutt<strong>in</strong>g Tool Inspection Systems<br />

• Hurth Product L<strong>in</strong>e: GNG Shavers, Hard<br />

&. F<strong>in</strong>e F<strong>in</strong>ishers, Shav<strong>in</strong>q Gutter G,r<strong>in</strong>ders<br />

and Deburr<strong>in</strong>g/Chamferilngl Equipment.


The KNC-4D/60 Gear Generators<br />

These new, fully CNIC, B axis gear generators produce<br />

Spilral Bevell Gears up to 24" 0.0. Pertect for small<br />

batch or l<strong>in</strong>termediate I'evel production runs, <strong>the</strong> KINC<br />

Series 'generates Spiral Beve,I'Gear:s of any geometry<br />

by cont<strong>in</strong>uous or s<strong>in</strong>gle ilndex<strong>in</strong>g operaucn. Its program<br />

storage capaci~y for 250 different workpieces and<br />

unlimited storage ,capacity with a ONC <strong>in</strong>tertace, makes<br />

it <strong>the</strong> most flexible, gear g:ener,ator you esn buy.<br />

The WaDDCNC Gea.r Gr<strong>in</strong>der (Wiener System)<br />

With lead<strong>in</strong>g edge technology, <strong>the</strong> WBOOCINC becomes<br />

<strong>the</strong> uni,versall Spiral !Beve:1a-ear 'gr<strong>in</strong>der #or any 'gear<br />

geometry. Perlect for ,ground: g:ear quality applications<br />

up to 315" 0.0 .•<strong>the</strong> 'gr<strong>in</strong>der offers gr,eat versatility,<br />

short set-ups and superior accuracy.<br />

The PNC Seilies Gear Check.els<br />

cempaet new CNC ,ccOntroliedgear checkers provide<br />

fully automatic measur<strong>in</strong>g ,of gears up to BO" O.ID... East<br />

operation, high accuracy, e'xceillent documentancn and<br />

a wide' vari:ety 'of software modules, term <strong>the</strong> perlect.<br />

,gear check<strong>in</strong>g package.<br />

For <strong>the</strong> latest <strong>in</strong><strong>format</strong>ion on Kl<strong>in</strong>gelnberg systems that<br />

satisfy customer demands, fm tncreased productivity<br />

and profitability. contact our representative. Or. wrHe to<br />

Kl<strong>in</strong>gelnbergl Gear Technology tne.,<br />

15200 IFoltz Industrial Parkway. StrongsvBle, OH 44136.<br />

Phone: 2116/572-2100: FAX: .2116/572-09B5.<br />

@ KLI~GELN~ERG<br />

- rouPuts It ,all tog,e<strong>the</strong>.r~<br />

CU~CLE A-116 ON<br />

IREADER'IREPlY CARD


<strong>in</strong> Order to Avoid Undercutt<strong>in</strong>g<br />

Dr. Vadim K<strong>in</strong><br />

Purdue University<br />

Hammond, IN<br />

Abstract:<br />

The dimensions of <strong>the</strong> worm and worm gear tooth surfaces<br />

and some of <strong>the</strong> worm gear drive parameters must be limited<br />

<strong>in</strong> order to avoid gear undel'cutt<strong>in</strong>g and <strong>the</strong> appearance of <strong>the</strong><br />

envelope of l<strong>in</strong>es of contact on <strong>the</strong> worm surface, The author<br />

proposes a method for <strong>the</strong> solution of this problem. The relationsbetween<br />

<strong>the</strong> developed concept and Wildhabers concept<br />

of <strong>the</strong> limit contact normal are <strong>in</strong>vestigated, The results<br />

of computations are illustrated with computer graphics ..<br />

Basic K<strong>in</strong>ematic Equations<br />

Investigat.ion of Undercutt<strong>in</strong>g of Spatial Gears. The <strong>in</strong>vestigation<br />

is based on <strong>the</strong> .follow<strong>in</strong>g equations and <strong>the</strong>orems<br />

that have been. proposed by Litv<strong>in</strong>.(1.2)<br />

v (I) + v fU ) = n<br />

_r __ ~<br />

(1)<br />

OXl OXI V (12)<br />

Xl<br />

au ao'<br />

arl oy!<br />

au<br />

ae<br />

V (12)<br />

Yl<br />

af of ilf<br />

-w<br />

au ao o'¢<br />

=<br />

,(jYl __ (}Y'l v(U) Yl<br />

au 00'<br />

__ aXl aXl v(2) "1<br />

au ae<br />

aZ I<br />

au<br />

of<br />

au<br />

ihl V!~2)<br />

ao<br />

Dfaf<br />

--w<br />

aoa¢<br />

d (. , . (ull _ d [f( .n .i.)] - f du + f dO + f d¢ - 0<br />

- 1): Jl - - U,U, 'i' - u- F ..~- - .<br />

~ ili ~ ~ ~<br />

where: 2:r(l) is <strong>the</strong> velocity of motion of <strong>the</strong> contact po<strong>in</strong>t<br />

over <strong>the</strong> worm surface, ,Y(U) is <strong>the</strong> slid<strong>in</strong>g velocity, nis <strong>the</strong><br />

worm surface unit normal, u and (JaJle <strong>the</strong> worm-surface<br />

curvil<strong>in</strong>ear coord<strong>in</strong>ates, and ¢ is <strong>the</strong> generalized parameter<br />

of motion. Equations 1 and .2 yield <strong>the</strong> follow<strong>in</strong>g<br />

equations<br />

30 'Gear Teehnoloa,r<br />

(2)<br />

Here:<br />

aZI aZ l vg 2 )<br />

au 8()<br />

a.f af of<br />

--w<br />

au ao a¢<br />

=0' (3)<br />

..[1 (u,O) = Xl (u, ())il + Yl (u, fJ) jl + ZI (u,O) lsI (4)<br />

are <strong>the</strong> equations of <strong>the</strong> too] surface El and (u.lI) are <strong>the</strong>


Contact L<strong>in</strong>es<br />

Fig. I<br />

eurvil<strong>in</strong>eae surface I:}coord<strong>in</strong>ates.<br />

surface, and<br />

n . ;y(12) = £(u,O,I/» = 0<br />

Surface E1 is a regular<br />

is <strong>the</strong> equation of mesh<strong>in</strong>g with


A PATH TO WMW:NILES<br />

GENERATING<br />

GEAR<br />

WMW:NILES<br />

ZSTZ O8IEG-ONC<br />

WMW:NILES G.ear Generat<strong>in</strong>g Gr<strong>in</strong>ders are<br />

<strong>in</strong> demand ,everywhere! TM world's most<br />

technologically advanced nations look to<br />

WMW:NIUES for thls equipment-and for good<br />

reason.<br />

-Tile NILES GeaJ"Generat<strong>in</strong>g Process is <strong>the</strong><br />

fastest. and most cost effective method for<br />

gr<strong>in</strong>d<strong>in</strong>g smalland medium production funs.<br />

• NILES meets your requlrements with a full<br />

l<strong>in</strong>e of automatic gr<strong>in</strong>ders with gear diameter<br />

capacities from 1/2:' to 158" .<br />

• AL.L NIWES gear gr<strong>in</strong>ders l1aveaccuracies to<br />

AGMA 12/14. -<br />

Customiz.ed mac~h<strong>in</strong>escan be ordered with even<br />

higher guaranteed accuracies.<br />

~u won't f<strong>in</strong>d a better Gear Generat<strong>in</strong>g Gr<strong>in</strong>der<br />

anywhere. Thars why companies like yours have<br />

.bought over 4600 of <strong>the</strong>m, mak<strong>in</strong>g<br />

Gr<strong>in</strong>ders most p19ferredthroughOut<br />

WMW:NlLES<br />

<strong>the</strong> world.<br />

PA:RTIAL. USAGE. SURVEY (as of 1988)<br />

COUNTRY<br />

*' OF MACHINES<br />

Federa'i Republic of Germany 350<br />

Japan .287<br />

Italy 175<br />

France<br />

Great IBrita<strong>in</strong> 1'01<br />

North Americ-a 411<br />

Switze~I'and 15<br />

Comp'ete Infonnatl'on lis, available on IreqUest<br />

'WMW Mach'<strong>in</strong>ery;<br />

Inc.<br />

570 Bradley Hm Road<br />

Blauvell, New York 10913<br />

Phgne (914) 358·3330<br />

Fax (914) 358·2378<br />

Telex 4756017<br />

QIRCLtEA-lI7<br />

ON IREAOER' IRE:PLY CARO


•<br />

J'i<br />

BDnlope<br />

8<br />

fig. 2<br />

Fig.J<br />

if <strong>the</strong>y exist, appear simultaneously en 1::1 and on P. It is !h = I =N-11-1' ~1 = iJa"'",u f ,I X a,a:]<br />

easy to verify that at <strong>the</strong> po<strong>in</strong>t of <strong>the</strong> envelope, <strong>the</strong> direction _ I)'<br />

of <strong>the</strong> velocity of contact po<strong>in</strong>t <strong>in</strong> its relative motion over<br />

surface 1::1, ~r(]) cannot differ from <strong>the</strong> tangent to <strong>the</strong> that yield<br />

envelope. This means that ~r(1) is equal to. zero <strong>in</strong> any direction<br />

that differs from <strong>the</strong> common tangent to.<strong>the</strong> contact l<strong>in</strong>e III = s<strong>in</strong>Abs<strong>in</strong>O Jl - s<strong>in</strong>AbcosO jl +COSAb lsI (10)<br />

and <strong>the</strong> envelope"<br />

Applica'lionsto tlle Involute Worm G'ea:rDrive<br />

The proposed approach is applied to <strong>the</strong> case of an <strong>in</strong>volute<br />

worm gear drive. The goal is to. determ<strong>in</strong>e <strong>the</strong> design,<br />

parameters with wtdch <strong>the</strong> appearance of <strong>the</strong> envelope of<br />

contact l<strong>in</strong>es on <strong>the</strong> worm surfaceE]. and <strong>the</strong> appearance of<br />

s<strong>in</strong>gular po<strong>in</strong>ts on 1::2 can be avoided. Worm tooth surface<br />

El is a screw <strong>in</strong>volute surface represented <strong>in</strong> coord<strong>in</strong>ate<br />

system 51 rigidly connected to <strong>the</strong> worm by <strong>the</strong> follow<strong>in</strong>g<br />

,equationsPJ<br />

Equation of Mesh<strong>in</strong>g for Worm Gear Surfaces. A hob that<br />

is identical to <strong>the</strong> worm generates <strong>the</strong> worm gear tooth surface.<br />

The mesh<strong>in</strong>g by cutt<strong>in</strong>g of <strong>the</strong> hob with <strong>the</strong> to-be<br />

generated worm gear simulates <strong>the</strong> mesh<strong>in</strong>g w:ith <strong>the</strong> worm<br />

gear <strong>in</strong> <strong>the</strong> drive. Coord<strong>in</strong>ate systems 51< 52' and S, are<br />

rigidly connected to <strong>the</strong> worm, <strong>the</strong> worm gear, and <strong>the</strong><br />

frame, respectively. (Fig. 3) The equation of mesh<strong>in</strong>g is<br />

represented as fol1ows:<br />

f"COsO<br />

+ uco~<strong>in</strong>8<br />

rt,S<strong>in</strong>O - ucos)q,cos8<br />

p8 -<br />

us~<br />

where u and ()ar-e<strong>the</strong> surface curvil<strong>in</strong>ear coord<strong>in</strong>ates, tb and<br />

}.q, are <strong>the</strong> base cyl<strong>in</strong>der radius and, <strong>the</strong> lead angle on this<br />

cyl<strong>in</strong>der. The screw parameter (p>O for a right-hand thread)<br />

is p = rbtaMb. Equation 9 works for both side surfaces if u is<br />

consideredas an algebraic value. The surface El unit normal<br />

is represented by <strong>the</strong> equations -<br />

(9)<br />

_ (p 1 - m21cosA _ E) COSAb<br />

m.21smy<br />

s<strong>in</strong> (8+cpl)<br />

where cpis <strong>the</strong> angle of rotation of <strong>the</strong> worm, l' is <strong>the</strong> twist<br />

angle of <strong>the</strong> worm gear axes (Fig..3), and mt2 = - is <strong>the</strong><br />

w m<br />

gear ratio. The worm gear tooth surface is represented by<br />

w(ZI<br />

(11)<br />

[r2] = [M211 [rl], f(u,O,¢1)=0 (12)<br />

<strong>November</strong>/<strong>December</strong> <strong>1990</strong> .33


where <strong>the</strong> 4x4 matrix [Mzll describes <strong>the</strong> coord<strong>in</strong>ate<br />

trans<strong>format</strong>ion <strong>in</strong> transition from 51 to S2'<br />

Envelope of Contact L<strong>in</strong>es on E 1 . The envelope of contact<br />

l<strong>in</strong>es onE l is determ<strong>in</strong>ed by <strong>the</strong> equations<br />

af<br />

.1'1 (u, 0), f(u,O,¢l) = 0, - = °<br />

a¢l<br />

(13)<br />

The envelope of contact l<strong>in</strong>es on <strong>the</strong> plane of parameters<br />

(u,O) is represented by <strong>the</strong> equations<br />

that yield<br />

af<br />

f(u,8'¢1) = 0, --- = °<br />

a¢l<br />

«()<br />

-A.) _ rb<br />

+<br />

+ E cot')' taMb<br />

cos· '1'1 - -------'----<br />

p<br />

1- m2lcos/,<br />

. - - E<br />

m21s<strong>in</strong>/,<br />

It is easy to verify that <strong>the</strong> envelope exists if I cos «() + cP1) I<br />

~ 1.The appearance of an envelope of contact l<strong>in</strong>es may be<br />

avoided by appropriately chosen design parameters. For a<br />

one-thread worm <strong>the</strong> parameter is <strong>the</strong> twist angle 'Y, and for<br />

an orthogonal ('Y = 90°) worm gear drive it is <strong>the</strong> number of<br />

threads, i.e., <strong>the</strong> lead angle Ab'Fig. 4. shows that <strong>the</strong> contact<br />

l<strong>in</strong>es on El do not have an envelope <strong>in</strong> <strong>the</strong> work<strong>in</strong>g space <strong>in</strong><br />

<strong>the</strong> case of a two-thread worm. with <strong>the</strong> lead angle<br />

Ab=21.68°, "(=90°. We emphasize that <strong>the</strong> pattern of contact<br />

l<strong>in</strong>es favors <strong>the</strong> conditions of lubrication and efficiency<br />

of <strong>the</strong> worm gear drive.<br />

S<strong>in</strong>gular Po<strong>in</strong>ts on Ez. The <strong>in</strong>vestigation of <strong>the</strong> s<strong>in</strong>gularity<br />

of E2 is based on application of Equations 3. Fig..5 shows<br />

<strong>the</strong> limit<strong>in</strong>g l<strong>in</strong>e L on <strong>the</strong> plane of parameters (u,8). The<br />

work<strong>in</strong>g space of <strong>the</strong> worm must be limited with L(u,8) to<br />

avoid <strong>the</strong> appearance of s<strong>in</strong>gular po<strong>in</strong>ts on E 2 •<br />

In <strong>the</strong> case of <strong>the</strong> worm gear drive, <strong>the</strong> envelope of contact<br />

l<strong>in</strong>es and <strong>the</strong> limit<strong>in</strong>g l<strong>in</strong>e usually do not appear<br />

simultaneously. However, <strong>in</strong> some particular cases <strong>the</strong>se<br />

two l<strong>in</strong>es may have a common po<strong>in</strong>t as shown <strong>in</strong> Fig, 6, The<br />

computationsand draw<strong>in</strong>gs correspond to <strong>the</strong> case of a<br />

three-threaded worm gear drive with <strong>the</strong> follow<strong>in</strong>g<br />

parameters:<br />

(14) Fig. 4<br />

! U<br />

Fig. 5<br />

m21 = ~, "{= ~,E = 150, rb = 40.29, hb = 16.59°<br />

25 2<br />

The common po<strong>in</strong>t of both l<strong>in</strong>es appears <strong>in</strong> <strong>the</strong> non-work<strong>in</strong>g<br />

space of <strong>the</strong> discussed example.<br />

Relations Between Concepts of L<strong>in</strong>e Contact Envelope,<br />

S<strong>in</strong>gularity of I:11 and<br />

Wildhaber's Concept of Limit Pressure Angle<br />

Wildhaber's concept of <strong>the</strong> limit pressure angle has been<br />

developed on <strong>the</strong> basis of scientific conditions of force<br />

transmission by gear tooth surfaces. (4.5,6) However,<br />

Wildhaber's equations may be and should be <strong>in</strong>terpreted<br />

geometrically ,and this can be done on <strong>the</strong> basis of <strong>the</strong> concept<br />

of <strong>the</strong> envelope of contact l<strong>in</strong>es and <strong>the</strong> concept of<br />

34 Gear Technology<br />

Fig. 6<br />

Envelope<br />

L<br />

e


s<strong>in</strong>gularity of generated surface E 2 • Consider <strong>the</strong> equation<br />

of mesh<strong>in</strong>g that is represented by<br />

.B' yll2l= B' (J,t}(12) X r.- .8 X ~(21) - 0 (15)<br />

The equation of meshcr.g is observed <strong>in</strong> <strong>the</strong> neighborhood<br />

of <strong>the</strong> contact po<strong>in</strong>t, and, <strong>the</strong>refore, we have<br />

(16)<br />

Let us differentiate Equat ion IS,assum<strong>in</strong>g first that 1:r (2) =0<br />

and s<strong>in</strong>gular po<strong>in</strong>ts onE], appear, and <strong>the</strong>n 1:.(1)=0, and an.<br />

envelope of contact l<strong>in</strong>es exists. We assume by differentiation<br />

that vectors .8, ~(l), JIP 1 , and !e ml = 5!}(Il- 5!}11,1are<br />

constant. Generally, <strong>the</strong> differentiation of Equation 15 yields<br />

<strong>the</strong> follow<strong>in</strong>g equation:<br />

Referenoes:<br />

1. LITVIN, F.L. Theory of Gear<strong>in</strong>g. 2nd Edition, Nauka,<br />

Moscow. 1968. (<strong>in</strong> Russian). The English version is published<br />

by NASA, References Publica.tio.1I 1212, AVSCOM<br />

Technical Reporl88-C-035.<br />

2. LITVIN. r.t.. RAHMAN.. P .. GOLDRICK R.N.<br />

"Ma<strong>the</strong>matical Models for I<strong>the</strong>Syn<strong>the</strong>sis and Optimization of<br />

Spiral Bevel Gear Tooth Surfaces", NASA Contractor Report<br />

3553,1982 ..<br />

3,. LITVIN, F.L "An Analysis of Undercut Conditions and of A~<br />

pearance of Contact L<strong>in</strong>es. Envelope Conditions o'f Cears",<br />

ASME Transactions, Journal of Mechanical Design. July,<br />

1978, pp, 423-432.<br />

4. WILDHABER, ERNEST, NBasic rtela.tio.llship of Hypoid<br />

Gears", America'n Macll<strong>in</strong>ist. Vol. 90. No.4. February 14,<br />

1946.<br />

5. VVlLDHABER, ERNEST. "Bask Relationship of Hypoid Gears<br />

-jr. American Mach<strong>in</strong>ist. Vol. 90, NO'.5, F-ebruary.28, 1946.<br />

6. VVlLDHA.BER, ERNEST. "Basic Relationship of Hypoid Gears<br />

- IV", American Mach<strong>in</strong>ist, VoL 90, No.6, March14,1946.<br />

( n (i) + n (i»), •. v(12) + EO). ( ,.,(12' X ( V (i) + v (;»)1 = 0<br />

_r _ tr _ ;c _f _Ir<br />

Here:<br />

n (j) = (.,(0 X EO) v (2 ) = v C1I- V. (21 and<br />

_tr "iC' - , _ -..b" ....... tr'<br />

T,HE<br />

'GEAR D'EB,UR'R',IN"G<br />

S,Y,ST,EM<br />

----~--<br />

is <strong>the</strong> common contact normal. Consider<strong>in</strong>g <strong>the</strong> particular<br />

cases where :t.P·)=O and s<strong>in</strong>gular po<strong>in</strong>ts on 1:2 appear;<br />

J!.r(II=0,.and an envelope of contact l<strong>in</strong>es exists, we receive<br />

from Equation 17 that<br />

In addition,we have to, c~nsider that <strong>the</strong> contact po<strong>in</strong>t<br />

satisfies <strong>the</strong> equation 'of mesh<strong>in</strong>g (15). Equations 18 and 15,<br />

H 5au:.u ",,·_ced·1 _,p_ r 0 vid __e lilt: .";- eonditi _ .ons w. ." h en 'r' ""'2.'if.-- ~'!4:> s<strong>in</strong>gul _ _ arities .. __<br />

or <strong>the</strong> envelope of contact l<strong>in</strong>es on 1:1 exists, or both<br />

s<strong>in</strong>gularities on E2 and <strong>the</strong> envelope on E] exist<br />

simultaneously ..The disadvantage of application of Equation<br />

18 is that it is impossible to recognizewtuch of <strong>the</strong> three above<br />

mentioned eases tis observed. The direction of <strong>the</strong> contact normal<br />

.n depends on two design parameters - '<strong>the</strong> helix angle<br />

on <strong>the</strong> worm. and <strong>the</strong> pressure angle. The application of Equations<br />

18 and 15 may provide <strong>in</strong><strong>format</strong>ion about <strong>the</strong> limit<br />

pressure angle if <strong>the</strong> helix angle is considered as given.<br />

Conclusion<br />

Methods for detenn<strong>in</strong>ation of an.envelope of contact l<strong>in</strong>es<br />

on <strong>the</strong> generat<strong>in</strong>g surtfaceand si.nguI...ar po<strong>in</strong>ts on I<strong>the</strong>generated<br />

surface have been developed and appli.ed to <strong>the</strong> case of<strong>in</strong>volute<br />

worm ..gear drives. A bridge between <strong>the</strong> developed<br />

<strong>the</strong>ory and Wil:dhaber's concept of <strong>the</strong> limit ,contact nonnal<br />

has been. established.<br />

Admowled,geme..nt: Repr<strong>in</strong>ted' wiln permissfol1of <strong>the</strong> Americl<strong>in</strong> Gear<br />

Mlmuf4idureT5 Association. The op<strong>in</strong>ions. statements. and condusions<br />

pres.eflted <strong>in</strong> this pllper are those of <strong>the</strong> Aulhor and <strong>in</strong> no way represent<br />

rite position or op<strong>in</strong>ion of <strong>the</strong> AMERICAN GEAR MAMUFA CTURERS<br />

A.S50ClA.TION.<br />

The James Eng<strong>in</strong>eer<strong>in</strong>g Systems approach.<br />

through modular components, can build upon<br />

<strong>the</strong> standard unit Ipicturedl' to create a custom<br />

t3ilored paCkageto meet each customer's needs<br />

with speed. flexibility and predston never before<br />

available. Optional packages <strong>in</strong>olude:<br />

• CNC Controls<br />

• Auto Load/Unload<br />

• Dust Collector<br />

'. Up to<br />

4 Operations<br />

per Cycle<br />

JAMES ENGIIN,EERING<br />

11707 McBean !Dllve. EI Monte. Califomia<br />

8~8 44.2-,2898 .' FAX 818 442.03:74<br />

CIRCLE A-UJ ON IREADER' IREPlY CARD<br />

<strong>November</strong>IOecemberl990 35,


cs<br />

Yogi Sharma,<br />

Philadelphia Gear Corporation<br />

K<strong>in</strong>g of Prussia, PA<br />

Introduction<br />

Some years back, most spiral bevel<br />

gear sets were produced as cut, case<br />

hardened, and lapped. The case harden<strong>in</strong>g<br />

process most frequently used was<br />

and is case carburiz<strong>in</strong>g, Many large<br />

gears were flame hardened, nitrided, or<br />

through hardened (hardness around 300<br />

BHN) us<strong>in</strong>g medium carbon alloy<br />

steels, such as 4140, to avoid higher<br />

distortions related to <strong>the</strong> carhuriz<strong>in</strong>g<br />

and harden<strong>in</strong>g process.<br />

The use of a quench press can control,<br />

but not elim<strong>in</strong>ate distortions .. A<br />

lapp<strong>in</strong>g operation cannot remove runout,<br />

pitch error, profile error, and o<strong>the</strong>r<br />

errors caused by heat treatment distortions.<br />

It can only improve active<br />

tooth profile f<strong>in</strong>ish and tooth contact<br />

location, provided that gears did not<br />

have excessive errors dur<strong>in</strong>g soft cutt<strong>in</strong>g<br />

or high distortions <strong>in</strong> heat treatment.<br />

As a matter of fact, overlapp<strong>in</strong>g sometimes<br />

does more harm than good on a<br />

bevel set,<br />

Bevel tooth gr<strong>in</strong>d<strong>in</strong>g was very limited<br />

due to cost and size.<br />

Advancement <strong>in</strong> bevel generators,<br />

carbide technology, and many o<strong>the</strong>r<br />

factors allowed <strong>in</strong>troduction of hard<br />

36 Gear Tecnnology<br />

cutt<strong>in</strong>g <strong>in</strong> bevel gears. Initially, <strong>the</strong> process<br />

was limited to special requirements<br />

because oflowcarbide tool life, <strong>the</strong> need<br />

for frequent sharpen<strong>in</strong>g, and limited experience.<br />

But <strong>the</strong> picture changed dramatically<br />

after some time. The experience<br />

ga<strong>in</strong>ed and <strong>the</strong> development of<br />

<strong>the</strong> CBN (Cubic Boron Nitride) tool<br />

made bevel gear hard cutt<strong>in</strong>g very efiective<br />

from cost and quality viewpo<strong>in</strong>ts.<br />

As with any PIlOCe5S, hard cutt<strong>in</strong>g has<br />

its limitations and problems. A properly<br />

controlled process, start<strong>in</strong>g from <strong>the</strong><br />

design concept, good bevel generators,<br />

hard cutt<strong>in</strong>g tools, <strong>in</strong>clud<strong>in</strong>g sharpen<strong>in</strong>g<br />

fixtures, special mach<strong>in</strong>es, and tra<strong>in</strong>ed<br />

work force, are a must for successful<br />

bevel hard cutt<strong>in</strong>g.<br />

This article describes <strong>the</strong> process and<br />

steps required for spiral bevel hard cutt<strong>in</strong>g<br />

on small batches or <strong>in</strong> a jobb<strong>in</strong>g<br />

atmosphere.<br />

Process Description<br />

Bevel hard cutt<strong>in</strong>g can be def<strong>in</strong>ed as<br />

an operation <strong>in</strong> which gear teeth flanks<br />

are f<strong>in</strong>ished by remov<strong>in</strong>g <strong>the</strong> stock<br />

allowance left dur<strong>in</strong>g <strong>the</strong> soft or rough<br />

teeth cutt<strong>in</strong>g. The process is similar to<br />

gear gr<strong>in</strong>d<strong>in</strong>g, with almost all <strong>the</strong> operations<br />

rema<strong>in</strong><strong>in</strong>g <strong>the</strong> same, with <strong>the</strong> exception<br />

of tooth gr<strong>in</strong>d<strong>in</strong>g, which is replaced<br />

by hard cutt<strong>in</strong>g.<br />

A simplified manufactur<strong>in</strong>g process<br />

sheet for a hard cut bevel gear will conta<strong>in</strong><br />

<strong>the</strong> follow<strong>in</strong>g:<br />

• Complete mach<strong>in</strong><strong>in</strong>g of gear blanks<br />

for teeth cutt<strong>in</strong>g - <strong>in</strong>clud<strong>in</strong>g various<br />

operations, such as turn<strong>in</strong>g, mill<strong>in</strong>g,<br />

drill<strong>in</strong>g and tapp<strong>in</strong>g, etc.<br />

• Bevel teeth cutt<strong>in</strong>g - consist<strong>in</strong>g of<br />

teeth cutt<strong>in</strong>g, test<strong>in</strong>g, and any tooth<br />

contact development with master or<br />

mate, teeth deburr<strong>in</strong>g, etc.<br />

• Heat treatment- mostly case carburiz<strong>in</strong>g<br />

and harden<strong>in</strong>g (nitrid<strong>in</strong>g,<br />

flame harden<strong>in</strong>g, and <strong>in</strong>duction<br />

harden<strong>in</strong>g are rarely used for hard cut<br />

bevel gears).<br />

• F<strong>in</strong>ish mach<strong>in</strong><strong>in</strong>g - all mach<strong>in</strong><strong>in</strong>g<br />

operations required before teeth hard<br />

cutt<strong>in</strong>g, such as turn<strong>in</strong>g O.D.ll.o..<br />

gr<strong>in</strong>d<strong>in</strong>g, special mach<strong>in</strong><strong>in</strong>g, etc.<br />

• Hard cutt<strong>in</strong>g - bevel gear arrives at<br />

hard cutt<strong>in</strong>g with most or all operations<br />

done. It is important that <strong>the</strong><br />

mat<strong>in</strong>g part or master is available for<br />

test<strong>in</strong>g purposes. Normally, <strong>the</strong> gear<br />

(member with higher number of


teeth) is f<strong>in</strong>ished first and p<strong>in</strong>ion teeth<br />

are modified to get correct tooth contact<br />

along profile and length of tooth.<br />

The modification for length of contact<br />

is nonnally made by change of radius<br />

of curvature of <strong>the</strong> cutt<strong>in</strong>g blades. The<br />

location of tooth contact along <strong>the</strong><br />

length is usually controlled by<br />

mach<strong>in</strong>e sett<strong>in</strong>gs. The profile correction<br />

or modification can be made by<br />

different means depend<strong>in</strong>g on <strong>the</strong><br />

type ·ofmach<strong>in</strong>e or system used to cut<br />

bevel gears, size of gears, and pitch.<br />

On f<strong>in</strong>e pitch gears, high pitch l<strong>in</strong>e<br />

hear<strong>in</strong>g can be obta<strong>in</strong>ed by us<strong>in</strong>g cutter<br />

blades wi th modified profiles ..On<br />

coarse pitch gears, profile modifieation<br />

'can be made us<strong>in</strong>g taper shims.<br />

Once <strong>the</strong> tooth contact requirements<br />

are met, <strong>the</strong> gear teeth are f<strong>in</strong>ally<br />

checked for spac<strong>in</strong>g and mounted on<br />

a gear checker.<br />

• F<strong>in</strong>al <strong>in</strong>spection - <strong>in</strong>cludes dimensional<br />

checks, magnaflux, and a-"y<br />

o<strong>the</strong>r specialrequirements.<br />

Ad.v.antages ,ofHard. Cutt<strong>in</strong>g<br />

• Higher power transmission by<br />

spiral bevel gears, as both members are<br />

case carburized and hardened and<br />

f<strong>in</strong>ished by hard cutt<strong>in</strong>g.<br />

• Higher and predictable quality<br />

levels <strong>in</strong> gear teeth.<br />

• A surface f<strong>in</strong>ish of 16 Rl\1S or<br />

better.<br />

'. Lower noise level lower <strong>in</strong>ternal<br />

dynamic forces due to higher geometric<br />

accuracy, and better load distribution.<br />

A hard cut bevel set signifkantly<br />

reduces <strong>the</strong> gear box vibration problem<br />

caused by higher <strong>in</strong>temal dynamic<br />

forces due to poor quality gear teeth,<br />

which can cause premature gear box<br />

failure,<br />

On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong> gear gr<strong>in</strong>d<strong>in</strong>g<br />

operation is always very sensitive to<br />

many factors, such as rate of material.<br />

removal, gr<strong>in</strong>d<strong>in</strong>g wheel, coolant, 'etc.<br />

Any compromise or loose control can<br />

cause surface t.emper<strong>in</strong>gor cracks or<br />

both ..Surface temper<strong>in</strong>gor cracks are<br />

practically unknown problems <strong>in</strong> hard<br />

cutt<strong>in</strong>g .<br />

•' Hard cutt<strong>in</strong>g is performed on <strong>the</strong><br />

same 'type of mach<strong>in</strong>es as soft-cutt<strong>in</strong>g,<br />

mak<strong>in</strong>g <strong>the</strong> process much more<br />

economical ..Of course, special tool<strong>in</strong>g<br />

is required.<br />

• The same person or group ofpersons<br />

are <strong>in</strong>volved <strong>in</strong> soft and hard cutt:<strong>in</strong>g.<br />

It has been found that control <strong>in</strong><br />

rough<strong>in</strong>g operation (soft cutt<strong>in</strong>g <strong>in</strong>bevel<br />

gears) is quite important fora successful<br />

f<strong>in</strong>ish<strong>in</strong>g operation. Proper stock allowance,<br />

tooth depth, tooth contactretc.<br />

are necessary for bevel hard cutt<strong>in</strong>g.<br />

Too much stock. allowance can cause<br />

loss of case depth and longer cutt<strong>in</strong>g<br />

times, while too Iittle stock allowance<br />

also can cause a variety of problems.<br />

Hard cutt<strong>in</strong>g time cycles can be reduced<br />

by mak<strong>in</strong>g some adiustrnents at soft<br />

cutt<strong>in</strong>g for heat treatment distortions,<br />

and it can be done very simply, as both<br />

operations are performed by <strong>the</strong> same<br />

person or group of persons.<br />

• Consistency <strong>in</strong> bevel hard cutt<strong>in</strong>g<br />

can elim<strong>in</strong>ate <strong>the</strong> need for matched<br />

bevel sets by careful. plann<strong>in</strong>g. Some of<br />

<strong>the</strong> requirements for elim<strong>in</strong>ation of<br />

matched sets are as follows:<br />

- Manufactur<strong>in</strong>g and stor<strong>in</strong>g of case<br />

hardened and hard cut master gearand<br />

p<strong>in</strong>ion for check<strong>in</strong>g <strong>the</strong> gears and p<strong>in</strong>ions<br />

<strong>in</strong> all future setups.<br />

- Optimization of design and cutt<strong>in</strong>g<br />

data so that it does not have to change<br />

for <strong>the</strong> period unmatched sets are<br />

required.<br />

- Tighter control of critical dimensions<br />

on gear Ip<strong>in</strong>ion blanks. Hard cut<br />

unmatched sets are not only useful. <strong>in</strong><br />

assemblies, but <strong>the</strong>y can elim<strong>in</strong>ate<br />

many production problems, as each<br />

member can be processed <strong>in</strong>dependent<br />

of o<strong>the</strong>rs. The unmatched set approach<br />

must be used very selectively, as it needs<br />

careful plann<strong>in</strong>g, customized fixtures,<br />

optimized design, cutt<strong>in</strong>g summaries,<br />

and long term commitment. The unmatched<br />

set approach comb<strong>in</strong>ed with<br />

standardized bevel sets can cut down<br />

delivery times and cost very effectively<br />

<strong>in</strong> spiral bevel gear boxes,<br />

Preparation<br />

Follow<strong>in</strong>g are some items which<br />

should be considered <strong>in</strong> detail for successful<br />

and economical bevel hard<br />

cutt<strong>in</strong>g.<br />

Practical Tooth Design. A balanced<br />

tooth geometry is a must fora good<br />

hard cut set. All new tooth geometry<br />

must be reviewed carefully from a<br />

manufactur<strong>in</strong>g po<strong>in</strong>t of view. In a jobb<strong>in</strong>g<br />

or low batch environment, <strong>the</strong> new<br />

tooth geometry should try to use exist<strong>in</strong>g<br />

tools, as new tool requirements<br />

can cause cost and delivery problems.<br />

Even <strong>in</strong> high batch production where<br />

tools can be designed around gears,<br />

poor tooth geometry can cause multiple<br />

problems, such as low too] life, smaller<br />

fillet radius, etc.<br />

Gear Blank Design. Fig. 1 to Fig. 4<br />

show a bored p<strong>in</strong>ion, a stem spiral bevel<br />

p<strong>in</strong>ion, iii solid gear, and a r<strong>in</strong>g type<br />

gear. As shown <strong>in</strong> F.ig. 2, <strong>the</strong> bevel p<strong>in</strong>ion<br />

can be <strong>in</strong>dicated <strong>in</strong> both planes by<br />

means of an extra extension <strong>in</strong> front of<br />

<strong>the</strong> teeth. Both gears show prool bands<br />

for <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> gear blank at hard cutt<strong>in</strong>g.<br />

Special attention must be paid <strong>in</strong><br />

blank design so that revalidated proof<br />

surfaces at f<strong>in</strong>al mach<strong>in</strong><strong>in</strong>g can be used<br />

for <strong>in</strong>dication purposes at hard cutt<strong>in</strong>g.<br />

In high batch production, blanks, tru<strong>in</strong>g,<br />

and use of proof surfaces are not requiredbecause<br />

of special customized<br />

fixtures. Still, it is good practice to create<br />

proof bands at f<strong>in</strong>al machi,n<strong>in</strong>g for <strong>in</strong>spection<br />

or assembly purposes. In <strong>the</strong><br />

AUfHOR:<br />

YOCI SHARMA is employed <strong>in</strong> gear<br />

manufactur<strong>in</strong>g .and design at Philadelphia<br />

Getlr Corp. He holds an M.S. degr:ee ,<strong>in</strong><br />

mechanical eng<strong>in</strong>eer<strong>in</strong>g from ViIlanova<br />

University and one <strong>in</strong> jndustrial.eng<strong>in</strong>eer<strong>in</strong>g<br />

from Perm State. Mr. 5hatmais a .licensed<br />

mechanical eng<strong>in</strong>eer .<strong>in</strong> tne state .of PennsyivaniJ:!<br />

and' a-senior member of SME.<br />

<strong>November</strong>/<strong>December</strong> <strong>1990</strong> 37


-<br />

Fig. 2<br />

38 'GeoT Technology


, r CC 1. H<br />

z<br />

=;<br />

M<br />

~ i<br />

~~ E;:<br />

:a<br />

R~ i<br />

:~ ~<br />

311 511<br />

UA'I( 015 ... 1.DUA..:f 1)0 _00:<br />

.1:1 I[ lDIJi'O t&l""J[Ji! ~IB!ING<br />

"'liD IiJ"DI( HAQ!!tJiHII«.<br />

Fig. J<br />

------ - - --- -<br />

- ---- -<br />

.. '<br />

:F!g.4<br />

<strong>November</strong>/<strong>December</strong> 1,990 39'


case of a bored p<strong>in</strong>ion/gear, <strong>the</strong><br />

subassembly with shaft should be done<br />

wherever possible to avoid concentricity<br />

and squareness problems (Fig. 5).<br />

Fig. 6 shows <strong>the</strong> subassembly of a r<strong>in</strong>g<br />

gear and spider. In p<strong>in</strong>ions, <strong>the</strong> onepiece<br />

design does offer some manufactur<strong>in</strong>g<br />

advantages over <strong>the</strong> two-piece<br />

design. Also, small to medium size gears<br />

should be <strong>in</strong>vestigated for one-piece<br />

design, as <strong>the</strong>re are some manufactur<strong>in</strong>g<br />

advantages <strong>in</strong> <strong>the</strong> one-piece<br />

configuration.<br />

Previously, gears were mostly designed<br />

as bored r<strong>in</strong>gs so that <strong>the</strong>y could<br />

be die quenched, but hard cutt<strong>in</strong>g has<br />

changed <strong>the</strong> picture somewhat. Distortions<br />

<strong>in</strong> free quench<strong>in</strong>g of small to<br />

medium size solid gears can. be kept low<br />

with proper control. Hard cutt<strong>in</strong>g will<br />

remove <strong>the</strong> distortion from teeth. Caution<br />

must be used for any switch ove.r<br />

from two-piece design to one-piece.<br />

There are many factors which affect<br />

distortions <strong>in</strong> heat treatment, such as<br />

material blank configuration, rixtur<strong>in</strong>g<br />

<strong>in</strong> heat treatment, etc. Vl/herever possible,<br />

some experimental pieces should be<br />

manufactured to evaluate <strong>the</strong> situation<br />

before mak<strong>in</strong>g <strong>the</strong> f<strong>in</strong>al decision, as excessive<br />

distortion is highly undesirable<br />

and can cause various problems at hard<br />

cutt<strong>in</strong>g.<br />

40 Gear lechnoloov<br />

Soft and Hard Cutt<strong>in</strong>g Summaries. A<br />

tooth cutt<strong>in</strong>g summary for a beveJ<br />

generator provides mach<strong>in</strong>e set up data,<br />

cutter data, tooth measurements, and<br />

o<strong>the</strong>r tooth geometry <strong>in</strong><strong>format</strong>ion<br />

related to a specific spiral bevel set.<br />

Bevel hard cutt<strong>in</strong>g blades are very sensitive<br />

to proper feed and speed. Selection<br />

of correct amount of crown<strong>in</strong>g<br />

stock allowance affects <strong>the</strong> overall<br />

qual.ity and cutt<strong>in</strong>g times. Normally, <strong>in</strong><br />

high batch production, a sample set or<br />

dummy set is always useful to f<strong>in</strong>e tune<br />

<strong>the</strong> summary ..In a jobb<strong>in</strong>g or low batch<br />

atmosphere, a dummy set or experimental<br />

set mayor may not be possible<br />

for various reasons; <strong>the</strong>refore, a jobb<strong>in</strong>g<br />

atmosphere requires <strong>in</strong>itial selection of<br />

all variables affect<strong>in</strong>g tooth contact.<br />

The length and location of tooth contact<br />

should be based on factors, such as<br />

assembly conditions (overhung or<br />

straddle mounted members), tooth stiffeners,<br />

and load<strong>in</strong>g, application,and<br />

past experience. Wherever possible, f<strong>in</strong>e<br />

tun<strong>in</strong>g of tooth contact can be achieved<br />

through load test<strong>in</strong>g of bevel gears.<br />

Heat Treatment Process ControL Excessive<br />

heattreatment distortions are<br />

highly undesirable for hard cutt<strong>in</strong>g of<br />

bevel gears for a variety of reasons, such<br />

as loss of case thickness, longer cutt<strong>in</strong>g<br />

times, tooth thickness problems, and<br />

mount<strong>in</strong>g distance problems. R<strong>in</strong>g<br />

gears must be die quenched' utiliz<strong>in</strong>g<br />

proper quench<strong>in</strong>g dies. Fig. 7 shows a.<br />

quench press. A pre-quench and temper<br />

operation of rough-turned blanks for<br />

large gears and p<strong>in</strong>ions can assist <strong>in</strong><br />

stabiliz<strong>in</strong>g <strong>the</strong> pieces dur<strong>in</strong>g heat treatment.<br />

In <strong>the</strong> jobb<strong>in</strong>g atmosphere, gears<br />

and p<strong>in</strong>ions should be checked. for<br />

distortion belore releas<strong>in</strong>g for f<strong>in</strong>al<br />

mach<strong>in</strong><strong>in</strong>g.<br />

F<strong>in</strong>ish Mach<strong>in</strong><strong>in</strong>g Operation. The<br />

f<strong>in</strong>ish mach<strong>in</strong><strong>in</strong>g of gears and p<strong>in</strong>ions<br />

for hard cut bevel. gears is very im.portant.<br />

The runout and squal'eness and ali<br />

o<strong>the</strong>r geometric tolerances of beari:ng<br />

diameters, proof diameters, etc. must be<br />

kept to less than 40 % of <strong>the</strong> values<br />

allowed on <strong>the</strong> gear teeth. Any loose<br />

control <strong>in</strong> f<strong>in</strong>ish mach<strong>in</strong><strong>in</strong>g operations<br />

can add to distortion, lead<strong>in</strong>g 'to longer<br />

cutt<strong>in</strong>g cycles and various problems. It<br />

is vita] that proof surfaces <strong>in</strong> both p1anes<br />

are <strong>in</strong>dicated with<strong>in</strong> specified values<br />

before proceed<strong>in</strong>gwi.th f<strong>in</strong>al mach<strong>in</strong><strong>in</strong>g.<br />

The big difference <strong>in</strong> <strong>the</strong> f<strong>in</strong>a1 mach<strong>in</strong><strong>in</strong>g<br />

of a lapped and a hard cut gear is<br />

that, <strong>in</strong> <strong>the</strong> event of a lapped set, <strong>the</strong><br />

back face or mount<strong>in</strong>g face is usually<br />

left as it is, while <strong>in</strong> hard cutt<strong>in</strong>g, it is<br />

ground or turned square to bore. In addition,<br />

it is critical 'that som extra<br />

material is left <strong>in</strong> <strong>the</strong> back of a hard cut


.fbI' Y01ur tougllestg ~.._~rcutt.--ng Jobs,<br />

,tile lIardest ,ste,el JS<br />

,<strong>the</strong> easl ~'. -t clJQ -'ce<br />

• I•• CPMREX<br />

' 76<br />

For hobs, shaper cutters and o<strong>the</strong>r gear cutt<strong>in</strong>g<br />

tools. that are more than a cut above <strong>the</strong> rest, specify<br />

Grucible CPM REX~ 76. With 33% total alloy content<br />

and an atta<strong>in</strong>able hardness ot HiRC 68-70, this<br />

hliglh speed steel provides. <strong>the</strong> highest available<br />

co-mb<strong>in</strong>ation of red hard<strong>in</strong>ess, wear resistance and<br />

toughness, ei<strong>the</strong>r coated or uncoated,<br />

A 9ig- Three US. auto maker mcenUy realized a<br />

300% -improvement <strong>in</strong> gear cutt<strong>in</strong>g tooll life by<br />

switch<strong>in</strong>gl from 1M3 HSS to CPM REX 716. With<br />

gr,ealer too~lllifeand excellent gr<strong>in</strong>dability, CPM REX<br />

76 means less downtime because resharpen<strong>in</strong>g is<br />

easier and less frequent -<br />

CPM REX 76 is just one of 10 high speer! steels<br />

produced by <strong>the</strong> Crucible Particle Metallurgy process.<br />

With <strong>the</strong> <strong>in</strong>dustry's widest material selection,<br />

Crucible can meet your specific needs at any productivity<br />

level. You can selectively upgrad:e to <strong>the</strong><br />

best CPM material for <strong>the</strong> right eppllcaton.<br />

On your next order, specify a high speed steel<br />

that's hard to beat ... CPM REX. 76 or ano<strong>the</strong>r rnember<br />

of <strong>the</strong> CPM REX family. To learn mare, contact<br />

your nearest Grucible service center or call to'll free:<br />

11..800~PAR;"XC;EL<br />

(1~800-7.27-9235)<br />

_____ 11<br />

Ill/iii?!<br />

A Division of Crucible Matenals Corporation<br />

CiReLli A-19 ON REAIDERIREPlY CARD


fig. 7<br />

Bg.B<br />

J<br />

I<br />

J<br />

I,<br />

I<br />

J,<br />

,..__<br />

I<br />

I,<br />

rl NI SHED PROf ILE<br />

BY HAROCUTT I NGBLAOC<br />

Fig. 9<br />

42 Gearlechnology<br />

I<br />

__ -- StTTCUT<br />

~C!i_<br />

DIAMETER<br />

R[]lJT rlLLH<br />

IlARDCUT<br />

TOOTH<br />

TIP<br />

DEEPER RDOT PRODUCE D .BY<br />

HIOlli.t BL~DE<br />

'[xPAIIDIr«;<br />

DIE<br />

Z tLAHP ING :DI[<br />

L_<br />

CONE<br />

BASIC<br />

I'IiESSUR£ ,ANGLE<br />

,",<br />

gear at blank turn<strong>in</strong>g, which will <strong>the</strong>n<br />

be removed at f<strong>in</strong>al mach<strong>in</strong><strong>in</strong>g .. This<br />

will reduce <strong>the</strong> variations <strong>in</strong> mount<strong>in</strong>g<br />

distances .. In multiple pieces, consistency<br />

of <strong>the</strong> crown to back dimension is<br />

important for hard cutt<strong>in</strong>g cycles,<br />

Variation will cause adjustments for<br />

every piece on '<strong>the</strong> mach<strong>in</strong>e, result<strong>in</strong>g <strong>in</strong><br />

longer cutt<strong>in</strong>g cycles. Proper proof<br />

bands and surfaces must be created at<br />

f<strong>in</strong>al mach<strong>in</strong><strong>in</strong>g, with concern given to<br />

<strong>the</strong>ir location as well, so that <strong>the</strong>y can be<br />

easitly used for <strong>in</strong>dication purposes at<br />

hard cutt<strong>in</strong>g ..<br />

Soft Cutt<strong>in</strong>g Blades. Fig. 8 depicts a<br />

blade with protuberance.Where ever<br />

possible, protuberance blades should be<br />

used ..They will cut down hard cutt<strong>in</strong>g<br />

time, extend too] life, and reduce <strong>the</strong><br />

possibility of steps <strong>in</strong> fillet. The use of<br />

customized protuberance blades is no<br />

problem <strong>in</strong> high batch production, but<br />

<strong>in</strong>jobb<strong>in</strong>g or low batch production <strong>the</strong><br />

picture is quite opposite. Amount and<br />

height of protuberance selection becomes<br />

difficult as blades are stretched to<br />

cover maximum range. Blades can still<br />

be obta<strong>in</strong>ed with protuberance selected<br />

very carefully, which 'Will help hard cutt<strong>in</strong>g.<br />

Sett<strong>in</strong>g middle blades slightly<br />

deeper than side blades also helps <strong>in</strong><br />

hard cutt<strong>in</strong>g and is a common practice<br />

<strong>in</strong> bevel cutt<strong>in</strong>g. Fig. 9 shows a fillet<br />

created witha deeper middle blade. Fig.<br />

10 shows a blade for soft cutt<strong>in</strong>g.<br />

Hard Cutt<strong>in</strong>g Blades. Bevel hard cutt<strong>in</strong>g<br />

began with <strong>the</strong> use of carbide<br />

<strong>in</strong>serts. Carbide <strong>in</strong>serts are damped to<br />

steel bodies for coarse pitches and<br />

brazed for medium to f<strong>in</strong>e pitch gears.<br />

In <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g, low tool life with carbide<br />

<strong>in</strong>serts, frequent tool sharpen<strong>in</strong>g,<br />

<strong>in</strong>sufficient experience, high cost. and<br />

many o<strong>the</strong>r Factorskept hard cutt<strong>in</strong>g's<br />

use quite low. As hard cut bevel gears<br />

reached <strong>in</strong>to <strong>the</strong> field, <strong>the</strong>ir performance<br />

<strong>in</strong> all aspects was <strong>the</strong> s<strong>in</strong>gle most reason<br />

to <strong>in</strong>crease <strong>the</strong> use ofbevell hard cutt<strong>in</strong>g.<br />

In <strong>the</strong> meantime, CBN <strong>in</strong>serts were<br />

<strong>in</strong>troduced for hard cutt<strong>in</strong>g, The BZN<br />

(BZN is a trade mark of General Electric<br />

Company) compact blank isa comb<strong>in</strong>ation<br />

of a layer of Borozon CBN (Cubic


'Gear Tooll S;peela:lIsls<br />

3601 WEST T'OUHY AVENUE<br />

UNC'OLNWOOD" 11'lILlNOIS 60645<br />

1'08-6,75-2100<br />

1-·800k628-2220 In IlL '·8'00'-628·2221<br />

GEAR TRAINING PROGRAM<br />

1. BASIC FUNDAMENTALS<br />

1. a..r HImIry<br />

A. Cyefotdal Teeth<br />

B. Involute Teeth<br />

C. Gear Cutt<strong>in</strong>g Mach<strong>in</strong>es<br />

D. Gear Cutt<strong>in</strong>g Tools<br />

2. a..rTypee<br />

A. Par811e1Axis<br />

B. Intersect<strong>in</strong>g Axis<br />

C. Skew Axis<br />

3. OHr Aattoa<br />

4. Involut. Gear o.om.try<br />

A. Nomenclatura<br />

B. Involutomelry - Contract Ratio, etc,<br />

C. Helical Gearw - Lead - Helical Overlap<br />

5. Gear Tooth Bysteme<br />

A. Full Depth<br />

B. Full Allet<br />

C. Stub Depth<br />

I. a.n.r.I Formu_<br />

7. M8<strong>the</strong>m8tIca - (I.T.W. Trig Book)<br />

2. HI SPEED STEELS<br />

A. Common Types<br />

B. Special Types<br />

C. Heat Treatment<br />

D. Controls<br />

- M8IaIlurgy<br />

E. Sur1lK:e Treatments<br />

F. Special C_<br />

3. CUTTING THE GEAR<br />

1. FonnIng<br />

A. Mill<strong>in</strong>g<br />

B. Broach<strong>in</strong>g<br />

C. Shear Cutt<strong>in</strong>g<br />

2. o....,.ung<br />

A.She<br />

~lCircu'!'~ype<br />

c) Mach<strong>in</strong>e Types and Manufacturers<br />

d) Schematic - Pr<strong>in</strong>ciples<br />

a) Speeds - Feeds<br />

II Mach<strong>in</strong>e Cutt<strong>in</strong>g Conditions<br />

B. Hobb<strong>in</strong>g<br />

a! The Mobb<strong>in</strong>g Mach<strong>in</strong>a<br />

b Types and Manufacturers<br />

c Schematic - Differential and<br />

Non-Differential<br />

dl Sl*KIs - Feeds<br />

a Climb CuI - Conventional CUi<br />

II Shift<strong>in</strong>g - Types<br />

3. The Hob ... Cutt<strong>in</strong>g Tool<br />

A. How It Cuts<br />

B. Tolerances and Classes<br />

C. Multiple Threads<br />

D. Hob Sharpen<strong>in</strong>g and Control<br />

E. The Effect of Hob and Mount<strong>in</strong>g Errors<br />

on lhe Gear<br />

4. The Shaper CUtt..... a Cutt<strong>in</strong>g Tool<br />

A. Know Your Shape! Cutters<br />

B. Design Llmltallons<br />

C. Sharpen<strong>in</strong>g<br />

D. The Effect of Cutter Mount<strong>in</strong>g and<br />

Errors on <strong>the</strong> Gear<br />

E. Manufactur<strong>in</strong>g Methods<br />

5. Tool Tolet'ance Va. GHr Toter.nc:e<br />

A. Mach<strong>in</strong><strong>in</strong>g Tolerances<br />

B. Gear Blank Accuracy and Design<br />

Umitations<br />

... FINISHING THE GEAR<br />

1, Gear F1nl8tMng - BatON Harden<strong>in</strong>g<br />

A. ShaVIng<br />

a) The Shav<strong>in</strong>g Cutter<br />

b) Types of Shav<strong>in</strong>g - Conventional.<br />

Underpass. Diagonal<br />

c! Crown ShaV<strong>in</strong>g<br />

d Shav<strong>in</strong>g Cutler Modifications<br />

e Co-ord<strong>in</strong>atlng Tool Design-<br />

The Shaver and Pre-Shave Tool<br />

II Re-Sharpen<strong>in</strong>g<br />

g) Mach<strong>in</strong>es<br />

B. Roll<strong>in</strong>g<br />

2. a..r F1rHehlngaft ... HMt: TfNl<br />

A. Hon<strong>in</strong>g<br />

B. Lapp<strong>in</strong>g<br />

C. Gr<strong>in</strong>d<strong>in</strong>g<br />

a) Methods - Formed Wheel·<br />

Generat<strong>in</strong>g - Threaded Wheel<br />

b) Mach<strong>in</strong>e Typas<br />

5. GEAR INSPECTION<br />

1. Functional<br />

A. Gear Rollers<br />

B. Gear Charters<br />

a) Read<strong>in</strong>g <strong>the</strong> Chart<br />

b) Tooth-to-Tooth Composite Error<br />

c) Total Composite Error<br />

C. Master Gears<br />

~!=~~i"<br />

c Special Types<br />

2.~1<br />

A. Size - Tooth Thlcknen<br />

B. Runoul<br />

C. SpacIng<br />

D. Lead<br />

E. Involute<br />

3. Automatic: and SamI-AutCMMtk:<br />

A. How They Work<br />

B. What Can Be Checked<br />

C. How Fast<br />

4. ChIIr1I~ - An8IytIcIII and Functional<br />

A. Read<strong>in</strong>g <strong>the</strong> Charta<br />

B. Which Errors Affect O<strong>the</strong>r Elements<br />

C. How to COI'rect<strong>the</strong> Error <strong>the</strong> Chart Shows<br />

6. INDIVIDUAL INSTRUCTION<br />

AND SPECIFIC PROBLEMS<br />

OR PLANT TOUR<br />

This Program is IleKlble and chenged<br />

needs of each group.<br />

10 meet !he<br />

The 4-day program consIIts of a coord<strong>in</strong>ated aeries of lectures given by <strong>the</strong> Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Production and lnapection ata1'l8 of Ill<strong>in</strong>ois Tool Works Inc. They represent ovar sixty years of<br />

experience In gear and tOOlspecialization.<br />

The .... ion. are conducted with a technique and approach that leads to Intern<strong>in</strong>g<br />

discussion and participation. Stan<strong>in</strong>g with <strong>the</strong> basic fundamentale, <strong>the</strong> program I. directed<br />

<strong>in</strong>to those areas of g.... test <strong>in</strong>terest and value to <strong>the</strong> people attend<strong>in</strong>g <strong>the</strong> particular session.<br />

The groups are kept .maIllO that this object is readily accomplished.<br />

All mentioned, <strong>the</strong> planned program IU18 tour days. One-half of <strong>the</strong> fourth day I. for Individual<br />

dlscunion of apeclflc problems In a detailed manner with members of <strong>the</strong> ill<strong>in</strong>ois<br />

TOOlWorks' ataff.<br />

More than 4,000 Individual. from hundreds of companies repreeent<strong>in</strong>g manufactur<strong>in</strong>g,<br />

eng<strong>in</strong>eer<strong>in</strong>g, Inspection and management, have come to Chicago for <strong>the</strong>se programs. They<br />

haw been conducted on a monthly basis .Inea 1958. CI.... have also been conducted In<br />

Europe. We are c.rtaln<br />

that this well rounded program has helped all of <strong>the</strong>m to a better Job<br />

January<br />

Februaly<br />

March .<br />

Aprj ""<br />

and a110 given <strong>the</strong>m a better underltandlng of eng<strong>in</strong>eer<strong>in</strong>g, manufactur<strong>in</strong>g and Inspection.<br />

All thole attend<strong>in</strong>g are aaaIgned to <strong>the</strong> same hotel. This promote. friendly contact and<br />

diacuaalon of mutual problems and Interesta. Tuition for <strong>the</strong> course Includes transportation<br />

from <strong>the</strong> hot.' to ITW and back, one group dlnn.r, ali cont<strong>in</strong>ental breakfasts and all lunche •.<br />

We hope we may Include your company <strong>in</strong> one of our Tra<strong>in</strong><strong>in</strong>g Program •.<br />

CIRCLE A-20 ON READER REPlY CARD<br />

ITW ILLINOIS TOOLS<br />

A Division of IIIInoI8 Toot8 Wofka Inc.<br />

1991 GEAR TRAINING PROGRAM<br />

Four Day Sem<strong>in</strong>ara<br />

''''7<br />

"."<br />

11·"<br />

15-1e<br />

May<br />

June<br />

July<br />

Augua1<br />

TUITION<br />

13-1e<br />

10-13<br />

15-18<br />

12·15<br />

FEE: II1II8.00<br />

NOTEI Additional siudenla, aame CCIInPMy, __ ct.. teeo.OO<br />

Includes ,he ,r8l18pO!1abon from !he hotei to ITW and bKk. one group dIM«.<br />

hoepI!aI1\y meet<strong>in</strong>g. conllnantai br~. and aIIl~<br />

Ths 5ocI8Iy 01 Manufaclurlflg Englneera ISM E.) has IIPP"\MId m,. School lor<br />

Pr01888iona1 Cred


Fig. 10 - Courtesy of Kl<strong>in</strong>gelnberg Corp.<br />

Boron Nitride) and a cemented tungsten<br />

carbide substrate produced as an<strong>in</strong>tegral<br />

blank us<strong>in</strong>g an advanced high<br />

pressure, high temperature process. The<br />

use of CBN <strong>in</strong>serts <strong>in</strong>creased <strong>the</strong> tool life<br />

many times. Cutt<strong>in</strong>g times decrease aJF<br />

preciably as less sharpen<strong>in</strong>g isrequ.ired.<br />

From a performance standpo<strong>in</strong>t, '<strong>the</strong><br />

CBN mserts excelled considerably over<br />

<strong>the</strong>ecarbide <strong>in</strong>serts <strong>in</strong> every asped , even<br />

though <strong>the</strong> price of <strong>the</strong> CBN <strong>in</strong>sert is<br />

. ':1;..<br />

mUUI rugner k;~k . t...


SERVICE<br />

GEAR TOO1.5<br />

GEAR TESTINGI ANID<br />

DESIGNI FACilLITllES<br />

• 'GEAR DESIGN (NOISE - STiRENGTH).<br />

• ROTATING GEAR (TORQUE - SPEED<br />

CONTROL) TEST MACHINES.<br />

• SINGLE TOOTH iBENDING FATIGUE<br />

TESTING.<br />

• STATISTICAL P,LANNING- ANALYSIS.<br />

• WROUu,HT STEELS, SINTERED<br />

METALS, NON-METALLIC MArLS.<br />

'. CAD FACILITIES FOR. LOW COST<br />

SET-UP.<br />

• CUSTOM rssr M_ACHINEIDESIGN.<br />

• EXPERIENCED PERSONNEL,<br />

PACKER ENGIINEERING<br />

708/505-5722, ext. 214<br />

iBOX.353, NAPERVilLE, IL 60566<br />

I<br />

FELLOWS MOOEL GEAR.<br />

MEASURING INST,RUMENTS<br />

• Facto~y Rebuild<strong>in</strong>g<br />

• Retrofits/Design Updates<br />

.. Eng<strong>in</strong>eer<strong>in</strong>g/Technical Support<br />

Also Servic<strong>in</strong>g Gear Shapers<br />

Quality Performance Team<br />

IExperienood and Accommodat<strong>in</strong>g<br />

'0 F I<br />

~~EEAI""t;'(.<br />

Cl. ~(o' ~ tc"<br />

'"' (><br />

100 RIVER STREET<br />

SPRINGFIELD, VERMONT 05156<br />

802-88&-9176<br />

GEAR HOeS, CUTIERS<br />

GEAR MACHINES<br />

Hobs and Gear Shaper Cutters <strong>in</strong> st.ock!<br />

GEAB MACHINES<br />

at LOWEST PRICES EVERI<br />

2 ··5 MO;DU!LE, 3 -116 DP<br />

GEAR<br />

Sr


COMPUTER AIDS<br />

HELP WANTED<br />

GEAR ESfIMATING<br />

PROCFSS PlANNING<br />

OPERATION smmrs<br />

Free Injormatron on <strong>the</strong><br />

Wmfd~ /Jest c:nU<strong>in</strong> . ,0 I ... ·tem<br />

s _ _ ""'L _~J}'S .<br />

MANUFACTURERS TlECHNOlOGIES, INC.<br />

59 INiliERSTATE DRIVE<br />

WEST SPRJNGFIEU)I. M'A 01009<br />

(413)733-'1972<br />

FAX (413) J:B.92!il<br />

CH~CIJEA-2B ON READERREPtY CARD<br />

DESIGN ENGINEER: .$47.000, "H'ands-on" ,<br />

Enclosed Helical. Spur Transmission Custom<br />

Gears, Some' Planetary,<br />

QUALITV CONTROL MANAGER: $45,000.<br />

Gear<strong>in</strong>g, Heal. Treat<strong>in</strong>g, PI81Ing ..Supervise 12.<br />

MANUFACTURING ENGINEERS: $55,000.<br />

Precision Mach<strong>in</strong><strong>in</strong>g,<br />

PRODUCT IENGlN~R: 540,000, Planetary<br />

Drives, Concept 'through production, Gear<br />

Dasign. Hydraulic/Mechanical Application,<br />

~A"tAGER OF IMANUFACTURING ENGI-<br />

NEERING: $50,000 'range,. Low volume Job<br />

shop. CNe Turn<strong>in</strong>g, Metal Cutt<strong>in</strong>g, Gear<br />

experience.<br />

GENERAL IMAN'A.GER:S80,OOO. Full P & L<br />

Shafts, TransmiSSion Gears. 'S8MM operation.<br />

Contact: Ann HunSucker. Excel Associales.<br />

p,O, Box 520, Cordova, TN 38018 or ,call (901)<br />

757·9600 or FAX (901) 754,,2896.<br />

H,ELP WANITIE'DI<br />

EXPERIENCED GEAR CUTIiER TO H~NDLE<br />

A;LL FACETS OF SMALL JOB, SHOP, OLDER<br />

MODEL EaUIP., QUALITY EXP. ONLY. APPLY<br />

FL ORNE & GEAR. RESUME WITH IREf. REO.<br />

4717 N.W. SHORE BLVD" TPA, FL33614,<br />

M· .,aqu·f~ ct '.<br />

Eng<strong>in</strong>eer<br />

,a._ unng<br />

Our client ls a progressive,<br />

medium-to-high volume manufacturer,<br />

currently seek<strong>in</strong>g a.<br />

seasoned professional at our<br />

Midwest facility.<br />

Qualified candidates will have<br />

a Bachelor's degree, <strong>in</strong><br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g or<br />

<strong>the</strong> eqUivalent with Spur and<br />

Helical Gear Manufactur<strong>in</strong>g<br />

,experience. Extensive lexperience<br />

<strong>in</strong> blank/ttansmlsslon<br />

shaft preparation through<br />

gear generat<strong>in</strong>g and heat<br />

tteattnent requked. You will<br />

be mach<strong>in</strong>ed on CNC and<br />

conventional! equipment.<br />

Interested and qualified candidates,<br />

send your resume and<br />

salary history, <strong>in</strong> oonfidence<br />

to:<br />

BoxKT.<br />

Gear TeChnology,<br />

P.o...Box 1426<br />

Elk Grove,lL ,60009<br />

, An Eq~ OpportunIty Elnf>t. _ I<br />

I<br />

I<br />

II's true, our Consumer lnlormaticn Catalog is tilled with booklets that<br />

can answer <strong>the</strong> questions American consumers ask most.<br />

To satisfy ,every appetite, <strong>the</strong> Consumer In<strong>format</strong>ion center puts toge<strong>the</strong>r<br />

this helpful Catalog quarterly conta<strong>in</strong><strong>in</strong>g more than 200 federal -<br />

publications you can order. II's free, and so are almost half of '<strong>the</strong><br />

booklets il Lists.Subjects like nutrition, money management, healthand<br />

federal benefus help you make <strong>the</strong> r.ight choices and decisions,<br />

So get a slice of American opportunity.<br />

1\ rubllC. vr ...lIlor OIlhls pubJK~uan and 1M<br />

COnSl.!:mC'llnl\'lf~'lnn Cf"nler (111M<br />

u 5 G(-nr,,,1 Stfvl~n Admrnl~r.rton<br />

Write 'today for your free Catalog:<br />

Consumer In<strong>format</strong>ion Center<br />

Departm.ent AP'<br />

Pueblo, Colorado 81009<br />

To advertise <strong>in</strong><br />

GEAR<br />

TECHNOLOGY<br />

call<br />

(708) 437-6604<br />

Novem'ber/Dee-ember <strong>1990</strong> 47


DIAMONDI<br />

DIIIINGi moLS<br />

For IGear G"nlUng Mamies<br />

CALENDAR<br />

• Reishauer/Fellows Dress<strong>in</strong>g Tools<br />

• All Natural Diamond<br />

• Diamond lengths 2.5mm - 8.0mm<br />

• Diamond Shape: Flat - Radius - Convex<br />

• Stock Common Tools, Build to pr<strong>in</strong>t specials<br />

.5-48D.P.<br />

• Complete Resett<strong>in</strong>g & Relspp<strong>in</strong>g services<br />

lOWESTWICIIIN<br />

TDOLS~, IINC,.<br />

[016 S. DUNTON - ARLINGTON HEIGHTS, lL 60005<br />

708-506-1958<br />

FAX 708-506-U25<br />

crRC~ A-33 ON READER REPLYCA'RD<br />

NOVEMBER 14-15.. SME Automat,ed.<br />

Debarr<strong>in</strong>g Systems Cl<strong>in</strong>ic. Holiday fun<br />

Crowne Plaza, Lisle, (Chicago) .WL.Designed<br />

for those consider<strong>in</strong>g -automat<strong>in</strong>g<br />

<strong>the</strong>ir present debarr<strong>in</strong>g process or those<br />

with questions about <strong>the</strong>se systems. Papers,<br />

panel discussions, <strong>in</strong><strong>format</strong>ion exchange<br />

sessions. Contact Mike Traicoff, SME,<br />

One SME Drive, P.O. Box 930, Dearborn,<br />

M] 48121. PH: (313) 271-1500. FAX: (313)<br />

271-2861. TELEX: 2977412 SME UR.<br />

NOVEMBER 28-30., <strong>1990</strong>.. Fundamentals ·of<br />

Gear Design. University of Wiscons<strong>in</strong> at<br />

Milwaukee ..M<strong>in</strong>i-course cover<strong>in</strong>g basic gear<br />

systems for designers, users, purchas<strong>in</strong>g<br />

agents, ma<strong>in</strong>tenance and process eng<strong>in</strong>eers.<br />

For more <strong>in</strong><strong>format</strong>ion, contact Richard C.<br />

Albers, Center for Cont<strong>in</strong>u<strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g<br />

Education, University of Wiscons<strong>in</strong>-Mil~<br />

waukee, 929 N. Sixth St., Milwaukee, WI<br />

53202. (414) 227-3125.<br />

OCTOBER 21-23,1991. AGMAs Gear Expo<br />

'91. The Wodd of Gear<strong>in</strong>g. Biennial<br />

trade show devoted exclusively to gear and<br />

gear<strong>in</strong>g products. Cobo Conference and Exhibition-<br />

Center, Detroit, ML<br />

AGMA F.aUTechnical Meet<strong>in</strong>g .. Held <strong>in</strong><br />

conjunction with Gear Expo '91, <strong>the</strong> conference<br />

will feature gear experts from<br />

around <strong>the</strong> world present<strong>in</strong>g technical<br />

papers ona wide range of gear-related subjects.<br />

For more <strong>in</strong><strong>format</strong>ion on <strong>the</strong> show<br />

and conference, contact: AGMA, 1500 K<strong>in</strong>g<br />

St., Suite 201,. Alexandria, VA 22314 ...PH:<br />

(703) 684-0211.<br />

NOVEMBER 24-26, 1991. International<br />

Confereneeon Motion and. Power Transmissions<br />

..HWoshima, Japan. The conference<br />

covers all aspects of <strong>the</strong> <strong>the</strong>ory and application<br />

of motion and power transmission<br />

systems. For more <strong>in</strong><strong>format</strong>ion, contact:<br />

Prof. Aizoh Kubo, Dept. of Precision Mechanics,<br />

Kyoto University, Kyoto 606<br />

Japan. FAX: (Japan) 75-771-7286. TELEX:<br />

5423115 ENG KU J.<br />

CIRCLE A-22<br />

48 Gear Technology<br />

ON READER REPLYCARD


DURABLE<br />

Totally sealed and air<br />

purged, <strong>the</strong> FOR MASTER<br />

is well suited to production<br />

environments.<br />

Made <strong>in</strong> U.S.A. Patent No. 4.s~9.919<br />

Straightforward two axis<br />

programm<strong>in</strong>g can be<br />

learned quickly by<br />

production personnel. P.C.<br />

software is also available<br />

for generat<strong>in</strong>g <strong>in</strong>volute<br />

gear profile programs.<br />

Nonnac.1ncorporatcd ~ Nonnac. Incorporated<br />

P.O. Boll. 69· Arden. NC 28704 ~<br />

P.O. Box 2f17. Northville. M148167<br />

Phone (704) 684-1002· Fu (704) 684-1384 NORMAe. INC. Phone (313) 349-2644· Fax (313) 349-1440<br />

CII~C'I.EA-2 ON READlR RlPLV CARD


M __ ,et I =su b liS e he, -1<br />

r •<br />

Shapes <strong>the</strong> World of Gears ...<br />

What can Mjtsubishi do for you?' Mitsubishi can support s<strong>in</strong>gle source hardware supply, eng<strong>in</strong>eer<strong>in</strong>g support<br />

you <strong>in</strong> all fields of gear manufactur<strong>in</strong>g technology.<br />

and responsibility. Look for<br />

Mitsubishi builds gear hobbers, gear shapers and gear Mitsubishi, <strong>the</strong> world leader of gear<br />

shavers. AIl CNC conteolled, Mitsubishi not only builds manufactur<strong>in</strong>g technology.<br />

gear mach<strong>in</strong>ery but. also manufactures various k<strong>in</strong>ds of For more <strong>in</strong><strong>format</strong>ion, call.<br />

cutt<strong>in</strong>g tools. TiN coated gear hobs, shap<strong>in</strong>g cutters and (312) 86()4220, NOW!<br />

shav<strong>in</strong>g cutters, etc. Wilh Mitsubishi, you can .get a<br />

Hnvy Duty<br />

Mach<strong>in</strong>e Toor:!l<br />

Fr.lS<br />

I<br />

eNC L"El"Hts Cyl<strong>in</strong>;J!i'Ic.aj<br />

G!!!'!!deirI<br />

Specl"i-Pui'poH Gi-M Millung PrIIcIa.gn<br />

MiCh ..... '10011 IMilCti!!1!I: 10015 CuUlng ~:I<br />

J.. !!!JI!DYS~.!.tI!<br />

5-1, Marunouchl 2-chome, Chlyoda-ku, Tokyo, Japan<br />

Gable Address: HJSHIJU TOKYO<br />

MitsubishJ Hea,vy I<strong>in</strong>dusat- - America, l<strong>in</strong>e.<br />

1500 Michael Drive, Wood IDale, IL 50'191 Phone: (708)·860-4220'<br />

Mitsubishi Ilnternational<br />

CIRCLE A-11 ON READER REPLY CARD<br />

COrporation<br />

1500 Michael Drive, Wood Dale, IL 60191 Pllane: (70B)860-4222

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!