09.09.2014 Views

Energy management on a stand-alone power system for the ...

Energy management on a stand-alone power system for the ...

Energy management on a stand-alone power system for the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Energy</str<strong>on</strong>g> <str<strong>on</strong>g>management</str<strong>on</strong>g> <strong>on</strong> a <strong>stand</strong>-al<strong>on</strong>e <strong>power</strong> <strong>system</strong> <strong>for</strong> <strong>the</strong> producti<strong>on</strong> of electrical<br />

energy with hydrogen l<strong>on</strong>g term storage<br />

3.1. Renewable energy <strong>system</strong> (RES)<br />

The output <strong>power</strong> from <strong>the</strong> PV-array is given by:<br />

P<br />

= V pv<br />

⋅ I<br />

⋅η<br />

pv pv c<strong>on</strong>v<br />

(1)<br />

where P pv denotes <strong>the</strong> output <strong>power</strong> from <strong>the</strong> photovoltaic array in Watt, I pv <strong>the</strong><br />

operati<strong>on</strong> current in A, V pv <strong>the</strong> operati<strong>on</strong> voltage in Volt and η c<strong>on</strong>v <strong>the</strong> efficiency of <strong>the</strong><br />

DC /DC c<strong>on</strong>verter (~90-95%) [2].<br />

In a similar way, <strong>the</strong> output <strong>power</strong> of <strong>the</strong> wind turbine is given by <strong>the</strong> following<br />

equati<strong>on</strong> [4]:<br />

ρ ⋅ Α<br />

w 3<br />

P = c λ , β ) ⋅ v<br />

(2)<br />

m<br />

p<br />

(<br />

wind<br />

2<br />

where P m denotes <strong>the</strong> mechanical output <strong>power</strong> of <strong>the</strong> wind turbine in Watt, c p <strong>the</strong><br />

per<strong>for</strong>mance coefficient of <strong>the</strong> turbine, ρ <strong>the</strong> air density in kg/m 3 , Α w <strong>the</strong> turbine swept<br />

area in m 2 , v wind <strong>the</strong> wind speed in m/s, λ <strong>the</strong> tip speed ratio, and β <strong>the</strong> blade pitch angle<br />

in deg. The relati<strong>on</strong>ship <strong>for</strong> c p is based <strong>on</strong> <strong>the</strong> characteristics of <strong>the</strong> turbine [4].<br />

From <strong>the</strong> above equati<strong>on</strong>s, <strong>the</strong> output <strong>power</strong> of each sub<strong>system</strong> of <strong>the</strong> renewable energy<br />

<strong>system</strong> was calculated and <strong>the</strong> results are shown at figures 2a and 2b.<br />

Output Power, Watt<br />

5000<br />

a)<br />

4000<br />

3000<br />

2000<br />

1000<br />

Output Power, Watt<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

b)<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

Time, h<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

Time, h<br />

Figure 2: a) Output <strong>power</strong> from <strong>the</strong> photovoltaic <strong>system</strong> during a typical four m<strong>on</strong>th<br />

period b) Output <strong>power</strong> from <strong>the</strong> wind generators during a typical four m<strong>on</strong>th period<br />

3.2. Operati<strong>on</strong> strategies <strong>for</strong> <strong>the</strong> <strong>stand</strong>-al<strong>on</strong>e <strong>power</strong> <strong>system</strong><br />

The output <strong>power</strong> from <strong>the</strong> RES, P res , has been calculated as <strong>the</strong> sum of <strong>the</strong> output<br />

<strong>power</strong> from <strong>the</strong> photovoltaic <strong>system</strong> and <strong>the</strong> wind generators. The <strong>power</strong> demand <strong>for</strong> <strong>the</strong><br />

load, P load , is c<strong>on</strong>stant throughout <strong>the</strong> year at 1kW. There<strong>for</strong>e, <strong>the</strong> shortage or surplus<br />

<strong>power</strong> is calculated as:<br />

P = P RES<br />

− P load<br />

(3)<br />

Based <strong>on</strong> <strong>the</strong> above equati<strong>on</strong>s and with <strong>the</strong> developed energy <str<strong>on</strong>g>management</str<strong>on</strong>g> algorithms<br />

all <strong>the</strong> sub<strong>system</strong>s were studied simultaneously. Two limits <strong>for</strong> <strong>the</strong> state-of-charge<br />

(SOC) were used: The minimum limit, SOC min (84%), where energy should be supplied

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!