11.09.2014 Views

Accepted Manuscript - TARA

Accepted Manuscript - TARA

Accepted Manuscript - TARA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

where g1 1 and h1 1 are the equatorial dipole Gauss coefficients. From the x-component of (6), the<br />

156<br />

rate of change of m x is<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

164<br />

165<br />

166<br />

167<br />

168<br />

m˙<br />

x = 3 [A x + D rx + D tx ]dS (16)<br />

2µ 0<br />

∫S<br />

where the contribution by tangential advection is<br />

A x = (u θ cosθ cosφ − u φ sin φ)B r (17)<br />

Similarly, the y-component of (6) yields a corresponding expression for the rate of change of<br />

m y ,<br />

m˙<br />

y = 3<br />

with the advective contribution being<br />

2µ 0<br />

∫S<br />

In terms of m x and m y , the longitude of the dipole is<br />

and the azimuthal angular velocity of the dipole axis is<br />

[A y + D ry + D ty ]dS (18)<br />

A y = (u θ cosθ sin φ + u φ cosφ)B r (19)<br />

φ 0 = tan −1 ( m y<br />

) = tan −1 ( h1 1<br />

) (20)<br />

m x<br />

<strong>Accepted</strong> <strong>Manuscript</strong><br />

g 1 1<br />

φ˙<br />

0 = m˙<br />

ym x − m˙<br />

x m y h˙<br />

1<br />

=<br />

1g1 1 − g ˙ 1h 1 1 1<br />

m x2 + m<br />

2 y g 12 1 + h 1 2<br />

. (21)<br />

1<br />

We now define the equatorial component of the dipole moment as<br />

m e = 4πa3 √ ∫<br />

g 12 1 + h 1 12 = ρ e dS (22)<br />

µ 0 S<br />

in terms of the equatorial dipole moment density ρ e on the CMB,<br />

ρ e = 3r c<br />

2µ 0<br />

B r sin θ cosφ ′ , (23)<br />

where φ ′ = φ−φ 0 is the longitude relative to the magnetic pole and φ 0 (t) is the time-dependent<br />

longitude of the magnetic pole. The equatorial component of (6) yields an expression for the<br />

rate of change of the equatorial dipole moment in terms of three contributions,<br />

m˙<br />

e = 3 [A e + D re + D te ]dS . (24)<br />

2µ 0<br />

∫S<br />

169<br />

170<br />

Note that the equatorial unit vector ê is time-dependent, therefore in general, ê· ˙⃗m = m˙<br />

e − ⃗m· ˙ê,<br />

but since ⃗m · ˙ê = 0, we obtain (24). The contribution to m˙<br />

e from tangential advection is<br />

A e = (u θ cos θ cos φ ′ − u φ sin φ ′ )B r (25)<br />

7<br />

Page 7 of 35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!