09.09.2014 Views

analysis and modeling of a stand-alone power system for the ...

analysis and modeling of a stand-alone power system for the ...

analysis and modeling of a stand-alone power system for the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2nd International Conference on Renewable Energy Sources <strong>and</strong> Energy Efficiency<br />

18 – 21, October 2007, A<strong>the</strong>ns, Greece<br />

V<br />

pv<br />

+ I<br />

pv<br />

⋅ Rs<br />

I<br />

pv<br />

= I<br />

L<br />

− I<br />

D<br />

− I<br />

sh<br />

= I<br />

L<br />

− I<br />

O<br />

⋅[exp(<br />

) −1]<br />

(1)<br />

α<br />

where I pv , I L , I D , I sh denote <strong>the</strong> operation current, light current, diode current <strong>and</strong> shunt current<br />

respectively in A, I o <strong>the</strong> diode reverse saturation current in A, R s <strong>the</strong> series resistance in Ω, α<br />

<strong>the</strong> curve fitting parameter in Volt <strong>and</strong> V pv <strong>the</strong> operation voltage in Volt<br />

The above parameters depend on <strong>the</strong> solar radiation <strong>and</strong> <strong>the</strong> cell temperature <strong>and</strong> can be easily<br />

calculated from manufacturer’s data which are provided <strong>for</strong> <strong>the</strong> PV-modules. The <strong>power</strong> from<br />

<strong>the</strong> PV-Array is described as known from:<br />

P<br />

= V pv<br />

⋅ I<br />

⋅η<br />

pv pv conv<br />

(2)<br />

where η conv denotes <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> DC/DC converter~90-95%<br />

The output <strong>power</strong> <strong>of</strong> <strong>the</strong> Wind Generator is given by <strong>the</strong> following equation [11]:<br />

P<br />

m<br />

= c<br />

ρ ⋅ Α<br />

w 3<br />

p<br />

( λ,<br />

β ) ⋅ vwind<br />

⋅ηinv<br />

(3)<br />

2<br />

where P m denotes <strong>the</strong> mechanical output <strong>of</strong> <strong>the</strong> turbine in W, c p <strong>the</strong> per<strong>for</strong>mance coefficient <strong>of</strong><br />

<strong>the</strong> turbine, ρ <strong>the</strong> air density in kg/m 3 , Α w <strong>the</strong> turbine swept area in m 2 , v wind <strong>the</strong> wind speed in<br />

m/s, λ <strong>the</strong> tip speed ratio, β <strong>the</strong> blade pitch angle in deg <strong>and</strong> η inv denotes <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong><br />

AC/DC converter~90-95%<br />

The relationship <strong>for</strong> c p is given by equation that is based on <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong> wind<br />

turbine <strong>and</strong> can also be estimated from manufacturer’s data regarding <strong>the</strong> rotor speed in<br />

relation with <strong>the</strong> wind speed [10]. From <strong>the</strong> above equations <strong>the</strong> <strong>power</strong> from <strong>the</strong> PV-Array<br />

<strong>and</strong> <strong>the</strong> Wind Generators is presented in figures 2 <strong>and</strong> 3 respectively.<br />

5000<br />

1800<br />

Output Power, Watt<br />

4000<br />

3000<br />

2000<br />

1000<br />

Output Power, Watt<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

Time, h<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

Time, h<br />

Figure 2: Output Power from <strong>the</strong> 5kW p Photovoltaic<br />

System<br />

Figure 3: Output Power from <strong>the</strong> 3kW p Wind<br />

Generators<br />

3.2 Lead-Acid Accumulator<br />

The total <strong>power</strong>, P RES is calculated by <strong>the</strong> sum <strong>of</strong> <strong>the</strong> <strong>power</strong> P pv <strong>and</strong> P m . The <strong>power</strong> dem<strong>and</strong><br />

<strong>for</strong> <strong>the</strong> Load, P load is constant throughout <strong>the</strong> year at 1kW (or <strong>the</strong> equivalent energy is<br />

24kWh/day). The shortage or surplus <strong>power</strong> is calculated as:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!