13.09.2014 Views

1 - FAA

1 - FAA

1 - FAA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Report No. <strong>FAA</strong>~_.76_.17.,.....6 __<br />

!YA"7'-J.-{)<br />

,BtY'l<br />

TEST AND EVALUATION OF AFEASIBILITY MODEL<br />

ILS GLIDE SLOPE PERFORMANCE ASSURANCE MONITOR<br />

FOR THE ANAL APPROACH PATH<br />

Marvin S. Plotka<br />

. '<br />

~.<br />

. .<br />

LL,:'.:.:<br />

~ ..-<br />

.<br />

• 19 '77<br />

December 1976<br />

•<br />

FINAL REPORT<br />

Document is available to the public through the<br />

National Technical Information Service<br />

Springfield, Virginia 22151<br />

Prepared for<br />

U. S. DEPARTMENT OF TRANSPORTATION<br />

FEDERAL AVIAliON ADMINISTRATION<br />

Systems Research &Development Service<br />

Wasllington, D.C. 20590<br />

\.


NOTICE<br />

This document is dis seminated under the sponsorship<br />

of the Department of Transportation in the interest of<br />

information exchange. The United States Government<br />

assumes no liability for its contents or use thereof.


METRIC CONVERSION FACTORS<br />

Approximate Conversions to Metric Measures '" _ ~ Approximate Conversions from Metric Measures<br />

~<br />

Symbol When You Know Multiply by To Find Symbol =-=----_<br />

Symbol Whon Vou Know Multiply by To Find Symbol<br />

~ '" LENGTH<br />

= ~<br />

LENGTH - - nvn millimeters 0.04 inches in<br />

~ em centimeters 0.4 inches in<br />

-= -­ m meters 3.3 feet it<br />

in inches "2.5 centimeters em ~- 00 m meters 1.1 yards yd<br />

ft feet 30 centimeters em ~ _ __...-I km kilcmeters 0.6 miles mi<br />

yd yards 0.9 meters m<br />

mi miles 1.6 kilometers km ~<br />

in 2<br />

ft2<br />

yd 1<br />

mi 2<br />

square inches<br />

square feet<br />

square yards<br />

square miles<br />

- AREA<br />

AREA :!:<br />

~<br />

6.5<br />

square centimeters cm 1<br />

- -<br />

cm 1<br />

0.09<br />

square meters<br />

m 2<br />

-<br />

~ m 2<br />

square centimeters 0.16<br />

square meters<br />

1.2<br />

0.8<br />

square meters<br />

m 2<br />

_ -<br />

km 1<br />

square kilcmeters 0.4<br />

2.6<br />

square kilometers km 1 _ _<br />

"if' ha<br />

hectares (10.000 m 2 ) 2.5<br />

--­ -<br />

acres 0.4 hectares ha - C"')<br />

MASS (weight)<br />

'"<br />

-<br />

-­<br />

-<br />

-<br />

;:l<br />

MASS (weight)<br />

square inches<br />

square yards<br />

square miles<br />

aCres<br />

=-­ 9 grams 0.035 ounces OZ<br />

oz ounces 28 g~ams g _ ...-I kg kilograms 2.2 pounds Ib<br />

Ib pounds 0.45 kilograms kg ___...-I t tonnes (1000 kg) 1.1 short tons<br />

short tons 0.9 tonnes t - ~'--- _<br />

(2000 Ibl ... - 0<br />

=-­<br />

'"<br />

VOLUME _ - - VOLUME<br />

tsp<br />

teaspoons<br />

5 'liT<br />

m~ ~ ~ters<br />

ml -<br />

~<br />

ml<br />

I<br />

milliliters<br />

liters<br />

0.03<br />

2.1<br />

fluid ounces<br />

pints<br />

fI oz<br />

pt<br />

ClO<br />

Tbsp<br />

tablespoons<br />

15<br />

m~II~I~terc;<br />

ml<br />

(,0;1<br />

_ --<br />

I<br />

liters<br />

fI OZ<br />

fluid ounces<br />

30<br />

milliliters<br />

ml<br />

_<br />

.<br />

1.06<br />

quans<br />

qt<br />

I<br />

c<br />

cups<br />

0.24<br />

liters<br />

I<br />

I<br />

liters<br />

0.26<br />

gall,ons<br />

g~<br />

I'­<br />

t<br />

ints<br />

0.47<br />

liters<br />

I -­<br />

m 3<br />

cubic meters<br />

35<br />

cUb~c feet<br />

ft 3<br />

:t :lI1ans 0.95 Iiters I _ m 3 cubic meters 1.3 cubiC yards yd<br />

gal<br />

gallons<br />

3.8<br />

liters<br />

I<br />

ft 3<br />

yd 3<br />

cubic feet<br />

0.03<br />

cub.c meters<br />

m 3<br />

cubiC yards<br />

0.76<br />

cubiC meters<br />

m 3 '" -<br />

_ _ __<br />

'" TEMPERATURE (exact)<br />

TEMPERATURE (exact) -.. 0c Celsius 9/5 (then Fahrenheit OF<br />

_ temperature add 32) temperature<br />

OF Fahrenheit 5/9 (after Celsius °c _ eo')<br />

temperature subtracting temperature --­ 0 F<br />

321 - - OF 32 98.6 212<br />

_ _<br />

'"<br />

-4f I I'<br />

·1 In : 2.54 (exactly). For other exact converSions ant! more detailed tables, see NBS MISC. Pub!. 286,<br />

~<br />

-<br />

...-I<br />

-40 -20 0 20 40 60 80<br />

Units of Weights and Measures, Price $2.25, SO Catalog No, C13.l0:286. :- _ _ ~ 0C 37 C<br />

'I~<br />

',' ,1 4 ,0 I<br />

' " 8,0"<br />

1'1 ' '~IO, I "I~O'"<br />

112~ ,I<br />

~OO<br />

in 1<br />

yd 1<br />

mi 2


Technical ~eport Documentation Page<br />

1. Report No. 3. Recipient's Catalog No.<br />

2. Government Accession No.<br />

<strong>FAA</strong>-RD-76-l76<br />

4. Title and Subtitle 5. Report Date<br />

TEST AND EVALUATION OF A FEASIBILITY MODEL ILS GLIDE<br />

SLOPE PERFORMANCE ASSURANCE MONITOR FOR THE FINAL<br />

APPROACH PATH<br />

December 1976<br />

6. Performing Organization Code<br />

r--:.----;-:-;---;-;------------------------------! 8. Performing Organ; zotion Report No.<br />

7. Author! s)<br />

Marvin S. Plotka<br />

<strong>FAA</strong>-NA-76-20<br />

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)<br />

Federal Aviation Administration<br />

National Aviation Facilities Experimental Center<br />

11. Contract or Grant No.<br />

Atlantic City, New Jersey 08405 076-311-000<br />

13. Type of Report and Period Covered<br />

1-: 1<br />

':'2-.-=S:-p-on-s-o-ri-n-g-A-g-en-c-y-N-a-m-e-a-n:-d-A-d7"Cd-re-s-s--------------------1 Final<br />

U.S. Department of Transportation December 1973 - March 1976<br />

Federal Aviation Administration<br />

Systems Research and Development Service<br />

14. Spansari ng Agency Code<br />

Washington, D. C. 20590<br />

15. Supp lementary Notes<br />

16. Abstract<br />

The second of two test and evaluations was performed at the National Aviation<br />

Facilities Experimental Center (NAFEC), Atlantic City, New Jersey, to determine the<br />

feasibility of a ground-based monitoring system to accurately measure the flightpath<br />

of selected aircraft on the final approach path. This tracking information<br />

would provide a data base for statistical analysis of the instrument landing<br />

system (ILS) glide slope performance. This subsystem was tested by comparison of<br />

its measured glide slope angle with the glide slope angle generated by the NAFEC<br />

phototheodolite tracking system {time referenced). The data analysis indicates<br />

this glide slope monitor feasibility model was not adequate to perform as an ILS<br />

performance assurance monitor. The other test and evaluation is reported in<br />

<strong>FAA</strong>-RD-74-66, dated April 1974.<br />

17. Key Wards 18. Distribution Statement<br />

Independent Altitude Monitor, Monitor,<br />

Performance Assurance, NAVAIDS, Flight<br />

Inspection, Instrument Landing System v /<br />

(ILS), Interferometer, ATCRBS<br />

Document is available to the public<br />

through the National Technical Information<br />

Service, Springfield, Virginia 22151<br />

19. Security Classif. (of this report)<br />

:20. Security Clossif. {of thi s pagel<br />

21. No. of Pages 22. Price<br />

Unclassified Unclassified 106<br />

Form DOT F 1700.7 (8_72)<br />

Reproduction of completed page authorized


PREFACE<br />

The efforts of the following personnel and organizations are gratefully<br />

acknowledged for their support of this test and evaluation.<br />

Mr. Jerry Cosner, Program Manager, Approach and Landing Division, SRDS, for<br />

his guidance and assistance throughout this evaluation.<br />

Mr. Edward J. Barburski, Electronics Technician, Landing Branch, Communications<br />

and Guidance Division, for his interest and assistance in every phase of the<br />

evaluation.<br />

Mr. Daniel Penrith, Mathematician and Computer Programmer, Data Processing<br />

Branch, Supporting Services Division, for writing and initially executing the<br />

data reduction and statistical analysis computer programs.<br />

Mr. Paul Letzter, Mathematician and Computer Programmer, Data Processing<br />

Branch, Supporting Services Division, for his guidance in completing the writing<br />

of the computer programs and completing the execution of the data reduction<br />

and statistical analysis.<br />

Mr. Russell Spadea, Mathematician and Computer Programmer, Data Processing<br />

Branch, Supporting Services Division, for writing special statistical computer<br />

programs.<br />

Mr. George N. Bagwell, Surveying Technician, Plant Engineering Branch, Supporting<br />

Services Division, for surveying the monitor site and related points.<br />

The personnel of Plant Services Branch, Supporting Services Division, for their<br />

cooperation and assistance in the site preparation and the receiving and<br />

installation of the Glide Slope Monitor Subsystem.<br />

Messrs. William A. Stephens, Alvan T. Bazer, and Kenneth B. Johnson, pilots,<br />

Flight Operations Branch, Aviation Facilities Division, for their cooperation<br />

and assistance as flight crews in the flight tests.<br />

Mr. Joseph Harrigan, Air Traffic Controller, Landing Branch, Communications<br />

and Guidance Division, for his assistance at the local ATC Tower during the<br />

flight tests.<br />

iii


TABLE OF CONTENTS<br />

Page<br />

INTRODUCTION<br />

Purpose<br />

Background<br />

DISCUSSION<br />

Theory of Operation<br />

Description of Equipment<br />

Installation of Equipment<br />

TEST AND EVALUATION METHODOLOGY<br />

Method for Tests<br />

Procedures and Conditions for Tests<br />

Flight Tests<br />

Data Collection<br />

Data Reduction<br />

Data Analysis<br />

RESULTS<br />

Test Results<br />

Experienced Problems<br />

CONCLUSIONS<br />

REFERENCES<br />

1<br />

1<br />

1<br />

2<br />

2<br />

4<br />

5<br />

6<br />

6<br />

7<br />

8<br />

8<br />

10<br />

13<br />

14<br />

14<br />

15<br />

18<br />

18<br />

APPENDICES<br />

A -<br />

B -<br />

Sample Plots of Reduced Data Showing the Individual Flight<br />

Tracks and the Related Error Data<br />

F and t Tests' Results of Each Flight Period, Between<br />

Some Flight Periods of the Same Aircraft and Between<br />

the Aircraft of Some Flight Periods<br />

v


LIST OF ILLUSTRATIONS<br />

Figure<br />

Page<br />

1 Relationship of Subarrays for Monopulse Antenna 19<br />

Measuring<br />

2 Phase Relationship of Wavefronts Received at Monopulse 19<br />

Antenna<br />

3 Basic Block Diagram of Glide Slope Monitor Subsystem 20<br />

4 Exploded View of Glide Slope Monitor Monopulse Antenna 21<br />

5 Monopulse Antenna Response Pattern 22<br />

6 Vector Representation of Monopulse Receiver Phase 23<br />

Measurement<br />

7 Glide Slope Monitor Receiver Equipment Block Diagram 24<br />

8 Glide Slope Monitor Sector, Range and Time Gating 25<br />

9 Glide Slope Monitor Site with Collocated Glide Slope 26<br />

Subsystems<br />

10 Glide Slope Monitor Monopulse Antenna Indicating 1°45'11.0" 27<br />

Rotation Towards Runway 13<br />

11 Glide Slope Monitor Monopulse Antenna Indicating 3°00'00.0" 28<br />

Rotation<br />

12 Glide Slope Monitor Receiver Cabinet, Front View 29<br />

13 Glide Slope Monitor Receiver Cabinet, Upper Left-Hand 30<br />

Close-In Front View<br />

14 Glide Slope Monitor Receiver Cabinet, Lower Left-Hand 31<br />

Close-In Front View<br />

15 Glide Slope Monitor Receiver Cabinet, Middle Right-Hand 32<br />

Front View<br />

16 Glide Slope Monitor Receiver Cabinet, Rear View 33<br />

17 ASR-4 Facility Beacon Pretrigger Signal Conditioning 34<br />

Equipment Located in the Trailer<br />

18 Glide Slope Monitor Receiver Subsystem Block Diagram 35<br />

vi


LIST OF ILLUSTRATIONS (continued)<br />

Figure<br />

Page<br />

19 Glide Slope Monitor RF Receiver Block Diagram 36<br />

20 Glide Slope Monitor IF Receiver Block Diagram 37<br />

21 Gulfstream One (N-377) Flight Test Aircraft 38<br />

22 Comanche (N-9093P) Flight Test Aircraft 39<br />

23 Gulf~tream One (N-377) Exposed Nose of Flight Test Aircraft 40<br />

24 Phototheodolite Aircraft Tracking Points and Related 41<br />

Aircraft TRU-l/2 Antenna Location Information (2 Pages)<br />

25 ILS Runway 13 Flight Chart (Experimental Use Only) 43<br />

26 NAFEC Data Collection System Scale Layout 44<br />

27 Glide Slope Monitor Subsystem Punched Paper Tape Format 45<br />

28 Glide Slope Monitor Subsystem Antenna Discriminator Curve 46<br />

29 December 20, 1974, Flight Period of N-377 on the 3° ILS 47<br />

Glide Slope in Terms of Degree Offset<br />

30 December 20, 1974, Flight Period of N-377 on the 3° ILS 48<br />

Glide Slope in Terms of Altitude Feet Offset<br />

31 January 10, 1975, Flight Period of N-377 on the 3° ILS 49<br />

Glide Slope in Terms of Degree Offset<br />

32 January 10, 1975, Flight Period of N-377 on the 3° ILS 50<br />

Glide Slope in Terms of Altitude Feet Offset<br />

33 January 30, 1975, Flight Period of N-377 on the 3° ILS 51<br />

Glide Slope in Terms of Degree Offset<br />

34 January 30, 1975, Flight Period of N-377 on the 3° ILS 52<br />

Glide Slope in Terms of Altitude Feet Offset<br />

35 January 29, 1975, Flight Period of N-9093P on the 3° ILS 53<br />

Glide Slope in Terms of Degree Offset<br />

36 January 29, 1975, Flight Period of N-9093P on the 3° ILS 54<br />

Glide Slope in Terms of Altitude Feet Offset<br />

vii


LIST OF ILLUSTRATIONS (continued)<br />

Figure<br />

37 February 4, 1975, Flight Period of N-9093P<br />

Glide Slope in Terms of Degree Offset<br />

38 February 4, 1975, Flight Period of N-9093P<br />

Glide Slope in Terms of Degree Offset<br />

39 February 6, 1975, Flight Period of N-9093P<br />

Glide Slope in Term3 of Degree Offset<br />

Page<br />

on the 3° ILS 55<br />

on the 3° ILS 56<br />

on the 3° ILS 57<br />

40 February 6, 1975, Flight Period of N-9093P on the 3°<br />

Glide Slope in Terms of Altitude Feet Offset<br />

ILS 58<br />

41 February 7, 1975, Flight Period of N-9093P<br />

Glide Slope in Terms of Degree Offset<br />

42 February 7, 1975, Flight Period of N-9093P<br />

Glide Slope in Terms of Degree Offset<br />

on the 3° ILS 59<br />

on the 3° ILS 60<br />

43 All Flight Periods of N-377<br />

in Terms of Degree Offset<br />

on the 3° ILS Glide Slope 61<br />

44 All Flight Periods of N-377 on the 3°<br />

in Terms of Altitude Feet Offset<br />

ILS Glide Slope 62<br />

45 All Flight Periods of N-9093P<br />

in Terms of Degree Offset<br />

on the 3° ILS Glide Slope 63<br />

46 All Flight Periods of N-9093P on the 3°<br />

in Terms of Altitude Feet Offset<br />

ILS Glide Slope 64<br />

47 Flight Period of N-377<br />

Glide Slope in Terms<br />

on the 0.35° below the 3°<br />

of Degree Offset<br />

48 Flight Period of N-377 on the 0.35° below the 3°<br />

Glide Slope in Terms of Altitude Feet Offset<br />

US 65<br />

ILS 66<br />

49 Flight Period of N-377on the 1,508 Feet Level Altitude<br />

Flight along the 3° Final Approach Path in Terms of<br />

Degree Offset<br />

50 Flight Period of N-377 on the 1,508 Feet Level Altitude<br />

Flight along the 3° Final Approach Path in Terms of<br />

Altitude Feet Offset<br />

67<br />

68<br />

viii


LIST OF ILLUSTRATIONS (continued)<br />

Figure<br />

Page<br />

51<br />

52<br />

53<br />

All Flight Period3 of N-377 and N-9093P on the 3° ILS<br />

Glide Slope in Terms of Degree Offset<br />

All Flight Periods on N-377 and N-9093P on the 3° ILS<br />

Glide Slope in Term3 of Altitude Feet Offset<br />

The Relative Locations of the Monopulse Antenna and the<br />

Fixed Target/Tower.<br />

69<br />

70<br />

71<br />

LIST OF TABLES<br />

Table<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Glide Slope Monitor Subsystem Planned Flight Tests<br />

Glide Slope Monitor Subsystem Actual Flight Tests<br />

Glide Slope Monitor Subsystem Antenna Discriminator<br />

Measured Characteristics<br />

Glide Slope Monitor Subsystem Equipment Integrated<br />

Circuit Chip Failures<br />

Glide Slope Monitor Subsystem Fixed-Tower/Target<br />

Performance<br />

Page<br />

9<br />

9<br />

11<br />

16<br />

16<br />

ix


INTRODUCTION<br />

PURPOSE.<br />

The purpose of this project was to test and evaluate the second of two feasibility<br />

model instrument landing system (ILS) glide slope monitoring subsystems<br />

to determine its aircraft position measuring accuracy along the final approach<br />

path.<br />

BACKGROUND.<br />

Flight Standards Service (FS-l) requested Systems Research and Development<br />

Service (SRDS) on November 21, 1969, to obtain the Aircraft Landing Measurement<br />

System (ALMS) from England, on a loan basis for assessing Category II and<br />

category III operations. The ALMS system was to be installed at Dulles<br />

International Airport for an operational evaluation. The ALMS system was not<br />

an all-weather type and only measured aircraft position at a few points on the<br />

final approach path. The system was never sent to the United States due to its<br />

nonavailability.<br />

ILS facilities provide alignment and descent guidance information during aircraft<br />

landing for the final approach path. During this phase of aircraft<br />

flight, they are operating at near-critical speeds, over decreasing terrain<br />

clearances, and in all-weather conditions. Therefore, it is important that<br />

the quality of these ILS signals be monitored accurately in terms of alignment,<br />

stability, amplitude, and course structure. The quality of the radiated ILS<br />

signal may be adversely affected by terrain interference, man-made obstructions,<br />

taxiing aircraft, and weather. These factors may not all be detected by "nearfield"<br />

monitors which are currently in use. Flight inspection aircraft offer<br />

the best "far-field" monitor system available today. However, these specially<br />

equipped aircraft check the ILS at each airport only every 3 or 4 months,<br />

thereby imposing a serious time lag in the ILS "far-field" monitor system that<br />

is available today as well as being a great financial burden.<br />

In attempting to develop an all-weather final approach path aircraft measuring<br />

system as well as an ILS monitoring system, SRDS distributed a Request For<br />

Proposals (RFP). The RFP was based on the concept of measuring selected user<br />

aircraft trajectories and statistically analyzing these to determine if the<br />

ILS alignment had deviated from an acceptable amount. This technique is valid<br />

provided the sample is large enough to average out random errors. Many<br />

proposals were submitted by private contractors.<br />

Due to the requirements of ILS monitoring and aircraft position measuring<br />

under all-weather conditions and the desirability of not adding additional<br />

avionics equipment to the user aircraft, only the Westinghouse Electric<br />

Company (WE Co.) (DOT-FA72-WA2837) and Airborne IGstruments Laboratory (AIL Co.)<br />

Division of Cutler-Hammer Systems (DOT-FA72-WA2849) proposals were considered<br />

technically acceptable by the proposal evaluation team consisting of representatives<br />

of SRDS, FS-l, Airways Facilities (AF) and the National Aviation ~<br />

Facilities Experimental Center (NAFEC). The systems proposed also have the<br />

potential for determining pilot warnings when the aircraft is below a safe<br />

altitude envelope.<br />

1


The AIL Co. system was tested and evaluated at NAFEC: the results were given<br />

in report <strong>FAA</strong>-RD-74-66, dated April 1974. This report describes only the<br />

WE Co. system test and evaluation. Due to several cost overruns and the<br />

eventual depletion of available contract dollars approved and allocated to<br />

this effort, only the glide slope monitor subsystem was built to completion<br />

by WE Co. and later installed at NAFEC.<br />

DISCUSSION<br />

THEORY OF OPERATION.<br />

The glide slope monitor subsystem employs a monopulse phase comparison concept,<br />

as indicated in figures 1 and 2. The antenna consists of two separate inline<br />

antennas which receive the same radiofrequency (RF) pulse. The phase difference<br />

developed by the two receiving antennas is a measure of the RF signal angle off<br />

boresight for the radiation source (user aircraft transponder antenna). In<br />

figure 2, the phase difference can be seen to be equal to zero for an aircraft<br />

on boresight (approximately 3° for the glide slope).<br />

The overall system block diagram depicting the tie-in between the user aircraft,<br />

the airport surveillance ,radar (ASR), the air traffic control (ATC) tower<br />

(terminal building), and the ILS glide slope monitor subsystem is shown in<br />

figure 3. The glide slope monitor monopulse receiving antenna was installed<br />

adjacent to the commissioned glide slope transmitting antenna but farther offset<br />

from it by approximately 100 feet (30.481 meters), and the monitor antenna<br />

system is tilted back so that the boresight axis is aligned with the ILS glide<br />

slope of approximately 3°. The glide slope monitor antenna is tilted sideways<br />

toward the runway by approximately 1° and 45 minutes (~1.75°) to account for<br />

the sideways offset from the runway centerline, thereby improving the monitor's<br />

close-in measurement accuracy.<br />

The antenna consists of individual distribution networks built of a low<br />

dielectric constant microstrip. The antenna array consists of two subarrays<br />

of 17 dipoles each; one subarray on each side of the antenna array (figur:e 4).<br />

The sum circuit is on one side of the stripline divider board, while the difference<br />

circuit is on the other side of the board. The glide slope monitor<br />

monopulse antenna consists of a collinear array of 34 vertical dipoles. The<br />

antenna is approximately 32 feet (~9.75 meters) long, and its bottom is<br />

approximately 3 feet (~l meter) off the ground. The 17th dipole of each subarray<br />

is physically mounted in an outrigger (extension) of the main antenna.<br />

It was added based on experimental antenna range data of the main antenna. The<br />

outrigger was built because it was the cheaper approach to suppressing the first<br />

difference sidelobe to 42 decibels (dB) below the main lobe sum.<br />

The glide slope monitor antenna has a vertical half-power beam width of 2.5° and<br />

sidelobes which are 30 dB down from the peak of the antenna patterns. The<br />

combination of the narrow vertical beamwidth, low sidelobes and the height of<br />

the antenna above ground minimize ground reflection errors. The antenna array<br />

patterns are shown in figure 5. The sum (~) of the signal from all dipoles is<br />

2


plotted versus the difference (~) from a top array of dipoles minus a bottom<br />

array of dipoles. The monopulse angle measurement is made from the leading<br />

edge of the first pulse of the received aircraft ATC beacon transponder reply<br />

so that the multipath reflections from various objects such as hangars, terminal,<br />

aircraft, etc., cause minimum errors.<br />

To meet the desired system angular accuracy and resolution requirements, the<br />

amplitude ratio between the E and 6 channels is measured by converting to a<br />

phase difference (0) (figure 6). The antenna difference output is then rotated<br />

90 electrical phase degrees and vectorially added to the channel by a commutating<br />

hybrid circuit in the hybrid coupler box. The hybrid coupler also converts<br />

the initial amplitude difference into a phase difference. The system<br />

phase accuracy is preserved and the drift effects are offset by alternately<br />

adding the difference signals at ±90 electrical phase degrees.<br />

The two vector signals are processed by the monopulse receiver (figure 7). The<br />

zero crossings of the intermediate frequency (IF) signal are converted to binary<br />

pulses which are used to start and stop a high-speed binary counter. The binary<br />

count retained by the counter is directly proportional to initial amplitude<br />

ratio between the signal amplitude appearing at the ~ and ~ antenna terminals.<br />

The digital output is fed into two separate zero-crossing detector channels and<br />

by means of a digital-to-analog converter is displayed on a storage oscilloscope.<br />

All of the raw data are time buffered and recorded on a standard punched paper<br />

tape.<br />

The glide slope monitor subsystem has a data burst rate of approximately 4<br />

seconds, based on the ASR scan rate of approximately 15 revolutions per minute<br />

(r/min), that provides data points approximately every 1,000 feet (~304.81 meters)<br />

along the final approach path which corresponds to airspeeds of approximately<br />

150 knots (250 ft/s) (76.2 meters/s) at approximately 8 to 9 nautical miles (nmi)<br />

(~14.82 to 16.67 kilometers) from the runway threshold. Thus, every 4 seconds,<br />

a burst lasting approximately 50 milliseconds, equal to 20 ATC beacon replies,<br />

is received. These individual measurements are digitally recorded on punched<br />

paper tape. Offline and at a later time, the individual measurements are<br />

statistically processed and for each received burst, a single off-boresight<br />

angle measurement is developed; one per ASR scan. Thus, the glide slope<br />

monitor monopulse antenna and receiver would determine the angular deviation of<br />

the user aircraft from the IL5 glide slope. In performance monitoring of the<br />

IL5 glide slope, a statistical analysis of all recorded flights would fill the<br />

data gaps.<br />

In order to reduce interference, the receiver processor is activated only when<br />

the ASR is illuminating the angular sector (309 to 014 0<br />

true) of the glide slope<br />

receiver antenna covering the final approach path from beyond the outer marker<br />

(OM) to the runway threshold as shown in figure 8. The beacon pretrigger (to),<br />

north mark (NM), and azimuth change pulses (ACP) from the ASR-4 are received at<br />

the glide slope monitor site. The NM and ACP are used to establish the glide<br />

slope monitor receiver angle gating times (approximately 1/8 of the ASR-4 scan).<br />

Time gating is also employed which is referenced from the to pulse so as only<br />

to receive replies from threshold to 10 nmi (18.52 kilometers) in range.<br />

3


The receiver has "search" and "track" modes. Upon recelvlng two successive<br />

returns. the receiver shifts from the "search" mode to the "track" mode. In<br />

the "track" mode. the receiver will accept only signals having a normal period<br />

of the interrogating radar with an additional ±125 feet (±38.l meters) timing<br />

gate. The receiver automatically reverts to the search mode for each antenna<br />

scan. Therefore. the first two returns of each ASR-4 scan will always be in<br />

the search mode. The range accuracy is minimized to approximately ±500 feet<br />

(±152.4 meters) if the system is completely aligned in range. The minimum<br />

inaccuracy is due to jitter in the signal of the transponder reply.<br />

DESCRIPTION OF EQUIPMENT.<br />

The glide slope monitor site equipment and its relationship to other collocated<br />

equipment is shown in figure 9. In the center of the photograph. the 26-foot<br />

(7.925 meters) long main section of the monopulse antenna is shown supported by<br />

a two piece frangible 26-foot·-long (7.925 meters). 3.000-pound (1360.8 kilograms)<br />

steel I-beam bolted to a NAFEC-constructed concrete pad that was built to contractor<br />

specifications. The antenna outriggers are clearly indicated. with the<br />

bottom outrigger clearing the ground by approximately 3 feet (0.91443 meter).<br />

A standard dual red warning lamp is located at the top of the I-beam.<br />

A steel all-weather enclosure (6 feet x 4 feet x 2 feet) (1.82886 meter x 1.21924<br />

meter x 0.60962 meter) contains the glide slope monitor receiver and recording<br />

equipments. This enclosure has an upper and lower RF and particle-filtered vents<br />

on each side which are open when the subsystem is in use.<br />

The signal-receiving conditioning equipment for the ASR-4 synchronization and<br />

NAFEC range real timing signals that are necessary for the glide slope monitor<br />

subsystem are contained in the trailer. The trailer also provides space for<br />

test personnel to escape the weather.<br />

The category III ILS glide slope system with antenna is located on the righthand<br />

side of figure 9. A microwave landing system (MLS) elevation site is<br />

located between the two aforementioned elevation parameter subsystems.<br />

In figure 10. the monopulse antenna sideways rotation of 1°. 45 minutes.<br />

11.0 seconds (1.75305556°) toward the runway centerline is clearly indicated.<br />

Nearby. toward the right of the photograph. is a portion of a weather transmissometer<br />

system.<br />

In figure 11. the 3°. 0 minutes. 0.0 seconds (3.0°) forward and upward antenna<br />

rotation is shown making the monopulse antenna boresight aligned with the 3° ILS<br />

glide slope. The slightly to-the-rear site offsets from the category III ILS<br />

glide slope for the collocated systems are clearly indicated.<br />

In figure 12. the front view of the all-weather receiver enclosure with front<br />

doors open is shown. Two side-by-side 19-inch (0.48260 meters) racks are<br />

indicated. The right-hand-side rack is radiofrequency interference (RFI)<br />

protected. Further RF shielding and isolation for the RF-IF receiver was<br />

provided by adding a vertical. top-to-bottom. steel bulkhead in the center of<br />

4


the cabinet. On this wall, the angles and brackets were electrically bonded<br />

to the cabinet walls. RF feed-through was incorporated between the two halves<br />

of the cabinet in this wall. Separate thermostatically controlled heaters and<br />

fans were in each of the cabinet halves. Thermal insulation was increased in<br />

the cabinet by cementing 1-inch thick foam rubber on all internal surfaces of<br />

the cabinet walls. The functions of each rack are labeled in figure 12.<br />

In figures 13, 14, and 15, a closeup view of the upper and lower left-hand<br />

quarters and the right-hand center, respectively, of the front view of the<br />

receiver cabinet are shown. The titles to the indicators, switches, test<br />

points and control knobs are readable in most cases.<br />

In figure 16, the receiver cabinet rear view with rear doors open is shown.<br />

The left side is RFI protected. On the right side, at the bottom, the empty<br />

case for the electrical heater unit is shown. Opposite it, there is another<br />

black-colored unit which is the blower.<br />

In figure 17, a 19-inch rack is shown that was located inside the trailer.<br />

It contains the signal conditioning utilized for preparing the ASR-4 to signal<br />

for the glide slope monitor's use. Portions of the video trigger distribution<br />

amplifier (type FA-8927) and the line compensator amplifier (type FA-8926) were<br />

required for final shaping of the to pulse. The NM, ACP, and serial timing<br />

signals were received with 1:1 pulse transformers.<br />

In figure 18, the glide slope monitor receiving equipments are indicated in<br />

a block diagram. Similarly, the RF and IF receiving units are shown in figures<br />

19 and 20, respectively.<br />

INSTALLATION OF EQUIPMENT.<br />

The contractor delivered all of the glide slope monitor equipment to the NAFEC<br />

site on May 16, 1974. NAFEC heavy equipment operators, with their unloading<br />

equipment, removed the glide slope monitor subsystem from the delivery truck<br />

and placed it on wooden feet on the ground. On May 22 and 23, 1974, under the<br />

guidance of WE Co. personnel, the NAFEC heavy equipment operators and equipment<br />

constructed the physical installation of the glide slope monitor at the site.<br />

The contractor's civil engineer guided the physical alignment of the monopu1se<br />

antenna, and later, surveyed it.<br />

The contractor personnel were at NAFEC from June 25, 1974, to June 28, 1974,<br />

and from July 29, 1974, to August 1, 1974, during which times they mechanically<br />

and electronically checked out and aligned the glide slope monitor subsystem.<br />

During the second time period, static alignment tests were accomplished using<br />

surveyed locations (x,y,z) in the monitor antenna's far field, locations on<br />

runway 13 and its taxiway, and a truck containing a beacon transponder with a<br />

~-axis variable omniantenna attached to a 41-foot (12.4972 meter) mast. On<br />

August 1, 1974, the search/track mode data indicator was determined to be<br />

meaningless. Its effect on data reduction was not yet known.<br />

5


On July 25, 1974, the contractor's antenna experts were at NAFEC, at which time<br />

they inspected and improved the mechanical connections and alignments of the<br />

monopulse antenna on the I-beam support. NAFEC heavy equipment operators and<br />

equipment were utilized by the contractor personnel this day.<br />

From October 21, 1974 to October 22, 1974, the contractor's digital circuit<br />

design experts were at NAFEC at which time they installed and checked out<br />

new search/track mode circuitry.<br />

Later the effect of the search/track mode indicator in the data reduction was<br />

determined to be significantly helpful in the offline data reduction process.<br />

Thus, the new search/track mode circuitry installation completed the contractor's<br />

installation of the glide slope monitor subsystem.<br />

TEST AND EVALUATION METHODOLOGY<br />

METHOD FOR TESTS.<br />

The test program was divided into two categories, i.e., laboratory test and<br />

flight tests. The laboratory test, monitored by NAFEC program area personnel,<br />

was performed by the contractor during May 7 through May 9, 1974, in Baltimore,<br />

Maryland. The purpose of laboratory testing was for the contractor to demonstrate<br />

hi~ compliance with the procurement specifications and provide a measure<br />

for comparison in the event the contractor equipment deteriorated during the<br />

installation or later during the flight tests.<br />

The flight tests were divided into two phases; namely, contractor-controlled<br />

tests and NAFEC-controlled tests. The contractor required an airborne test<br />

target during his installation work. A minimal number of flights were required.<br />

The NAFEC-controlled tests were made to determine the statistical error values<br />

for the glide slope monitor subsystem. The original NAFEC flight test program<br />

required 27 flight hours on one target aircraft. Two aircraft were actually<br />

flown; a Gulfstream One (N-377) (figure 21) for approximately 15 flight hours<br />

and a Comanche (N-9093P) (figure 22) for approximately 11 flight hours. All<br />

NAFEC tests were performed by NAFEC personnel.<br />

The ILS glide slope flightpath was flown approximately 30 times by each aircraft<br />

because this region of the glide slope monitor antenna pattern was the most ..<br />

accurate. Off-of-the-glide-slope flights and a number of level flights along<br />

the length of the ILS glide slope flightpath were flown by N-377. Additional<br />

flights were planned for N-377; however, the data reduction in the middle of<br />

N-377's flight tests indicated relatively poor performance by the glide slope<br />

monitor subsystem, dictating an analysis of the operation of the equipment on<br />

site, which eventually was accomplished by the contractor. The flight tests<br />

were halted February 20, 1975, until the contractor equipment analysis was<br />

completed on August 16, 1975. At that time, due to the lack of contractual<br />

funds, NAFEC, together with SRDS, decided to discontinue the remaining planned<br />

flight tests, and to complete the data analysis and reporting of the previously<br />

collected data.<br />

6


The glide slope monitor subsystem data were real-time correlated with the<br />

ground-based space position measurements by the phototheodolite facility.­<br />

This facility developed computer-type data, and it had photographic data only<br />

as backup data. The photographic data were not used in this effort. Computer<br />

programs compatible with the IBM 7090 computer were developed by NAFEC that<br />

reduced, merged, and statistically analyzed all the ground-based data.<br />

PROCEDURES AND CONDITIONS FOR TESTS.<br />

The laboratory test was conducted by the contractor, with the NAFEC personnel<br />

only monitoring the test. The test was conducted under controlled laboratory<br />

conditions, which demonstrated the proper operation of the glide slope monitor<br />

subsystem, as stated in the contract 5pecifications.<br />

NAFEC constructed, to contractor specification, two concrete pads at a contractor~requested<br />

and NAFEC-approved site. NAFEC supplied electrical power,<br />

contractor equipment installation assistance and equipment, ASR-4 facility<br />

synchronization signals via landlines, ground-to-air communications, a shelter<br />

for site personnel, and a telephone. The contractor provided additional equipment<br />

necessary for the completion of the installation and debugged the monitor<br />

installation.<br />

NAFEC provided the two target aircraft and aircrews for this effort during the<br />

NAFEC flight tests. The only modification to the aircraft was the minor addition<br />

of an ATC radar beacon system omni aircraft antenna (TRU-l/2) in the nose<br />

(inside the radome) of the N-377 aircraft (figure 23) and the interconnection<br />

of coaxial cable to the aircraft's beacon transponder, all in place of the<br />

plane's antenna.<br />

The nose of N-377 functioned as the phototheodolite facilities tracking point<br />

(figure 24). This aircraft's course deviation indicator was replaced by a<br />

microammeter-scaled indicator. The indicator was clamped to the pilot's steering<br />

yoke during the test flights. The other aircraft, N-9093P, was tracked at<br />

the midpoint between its wingtip landing lights from 7.0 nmi to approximately<br />

1.6 nmi (12.9640 kilometers to 2.96 kilometers) along the flightpath.<br />

Between approximately 1.6 nmi (2.96 kilometers) and runway threshold, the aircraft's<br />

nose wheel was the tracking point (figure 24). Both aircraft used the<br />

4096 code radar/beacon system. They flew the NAFEC runway 13 final approach<br />

path to the runway's threshold (figure 25). The test flights were flown in<br />

time periods varying between 2 and 4 hours. Due to the glide slope monitor<br />

subsystem being installed in the open field and the phototheodolite optical<br />

tracking system (figure 26), the test flights were flown in visual flight rules<br />

(VFR) weather.<br />

The glide slope monitor subsystem was accurately time correlated to NAFEC range<br />

time to the hundredth of a second and recorded in binary coded decimal (BCD)<br />

format on the punched paper tape. The recorded time for each scan was the time<br />

of the first received reply of the scan. This time was slightly adjusted in<br />

the thousandths of a second in the data reduction, depending on the number of<br />

good replies that statistically determined the angular value of the glide slope<br />

monitor's scan measurement.<br />

7


FLIGHT TESTS.<br />

The planned flight tests (table 1) were being carried out from December 20,<br />

1974, through February 20, 1975 (table 2). During February 1975 data reduction<br />

for the first two flight dates (December 20, 1974, and January 10, 1975) was<br />

accomplished. On the first flight date, the glide slope monitor subsystem<br />

mean error was approximately -0.2°. On the second flight date, the mean error<br />

was approximately +0.1°. Thus, a varying bias was seen in the monitor subsystem<br />

which was considered unacceptable and the flight tests were discontinued.<br />

The reduced data were shown to the Gontractor in February 1975, and this<br />

resulted in an onsite test and analysis of the monitor subsystem which was<br />

completed in August 1975. The contractor concluded that the monitor subsystem<br />

probably needs an improved receiver beacon defruiting and filtering equipment.<br />

NAFEC, in conjunction with SRDS, terminated the testing effort at this point,<br />

thus cancelling the balance of the planned flights. SRDS then directed NAFEC<br />

to complete the evaluation based on the previously collected data and to<br />

document the evaluation with a final report.<br />

DATA COLLECTION.<br />

The glide slope monitor subsystem digitally records its receiver output data<br />

on punched paper tape. The punched tape format is shown in figure 27. The<br />

contractor developed and implemented this format with minor modifications<br />

suggested by NAFEC based on its testing experience.<br />

The phototheodolite facility digitally records on magnetic computer tape the<br />

elevation and azimuth tracking angles every 0.5 seconds from each of the three<br />

inuse of the four tracking towers, along with NAFEC range time. A real-time<br />

solution is printed out and plotted of the test target's flightpath to confirm<br />

the aircraft's action during the test. The real-time printout offers Cartesian<br />

track data every second, referenced to the test's theoretical touchdown point<br />

on the runway 13 centerline. The real-time plot offered a three-dimensional<br />

trace (x-y and y-z) of the test aircraft's flightpath. Photographic data were<br />

taken as backup data, but not used.<br />

An ATC specialist assisted the test operations by coordinating the test with<br />

approach control in the NAFEC Airport Tower and by observing the actual flight<br />

test environment on the ASR-4 maintenance monitor in the equipment room of the<br />

airport tower. The test area was defined by extending the runway 4/22 centerline<br />

from its intersection with the runway 13/31 centerline in both directions<br />

for 10 nmi. Extending this 10 nmi (18.5 kilometers) radius in the direction of<br />

the runway 13 final approach path by a full 180 0<br />

rotation set the test area<br />

layout. The NAFEC ATC Tower controlled altitude from zero to 5,000 feet<br />

(1524 meters).<br />

The ATC specialist could then observe all ASR-4-detected targets in the test<br />

area as well as the designated test target. During the tests, nontest beacon<br />

replying aircraft were identified. Through the ATC tower personnel, those<br />

8


TABLE 1.<br />

GLIDE SLOPE MONITOR SUBSYSTEM PLANNED FLIGHT TESTS<br />

ROUTES FLIGHTS (QUM~TITY) N-377<br />

ILS 3.0 0 Glide Slope 30<br />

1.8 0 Right of ILS 3.0 0 Glide Slope 5<br />

1.8 0 Left of ILS 3.0 0 Glide Slope 5<br />

0.35 0 Below ILS 3.0 0 Glide Slope 5<br />

0.35 0 Above ILS 3.0 0 Glide Slope 5<br />

1.8 0 Right 0.35 0 Below ILS 3.0 0 Glide Slope 5<br />

1.8 0 Left 0.35 0 Below ILS 3.0 0 Glide Slope 5<br />

1.8 0 Right 0.35 0 Above ILS 3.0 0 Glide Slope 5<br />

1.8 0 Left 0.35 0 Above ILS 3.0 0 Glide Slope 5<br />

Level Flight at Middle-Marker Altitude 5<br />

Level Flight at Outer Marker Altitude 5<br />

Flight Trips - 80 Est. Hours/Trip - 0.20 Est. Flight Hours - 26.40<br />

TABLE 2.<br />

GLIDE SLOPE MONITOR SUBSYSTEM ACTUAL FLIGHT TESTS<br />

ROUTES<br />

FLIGHTS (QUANTITY)<br />

N-377 N9093P<br />

ILS 3.0 0 Glide Slope 39 47<br />

0.35 0 Below ILS 3.0 0 Glide Slope 5 o<br />

Level Flight at Outer Marker Altitude 8 o<br />

Level Flight at Middle Marker Altitude 7 o<br />

Actual Flight Hours: N-377 - 15 N-9093P - 11<br />

9


targets in the test area were requested to stop their beacon replies (as air<br />

traffic conditions permitted). The glide slope monitor subsystem test personnel<br />

were momentarily anq continually notified by the ATC specialist during the<br />

tests of the presence and status of nontest, beacon replying aircraft.<br />

The test aircraft, phototheodolite facility, ATC specialist and glide slope<br />

monitor subsystem during the tests were all in two-way very high frequency (VHF)<br />

communications with each other on NAFEC test frequencies. These frequencies<br />

were assigned with the test aircraft for the test period. The ground-based<br />

test personnel used the NAFEC phone system for backup communications.<br />

DATA REDUCTION.<br />

The contractor provided the discriminator characteristics (table 3 and<br />

figure 28) of the monopulse antenna. They were computed by the contractor<br />

from the antenna's measurements made on the contractor's antenna range.<br />

The glide slope monitor subsystem's recorded data on punched paper tape were<br />

converted to computer magnetic tape on a General Automation Mini-Computer<br />

System (model SPC-16/45). The entire flight period's data were placed on one<br />

computer magnetic tape. These recorded data were separated flight-by-flight in<br />

an IBM 7090 computer system. Each flight's data were separated scan-by-scan<br />

where there were approximately 15 scans per minute (ASR-4 antenna revolves at<br />

15.5 r/min). The number of beacon replies per scan varied from 10 to 90, and<br />

these replies had to be reduced to one reply (one angle of deviation per scan).<br />

The contractor suggested using the following technique that was, in minor<br />

ways, modified accordingly by NAFEC through its increasing experience in reducing<br />

this type of data. The contractor agreed to the minor modifications of the<br />

technique.<br />

In this technique, the scan of replies comprised a maximum of 16 replies for a<br />

total duration of not more than 47 milliseconds (ms). During this time, an<br />

aircraft flying on the final approach path at 150 knots (67 meters per second)<br />

would traverse approximately 12 feet (3.658 meters) in range and 0.5 feet<br />

(0.152 meters) in altitude. These changes were small enough so that the<br />

average values of the measurements made on all replies of the scan provided<br />

a good measurement characterization for the scan, such that none of these<br />

measurements were interference corrupted.<br />

In order to handle the interference corruption, the bad replies must be rejected<br />

prior to forming the averages. This rejection is based on the deviation that<br />

an interference-corrupted angle measurement reply has from the majority of the<br />

angle measurement replies in the scan. Originally, at least 10 unrejected<br />

measurements must have remained to generate angular output data. This figure<br />

of 10 valid replies was changed to 25 percent of the number of track mode scan<br />

replies after the search mode replies were automatically rejected. This provided<br />

a sufficient number of output data, scan-by-scan, for the flight. Then<br />

the median measurement (or each of the two closest in value to it in the case<br />

of an even number of measurements) must be one of those that remain. The median<br />

value was therefore used as a standard against which the bad measurements were<br />

rejected. The median, itself, may deviate from the majority of good measurements<br />

by the normal measurement tolerance for uncorrupted measurements.<br />

10


TABLE 3.<br />

GLIDE SLOPE MONITOR SUBSYSTEM ANTENNA DISCRIMINATOR<br />

MEASURED CHARACTERISTICS<br />

Relative to Boresight<br />

Elevation Angle<br />

(Space Degrees)<br />

-2.97<br />

-2.64<br />

-2.31<br />

-1.97<br />

-1.65<br />

-1.32<br />

-0.99<br />

-0.66<br />

-0.33<br />

+0.05<br />

+0.38<br />

+0.71<br />

+1.04<br />

+1.37<br />

+1. 70<br />

+2.03<br />

+2.36<br />

+2.69<br />

+3.02<br />

Measured Receiver Output<br />

Electrical Phase Angle<br />

(Electrical Degrees)*<br />

+144.6+0<br />

+135.7+0<br />

+126.7+0<br />

+117.3+0<br />

+105.7+0<br />

+ 92.0+0<br />

+ 74.4+0<br />

+ 53.7+0<br />

+ 26.7+0<br />

5.8+0<br />

- 36.5+0<br />

- 63.3+0<br />

- 87.4+0<br />

-106.3+0<br />

-121. 9+0<br />

-134.8+0<br />

-144.9+0<br />

-153.9+0<br />

-162.8+0<br />

* 0 is the receiver phase output for an input having zero difference<br />

component such that 0 is nominally 180°.<br />

11


Therefore, the initial rejection criterion was taken as a peviation of more<br />

than twice the maximum measurement error as follows:<br />

Median<br />

Median<br />

< 1°, use test value of 0.0325°<br />

< 1°, use test value of 0.065°.<br />

Another refinement in the rejection process was executed on the unrejected<br />

measurements by rejecting any which deviated excessively from the mean of the<br />

remaining replies. Let the angle measurements remaining after the above<br />

median rejection test was made be the N quantities aI, a2' "" and, with a<br />

mean mN.<br />

Test each of the N measurements by determining the quantities Ck= (mN-ak) where<br />

k = 1, 2, .•. , N.<br />

It is assumed that only one of the N measurements is interference corrupted.<br />

Thus, an appropriate criterion is that Ck ~ N-l times the expected maximum<br />

random error for uncorrupted measurements. N<br />

Mean<br />

Mean<br />

use test value of 0.0163°<br />

use test value of 0.0325°.<br />

Characterization of the angle information in a scan was the statistical average<br />

of the remaining replies after the search mode criteria and the above two tests<br />

were applied. The total number of replies and the unrejected balance were continually<br />

noted in the reduced data printout.<br />

NAFEC surveyed the glide slope monitor subsystem antenna, after its installation,<br />

to determine the antenna's relationships with the NAFEC grid system. This<br />

information was necessary, due to the requirement of coorientation of the<br />

phototheodolite facility track data with the glide slope monitor antenna's zerophase-angle<br />

point and axes. The antenna zero-phase-angle point is:<br />

x<br />

y<br />

Z<br />

112,302.776 feet (34231.00915 meter)<br />

113,591.996 feet (34623.97630 meter)<br />

10,085.574 feet (3074.18381 meter).<br />

The antenna rotation down runway 13 (y, z axes) is 3 degrees, 00.0 minute,<br />

00.0 seconds (3.0°). The antenna rotation toward the runway 13 centerline is<br />

(x, z axes) 1 degree, 45 minutes, 11.0 seconds (1.75305556°).<br />

The average antenna-face rotation (at the zero-phase-angle point) about the z<br />

axis in a counterclockwise direction is 1 degree, 52 minutes, 16.6 seconds<br />

(1.87127778°) •<br />

12


An additional survey point, located the theoretical touchdown point (TD) on the<br />

runway 13 centerline at:<br />

X<br />

Y<br />

Z<br />

111,816.186 feet (34082.69165 meter)<br />

113,697.418 feet (34656.14046 meter)<br />

10,072.987 feet (3070.34717 meter)<br />

The TD point was dependent on where the ILS category III glide scope antenna's<br />

radiated cone meets the ground surface. This point was necessary to properly<br />

orient the phototheodolite facility's real-time data and plots.<br />

The phototheodolite facility's recorded data (azimuth and elevation angles from<br />

three tracking towers plus NAFEC rang~ time) was offline processed in an IBM<br />

7090 computer system. It developed the three tower tracking solution for the<br />

test aircraft in Cartesian and spherical coordinates. These data were translated<br />

to a reference point in the NAFEC grid (the monopulse antenna zero-phaseangle<br />

point). The data were then rotated into the boresight line of the<br />

monitor antenna (x-z axes). This part of the computer programming has been<br />

operational, at NAFEC, since 1964. An additional rotation was made to this<br />

computer program (x-y axes). No y-z axes rotation was necessary, due to the<br />

monitor data having the boresight angle added to it.<br />

The monitor and theodolite data were merged in the IBM 7090 computer system,<br />

where the two-flightpath aircraft tracks were compared and the difference data<br />

in terms of elevation angle degrees and altitude feet were generated. Besides<br />

the merged data computer printout, there was a summary merged data computer<br />

printout. Plots were made on a digital Calcomp plotter (model UNT-7000) of<br />

the track data and difference data (both in elevation angle degrees and in<br />

altitude feet). Samples of the individual flight data plots are shown in<br />

appendix A.<br />

DATA ANALYSIS.<br />

The mean error and two-sigma error variations in both angle (degrees) and<br />

altitude (feet) for each aircraft along each flightpath route, so as to contain<br />

an adequate number of data points, were statistically developed by route bins<br />

which were set at 0.166666 nmi (0.30866543 kilometer) width along the flightpath<br />

routes. The means, and two-sigma plot indicators, were arbitrarily located at<br />

the center of each data bin. If the values of the means or either of the twosigma<br />

values equalled or exceeded the vertical axis limits, the mean or twosigma<br />

plot indicators were shown at the respective axis limits. Just above<br />

the horizontal slant range axis, the number of data points in each bin were<br />

listed. The slant range axis on the plots originated (0.0 nmi) on the runway<br />

centerline at a point parallel to the zero-phase center of the monopulse monitor<br />

antenna. The contractual design goal measurement accuracy of 0.023° (10<br />

times more accurate than the ILS glide slope accuracy) was shown on the error<br />

plots by dashed lines centered about the monitor antenna's boresight in terms<br />

of degrees or feet accordingly.<br />

13


The error data were reviewed and those error data that exceeded 1° in magnitude<br />

when beacon-replying, known nontest aircraft were flying in the test area, were<br />

deleted from the data set. Other error data, less than 1 percent of the total<br />

data, that exceeded 1° in magnitude, were also deleted from the data set. The<br />

assumption was that these error data were caused by beacon replying from unknown<br />

nontest aircraft, either flying above the local ATC controlled altitude in the<br />

test area or in the test area, and beacon replying on a code not used by local<br />

ATC. The remaining error data which were all ~ 1° in magnitude were included<br />

in the test results.<br />

RESULTS<br />

TEST RESULT.<br />

Plots of the statistical data are shown for each aircraft on each of the flight<br />

routes of each flight period. Figures 29 through 34 represent the statistical<br />

error data of the N-377 aircraft flying on the 3° glide slope flightpath for<br />

each flight period. Figures 35 through 42 represent the statistical error<br />

data of the N-9093P aircraft flying on the 3° glide slope flightpath for each<br />

period. Each flight period/route has its own distinctive error, most of which<br />

are negative (where the phototheodolite measurement system indicated the target<br />

aircraft was at a higher altitude than that indicated by the WE Co. measurement<br />

system). It should be noted that for the entire January 10, 1975, flight<br />

period, the error was positive.<br />

Statistical groupings were made to include all flight period data on each route<br />

for each aircraft. Figures 43 and 44 represent the statistical error data of<br />

the N-377 aircraft flying on the 3° glide slope flightpath for all such flight<br />

periods. Figures 45 and 46 represent the statistical error data of the N9093P<br />

aircraft flying on the 3° glide slope flightpath for all such flight periods.<br />

Figures 47 and 48 represent the statistical error data of the N-377 aircraft<br />

flying the -0.35° below the 3° glide slope flightpath. Figures 49 and 50 represent<br />

the statistical error data of the N-377 aircraft flying at a level<br />

1,508 feet (459.654 meter) altitude along the 3° glide slope flightpath intersecting<br />

the glide slope at the OM. No group statistics were developed for the<br />

230 feet (70.106 meter) altitude-level flightpath, since only two of the seven<br />

flights resulted in collected data.<br />

The statistical error data on the test result plots do not fall within design<br />

goal tolerance accuracy limits. The statistical error data group results vary<br />

according to the influences of the individual flight period's statistical error<br />

data biases.<br />

Statistical error data were developed regardless of aircraft type (N-377 and<br />

N-9093P) or flight period for all 3° ILS glide slope flying, as shown in<br />

figures 51 and 52. This statistical grouping accounts for 76 flights of<br />

reducible data.<br />

14


Statistical analysis of the error data by testing to determine that the<br />

variances are from the same population (F tests) and the means are from the<br />

same population (t tests) were accomplished. They are shown in appendix B.<br />

Within each flight period the error data from the earlier to later times were<br />

examined. Also, the error data from flight period to flight period for the<br />

same aircraft and route were examined. A special examination of the error data<br />

from different flight periods and different aircraft for the same flight route<br />

was accomplished.<br />

EXPERIENCED PROBLEMS.<br />

1. The electrical schematics and wire lists provided by the WE Co. on the<br />

glide slope monitor subsystem for the installation debugging period, and later<br />

in fixing the equipment failures, were found not to be completely correct.<br />

Many paperwork errors were uncovered in repairing the equipment. They were<br />

noted and the corrections were shown to WE Co. personnel.<br />

2. A number of integrated circuit chips failed following the installation<br />

completion. They are listed in table 4.<br />

TABLE 4.<br />

GLIDE SLOPE MONITOR SUBSYSTEM EQUIPMENT INTEGRATED<br />

CIRCUIT CHIP FAILURES."<br />

Failure<br />

Card Position Between<br />

Location in Failed Type No. No. Pins<br />

Digital SN-7404N Hex A-1O 77 5/6<br />

Bucket<br />

Inverter<br />

Digital SN-7404N Hex A-12 18 3/4<br />

Bucket<br />

Inverter<br />

Digital SN-7404N Hex A-OS 26 12/13<br />

Bucket<br />

Inverter<br />

Digital SN-7404N Hex A-OS 97 1/2<br />

Bucket<br />

Inverter<br />

Paper Tape SN-74L98 4 Bit Perfect :r.7<br />

Punch Storage Clock<br />

Register<br />

3. WE Co. provided for the calibration of the glide slope monitor subsystem<br />

to determine if the monitor antenna's boresight angle had electronically<br />

changed by the time of a flight test period. The calibration procedure required<br />

test personnel to climb the monopulse antenna's I-beam support and, at the<br />

height of the hybrid coupler, disconnect the four semirigid coaxial cables from<br />

15


the antenna. Then he had to connect four termination resistive loads to the<br />

hybrid coupler. This ensured only the calibration beacon transponder's replies<br />

being received. This procedure was accomplished only on the first and last<br />

flight test periods. During the other flight test periods, calibrations were<br />

accomplished by using a beacon reply "free" test area with the monopulse antenna<br />

connected to the hybrid coupler. The beacon free test area is fully defined<br />

and explained in the DATA COLLECTION portion of this report. This procedure<br />

was necessary due to the high wind and cold temperature experienced during<br />

each of these flight test periods. The calibrations from these flight test<br />

periods had significant offsets from the boresight angle achieved by the WE Co.<br />

procedures for calibration. These calibration's offset-from-boresight angles<br />

were rejected due to the antenna and, subsequently, the environment being in<br />

the system. It was originally assumed that the beacon reply "free" test area<br />

was equivalent to removing the antenna from the calibration of the receiver.<br />

However, due to the high number of beacon replies per ASR-4 scan (hits/scan)<br />

during the data collection calibrations, there may have been beacon-replying<br />

nontest aircraft using beacon codes not normally used within the data collection<br />

test area that would not show up on the local ATC radar-beacon displays. This<br />

is a realistic possibility, due the high number of hits/scan and the various<br />

indicated angles within a scan of data. Therefore, the assumption was not a<br />

correct one. The two usable calibrations were very close in value and their<br />

average was used in the data reduction for all flight test periods.<br />

The ASR-4 was operated throughout the period of all the tests within its<br />

manufacturer's performance specifications, including the side lobe suppression<br />

(SLS) subsystem, as a commissioned facility of the Eastern Region. The operating<br />

conditions were checked daily at least once during each of two daily shifts<br />

of maintenance personnel. If out-of-operating-tolerances were experienced,<br />

they were noted in the facility log books. During these activity tests, no<br />

out-of-operating-tolerance conditions were recorded in the ASR-4 facility's<br />

log books.<br />

4. A large number of beacon replies (up to 90) were sometimes recorded for<br />

the test target per ASR-4 target scan. This maximally experienced number<br />

greatly exceeds the nominally expected number of 16 to 20 beacon replies for<br />

a single target (not including the effects of multipath). A limited investigation<br />

of the high beacon replies with the assistance of NAFEC beacon experts<br />

was executed. Static tests were accomplished using aircraft beacon transponders<br />

(TRU-l) situated in trucks with their omniantenna (TRU-l/2) on the trucks' mast.<br />

The ASR-4 facility's near-field was investigated for the high number of beacon<br />

replies at that site which was approximately 4,500 feet (1371.645 meters) from<br />

the glide slope monitor subsystem. No unusual number of beacon replies were<br />

observed on an oscilloscope display. Approximately 16-20 beacon replies were<br />

observed on the oscilloscope display of the transponder output at the time of<br />

the test. The ASR-4 facilitity's far-field at the glide slope monitor subsystem<br />

site was similarly investigated with the same results.<br />

During a full monitor subsystem calibration, the ASR-5 and the ASR-7 were<br />

requested to not transmit beacon interrogations. In doing this, there was no<br />

noticeable effect on the monitor's replies as to the number of replies per scan<br />

or to the deviation angle value of the received replies per scan.<br />

16


5. An omnitype TRU-l/2 antenna was installed on a fixed tower in the monopulse<br />

antenna far-field. The TRU-l/2 antenna was connected dnring the tests<br />

via coaxial cable to a TRU-l transponder system aboard a truck positioned at<br />

the tower's base. Basic electrical power for the transponder system was<br />

obtained from a distribution box at the tower's base.<br />

The relative locations of the tower and the Glide Slope Monitor Subsystem are<br />

shown in figure 53. The TRU-l/2 antenna was installed 104 feet (31.70 meters)<br />

up on the tower the base of which was at a surface level of approximately<br />

67 feet (20.4223 meters). The surface level was approximately equal to the<br />

monitor antenna's support base surface level.<br />

The TRU-l/2 antenna was 1.34 0 below the monopulse antenna boresight. The<br />

azimuth sector gate of the monopulse antenna boresight swept the ASR-4<br />

facility from 309 0 true to 014 0 true with the tower on the 359 0 true radial of<br />

the azimuth sector gate. During calibration tests of the entire monitor subsystem,<br />

the entire monitor test area was beacon reply free. The monitor subsystem<br />

performance during the calibration tests utilizing the tower/target<br />

is shown in table 5.<br />

TABLE 5.<br />

GLIDE SLOPE MONITOR SUBSYSTEM FIXED TOWER/TARGET<br />

PERFORMANCE<br />

Test Date<br />

Test Period<br />

Approx. Avg. Binary<br />

Counts per Scan<br />

Deviation from<br />

Boresight<br />

Equivalent Space<br />

Degrees Below<br />

Monopulse Antenna<br />

Boresight<br />

4-18-75<br />

4-21-75<br />

4-22-75<br />

4-23-75<br />

4-24-75<br />

4-25-75<br />

4-29-75<br />

5-5-75<br />

5-7-75<br />

P.M.<br />

P.M.<br />

P.M.<br />

P.M.<br />

A.M<br />

A.M.<br />

A.M.<br />

P.M.<br />

P.M.<br />

-65<br />

-35<br />

-35<br />

-60<br />

-65<br />

-35<br />

-35<br />

-35<br />

-25<br />

0.56<br />

0.30<br />

0.30<br />

0.52<br />

0.56<br />

0.30<br />

0.30<br />

0.30<br />

0.21<br />

17


CONCLUSIONS<br />

1. The varying-biased mean-angular-deviation measurements from boresight<br />

and the high number of beacon replies per scan were due to multipath effects<br />

and/or the presence of the most minimal beacon defruiting technique in the<br />

glide slope monitor subsystem.<br />

2. The glide slope monitor subsystem d,id not meet the contractural design<br />

goal specification of a statistical accufacy 10 times better (0.023°) than<br />

the ILS glide slope over any part of the, final 6 nmi (11.112 kilometers) of<br />

the final approach path.<br />

3. The glide slope monitor subsystem error measurements were not always<br />

reproducible. All the average mean error values for each of the flight test<br />

periods varied between approximately -0.3° and +0.1°. It should be noted that<br />

the two-sigma value for all flight test periods was typically +0.13°, with a<br />

maximum of ~0.775° over the final 6 nmi (11.112 kilometers) of-the final<br />

approach path.<br />

REFERENCES<br />

1. Proposal for Performance Monitor of Final Approach, Touchdown and Rollout,<br />

Part I (technical), Negotiation No. H-1334, Westinghouse Electric Company,<br />

June 30, 1971.<br />

2. Frey. George W., Jr•• Data Processing Subsystem Performance Specifications,<br />

Revisions A, Band C, pages 24 through 28, Purchase Order No. 86GJ-SB-53384-0S,<br />

Westinghouse Electric Company, November 22, 1972.<br />

3. Basil. I. T., Final Approach Performance Monitor, Federal Aviation<br />

Administration, Final Report. <strong>FAA</strong>-RD-76-ll7, July 1976.<br />

4. United States Flight Inspection Manual, <strong>FAA</strong>-Handbook OA-P-8200-l,<br />

May 1963.<br />

5. ICAO Aeronautical Communications, Annex 10, Seventh edition, August 1963.<br />

18


FAR FIELD<br />

ANTENNA PATTERNS<br />

-A-:-:-:N~T"""E""'N--N-A~A~B""'O=R-=E""'S"""I-=G--H--T""""'A~X--IS""""'--~<br />

ANTENNA SYSTEM<br />

------------------- BORESIGHT AXIS<br />

___n<br />

ANTENNA B BORESIGHT AXIS U<br />

A<br />

B 76-20-1<br />

FIGURE 1.<br />

RELATIONSHIP OF SUBARRAYS FOR MONOPULSE ANTENNA MEASURING<br />

SOURCE OF<br />

RADIATION<br />

ANTENNA<br />

SYSTEM BQRESIGHT<br />

76-20-2<br />

FIGURE 2.<br />

PHASE RELATIONSHIP OF WAVEFRONTS RECEIVED AT MONOPULSE<br />

ANTENNA<br />

19


ATC<br />

TERMINAL<br />

BUILDING<br />

~<br />


COVER<br />

76-20-4<br />

.FIGURE 4.<br />

EXPLODED VIEW OF GLIDE SLOPE MONITOR MONOPULSE ANTENNA<br />

21


ANGLE (DEGREES)<br />

-4 -2 +2<br />

/'\<br />

I \<br />

I \<br />

I \<br />

I \<br />

I \<br />

I \<br />

I,<br />

-J-""""l::~--:;"'~-!-'------jf----------- ~-30<br />

, " I<br />

\ I<br />

11<br />

v<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I,<br />

I,<br />

I<br />

/<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

, I<br />

I<br />

I<br />

/"<br />

1'. "<br />

/<br />

/<br />

I<br />

I<br />

I<br />

, I -50<br />

-10<br />

-40<br />

/<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I,<br />

I'<br />

76-20-5<br />

FIGURE 5.<br />

MONOPULSE ANTENNA RESPONSE PATTERN<br />

22


ep IS THE PHASE ANGLE<br />

MEASURED IN THE<br />

MONOPULSE RECEIVER<br />

+l\<br />

N<br />

W<br />

-l\<br />

76-20-6<br />

FIGURE 6.<br />

VECTOR REPRESENTATION OF MONOPULSE RECEIVER PHASE MEASUREMENT


.<br />

8<br />

STORAGE SCOPE<br />

MONITOR<br />

N<br />

-I::­<br />

ELEVATION<br />

I~<br />

ANTENNA<br />

ANTENNA<br />

HYBRID<br />

-,<br />

L<br />

1'1:<br />

L.....J ZERO<br />

MONOPULSE I I CROSSING DET I ~I<br />

RECEIVER ~r ZERO<br />

CROSSING DET<br />

t RECEIVER GATE<br />

TARGET DETE CTOR<br />

A<br />

B<br />

ANGLE<br />

PROCESSOR<br />

~ I I<br />

ANGLE<br />

OFF<br />

BORESITE<br />

-<br />

PUNCH<br />

BUFFER<br />

TRIGGER<br />

NORTH MARK<br />

ACP FROM<br />

ASR-4<br />

~I SYNCHRONIZER I ~I<br />

t<br />

RANGE<br />

TRACKER<br />

PAPER<br />

TAPE<br />

PUNCH<br />

SYSTEM<br />

OUTPUT<br />

(PAPER TAPE)<br />

76-20-7<br />

FIGURE 7.<br />

GLIDE SLOPE MONITOR RECEIVER EQUIPMENT BLOCK DIAGRAM


10%.<br />

l ( 18<br />

~-__ ·St?<br />

'\ ........... .k~,<br />

\ ,,~<br />

\ "<br />

\ \<br />

•<br />

\ \<br />

\ SEARCH MODE<br />

9.25 nmi (17.131 km)<br />

\ \ t 2 BOUNDARY<br />

V<br />

\<br />

/1 ,<br />

~<br />

t 1<br />

BOUNDAR Y<br />

I ,<br />

,<br />

I ,<br />

I<br />

TRACK MODE<br />

250 FT.<br />

ASR-4<br />

FIGURE 8.<br />

G. S. MONITOR<br />

GLIDE SLOPE MONITOR SECTOR, RANGE AND TIME GATING<br />

25<br />

76-20-8


N<br />

(J)<br />

FIGURE 9.<br />

GLIDE SLOPE MONITOR SITE WITH COLLOCATED GLIDE SLOPE SUBSYSTEMS


FIGURE 10. GLIDE SLOPE MONITOR MONOPULSE ANTENNA INDICATING 1°45"11.0"<br />

ROTATION TOWARDS RUNWAY 13<br />

27


FIGURE 11.<br />

GLIDE SLOPE MONITOR MONOPULSE ANTENNA INDICATING 3°00'00.0"<br />

ROTATION<br />

28


FIGURE 12.<br />

GLIDE SLOPE MONITOR RECEIVER CABINET, FRONT VIEW<br />

29


w<br />

o<br />

76-20-13<br />

FIGURE 13.<br />

GLIDE SLOPE MONITOR RECEIVER CABINET, UPPER LEFT-HAND CLOSE-IN<br />

FRONT VIEW


FIGURE 14.<br />

GLIDE SLOPE MONITOR RECEIVER CABINET, LOWER LEFT-HAND CLOSE-IN<br />

FRONT VIEW<br />

31


o<br />

W<br />

N<br />

'~-'------<br />

FIGURE 15.<br />

GLIDE SLOPE MONITOR RECEIVER CABINET, MIDDLE RIGHT-HAND<br />

FRONT VIEW


FIGURE 16.<br />

GLIDE SLOPE MONITOR RECEIVER CABINET, REAR VIEW<br />

33


FIGURE 17.<br />

ASR-4 FACILITY BEACON PRETRIGGER SIGNAL CONDITIONING EQUIPMENT<br />

LOCATED IN THE TRAILER<br />

34


----<br />

TEST<br />

STORAGE TUBE<br />

..........I TGT ,.j:r:'/_.....__C;0r-rV~~.:r~_~~ OSCILLOSCOPE I+­<br />

GEN<br />

(GFE)<br />

I<br />

~<br />

COMMUTA TING<br />

HYBRID<br />

I±j ~<br />

I 'f ~~<br />

MONOPULSE<br />

RECEIVER<br />

START<br />

CLOCK<br />

STOP<br />

ANGLE<br />

PROCESSOR<br />

t------; ANGL~<br />

w<br />

VI<br />

MONOPULSE<br />

ANTENNA<br />

.... SYNCHRONIZER<br />

h<br />

DET VIDE,<br />

SEARCH/TRACK PRINTER PAPER TAPE<br />

RANGE GATES !ROCESSOR_ BUFFER ~ PUNCH<br />

~<br />

TIME CODE<br />

I GATE GEN<br />

~I GEN (GFE)<br />

BITE 1-\<br />

READER<br />

SECTOR & RANGE<br />

DESIGNATE<br />

- - ---4 - -------+- -1------ - --- +- - - - - - ­<br />

BEACON TRIGGER (to) ACP NM RANGE<br />

FROM ASR-4 -- FROM ASR-4 TIME<br />

76-20-18<br />

FIGURE 18.<br />

GLIDE SLOPE MONITOR RECEIVER SUBSYSTEM BLOCK DIAGRAM


CONTROL<br />

MANUAL<br />

PHASE<br />

SHIFT<br />

0·/180· (I ±j~)<br />

~<br />

PHASE<br />

RF<br />

SHIFT<br />

STC<br />

I ~<br />

FROM<br />

90·<br />

MONOPULSE HYBRID I TRIGGER<br />

ANTENNA<br />

I<br />

I±j~<br />

W<br />

0'1<br />

jL-<br />

~ I<br />

TRIGGER<br />

RF<br />

STC<br />

MIXER<br />

TO<br />

IF<br />

RECEIVER<br />

POWER<br />

SPLIT<br />

-<br />

L. O.<br />

76-?n-19<br />

FIGURE 19.<br />

GLIDE SLOPE MONITOR RF RECEIVER BLOCK DIAGRAM


FROM<br />

PROCESSOR<br />

DIGITAL<br />

PHASE DETECTOR<br />

CHANNELS<br />

"----" ­<br />

MIXER<br />

---<br />

IFAMPL'H H 0.2fJ-s<br />

NARROW<br />

ZERO<br />

30 MHz<br />

&J,.IMITER RANGE BAND CROSSING<br />

LIMITER<br />

FILTER FILTER<br />

- ----<br />

----<br />

GATE DET.<br />

j FR~ RF FROM<br />

~ TO<br />

PROCESSOR<br />

! RECEIVER - ­<br />

PROCESSOR<br />

PHASE<br />

COUNTER<br />

W<br />

'-J<br />

IF AMPL.<br />

&<br />

FILTER<br />

0.2 fJ-s<br />

NARROW<br />

LIMITER RANGE BAND<br />

GATE<br />

FILTER<br />

30 MHz<br />

LIMITER<br />

MIXER<br />

--- ZERO<br />

CROSSING<br />

DET.<br />

DETECTION<br />

CHANNEL<br />

IF AMPL.<br />

&<br />

DET.<br />

THRESHOLD<br />

LOW<br />

FREQ.<br />

OSC.<br />

RESET<br />

FROM<br />

PROC.<br />

DETECTION<br />

TO PROC.<br />

76-2-"-20<br />

FIGURE 20.<br />

GLIDE SLOPE MONITOR IF RECEIVER BLOCK DIAGRAM


/<br />

I /<br />

, I<br />

I<br />

~<br />

j<br />

E-<<br />

~<br />

U<br />

~<br />

H<br />


w<br />

o<br />

~<br />

o<br />

u<br />

.<br />

N<br />

N<br />

39


FIGURE 23. GULFSTREAM ONE (N-377) EXPOSED NOSE OF FLIGHT TEST AIRCRAFT<br />

40


TRU 1/2 ANTENNA<br />

A -<br />

B -<br />

C -<br />

1.0' (0.30481 METERS)<br />

1.0' (0.30481 METERS)<br />

0.083' (0.02530 METERS)<br />

TRU 1/2 ANTENNA<br />

00<br />

GULFSTREAM ONE (N-377)<br />

76-20-24-1<br />

FIGURE 24-1.<br />

PHOTOTHEODOLITE AIRCRAFT TRACKING POINTS AND RELATED<br />

AIRCRAFT TRU-1/2 ANTENNA LOCATION INFORMATION-SHEET 1 OF 2<br />

41


-''-------JT<br />

....------F--------;r--­<br />

A - 1.5' (0.45722 METERS)<br />

B - 7.34' (2.23731 METERS)<br />

C - 1.0' (0.30481 METERS)<br />

D - 3.84' (1.17047 METERS)<br />

E - 2.5' (0.76203 METERS)<br />

F - 17.5' (5.33418 METERS) .<br />

~~§L~~~~~~~==T:RU 1/2 ANTENNA<br />

~--B---+I<br />

COMANCHE (N-9093P)<br />

76-20-24-2<br />

FIGURE 24-2.<br />

PHOTOTHEODOLITE AIRCRAFT TRACKING POINTS AND RELATED<br />

AIRCRAFT TRU-1/2 ANTENNA LOCATION INFORMATION-SHEET 2 OF 2<br />

42


(CAT lIlA)<br />

EXPERIMENTAL USE ONLY<br />

ILS RWY 13<br />

ATLANTIC CITY APP CON<br />

124.6385.5<br />

ATLANTIC CITY TOWER<br />

118.9239.0 //<br />

GND CON<br />

121.9284.6 //<br />

ASR<br />

~R-IOO<br />

/<br />

1700 NoPT to LOM<br />

via MIV R-J 00 and<br />

LOC cau... (14.4)<br />

\<br />

\<br />

\<br />

\<br />

1600<br />

'0 tv'-1<br />

AL-669 (<strong>FAA</strong>)<br />

)<br />

NAFEC ATLANl"IC CITY<br />

A TLANTIC CITY, NEW JERSFV<br />

\ \<br />

\<br />

\<br />

/<br />

1400; /<br />

/<br />

\<br />

FIGURE 25.<br />

OM to ILS/DME 6.1 NM<br />

OM to VORTAC 5.2 NM<br />

COLOGNE<br />

Remain LOM<br />

within 10 NM o~<br />

~O'O<br />

- 1~I-l~Bo<br />

1700/ MM<br />

1700<br />

Precision DME at<br />

Localizer Chan 28<br />

GS 3.00·<br />

TCH 55<br />

-3.7NM­ 1518'<br />

ALL AIRCRAFT<br />

S-ILS 13 226/16 150 RA 147<br />

S-ILS 13 I 76 /1 2 100 RA 99<br />

S-ILS 13 RVR 07<br />

MSSED APPROACH<br />

Climb straight ahead to 1000;<br />

then climbing left turn 10 2000<br />

via ACY R-090 10 SmithvHle<br />

Int and hoId.<br />

.~<br />

I...:C=::A::,:TE;:G::::O:;:R::":Y-+_--'-'-:==-,--1;-=-=-~-,---:=":-:c-:-:-=C,----+=-;-=;D=~=-=::-:-:--:-I· 230<br />

S-ILS 13 200 200-'/,) 276120<br />

S-LOC 13 400124 324 400-'/, 400 140 324 400-'/,\<br />

620 1 640-JlI2 640-2 680-2<br />

CIRCLING - 544 (600-1) 564(600-1'/,)564 (600-2) 604 (700-2)<br />

ILS RWY 13<br />

ELEV 76<br />

CATEGORY III AILS-SPECIAL AIRCREW<br />

HIRL Rwys 4-22 and 13-31<br />

& AIRCRAFT CERTIFICATION REQUIRED MIRL Rwys 8-26 and 17-35<br />

(CAT IlIA)<br />

PlJ8U$HfO IY NOS, NOAA. TO lAce SPfClflCATlONS<br />

ATlANTIC CITY, NEW JERSEY<br />

NAFEC ATLANTIC CITY<br />

ILS RUNWAY 13 FLIGHT CHART (EXPERIMENTAL USE ONLY)<br />

76-2.0-25<br />

43


OPM36 o P-8<br />

RUNWAY 13 CENTERUNE<br />

10,000 ft. x 200 It.<br />

I [> -<br />

./<br />

P-29D o P-13<br />

~<br />

~<br />

o<br />

x<br />

y~<br />

x = y =3000 FT. lINCH.<br />

o PHOTO THEODOLITE TOWER<br />

[> GLIDE. SLOPE MONITOR AND<br />

ILS GLIDE SLOPE (loa FOOT APART)<br />

ILS GLIDE SLOPE IS 400 FEET FROM<br />

NEAREST R UNWA Y CENTER LINES<br />

OAIRPORT SURVEILLANCE<br />

RADAR (ASR-4)<br />

76-20-26<br />

FIGURE 26.<br />

NAFEC DATA COLLECTION SYSTEM SCALE LAYOUT


+68 -[<br />

TAPE DIRECTION<br />

J'"<br />

r"V'~<br />

00000-000 -<br />

00000-000<br />

,,-..'"<br />

-<br />

-<br />

--<br />

A<br />

-LSB<br />

:0 ~<br />

- 0<br />

H5H4-H3H2H1 }<br />

SfH9<br />

t : 0H 8H7H6<br />

L MSB<br />

-<br />

+180 -{<br />

0 -0<br />

0 -0 0<br />

-180 -{<br />

0-0<br />

00- 0<br />

- 0<br />

r:<br />

0<br />

0 !<br />

OMSB-LSB<br />

0<br />

eBCD-CODE -<br />

LEVEL 6 ­<br />

TIME<br />

TAG BIT<br />

o ­<br />

-<br />

0<br />

00000-000<br />

FILE MARK ( 2 CONSECUTIVE FILE MARKS)<br />

PRECEDES RECORD GAP<br />

RECORD GAP IS GREATER THAN 2 INCHES OF FILE<br />

MARKS<br />

} HIT NO. 1<br />

HIT NO.2<br />

ETC., UP TO<br />

SIGN BIT<br />

18 HITS<br />

MODE: SEARCH/TRACK<br />

(BLANK/HOLE)<br />

} HIT NO. 17 (TRACK MODE - BINARY CODE)<br />

} HIT NO. 18 (TRACK MODE - 2 f s COMPLEMENT)<br />

HUNDREDTH SECOND<br />

TENTH SECOND<br />

UNITS SECOND<br />

TENS SECOND NAFEC RANGE TIME (FIRST HIT)<br />

UNITS MINUTE<br />

TENS MINUTE<br />

UNITS HOUR<br />

TENS HOUR<br />

FILE MARK<br />

-<br />

76-20-27<br />

FIGURE 27.<br />

GLIDE SLOPE MONITOR SUBSYSTEM PUNCHED PAPER TAPE FORMAT<br />

45


3.0<br />

2.0<br />

1.0<br />

I....-------t-.I----...1If--­<br />

3.0 2.0 1.0<br />

-1.0 -2.0 -3.0<br />

-2.0<br />

-3.0<br />

FIGURE 28.<br />

GLIDE SLOPE MONITOR SUBSYSTEM ANTENNA DISCRIMINATOR<br />

CURVE<br />

76-20-28<br />

46


o<br />

,D<br />

o<br />

L.D<br />

N<br />

0<br />

.<br />

~<br />

C)<br />

l..J..J<br />

Do<br />

0<br />

0<br />

W<br />

0.­<br />

0<br />

.......JiJ)<br />

(f)N<br />

w9<br />

~ 0<br />

-....I t--i<br />

.......J<br />

DO<br />

If)<br />

l.L •<br />

0<br />

0<br />

I<br />

•<br />

-l -l ~ -l -l ~ _,----, -l ~-l -l -l _J -l ~ ~ :..J -l -l -l ~ -l ~ -l -l ~ -l ~ ~ ~ ~ ~ ~ -l<br />

•<br />

• •<br />

• • • •<br />

• • • •<br />

¢<br />

I:!:I ~<br />

f9 f9~ ¢<br />

• • ••• • •<br />

•<br />

•• • ••<br />

12/20/74.~UNS 1-18<br />

PROCESSlD DRTE01/30/76<br />

LEGEND<br />

•• • •• • •<br />

•<br />

MER~<br />

+2 SICMR ...<br />

-2 5ICI'lR ~<br />

DE5ICN GaAL TOLERANCE<br />

¢ ¢¢¢¢¢¢ ¢ ¢ ¢ ¢¢ ¢ ¢¢¢¢¢¢¢ ¢ ¢<br />

~ ¢<br />

~<br />

¢ ¢<br />

¢ ¢<br />

¢ ¢<br />

a<br />

•<br />

•<br />

0::::<br />

0<br />

0::::<br />

O::::~<br />

w·<br />

0<br />

I<br />

¢<br />

¢<br />

o<br />

NO. OF<br />

SCANS<br />

IN<br />

h~' ~ "'U. ':;U••u, "JI 1::1 A:I· ~~ .lU. ZU. Hi· H!••9. J9. U. ~1. U. 17. 19 !S. is· .i.2. 1'. BINS<br />

I , , I I I , I I , I J<br />

I<br />

'0. ' 1', ' '2'. 3 I 1 I I I 4'. 1 I I 1 I I 1 I I 1 1 1<br />

, .... U' ~ ..... • ...,_ .. .,. "" ':;JI u· ... J J:J ~.<br />

' .<br />

SLANT RANGE (NAUTICAL MIL.ESl<br />

76-20-29<br />

FIGURE 29.<br />

DECEMBER 20, 1974, FLIGHT PERIOD OF N-377 ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET


.<br />

~<br />

0<br />

0<br />

0<br />

LD<br />

0<br />

0.<br />

LD<br />

N<br />

1-.<br />

LL O<br />

- - -<br />

- - -<br />

12/20/74.RUNS 1-18<br />

PROCESSEO DATEOl/30/76<br />

LEGEND ..!>.<br />

MEAN ~<br />

+2 SIGMA •<br />

-2 SIGMA ~<br />

DESIGN GOAL TOLERANCE<br />

- - -<br />

- - -<br />

~o<br />

.po<br />

Q:)<br />

O<br />

W<br />

0..... I ..!>.<br />

0<br />

--.Jo<br />

~ l:g ..!>.<br />

(f) c:J<br />

LD ~<br />

WN ~<br />

oj<br />

II-l<br />

--.J<br />

00<br />

0<br />

LL~<br />

OLD<br />

I<br />

0:::<br />

0<br />

0::: 0<br />

0:::0<br />

W·<br />

LD<br />

r-<br />

I<br />

FIGURE 30. DECEMBER 20, 1974, FLIGHT PERIOD OF N-377 ON THE 3 0 ILS GLIDE SLOPE IN TERMS<br />

OF ALTITUDE FEET OFFSET


o<br />

...')<br />

o<br />

0<br />

WI<br />

0<br />

.po : .........<br />

1.0 . --.J<br />

OI/ID/75.~UNS 1-14<br />

PROCESSED DRTED2/04/75<br />

LEGEND<br />

MEI1N 6<br />

+2 SIGMR<br />

A",<br />

-2 SIGJ'1'l ~<br />

U)<br />

N<br />

A<br />

DESI ~ GORL TOLERRNCE A -<br />

A<br />

0 A<br />

A A A A A<br />

A<br />

A A A A A A A A<br />

~<br />

A A A A<br />

. A A<br />

A A A<br />

A A<br />

A<br />

0<br />

A<br />

W<br />

00<br />

0<br />

~<br />

0 ~ ~ ~.¢...l ~ ~ -~ -~~~ ~ ;;.<br />

~ ~~ ~ ~ ~ ~<br />

W ~ ~<br />

~ ~ ~ ~ ~<br />

~ ~ ~ ~ ~ ~<br />

Q... ~<br />

a ~<br />

~<br />

~<br />

--.JlJ)<br />

~<br />

(f)N<br />

°0<br />

lJ)<br />

il.L~<br />

0<br />

1<br />

0::::<br />

a<br />

0::::<br />

O::::~<br />

:W'<br />

0<br />

I<br />

~<br />

o<br />

, I AD. ,l~. J1I••111· .:1 . .Lt). olU • .L) • .a1ll. "tI. J~' l:J. ,,4· J.9. J1. JfII. i5· 17. 19. 17. 16. 14. 16. lO. 7. S. ). fl.. ~. ~. J. 1 2. ), 2. BINS<br />

10. ' I I , I I'. ' , , , 1 2 '. I , , , '3'. I I , , '4', ' I I I , I I I I , I ,<br />

SLRNT RRNGE (NRUTICRL MILES)<br />

NO. OF<br />

5CRNS<br />

IN<br />

FIGURE 31.<br />

JANUARY 10, 1975, FLIGHT PERIOD OF N-377 ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET


.<br />

~<br />

0<br />

0<br />

0<br />

l1)<br />

0<br />

0 .<br />

U)<br />

N<br />

~<br />

LL O<br />

~O<br />

O<br />

W<br />

(L<br />

a<br />

---10<br />

we::<br />

U')<br />

WN<br />

oJ<br />

VI<br />

0<br />

1--1<br />

.-J<br />

Do<br />

0<br />

LL~<br />

aU')<br />

I<br />

0::::<br />

a<br />

0:::: 0<br />

0::::0<br />

W<br />

•<br />

lJ)<br />

r-<br />

J<br />

A<br />

A<br />

A<br />

A<br />

A<br />

D1/10/75.~UNS 1-14<br />

PROCESSED DRTE02/04/76<br />

A A A A A A A A A A A A A A A ~CEm: II • A<br />

A A A A<br />

- - - _---4-­<br />

A - - - - - ­<br />

t1EAN¢<br />

A +2 SlC-t1A .t.<br />

-2 SICt1G ~<br />

DESIGN GORL TOLERANCE<br />

I I I I I 1-1 r----r- I ~I .----.<br />

¢ ~ ~-<br />

- - - ~<br />

¢ ~ ~ ¢<br />

~ - - ­<br />

~<br />

~<br />

- - - - - ­<br />

~<br />

~<br />

¢<br />

~ ~ ~ ~<br />

~<br />

~<br />

~<br />

~<br />

~<br />

~<br />

I<br />

a<br />

o<br />

o<br />

~<br />

o<br />

...<br />

~ NO. OF<br />

SCANS<br />

IN<br />

16. 14. 11. ;e. :So 16. 20. 15. II••9. 15. 11. a. 18. 1. 6· 3. b. Z. .;. 1. 3. 2. 3, 2. BINS<br />

10 • 1 • 2 • 3 • 4 •<br />

SLANT RANGE (NAUTICAL MILES)<br />

76-20-32<br />

FIGURE 32.<br />

JANUARY la, 1975, FLIGHT PERIOD OF N-377 ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF ALTITUDE FEET OFFSET


o<br />

,.I)<br />

o<br />

LO<br />

N<br />

0<br />

J!:,.<br />

~<br />

J!:,.<br />

OI/30/7S.~UNS 1-5.7<br />

PROCESSED OATl01/IS/76<br />

LEGEND<br />

HEAN<br />

e<br />

.2 5 IGHA<br />

""<br />

-2 5 IGHA ~<br />

DESIG~ GnAL TOLERANCE<br />

(j<br />

uJ<br />

DO<br />

0<br />

0<br />

LJJ<br />

J!:,.<br />

----------~~-~----------------------<br />

-,---, ~ ~ -,----,-~~, ~ ~ ~ ~ ~ ~~,---,---I ~ -! ~ -! ~ -! ~ ~ ~ ~ ~ ~ ~ ~ ~<br />

J!:,. J!:,. J!:,. J!:,. J!:,.<br />

0... J!:,. J!:,. J!:,. J!:,. J!:,.<br />

J!:,.<br />

0<br />

J!:,. J!:,.<br />

-leo<br />

J!:,.<br />

(f)N<br />

uJ° ~<br />

1<br />

~ ~ ~ ~, ¢ ~<br />

lJl 0<br />

~<br />

~<br />

I-' ¢' ~ ¢<br />

~<br />

~I<br />

~ ~<br />

~<br />

~ ~<br />

---l<br />

~<br />

~<br />

~<br />

00<br />

L.D<br />

LL. "<br />

00<br />

I<br />

0::::<br />

0<br />

0::::<br />

0::::L.'")<br />

uJr-::<br />

0<br />

I<br />

~<br />

~<br />

J!:,.<br />

~<br />

J!:,.<br />

~<br />

~<br />

I<br />

o<br />

IN<br />

5 5, 6, 6. 7, 6, 6, 7, 6, 6· 6. 7, 6, 6, 6, 6. ~ 5 5, 7. 6, 7. 5, L 5· 5. 5· 5, 5· l 2, 2, I, I. J, BINS<br />

'0', ,-, I I J J ~I i I I 2~,---,----,-'3r:--,---,---,---' I 4'. I i J I lSi, I I I , I 6 1 ,<br />

~C. OF<br />

SCANS<br />

5LRNl RRNGE (NRUl 1CRL M1LE5 1 ,76-20-33<br />

FIGURE 33.<br />

JANUARY 30, 1975, FLIGHT PERIOD OF N-377 ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET


OI/30/75.~UN5 1-5.7<br />

l> l> 4>.<br />

pP.OC~5~LD DAll01/1~/76<br />

LEGEND<br />

MEAN<br />

.·2 5 IGliR A<br />

-2 51CHA ¢'<br />

DESIGN G~AL lOLERANCL<br />

s<br />

l><br />

1_,.....<br />

l><br />

- - - - - ­<br />

- - -<br />

- - -<br />

~I-::~'-='I-=-,~T:-~4~=~~~~~~~-T-,-r'-'-T-T-,-r-"'-T-T-,-----<br />

_A.--~--<br />

-4<br />

- - -<br />

I_I I I I - tr 4 I I I , I I , I I I I I I I , 1 I I I I I , Ii'<br />

4>.<br />

4<br />

l><br />

- - -<br />

4<br />

4>.<br />

¢.<br />

4<br />

4>. 4<br />

4<br />

.<br />

76-20-34<br />

FIGURE 34.<br />

JANUARY 30, 1975, FLIGHT PERIOD OF N-377 ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF ALTITUDE FEET OFFSET


o I O1l29175. IWNS 1-15<br />

11) IPROCE.S5l0 OATI::02l04176<br />

ol A A LtCE.ND<br />

MEAN -----=<br />

+2 SlOMA<br />

I A<br />

-2 SICI'1~ ~<br />

~ I IDE.5 WN GOAL TOLERI1NCE.<br />

o<br />

I<br />

J<br />

DW A A<br />

DO<br />

A<br />

A<br />

W<br />

~ A A A<br />

o<br />

~ ----£-------------­<br />

o<br />

~~ A A A A A A A A A A~<br />

wcr<br />

~ u ~ ~ ~ ~<br />

W......... ~ ~ ~<br />

~ ~ ~<br />

---.J ~ ~ ~ ~<br />

dO ~ ~ ~<br />

11)<br />

!L" ~ ~ ~<br />

0<br />

0 ~ ~<br />

1 '" ~<br />

~ v<br />

Ct::<br />

o ~<br />

Ct:: ~<br />

Ct::~<br />

W~ I ~<br />

11 ~<br />

A<br />

o<br />

1b· Z~, ~s . ~~ . Z~ , .!6 l1. Z3 Ztl. ::3. 2'. Z7. 21. 23<br />

10. 2.<br />

SLRNT RRNGE<br />

3 "<br />

(NRUTICRL<br />

OF<br />

~O.<br />

SCANS<br />

IN<br />

BINS<br />

FIGURE 35.<br />

JANUARY 29, 1975, FLIGHT PERIOD OF N-9093P ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET


a<br />

a<br />

LD<br />

f-<br />

LLo.<br />

a<br />

0.<br />

.a<br />

.a<br />

if.)<br />

NI .a .a<br />

.a<br />

~o.<br />

.a<br />

- - -<br />

Ol/29/75.~UNS I-IS<br />

PROC~SSlO DRTE02/04/76<br />

LEG~N[)<br />

MEAN<br />

+2 (j IGHR &<br />

-2 SICMR ~<br />

O~5ICN GORL TOLERRNCE<br />

- - -<br />

wo. .a<br />

Q...<br />

0<br />

if.)<br />

WN 1<br />

V1 0<br />

1<br />

+:- ..........<br />

~<br />

- - -<br />

1----' ---,-----, 1 I 1 1 1 I I I I 'I I<br />

---.J a .a - - - ­<br />

(J)C? .a<br />

.a<br />

~<br />

.a .a<br />

~ ~ .a<br />

.a<br />

---.J<br />

Do.<br />

a<br />

LL" ~ .a<br />

055<br />

I<br />

.a<br />

. 0::::<br />

~ ~<br />

0<br />

.a .a<br />

0::::0.<br />

0::::0. .a<br />

.a<br />

W"<br />

LD<br />

r-<br />

,<br />

.a<br />

.a<br />

a<br />

~<br />

~<br />

a<br />

a<br />

a<br />

-<<br />

'0 "<br />

, '2. . 3.<br />

~<br />

SLRNT RRNGE<br />

(NRUTICRL<br />

.a<br />

.a<br />

FIGURE 36.<br />

JANUARY 29, 1975, FLIGHT PERIOD OF N-9093P ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF ALTITUDE FEET OFFSET


o<br />

Lf)<br />

o<br />

Lf)<br />

N<br />

0<br />

..<br />

02/D4/75.RUNS 1-6<br />

PROCESSED D~TE02/04/7S<br />

LEGEND<br />

t1E~N<br />

+2 SIGMIl 4><br />

-2 SIGt1!l ~<br />

DESIG~ GO~L TOLER~~CE<br />

e<br />

~<br />

.. ..<br />

0<br />

W<br />

00<br />

0<br />

..<br />

..<br />

W<br />

CL<br />

0<br />

0<br />

-lLf)<br />

(f)N<br />

..<br />

..<br />

..<br />

..<br />

..<br />

..<br />

..<br />

..<br />

..<br />

..<br />

..<br />

..<br />

.. .. ..<br />

..<br />

.... ....<br />

..<br />

.. ..<br />

lJl<br />

lJl<br />

W~<br />

0<br />

.........<br />

-l<br />

Ci o<br />

Lf)<br />

1..L ..<br />

O~<br />

Ct::::<br />

0<br />

Ct::::UJ<br />

Ct::::r-<br />

W ..<br />

0<br />

,<br />

¢<br />

¢<br />

¢<br />

¢<br />

¢<br />

¢<br />

¢<br />

¢<br />

¢<br />

¢<br />

¢ ¢ ¢<br />

¢<br />

¢ ¢<br />

¢<br />

¢ ¢<br />

¢<br />

¢ ¢ ¢<br />

¢ ¢<br />

¢<br />

¢<br />

¢<br />

¢<br />

o<br />

¢<br />

'a', ' , , , '1', I , , i. ' I· , , 3'. ' f , '4', ' , I<br />

_, ~ ,. ~ 10· Jl. 10· 10· 11 11 ~ ~ Jl il 10. 10 12. ~ 10. il. 10 10· il ,. il ,. 7. 10.<br />

I I I I<br />

I<br />

"10. OF<br />

S[~"IS<br />

IN<br />

il. ~. 5 ~. 5· ,. 7. 5· BINS<br />

'5'. ' , I I I 6',<br />

SLRNT RRNGE (NRUTICRL MILES) 76-20-37<br />

FIGURE 37.<br />

FEBRUARY 4, 1975, FLIGHT PERIOD OF N-9093P ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET


0<br />

0<br />

0<br />

i.J)<br />

0<br />

0<br />

i.D<br />

N ~<br />

~<br />

02/04/7S,~UNS 1-5<br />

PRoct55[D Dq T lD2/04/76<br />

lECtNC<br />

t1EI'i'l<br />

a<br />

+2 5ICt1'i A.<br />

-2 SICt1'i ~<br />

DESIC'l GOl'il TOLERA'lCt<br />

~<br />

I-<br />

~<br />

~<br />

LL O<br />

~ ~<br />

- - - - - ­<br />

~o<br />

- - - ­<br />

- - - - - - - -<br />

W<br />

O<br />

(L<br />

0<br />

~ ~<br />

--10<br />

(J)C?<br />

...') ¢<br />

WN<br />

1<br />

VI 0<br />

0­ I---t ~<br />

¢<br />

¢<br />

-'<br />

do<br />

0<br />

- "- ­<br />

~ A<br />

- - -<br />

- - -<br />

l.L~<br />

0 ...') ~<br />

~<br />

I<br />

¢<br />

0::::<br />

~<br />

0 ~<br />

~<br />

0:::: 0<br />

0::::0 ~<br />

¢ ~<br />

W'<br />

i.J) ~<br />

r-- ¢<br />

1<br />

¢<br />

¢<br />

0<br />

0<br />

0<br />

0<br />

-<<br />

10. 1 ' 2.<br />

SLRNT RRNGE<br />

FIGURE 38.<br />

¢ A<br />

¢<br />

~ ~ ~<br />

~<br />

- - - - - -<br />

FEBRUARY 4, 1975, FLIGHT PERIOD OF N-9093P ON THE 3° IL8 GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET<br />

A<br />

A<br />

~<br />

~<br />

~


o<br />

I.f)<br />

o<br />

lJ)<br />

N<br />

0<br />

""<br />

.<br />

~<br />

0<br />

""<br />

W<br />

"" ""<br />

DO<br />

0 "" ""<br />

-~ "" -~<br />

""<br />

0<br />

W<br />

0....<br />

0 ~<br />

---.JlJ) ~<br />

""<br />

~ A-!",,-'~ ­<br />

(f)r:! ~<br />

~ ~ '" ~ ~ ~ ~ ~<br />

~ ~<br />

v ~ ~ ~<br />

0 ~<br />

, WI ~<br />

VI ; LJ<br />

~ ~<br />

"'-J<br />

o---t<br />

---.J<br />

Do<br />

I.f)<br />

l.L •<br />

09<br />

~ ~<br />

~<br />

A<br />

-~<br />

",,­<br />

02/06/75.~UNS 1-7<br />

PROCESSED DATE02/04/76<br />

I1GEND<br />

MEAN<br />

f9<br />

+2 SIGMA .t.<br />

-2 SIG~A ~<br />

DESIGN GOAL TOLERANCE<br />

~<br />

0:::<br />

0<br />

0:::lJ)<br />

O:::r-­<br />

W·<br />

0<br />

I<br />

~<br />

~<br />

o<br />

10,<br />

5. 3 3 j. I. j. BINS<br />

, I I '2'. r , , '3'. ' , , 4 '. ' , , , I S" I , , I I 6',<br />

SLRNT RRNGE (N RUT rCRL MrLES J 76-20-39<br />

~. :0. II. ). ~. 10. ~. ,. ~. ~. ,. ~. ,. ~. S· S· 5 ,. ~. 5 5 5<br />

I I I I<br />

OF<br />

~O.<br />

SCRNS<br />

IN<br />

FIGURE 39.<br />

FEBRUARY 6, 1975, FLIGHT PERIOD OF N-9093P ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET


0 02/06/75.~UNS 1-7<br />

0<br />

PROCESSED DRTE02/04/76<br />

~l $GEND<br />

AN<br />

:~<br />

A<br />

A<br />

I~~<br />

SIC-Mil<br />

SIGMR<br />

SIG~ aOAL TOLERA~CE<br />

A A A A _I_I __ - - -­<br />

A _--e.------­<br />

I­<br />

l..L. O<br />

A A<br />

'-'0<br />

,<br />

~ -A- -A- - - - - - - - -A - - - A<br />

W O<br />

a....<br />

0 ~ - ~... ~ ... - - - - - - - - ~ -A- _A_A_ ~i<br />

-l0<br />

We::<br />

Lf)<br />

WN<br />

1<br />

VI 0<br />

~<br />

00 .........<br />

-l<br />

CJo ~<br />

~<br />

~<br />

~<br />

~<br />

0 ~<br />

~<br />

l..L.'<br />

055 ~ ~<br />

I<br />

t'!( ~<br />

\A<br />

,1- - _<br />

0::: ~<br />

.~ ~<br />

0<br />

~<br />

0::: 0 ~<br />

0:::0<br />

W • ~<br />

~<br />

Lf)<br />

r-­ ~<br />

I<br />

~<br />

~<br />

0 ~<br />

0 ~<br />

. .. NO. OF<br />

~<br />

SCANS<br />

0 IN<br />

0<br />

..... ~. ,. 9 • ,. 9. 5. S. 9. 4. S. B· B. S 3. j. J,. J. BINS<br />

10. 2. 3, 4. 5, 6.<br />

SLRNT RRNGE (NRUTICRL MIL.ES ) 76-20-40<br />

----e<br />

""<br />

~<br />

FIGURE 40.<br />

FEBRUARY 6, 1975, FLIGHT PERIOD OF N-9093P ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF ALTITUDE FEET OFFSET


o<br />

w')<br />

0:<br />

A<br />

I 02/07/75.~UN5 1-16<br />

I PROC[SS[D DRT[02/04/76<br />

: LEC[NG<br />

1 HEI1"l -----=<br />

1 +2 5ICMl1 A.<br />

A<br />

1-2 SIGHR<br />

JJi<br />

~<br />

DES 1eN GDRL TOLERANCE - - ­<br />

A<br />

~~<br />

A<br />

(j<br />

LLJ<br />

00<br />

o A A<br />

~ ~<br />

--- - A----------------------­<br />

~~ -=:r--~ ~ ~ - - - t!r A A + A A A A<br />

o I , , I , I I I IA I S-, 1 I I I I I I I A I ~ r I I I I I I I I<br />

LLJ ,- A = A<br />

0­ I A A AA A A<br />

o A A<br />

~~ A A<br />

---.J L.f)<br />

(jj(J<br />

LLJ~"; ~<br />

C ~ ~<br />

I ~<br />

~<br />

~~~ ~~~~~<br />

~ ~ ~ ~<br />

Ln<br />

~<br />

\0<br />

----.J<br />

~ ~ ~<br />

~ ~<br />

~o<br />

~<br />

~ ~ ~<br />

w') .<br />

'. 1<br />

LL.o~<br />

0, I<br />

D:::'<br />

D:::'r­ ~lJ)~!<br />

1l.J •<br />

o<br />

I<br />

i<br />

~<br />

~<br />


~<br />

0\<br />

0<br />

I<br />

0 02/07/75.~UNS 1-16<br />

0<br />

PROCtSSlD DATE02/04/76<br />

0<br />

l1J<br />

LECEND<br />

MEAN<br />

+2 SICM';<br />

0 -2 SIGM'l ~<br />

0<br />

DESIGN GOAL TOLERA~CE<br />

iD<br />

N<br />

..!I.<br />

..!I.<br />

..!I.<br />

.<br />

~<br />

..!I.<br />

f-­<br />

..!I.<br />

­<br />

­<br />

­<br />

u.... o<br />

..!I.- - - - - - - - -<br />

- -<br />

~o<br />

..!I.<br />

W O I I I<br />

-~___<br />

I I<br />

..!I.<br />

(L ..!I. - - - - - - -<br />

0 ..!I.<br />

..!I. ..!I. ..!I.<br />

-i:--­<br />

--.JO<br />

..!I.<br />

(f)C::<br />

..!I.<br />

..!I.<br />

l1J<br />

WN ~ _ -JJ:l.-_ ..!I.<br />

1<br />

..!I.<br />

0 ~<br />

....... ~<br />

~ ~<br />

..!I.<br />

..!I.<br />

--.J<br />

..!I.<br />

Do<br />

..!I.<br />

~ !l]<br />

0<br />

..!I.<br />

..!I. ..!I. ..!I.<br />

u....C;;<br />

~<br />

OiD<br />

~<br />

I<br />

~ ~<br />

0:::<br />

~<br />

~<br />

0<br />

0::: 0<br />

~<br />

0::: 0 ~<br />

W' ~<br />

l1J<br />

r-­<br />

I<br />

~<br />

~<br />

~<br />

..!I.<br />

- - -<br />

~ ..!I. ..!I.<br />

0<br />

0 ~<br />

~O. OF<br />

5(11~5<br />

0 IN<br />

0<br />

--< 9. 15· 14. j~. ; 3 iO· I·e 15 13 03 21, J4. J~ ;,.<br />

BINS<br />

I I I I I<br />

,<br />

I I I I I<br />

10. 2',<br />

SLRNT RRNGE<br />

, 3.<br />

(NRUTICRL<br />

e<br />

""<br />

76-20-42<br />

F ]GURE 42.<br />

FEBRUARY 7, 1975, FLIGHT PERIOD OF N-9093P ON THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF DEGREE OFFSET


.~<br />

o<br />

tJ)<br />

o<br />

f LT5 -12/20174 .1 /l0175. 1/30175. ~37';<br />

PROCESSED DR T f02/23/75<br />

A<br />

LECE.NC<br />

I'1ER~<br />

---e--­<br />

+2 Sle,..G .4><br />

.<br />

U)<br />

N<br />

0<br />

c..J<br />

w<br />

00<br />

0<br />

A<br />

A A A A A<br />

A<br />

A<br />

A A A<br />

A<br />

A<br />

A<br />

A<br />

A A A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

-2 SlC~C; ~<br />

OESIC~ GORL TOLERR~CE<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

.,<br />

0\<br />

f-'<br />

0<br />

W<br />

0.....<br />

0<br />

--.J<br />

(f)~<br />

W O I<br />

0<br />

........<br />

--.J<br />

do<br />

L.?<br />

lL •<br />

0 0<br />

I<br />

0::::<br />

0<br />

0:::"<br />

0::::U?<br />

r-<br />

w·<br />

0<br />

I<br />

/'<br />

~<br />

~<br />

~ ~<br />

~<br />

~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~<br />

~ ~<br />

~<br />

~ ~ ~ ~<br />

~ ~<br />

~~~<br />

~<br />

~<br />

~<br />

~<br />

¢<br />

o<br />

'0, 2. 3.<br />

5LRNT RRNGE (NRUTICRL<br />

FIGURE 43.<br />

ALL FLIGHT PERIODS OF N-377 ON THE 30 ILS GLIDE SLOPE IN TERMS OF DEGREE<br />

OFFSET<br />

76-20-43


0<br />

0<br />

~l .!><br />

:~<br />

.!><br />

.!><br />

LL r- O<br />

I<br />

.!><br />

~o<br />

.!><br />

.!><br />

.!><br />

.!><br />

.!><br />

.!><br />

.!><br />

.!><br />

.!><br />

.!> .!> .!> .!> .!> .!> .!> .!> .!>.!> .!> .!><br />

.!><br />

.!><br />

fLTS-12/20/74.1/10/75.1/30/75.~371<br />

PROCESSED DATED2/23/76<br />

.!> .!> .!><br />

ltCEND .!><br />

MEA'l<br />

+2 s.tC1'"<br />

,-25IGMR .!><br />

DESIGN GOAL TOLERANCE<br />

- - -<br />

- - - - - - -<br />

- - - -<br />

- - - - - - -<br />

W O<br />

0­<br />

---------------------- .!><br />

0<br />

-lo ~ Jll<br />

(f)C? ~<br />

i.J)<br />

WNi 6<br />

0'<br />

0'1 ...........<br />

~<br />

N<br />

-l<br />

Ggi<br />

~<br />

LL"<br />

O~<br />

I<br />

cr::<br />

1 ~<br />

0<br />

° I ~<br />

cr::o<br />

W"<br />

~~<br />

°<br />

~<br />

- - - ­<br />

~'><br />

~<br />

<br />

<br />

V \<br />

0 <br />

5CQ'l5 NO. OF<br />

0 . IN<br />

0<br />

40 )1·


o<br />

U)<br />

o<br />

,n<br />

N<br />

0<br />

A<br />

Il/2gns.2/41752/C,I7S.217I7S.~gOg'JP<br />

I P~OCfSS[D<br />

ilfSf~[;<br />

DR T f02/23!7C,<br />

!l'lf.R"I ---6<br />

! +2 SICt"C, ~<br />

A<br />

I -2 S I Ct"t; <br />

[10ft S I C"I GDt;L<br />

TOI f Rt;"ICf<br />

~<br />

0'\<br />

W<br />

C)<br />

UJ<br />

DO<br />

0<br />

0<br />

W<br />

0­<br />

0<br />

--.JU)<br />

(f)N<br />

0<br />

WI<br />

0<br />

>--<<br />

--.J<br />

dO<br />

LD<br />

LL "<br />

O~<br />

CL<br />

0<br />

I<br />

0:::' Uj<br />

CL ~_~<br />

UJ<br />

9 <br />

,<br />

A<br />

A<br />

A<br />

A<br />

A<br />

A<br />

-- - ~ '" , I 1 I I I I I --1 ,~~~~ Iii<br />

----. A '-----'-1"" , I , '&-J~ A A A A A A<br />

'I-'-'~" , ----- A & A A<br />

-- A A =AAAA AA<br />

L~_~~_~~J~~~<br />

<br />

<br />

<br />

<br />

0<br />

~) ~. ~)<br />

~) \!'><br />


0"­<br />

.l;-­<br />

o<br />

f­<br />

tJ. C<br />

o<br />

Lf)""""':<br />

of<br />

ol<br />

~.;j<br />

~~c'<br />

t!><br />

11 ,I c:' -: --.~<br />

0...<br />

c<br />

--....:0<br />

If)C<br />

UJ!<br />

l..LJ (,J..J<br />

0' i<br />

~<br />

I<br />

[<br />

~ol<br />

LL~ J<br />

0..0<br />

,<br />

<br />

~<br />

<br />

~<br />

.!'.<br />

t!><br />

~ ,/nn t :'/4175.2!5175.~1717'j."l9093~<br />

P~~(tJ~rD D~~t02/23/75 I<br />

Ir1Cf"lC<br />

I<br />

I M£I;~ i'!l I<br />

i +2 ~ 1Ct1c,<br />

,<br />

A<br />

i ·2 ~ICMe, 0<br />

l~~S!~~i GCJ~<br />

,!.<br />

.­ ?<br />

~<br />

<br />

~<br />

.!.<br />

'"<br />

'"<br />

'"<br />

~<br />

~<br />

.!.<br />

t!><br />

'"<br />

~<br />

~<br />

I<br />

'0::::<br />

0<br />

0:::: 0<br />

0::::0<br />

w~<br />

r-­<br />

I<br />

0<br />

0<br />

<br />

<br />

<br />

<br />

<br />

<br />

~~. '50.1. 'j.i. ~J ~o· ':.I~. 'So.A::. ~.;;,. ~~ - ~..,;. \:)'<br />

. , '2,<br />

SLRNT RRNGE<br />

3.<br />

(NRUTICRL<br />

FIGURE 46. ALL FLIGHT PERIODS OF N-9093P ON THE 3 0 IL8 GLIDE SLOPE IN TERMS OF ALTITUDE<br />

FEET OFFSET<br />

B,<br />

.76-20-46;


o<br />

w')<br />

01/30175 - - .35 BELa\; BORESICW<br />

P~OCfSSE.D D~ Tt 0111417'3<br />

\<br />

: lEC£.NG<br />

°l I MEN.. a<br />

!"'2 ~ I2t'111<br />

""<br />

i -2 S IC('1'; ¢<br />

col<br />

I oES~C_,",__GCJI1L TOLERI1,",CE _<br />

~1<br />

1<br />

0\<br />

Ln<br />

C)<br />

LLJ<br />

DO<br />

o<br />

o<br />

LLJ<br />

0....<br />

o<br />

.--J w') I<br />

rJ) r--J<br />

I<br />

I<br />

LLJO~ I ,<br />

r-~ .<br />

'---J<br />

~o~: w')<br />

LL ..<br />

00<br />

I<br />

CL<br />

I<br />

=r--'-:=J-:.:J~--=--'-_='-=_T-~~_=:r--=r----=r-::.J-.:.I-='=T--'__::..J ,=r:=-r-_--,-T-...::::r-=_' -.J --.J -.J -.J --.J --.J --.J --.J --.J --.J -1 -1<br />

'"<br />

'" '" '" '"<br />

'" '" '" '" '"<br />

'" '" '" _.2l<br />

l 1 Q}----f'l ­ '" ,-tJ}-----a- \~<br />

, /<br />

,y/}-~-=----f']-~-fl}~.. '!'<br />

L..J --------c.i _~<br />

<br />

<br />

'"<br />

'" '" ~<br />

'" '" ,."-' ~.<br />

'" /p~ \<br />

'"<br />

~ L:.i<br />


0 01/30/75·-·35 efl~" BORfSICHT<br />

0<br />

I<br />

P~OCtSSlO<br />

~RTlOI/14/75<br />

o~<br />

I LE.CE.NG<br />

wI<br />

IHff."I ----e<br />

0<br />

0<br />

u')<br />

N<br />

I ~ 1+2 SICMG A<br />

I<br />

-2 SICHe; ¢><br />

~<br />

OfSION GORL<br />

TaLfRf,~Cl<br />

~<br />

I­<br />

U- o<br />

~o<br />

,- T ,- ,-,- ,--,-----r -,---,- -,---,-,- -,- -,-------,--,--1 -,-, ---.--T I I I I 1 1 I ~<br />

- -<br />

l..1JO<br />

~ - - - ­<br />

ll..­<br />

- -- - -<br />

0<br />

- - -<br />

- - -<br />

~ - ­ -<br />

---.JO<br />

~<br />

(f)~<br />

u')<br />

WN<br />

~> R!<br />

0' <br />

~<br />

0'­ .......... ~~<br />

~><br />

0'­<br />

---.J ~ ~<br />

~<br />

~<br />

~<br />

L:lo<br />

~<br />

i.' . ~<br />

/La<br />

0 <br />

OU) ~<br />

<br />

I<br />

0::::'<br />

~<br />

0<br />

0:::'0 <br />

0::::'0<br />

~<br />

~<br />

l..1Ju~ ~<br />

r-­<br />

I<br />

<br />

~<br />

~ /'<br />

~<br />

~<br />

~<br />

~<br />

<br />

~<br />

~<br />

<br />

~. J, &. ~ . ~ . ~, ~. ~ .<br />

f I<br />

, , ...... 1 ,<br />

I I<br />

I ~l!> I ~$<br />

10, I ' L.<br />

::l •<br />

SLRNT RRNGE (NRUTICRL 76-20-48<br />

FIGURE 48.<br />

FLIGHT PERIOD OF N-377 ON THE 0.35° BELOW THE 3° ILS GLIDE SLOPE IN TERMS<br />

OF ALTITUDE FEET OFFSET


o<br />

.n<br />

o<br />

.h .h<br />

02120175.~UN5 1-4.9-12<br />

PROCE55£.D DRTED2117175<br />

Lf.G£.NO<br />

--I!I-­<br />

•<br />

~<br />

D<br />

W O<br />

O~<br />

~<br />

n:::<br />

a<br />

n:::<br />

n:::.n<br />

w 0<br />

I<br />

0\ n:::<br />

'-J 0<br />

r­<br />

..-.<br />

Zo<br />

a .<br />

:L.­<br />

• I<br />

.h<br />

.P<br />

4> .h<br />

.h<br />

.h<br />

.h<br />

~<br />

.h<br />

.h~<br />

.h<br />

~<br />

.h ¢'<br />

~ A<br />

~<br />

~<br />

~ ~ ~<br />

~<br />

~<br />

.h<br />

.h~ ~<br />

"y'<br />

(f)<br />

D<br />

~<br />

(D<br />

I<br />

.h .h<br />

.h<br />

~ ~<br />

~<br />

o<br />

I<br />

O. 1. 2.<br />

~<br />

~<br />

~<br />

NO. Of<br />

SCRNS<br />

IN<br />

' l 1. l !l. 13· , 1. fl· " IS l 2. J 5 7. :.. _. 1. ,. ,. ,. 7. JI. 6 !to 7. 7. Ii 7. 7. e. Eo. 1. 6 Eo· ~ ). l O. ,i. BINS<br />

3. 4. 6. 6. 7. a.<br />

SLRNT RRNGE<br />

(NRUTICRL MILES)<br />

76-20-49<br />

FIGURE 49. FLIGHT PERIOD OF N-377 ON THE 1508 FEET LEVEL ALTITUDE FLIGHT ALONG THE 3°<br />

FINAL APPROACH PATH IN TERMS OF DEGREE OFFSET


0<br />

0<br />

0<br />

ill<br />

-<br />

0<br />

0<br />

0<br />

00 A<br />

......­<br />

X<br />

A<br />

- ,0<br />

t--.C:;<br />

[LO<br />

~lJ)<br />

02120I7S,~UNS 1-4,9-12<br />

PROCE55£.D DATE02l17175<br />

l fe-E.MeJ<br />

~E~~ ~<br />

+2 5IG~G A<br />

-2 51()~~ ~<br />

0­<br />

(Xl<br />

W<br />

n..<br />

;0 A<br />

---l0<br />

(f)C:;<br />

0<br />

A<br />

W<br />

0<br />

A<br />

0-00 ~<br />

---l0<br />

o' 0<br />

~ ~ ~ ~<br />

ill<br />

[L I A A<br />

0<br />

A<br />

0::: 0 A<br />

oC:;<br />

0::: 0<br />

o:::~<br />

WI<br />

A<br />

A A<br />

~<br />

~<br />

0<br />

0<br />

A<br />

0 ~<br />

ill<br />

,. o. ~. ,2. 1 f:I ,. 2 .... 3 OJ, 1. :l i. 7. ,. ,. ~. 7. 11· fi ,. ,. 7. 6· 1. 1. a. ~. 1.<br />

;aI, r I<br />

J, 3. 4 '. ' , , , '5. 6.<br />

SLANT RANGE<br />

[ NAUT I CAL MlL ES l<br />

FIGURE 50. FLIGHT PERIOD OF N-377 ON THE 1508 FEET LEVEL ALTITUDE FLIGHT ALONG THE 3°<br />

FINAL APPROACH PATH IN TERMS OF ALTITUDE FEET OFFSET<br />

~O.<br />

Of<br />

5(~~5<br />

IN<br />

6. ,. O. J. BIN5<br />

7. B.<br />

76-20-50


c<br />

c ~<br />

Il<br />

1<br />

N U')1<br />

N377 q~c N9093 P FlIC~T~ (O~BINFO<br />

P~O[!S~fD D~T!02/23/75<br />

I<br />

fGE NC<br />

I ~fq'l ----5-­<br />

I I +2 51C~q &<br />

l<br />

-2 SIC~t; ~<br />

~<br />

DfSIC'l GO~l Hli Ffl';"u<br />

._-,------------ -- _..._..._----_._._ ..<br />

~<br />

~ ,!\ ~<br />

•<br />

•<br />

o • • •<br />

~ '" • .L __<br />

., ." .' •• ".L 0-- '"<br />

,,' I , , I ,<br />

.<br />

~O , I """<br />

(")'. • • , 1 • - ,', , , ,., ,<br />

=:0_\ ~ ---' __I _-, ! .' 1 1 ' ....1 I 1 'u .<br />

U.J<br />

CL<br />

G<br />

I<br />

I<br />

I<br />

-.J~;) ! rq .--i


G N377 'it..JC "~'J(";:)3P FL I~IiT~ (~"'B!NED<br />

c<br />

P~Ql~~~ED<br />

8~T~82/23!7~<br />

c_<br />

L,'") j l~~fNC ~<br />

I ~ ,<br />

·2 ~t~~~ ~<br />

~<br />

A ~<br />

01 A<br />

i -2 :: l~f'1c; t!> ~<br />

e· fl.>. ~ 'DE:"::'! DOc;l TULf~c;'JlE<br />

~ fl.>. L_______ .. ~_._. _<br />

~<br />

~J ~ fl.>.<br />

~<br />

t!> ~<br />

C'J i t!> ~<br />

~<br />

I I!. ~<br />

~ t~ 53 ~~ ,,~~ ~ !I BIN::'<br />

, I I 1 I , I I j ! '-,! , I I l::, ! ':( , .. I v I I , I 41 ,- I I , , 'j I I 61<br />

1 . c.... . J • • • ~<br />

'e<br />

SLRNT R1=1 t'! GE (N RUT I CRL MIL ES 1 76-20-52<br />

~<br />

'JD<br />

DF<br />

FIGURE 52.<br />

ALL FLIGHT PERIODS ON N-377 AND N-9093P ON THE 3°ILS GLIDE SLOPE IN TERMS<br />

OF ALTITUDE FEET OFFSET


--C--T=- - --~t_- ­<br />

I<br />

/ 500' 1110' 1025'<br />

(152.405 m.)~ (338.339 m.) .. (312.430 Meters)--'"<br />

I d U.s G.S. .<br />

-.L6 G.S. MONITOR<br />

I-­<br />

'J<br />

I-'<br />

1308'<br />

(398.692 Meters)<br />

41<br />

TOWER 76-20-53<br />

FIGURE ·53.<br />

THE RELATIVE LOCATIONS OF THE MONOPULSE ANTENNA AND THE FIXED TARGET/TOWER.


APPENDIX<br />

A<br />

SAMPLE PLOTS OF REDUCED DATA SHOWING THE INDIVIDUAL FLIGHT<br />

TRACKS AND THE RELATED ERROR DATA


LIST OF ILLUSTRATIONS<br />

Figure<br />

A-I<br />

Track Data of N-9093P on the 3° ILS Glide Slope in<br />

Terms of Degree Offset from the Monopulse Antenna's<br />

Boresight.<br />

Page<br />

A-2<br />

~2 Track Data of N-9093P on the 3° ILS Glide Slope in Terms<br />

of Altitude Feet Offset from the Monopulse Antenna's<br />

Boresight<br />

~3<br />

~3 Error Data in Terms of Degree Offset for N-9093P<br />

the 3° ILS Glide Slope<br />

Flying ~4<br />

~4 Error Data in Terms of Altitude Feet Offset for N-9093P<br />

Flying the 3° ILS Glide Slope<br />

A-5 Track Data of N-377 0.35° Below the 3° ILS Glide Slope<br />

in Terms of Degree Offsets From the Flight Line<br />

~6 Track Data of N-377 0.35° Below the 3° ILS Glide Slope<br />

in Terms of Altitude Feet Offset From the Flight Line<br />

~5<br />

~6<br />

~7<br />

~7 Error Data in Terms of Degrees Offset for N-377<br />

the 0.35° Below the 3° ILS Glide Slope<br />

Flying ~8<br />

~8 Error Data in Terms of Feet Offset for N-377<br />

0.35° Below the 3° ILS Glide Slope<br />

Flying the ~9<br />

~9 Track Data of N-377 on the 1508 Feet Level Altitude<br />

Flight Along the 3° Final Approach Path in Terms of<br />

Degree Offset<br />

A-IO<br />

A-IO<br />

A-II<br />

Track Data of N-377 on the 1508 Feet Level Altitude<br />

Flight Along the 3° Final Approach Path in Terms<br />

of Altitude Feet Offset<br />

Error Data in Terms of Degree Offset for N-377 on the<br />

1508 Feet Level Altitude Flight Path Along the 3°<br />

Final Approach Path<br />

A-II<br />

A-12<br />

A-12 Error Data in Terms of Altitude Feet Offset for N-377<br />

on the 1508 Feet Level Altitude Flight Path Along the<br />

3° Final Approach Path<br />

A-13 Track Data of N-377 on the 230 Feet Level Altitude Flight<br />

Along the 3° Final Approach Path in Terms of Degree<br />

Offset<br />

A-13<br />

A-14<br />

A-iii


LIST OF ILLUSTRATIONS (continued)<br />

Figure<br />

A-14<br />

A-IS<br />

A-16<br />

Track Data of N-377 on the 230 Feet Level Altitude Flight<br />

Along the 3 0<br />

Final Approach Path in Terms of Altitude<br />

Feet Offset<br />

Error Data in Terms of Degree Offset for N-377 Flying<br />

the 230 Feet Level Altitude Flight Path Along the<br />

3 0 Final Approach Path<br />

Error Data in Terms of Altitude Feet Offset for N-377<br />

Flying at the 230 Feet Level Altitude Flight Path<br />

Along the 3 0<br />

Final Approach Path<br />

Page<br />

A-IS<br />

A-16<br />

A-17<br />

A-iv


APPENDIX<br />

A<br />

SAMPLE PLOTS OF REDUCED DATA SHOWING THE INDIVIDUAL FLIGHT<br />

TRACKS AND THE RELATED ERROR DATA<br />

This appendix contains samples of the flight plots developed in the reduction<br />

of the collected data. On the 3° glide path flight's sample plots are shown<br />

in figures A-I, A-2, A-3, and A-4. At -0.35° below the 3° glide path flight's<br />

sample plots are shown in figures A-5, A-6, A-7, and A-8 (where the boresight<br />

line of 0.0° is the flight line). At the level altitude of 1508 feet<br />

(459.65348 meters) along the 3° Final Approach Path that intersects this path<br />

at the OM, the flight's sample plots a~e shown in figures A-9, A-IO, A-II,<br />

and A-12. At the level altitude of 230 feet (70.10630 meters) along the 3°<br />

Final Approach Path that intersects this path at the middle marker, the flight's<br />

sample plots are shown in figures A-13, A-14, A-15, and A-16.<br />

A-I


o<br />

"'')<br />

o<br />

RUN 13,G2/07/7S.~9093P<br />

PROCl55l0 ORTf 09/30/75<br />

LECE.NO<br />

THED.<br />

NE5T.<br />

x<br />

"'')<br />

N<br />

0<br />

~<br />

,<br />

(;:)<br />

uJ o<br />

00<br />

0<br />

Z<br />

0<br />

........<br />

I- u')<br />

crC';J<br />

........ 0<br />

>1<br />

uJ<br />

0<br />

1-0<br />

:r<br />

N r"'?<br />

(;:)0<br />

........ 1<br />

(f)<br />

uJ<br />

0:::­<br />

OL.')<br />

m~<br />

0<br />

1<br />

X<br />

X<br />

x<br />

X<br />

x X X X X<br />

X<br />

X<br />

X X X X X X X<br />

X<br />

X<br />

X X X X<br />

X X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

o<br />

1 I r-- I I I I I I ,-------,<br />

to,OO 1,00 2·00 3.00 4.00 5.00 6,00<br />

SLR~T RR~GE (NRUTICRL MILES)<br />

76-20-Al<br />

FIGURE A-I.<br />

TRACK DATA OF N-9093P ON THE 3 oILS GLIDE SLOPE IN TERMS OF DEGREE OFFSET<br />

FROM THE MONOPULSE ANTENNA'S BORESIGHT.


-0<br />

o<br />

o<br />

0<br />

0<br />

RUN<br />

;3,G2/07/75·~~0~3P<br />

PRO(l~~[D ~~Tl 01/30/75<br />

Lf.CLN[;<br />

THE!) ,<br />

IoIf.~T • x<br />

0<br />

l.t)<br />

~<br />

I­<br />

L.LJ<br />

l.1.J 0<br />

LLo<br />

Z<br />

0<br />

.......... 0<br />

I-~<br />

CI o<br />

.......... u')<br />

>1<br />

l.1.J<br />

» DO<br />

I<br />

w<br />

0<br />

0<br />

1-"<br />

TO<br />

0<br />

U_<br />

.......... I<br />

(j)<br />

l.1.J<br />

n:::g<br />

0,<br />

(Do<br />

u')<br />

o<br />

o<br />

~IJI<br />

-"----"---.,,----",-----"---jr----"---'I-----,-1---'1------,-1-------,'<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

SLANT RANGE [NAUTICAL MIL.ESJ<br />

FIGURE A-2. TRACK DATA OF N-9093P ON THE 3 0 ILS GLIDE SLOPE IN TERMS OF ALTITUDE FEET<br />

OFFSET FROM THE MONOPULSE ANTENNA'S BORESIGHT<br />

6.00<br />

76-20-A2


o<br />

N<br />

o<br />

0<br />

-<br />

0<br />

-<br />

D<br />

·<br />

uJo<br />

dc::<br />

~o<br />

RUN 13.02/07/75.~9093P<br />

PROClSSlD DATE 09/30/75<br />

LEGEND<br />

"EAN<br />

---is<br />

+2 SIG"A •<br />

-2 SIG"R<br />

0<br />

DESIGN GOAL TOLERANCE -- -- -­<br />

~<br />

:><br />

0::<br />

a<br />

0:: 0<br />

0::­<br />

uJ •<br />

0<br />

I<br />

0::<br />

a<br />

I-­<br />

I ...... 0<br />

.j::-.<br />

ZN<br />

a .<br />

:L9<br />

·<br />

(J)<br />

·<br />

D~<br />

0<br />

I<br />

- - - - - - - - - -A--- - - ­<br />

~<br />

A<br />

o<br />

'"'I"<br />

~<br />

9....L'---r-1------.-,--~I------'Ir-----.,<br />

0.00 1,00 2.00<br />

SLANT RANGE<br />

--~I-----'Ir-----'I---..,.1-----,'----,---.1----,1<br />

3.00<br />

(NAUTICAL<br />

4.00<br />

MILES)<br />

5.00 6.00<br />

76-20-A3<br />

FIGURE A-3.<br />

ERROR DATA IN TERMS OF DEGREE OFFSET FOR N-9093P FLYING THE 3 oILS<br />

GLIDE SLOPE


-0<br />

0 IRUN 13.C2/07/75.N9093P<br />

0 PROClSSlD DATE 09/30/75<br />

~.., LEGlND<br />

I1EFiN<br />

+2 SIGI1A<br />

""<br />

'-2 SIGI1R<br />

~<br />

~I DESIGN GOAL TOLERANCE - -­<br />

0<br />

lJ)<br />

---l!t<br />

>­<br />

~'o<br />

LLo<br />

o<br />

0:::<br />

a<br />

0:::0<br />

o:::c:<br />

W o<br />

lJ)<br />

0:::'<br />

a<br />

I 1- 0<br />

VI ...... 0<br />

Z .<br />

og<br />

L:....<br />

I<br />

en<br />

,0<br />

C,jC:<br />

o<br />

j.J)<br />

....<br />

- - - - -<br />

""<br />

o<br />

o<br />

NI<br />

,~O~O-"---I'~OC~-T'--=--~~~iO---'-----r~:;--,---,~=--r---~'L_JL-------.<br />

.00 I I I I • L:I<br />

I I I I I<br />

1 .00 2.00 3.00 4.00 5.00 6.00­<br />

SLANT RANGE<br />

(NAUTICAL MILES)<br />

FIGURE A-4. ERROR DATA IN TERMS OF ALTITUDE FEET OFFSET FOR N-9093P FLYING THE 3°<br />

ILS GLIDE SLOPE<br />

. \76-20-A4


o<br />

If)<br />

o<br />

1/30/76.~UN 12 .RORE5I~~T-.35<br />

PROCl55lD CRT~ 03/16/76<br />

lEClN~<br />

THf(l,<br />

HE5T.<br />

x<br />

;.n<br />

N<br />

0<br />

~<br />

,<br />

(j<br />

W o<br />

00<br />

'-'<br />

0<br />

Z<br />

0<br />

..........<br />

I-,D<br />

cr:"!<br />

.......... 0<br />

>1<br />

1 I I I I I<br />

x<br />

W x x<br />

> 'I 0<br />

x<br />

x<br />

x<br />

0)<br />

x x x x x<br />

1-0 X<br />

x<br />

x<br />

X X X X X<br />

x X X X<br />

I~<br />

x<br />

X<br />

Clo<br />

X<br />

X<br />

.......... 1 x<br />

x x x X<br />

(J)<br />

x<br />

W<br />

0::::<br />

OU)<br />

COr:<br />

0<br />

1<br />

I<br />

I<br />

I<br />

X<br />

o<br />

.'<br />

....<br />

, ~'wlO--,--'1~o-r-~--=-T~~---r---r-~---r-----,-:--::::--,----.-------,.-----~<br />

0 .00<br />

I I1.00 I<br />

2.00 r i I I I I I<br />

3.00 4.00 5.00 6.00<br />

76-20-AS, SL AN T RAN GE (NAUTICAL MILES) '<br />

FIGURE A-5. TRACK DATA OF N-377 0.35 0 BELOW THE 3 0 ILS GLIDE SLOPE IN TERMS OF DEGREE<br />

OFFSETS FROM THE FLIGHT LINE


o<br />

o<br />

0<br />

0<br />

1/30/76.~UN<br />

12 .~ORESIOHT-.35<br />

PROCESSlD DRTE 03/16176<br />

lE(:;END<br />

THEO.<br />

WEST.<br />

X<br />

0<br />

In<br />

~<br />

I­<br />

W<br />

W o<br />

l..L..0<br />

~ .<br />

0<br />

z I x<br />

a<br />

...... 0<br />

1- 0<br />

a:~<br />

...... in<br />

>'<br />

W<br />

:><br />

x x<br />

/1 00 x x x<br />

""-l 0<br />

1-- •<br />

I<br />

O<br />

(j~<br />

...... ,<br />

(f)<br />

W<br />

0::: 0<br />

x x<br />

0<br />

x<br />

a .<br />

1Il 0<br />

in<br />

,<br />

.....<br />

0<br />

x<br />

0<br />

0<br />

0<br />

C\J<br />

x<br />

x<br />

I 0.00 1 .00 2.00 3.00 4.00<br />

SLANT RANGE [NAUTICAL MIL.ESl<br />

x<br />

x<br />

FIGURE A-6. TRACK DATA OF N-377 0.35 0 BELOW THE 3 ILS GLIDE SLOPE IN TERMS OF<br />

ALTITUDE FEET OFFSET FROM THE FLIGHT LINE<br />

x<br />

x<br />

x<br />

0<br />

x<br />

x<br />

x<br />

5.00 6.00<br />

!76-20-A6


o<br />

N<br />

o<br />

RUN 12.01/30/75.~377<br />

PROCE55l0 O~TE O~/23/75<br />

l[~lNC<br />

I1EFtN<br />

+2 51C·I'IF. A<br />

-2 51011'1 ¢<br />

e<br />

0-0<br />

O[510~ GO~L T~LER~NCE<br />

.<br />

~<br />

C)<br />

L.LJO<br />

oC:<br />

~o<br />

0:::'<br />

0<br />

0:::'0<br />

0:::'­<br />

L.LJ<br />

0<br />

I<br />

0:::'<br />

0<br />

> I<br />

l­<br />

00 ' ......... 0<br />

ZN<br />

o·<br />

L.-9<br />

"<br />

if)<br />

c..::>~<br />

0<br />

I<br />

•<br />

o<br />

...<br />

':\ '""<br />


0<br />

0<br />

IRUN 12.01130175,1077<br />

0<br />

0_<br />

PROCESSEO D~Tl 09/23/75<br />

lEC[~O<br />

gl<br />

a<br />

L()<br />

"rf;~ --5<br />

+2 51CI1'i /l.<br />

1-2 51CI1~<br />

OEr, W" GOf,l Tf)lr%~CE.<br />

¢<br />

>­<br />

I<br />

f- o<br />

LLo<br />

o<br />

er<br />

a<br />

ero<br />

erC?<br />

LJ.Jo<br />

..')<br />

er l<br />

a<br />

f- o<br />

I---lo<br />

og<br />

::E._<br />

1<br />

~<br />

z·<br />

(f)<br />

,0<br />

DC?<br />

a<br />

,D<br />

------<br />

- - - - -<br />

~. ~.<br />

o<br />

o<br />

o<br />

o<br />

';l I I I I I I I I I I I I!l i'!I I I<br />

0.00 1.00 2.00 3.00 4.00 5.00 6.00<br />

SLRNT RRNGE (NRUTICRL MILES)<br />

I<br />

76-20-A8<br />

FIGURE A-8.<br />

ERROR DATA IN TERMS OF FEET OFFSET FOR N-377 FLYING THE 0.35 BELOW<br />

0<br />

THE 3 oILS GLIDE SLOPE<br />

¢


co<br />

J'-'0<br />

o<br />

'"<br />

RUN 2.02l20175.~377.lEVEI flT.<br />

PROCESSEO O~Tt. 02126176<br />

l ECENG<br />

THEO.<br />

HE~T • x<br />

0 0<br />

UJ u~<br />

o<br />

W<br />

-I<br />

o<br />

ZO<br />

IT';<br />

z<br />

o<br />

)( x<br />

x X<br />

X<br />

X<br />

"> I ~<br />

I'-' ITO<br />

o<br />

> . :::-:==-. I<br />

W "'~X--'-"-'+- I X I I.......... I<br />

....J<br />

W<br />

o<br />

N<br />

X<br />

X<br />

X<br />

X<br />

X X X X X<br />

X X X<br />

X<br />

X X X X<br />

i<br />

X<br />

X<br />

I<br />

o<br />

o. 1 . 2. 3. 4. 6.<br />

SLRNT RANGE (NMl<br />

8.<br />

176-ZD-A9<br />

FIGURE A-9. TRACK DATA OF N-377 ON THE 1508 FEET LEVEL ALTITUDE FLIGHT ALONG THE 3 0<br />

FINAL APPROACH PATH IN TERMS OF DEGREE OFFSET


0<br />

0<br />

0<br />

lJ)<br />

!RUN 2.02/20I7S·N377 LfVfI<br />

PRaCE~5[O OI1T~ 02/21)/71)<br />

LfGE NC<br />

FLT.<br />

0<br />

0<br />

x<br />

x<br />

THE 0<br />

WE'~T • x<br />

ill<br />

N<br />

x<br />

~<br />

~<br />

f-'<br />

-0<br />

...... 0<br />

X O<br />

f- 0<br />

1.L<br />

~<br />

W O 0<br />

---l •<br />

CJu,)<br />

ZN,<br />

a:<br />

Z<br />

00<br />

.-C:<br />

1-0<br />

a:.J)<br />

>'<br />

W<br />

---J<br />

W O 0<br />

)( )(<br />

X<br />

~<br />

X<br />

X<br />

X<br />

I<br />

X<br />

X<br />

X<br />

I<br />

x<br />

x<br />

-,-------~ I I -----" I<br />

X<br />

X<br />

X X<br />

X<br />

X<br />

X<br />

X<br />

X X<br />

X<br />

X<br />

X<br />

X<br />

X X<br />

X X X X<br />

X<br />

X X<br />

lD<br />

I""­<br />

,<br />

X<br />

0<br />

0<br />

0<br />

0-<br />

X<br />

, O. 1 . 2. 3. 4. s. 6. 7. 8.<br />

SLRNT RRNGE (NMJ 76-20-AlO<br />

FIGURE A-IO.<br />

TRACK DATA OF N-377 ON THE 1508 FEET LEVEL ALTITUDE FLIGHT ALONG THE<br />

3° FINAL APPROACH PATH IN TERMS OF ALTITUDE FEET OFFSET


o<br />

RUN 2.02l20175.11377.l EVEl. FLT.<br />

PROC~55~D DRTE 02/26/76<br />

LEG~ND<br />

~ERN<br />

---&-­<br />

+2 SIG~R ..<br />

-2 SIGM<br />

•<br />

I I I<br />

~ 2. 3. ~. 5. 6. 7. a.<br />

SLANT RANGE (NMJ<br />

76-20-All<br />

FIGURE A-1L<br />

ERROR DATA IN TERMS OF DEGREE OFFSET FOR N-377 ON THE 1508 FEET ALTITUDE<br />

FLIGHT PATH ALONG THE 3 0 FINAL APPROACH PATH


--0­<br />

o<br />

o<br />

'"<br />

o<br />

o<br />

RUN 2.02l2017S.N377.lf.VEl FLf,<br />

PROn.S5E.O O~Tf. 02/25/7.5<br />

lEGE.~G<br />

----l!I--­<br />

~E~N<br />

+2 ~JlO(~F1 ...<br />

-2 5IC~q ~<br />

a<br />

..-.<br />

X O<br />

f-~<br />

LLCl<br />

lJ)<br />

0:.:<br />

0:::<br />

>"0<br />

'I .: f--O<br />

.............. 0<br />

W<br />

0<br />

o 0<br />

0::: W· I i<br />

zC;;<br />

0",<br />

:L 1<br />

01<br />

I<br />

I<br />

'"T<br />

_+<br />

r~<br />

----~<br />

--I<br />

(/)0<br />

.0<br />

Clo<br />

o-1<br />

o<br />

o<br />

::s<br />

1<br />

I O.<br />

----r;<br />

I ,t, -----r----------r- I ----,--.-'-------~<br />

2· 3. 4. ;:,. 5. 7.<br />

SLA~T RR~GE [NMJ<br />

1<br />

8.<br />

76-20-A12<br />

FIGURE A-12.<br />

ERROR DATA IN TERMS OF ALTITUDE FEET OFFSET FOR N-377 ON THE 1508 FEET<br />

LEVEL ALTITUDE FLIGHT PATH ALONG THE 3° FINAL APPROACH PATH


o<br />

LD<br />

~l<br />

i\\<br />

~<br />

:..)01,<br />

-L1 u~ (<br />

::J<br />

1<br />

~ i<br />

~ ,<br />

-.J i !<br />

~ :<br />

zol<br />

:i .; i<br />

1> • 1<br />

'I :z I<br />

~ 'E~ i i<br />

RUNl1.C2I20175.NJ77.lfVEI. 'LT.<br />

PRCJC!: ~~l 0 DI1:l:' 12/22/7S<br />

IOI<br />

> "I \<br />

-L....:t'T)~' '--" f'-'" - _. _._. -.-----_ ... -, -----··--,··X'···x .....-----.. - .. ~.-. ----·X--·X--··--- --,------------- -····-·T·_·--- i<br />

--i IX<br />

.l.J<br />

C?I<br />

N..j<br />

I<br />

I X X<br />

""<br />

I<br />

~L<br />

X X X X X<br />

X X X X X X X X X X X XX<br />

.X<br />

X<br />

'T ...----.- T' --"'- .-'["'--'-- -T---'-'- I<br />

o. 1 . Z. " .<br />

7. 8·<br />

SLANT RANGE<br />

(NM)<br />

X<br />

L[()(.NC<br />

THEO.<br />

Wr~T.<br />

X<br />

76-20-Al3<br />

FIGURE A-13.<br />

TRACK DATA OF N-377 ON THE 230 FEET LEVEL ALTITUDE FLIGHT ALONG THE<br />

3° FINAL APPROACH PATH IN TERMS OF DEGREE OFFSET


~<br />

0<br />

0<br />

0<br />

u')<br />

0<br />

0<br />

I RUNlJ'.G2I20175.~377.lr.V[1<br />

I PROCtSSlO ~~~t 12/22/75<br />

fLT.<br />

!LfC[N:<br />

I TH[1.<br />

Wr. ST_~ . X<br />

u')<br />

N<br />

> I<br />

t'-'<br />

V1<br />

0<br />

---,0<br />

X~<br />

f-·O<br />

LL<br />

~<br />

wg<br />

--.J •<br />

au')<br />

z";J<br />

cr<br />

z<br />

0<br />

0 0<br />

>-< •<br />

f-·o<br />

cr;"')<br />

I<br />

><br />

Ll.J<br />

-'<br />

u.JO<br />

0<br />

~')<br />

r-<br />

I<br />

1 )(<br />

'­<br />

..·....- ...........f----..·---------,......­<br />

~<br />

x<br />

x<br />

x<br />

x x x<br />

x<br />

x x<br />

.....---..--.-,--..--.......­ ..---.. ,-x....-x--........---.,.,.-..--..-.--x...---..,--.----------,­<br />

x<br />

x x x x<br />

x x<br />

x<br />

x<br />

Xx x x<br />

0<br />

0<br />

0<br />

0- I<br />

o. 1 . 2. 3. 4. 5. 6. 8.<br />

SLANT RANGE (NMl<br />

76-20-A14<br />

FIGURE A-14. TRACK DATA OF N-377 ON THE 230 FEET LEVEL ALTITUDE FLIGHT ALONG THE 3°<br />

FINAL APPROACH PATH IN TERMS OF ALTITUDE FEET OFFSET<br />

-


o<br />

~.,<br />

o<br />

§ol<br />

J<br />

l1'<br />

RUN!J.G2I20I7S.N377.l.EVEI. FLT.<br />

PROCL[,::'l.D ~h TE 12/22/75<br />

=: ~t=-:=:-=-- .-"-'l-.-..=-=---=--.=---=--:;;;:r-c:...---=-=-'-=--=--;::r--=-­ --- --------------------------------<br />

"-'l ..... ~ ~ ~<br />

~ I<br />

0:::: ~'lJ<br />

l.LJ~<br />

0::::'<br />

o<br />

:>­ ~1-- I<br />

~ -z<br />

'~~~<br />

(j) ,<br />

C)<br />

o<br />

CD<br />

I<br />

LEGi.NG<br />

----a-­<br />

HEfo~<br />

+Z 5t~··Mr, ...<br />

-2 ~IC'-Mrl ~<br />

"'?<br />

-I I O.<br />

----------,--­<br />

1.<br />

---,---­<br />

2. 3.<br />

SLRNT<br />

.--_._--_.•. _-­ -<br />

4.<br />

RRNGE<br />

[NMl<br />

S. 6. 7.<br />

J6-20-A15<br />

a.<br />

FIGURE A-IS.<br />

ERROR DATA IN TERMS OF DEGREE OFFSET<br />

LEVEL ALTITUDE FLIGHT PATH ALONG THE<br />

FOR N-377 FLYING THE 230 FEET<br />

3 0 FINAL APPROACH PATH


0<br />

0<br />

0<br />

-<br />

~'J<br />

0<br />

0<br />

0<br />

0-<br />

~<br />

0<br />

~o<br />

0<br />

1-.<br />

!.LO<br />

~Lf)<br />

a::::<br />

a<br />

)- f-o<br />

I ........ 0<br />

I-' z~<br />

"'-l<br />

o~')<br />

1:.. I<br />

0:::<br />

a<br />

0::: 0<br />

0::: 0<br />

l..LJ<br />

0<br />

. I ~ - ~- - =r +==t=1====~--­<br />

(f)g<br />

c..'Jo<br />

0-I<br />

RUNI' .02120175 .N'17 .L.EVEl. fL T •<br />

PROCE:SS£:O ORTE 12/22/75<br />

LEOCNO<br />

"ERN - t!t-­<br />

_2 SIOIlr; ...<br />

-2 SIOIlr. ¢'<br />

=-=-=---=---=<br />

0<br />

0<br />

-+--_ ... '-"_.'._-'_._'-'--'_..r- .....,.<br />

0<br />

u'J<br />

r'<br />

I O. 1 3. 4. 5. 6.<br />

SL.ANT RANGE (NM)<br />

I<br />

I<br />

7. 8.<br />

--- -76-20-16!"'"""<br />

I<br />

FIGURE A-16.<br />

ERROR DATA IN TERMS OF ALTITUDE FEET OFFSET FOR N-377 FLYING AT THE<br />

230 FEET LEVEL ALTITUDE FLIGHT PATH ALONG THE 3° FINAL APPROACH PATH


APPENDIX<br />

B<br />

F AND t TESTS' RESULTS OF EACH FLIGHT PERIOD, BETWEEN SOME<br />

FLIGHT PERIODS OF THE SAME AIRCRAFT AND BETWEEN THE<br />

AIRCRAFT OF SOME FLIGHT PERIODS.<br />

This appendix contains all the results of the F and t tests performed on the<br />

reduced error data in this report. The F test concerns the reduced error<br />

data's variances to see if they are from equivalent populations. If the F test<br />

is passed, then the t test is applied to the error data means to determine if<br />

they are from equivalent populations. If both F and t tests indicate<br />

non-significance then that error data were from equivalent populations. The<br />

Westinghouse Electric Company Glide Slope Monitor Subsystem is then said to be<br />

yielding reproducible measurements for those particular error data bins and<br />

the particular data collection periods.<br />

In each of F and t tests, first look at the computed F value. Its magnitude<br />

should be anywhere between the critical upper and lower limits at the desired<br />

confidence of either 0.95 or 0.99. This yields a non-significant (NS) effect<br />

on the data population, which is the desired result, indicating the tested<br />

data are from equivalent populations and further testing should be done.<br />

If a significant (S) determination was made, then no further testing of that<br />

data are necessary and the data are not from equivalent populations.<br />

In applying the t test to NS tested error data, the absolute value of the<br />

computed T value is tested against the critical T values at the respective<br />

0.95 or 0.99 confidence level. If the computed ~ value is less than the<br />

critical T value, the tested error data are determined to be from equivalent<br />

populations and, consequently, NS. However, if the absolute value of the<br />

computed T value is ~ the critical T value; the tested error data are S.<br />

Therefore, they are not from equivalent populations.<br />

The results of the F and t tests were generally mixed along the Slant Range<br />

axis, some data bins had means which were from similar data populations while<br />

other data bins had means which were from dissimilar data populations. Throughout<br />

the F and t test results there was, in general, twice the amount of dissimilar<br />

data means. There was no correlation between the F and t tests relating<br />

to particular Slant Range data bins. The F and t test results show there<br />

is a question as to repeatability in the Glide Slope Monitor Subsystem data.<br />

B-1


TABLE B-1.<br />

F AND t TESTS<br />

A. Results for the December 20, 1974 flight period of N-377 on the 3° ILS Glide Slope<br />

PROCESSED<br />

"'ONTH DAY<br />

12 i5<br />

DATE<br />

YEAR<br />

15<br />

ERROR DF G~IDE<br />

(DEG.)<br />

Runs 7 and 8<br />

SLOPE ERROR OF GLIDE<br />

(DEG.I<br />

Runs 9 and 10<br />

SLOPE<br />

b'<br />

I<br />

'"<br />

BIN<br />

$IZE<br />

12/20174 12/20/74<br />

NO. MEAN S~ STD NO.<br />

SIGNIFICANT DIFFERENCE BETWEEN<br />

OF<br />

MEAN STD<br />

DEV. UF T~TEST<br />

DEV.<br />

SCANS<br />

OF COMPUTED CRITICAL<br />

SCANS CRITICAL COMPUTED<br />

IN<br />

T T<br />

T<br />

IN I'<br />

BIN<br />

VALUE<br />

BIN<br />

VALUE<br />

VA~UE VA~UE<br />

.95 .99<br />

O. "0~99 14 -0.7902 1.822 12 -0.58bO 1.308 24. ~0.323 NS 2 01>4 NS<br />

1.00-1'.99 14 ~0.2345 0.Ob4 14 -0.24(l1 0.Ob5 2b. n.23I NS 2 056 NS<br />

2.00~2~99 14 -0.2140 0.037 13 -0.2410 0.058 25. l.45b NS 2 060 NS<br />

3.00~3~99 14 -0.2345 0.039 12 -0.4529 1.585 24. 0.517 S 2 064 S<br />

4.00~4'99 14 ~0.1924 0.Ob7 11 -0.3939 1.2b5 23. 0.599 S 2 Ob9 S<br />

5.00.. 5.99 11 -0.1922 0.081 10 -0.1812 0.091 19. -(\.293 NS 2.093 NS<br />

B. Results for the January 10. 1975 flight period of N-377 on the 3° ILS Glide Slope<br />

2.797<br />

2.779<br />

2.787<br />

2.797<br />

2.807<br />

2.861<br />

1.941<br />

0.978<br />

0.421<br />

0.001<br />

0.003<br />

0.797<br />

BINS<br />

F·TEST<br />

CRITICAL CRITicAL<br />

I'<br />

P<br />

VALUE VALUE<br />

LOWER UPPER<br />

LIMIT LIMIT<br />

.95 .95<br />

0.29 4 NS 3.19b<br />

0.321 NS 3.i20<br />

0.308 NS 3.244<br />

0.29 4 S 3.19b<br />

0.279 S 3.'88<br />

0.252 NS 3.'&4<br />

CRITICAL<br />

I'<br />

VALUE<br />

LOWER<br />

LIHIT<br />

.99<br />

0.193 NS<br />

0.218 NS<br />

0.20b NS<br />

0.193 S<br />

0.179 S<br />

0.156 NS<br />

CRlllCAL<br />

I'<br />

VALUE<br />

UPPER<br />

LIMIT<br />

.99<br />

'.174<br />

•• 582<br />

4.845<br />

5.174<br />

5.598<br />

6.417<br />

PROCESSED<br />

"\ONTH DAY<br />

12 Ib<br />

DATE<br />

VEAR<br />

75<br />

ERROR OF GLIDE<br />

(DEG.)<br />

SLOPE ERROR OF GLIDE<br />


TABLE B-1.<br />

F AND t TESTS (continued)<br />

C. Results for the January 3D, 1975 flight period of N-377 on the 3° ILS Glide Slope<br />

PROCESSED DATE<br />

"1QH'ULOAY . YEAR<br />

12 4 75<br />

ERRm~ of GLIDE SLOPE £RR!JR OF GLIDE S'DPE<br />

(PEG. )<br />

(DE',,)<br />

Runs 2 and 3<br />

Runs 4 and 5<br />

01!30/75 ( 1131'/75 'i- SI';NIFICA"" DIFFeRENCE B[T~EEN BINS<br />

BIN NO. ~1EAN STU ~U. MEAN 510 T-rES I F-TEST<br />

SIZE OF DEV. UF DEV. OF COMPUTED CRITJU, CRITICAL CD:,PUHD (RITICAc (RITICAL CRITICAL cRITICAL<br />

SCANo o'.4NS T T T F F F F F<br />

IN 1 '. VALLE VhLUe VALue VALUE vA LUE"AL UE VA Ll.lf; VALue<br />

BPI !11 ;~ .95 .99 l.OWER UPPER Low~: R UPPER<br />

LIMiT lI~li LIM:T LIMI T<br />

.95 .95 .9


TABLE B-1.<br />

F AND t TESTS (continued)<br />

E. Results for the February 4, 1975 flight period of N-9093P on the 3° 1LS Glide Slope<br />

PROCtSSEf) DATE<br />

~ONTH OAV YEAR<br />

12 18 75<br />

ERROR OF GLIDE SLOPE ERRJR OF CLInE SLnPF<br />

(DEG. ) (OEG. )<br />

Runs 2 and 3<br />

Runs 4 and 5<br />

02/04175 02/04175 S- SIGNIFiCANT DIFFERENCE BETWEEN BINS<br />

BIN NO. MEAN STD NO, MEAN Sr(1 T",TEST F-TEST<br />

SIZE OF DEV. OF Of, V. DF COHPUTED CRITICAL CRITICAL COMPUTEO CRITICAL CRITICAL CRITICAL CRITICAL<br />

SCANS SCANS T T T F F F F F<br />

IN IN VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE<br />

BIN BIN .95 .99 LOWER UPPER LOWER UPPER<br />

LIMIT LIMtT LIMIT LIMI1'<br />

.95 .95 .99 ,99<br />

O. -0.99 14 -0.2224 0.304 18 -0.21~3 0.449 30. -0.043 ~IS Z.042 NS 2.750 0.459 0.358 NS 2.791 0.256 NS 3.912<br />

1.00-1.99 20 -0.2470 0.040 21 -0.49?8 0.512 39. 2.140 S Z.023 S 2.709 0.006 0.402 5 2.486 0,298 S 3.355<br />

Z. OO-Z'. 9Q 2,1 -0.2381 0.071. ?O -0.3090 0.451 39. 0. 7 10 S Z.023 S 2.709 0.026 0.399 S 2.!!09 0.294 S 3,402<br />

3.00-3.99 13 -0.2602 0.052 21 -0.2489 0.069 32. ~0.504 NS 2.038 NS 2.741 0.572 0.37 4 NS 2.~76 0,272 NS 3,678<br />

4.00-4'.99 10 -(\.0000 -0. 20 -O.22~5 0.053 26. 1::\.254 5 2.048 S 2.763 o. 0.347 S 2.88\) 0,247 S 4,043<br />

5.00-5.99 9 -0.0000 -0. 17 -~.2130 0.132 ?4. 4.804 S 2.0/>4 S 2.797 O. 0.320 S 3.i25 0.221 S 4,521<br />

b.00-6~99 ~ -'1.0000 -0. 15 -0.1962 0.' 01; 1.1. 5.184 S Z.090 S 2.631 o. 0.2% S 3.380 0,199 S 5.031<br />

7.00-7.99 3 -0.0000 -0. B -0.0060 0.185 9. 0.054 S 3.Z50<br />

2.Zb2 S O. 00153 S 6.!!41 0.081 S 12,404<br />

! F. Results for the February 6, 1975 flight period of N-9093P on the 3° 1LS Glide Slope<br />

:"lATE<br />

PRnCESSF.r~<br />

"'ONT>-I nAY VEAR<br />

12 19 75<br />

f,RRrJP "iF CL IDE SLOPE ERR'JR 0" r,LIDE ~ L'lP F<br />

(UFG.)<br />

(!:IEG.l<br />

Runs 3 and 4<br />

Runs 5 and 6<br />

02/1)0t?~ '12/;)b 17'5 5- SIG~IFICANT DIFFERENCE BETWEEN BINS<br />

III " "0. '11:~N STD "IE ,~!'i ~Tn T-TEST F-TEST<br />

SIZE I;F DEV. Ij~ •<br />

DEv. OF CU',PIIHD CRITICAL CRITICAL COMPUTEO CRITICAL CRITICAL CRITiCAL CRITICAL<br />

4 NS 2.797 2.59/l 0.305 NS 3.277 0.204 NS 4.906<br />

5.00-5'.C)" -n. ()A,\O ('. l5R 2 -".1834 n. 1tb 4. _". C ' 3? ~:S 2.716 NS 4.004 0.727 0.001 NS 864.1bO 0,000 NS 615,000<br />

"<br />

c


TABLE B-1.<br />

F AND t TESTS (continued)<br />

G. Results for the February 7. 1975 flight period of N-9093P on the 3° ILS Glide Slope<br />

PROCESSED DATE<br />

"IONTH DAY YEAR<br />

12 21 "5 .<br />

ERROR OF GLIDE SLOPE ERROR OF GLIDE SLOPE<br />

(DEG.) (DE G. )<br />

Runs 7 and 8<br />

Runs 10 and 11<br />

02/07/75 02/07/75 S- SIGNIFiCANT DIFFERENCE BETWEEN BINS<br />

BIN NO. MEAN STO NO, "lEAN STn T~TEST F-TEST<br />

SIZE OF DEV. OF DEV. DF CO,'IPUTE D CRITICAL CRITICAL COMPUTED CRITICAL CRITICAL CRITICAL cRITICAL<br />

SCANS SCANS T T T F F F F F<br />

IN IN VALUE VALUE VALUE VALUE VALUE VAlUE VALUE VALUE<br />

BIN BIN .95 .99 LOWER UPI"ER LnWER UPPER<br />

LIMIT LI ~IT L1M IT LI MIT<br />

,9~ .95 .99 .99<br />

O· -0'.99 11 -0·1145 0.298 13 0'08 79 2.046 22. _0.324 S 2.074 S 2.619 0.021 0.296 S 3. H4 0.197 S 5.086<br />

1.00-1~99 15 -0.1869 0.226 10 -0.2121 0.151> 23. 0.107 NS 2.069 NS 2.807 2.092 0.2b3 NS 3.802 0.lb4 NS 6.097<br />

2.00-2,99 15 _0.16 42 0.098 12 -0.2099 0.105 25. 1. 164 ~IS 2.0bO NS 2.787 0.867 0.297 NS 3.363 0.196 NS 5. 111<br />

3'00_3.99 14 -0.Z087 0.099 7 -001948 0.079 19 • -0.321 NS 2.093 NS 2.861 1.574 0,181 NS 5.H4 0.100 NS 9.961<br />

4·00.4~99 14 -0·2110 0.161 1 -0.2629 0.140 19 • n.723 NS 2.093 NS 2.861 1.327 0.187 NS 5.334 0.100 NS 9.961<br />

5. OO-!l~ 99 4 -0·2260 0.074 6 -0.2954 0.(\47 8. 1.839 NS 2.306 NS 3.355 2.545 0.129 NS 7.764 O.ObO NS 16.530<br />

6·'00-6.99 0 -0.0000 -0. 2 -0.34?4 0.068 O. n. S 20.71>8 S 102. 8 0 5 O. -0.002 S 647.790 -0.000 S 211.000<br />

I<br />

l.n '"<br />

H. Results for the January 30, 1975 flight period of N-377 0.35° below the 3° ILS Glide Slope<br />

PROCESSED DATE<br />

'10NTH DAY YEAR<br />

12 B 75<br />

ERROR OF GLIDE SLOPE ERROR OF GLIDE SLOPE<br />

I DEG. )<br />

(DEG.)<br />

Runs 8 and 9<br />

Runs 10 and 11<br />

01130175 01/30175 S- SIGNIFICANT DIFFERENCE BETWEEN 8INS<br />

BIN NO. "lEAN STD ~O. MEAN Sln T-TEST F-TtST<br />

SIZE OF DEV. OF O£V. DF COMPUTED CRITICAL CRITICAL COMPUTED CRITICAL CRITICAL CRITl\AL rRITICAL<br />

SCANS SCANS T T T F F F F F<br />

IN IN VALUE VALUE VALUE VALUE VALUE VALUE VALUF VALUE<br />

BIN BIN .95 .99 LOWER UPPER LOWER UPPER<br />

LIMIT LIMIT LIM IT LIMIT<br />

.95 .Q5 .99 .99<br />

O. -0.99 13 -1.2533 1.774 12 -0. 731C~ 1.34423. -0.824 NS 2.01>9 NS 2.807 1.743 [.29 2 N~ 3.43C 0.191 NS 5.236<br />

1.00-1.99 12 -0.3669 D.ObO 13 -0.310') 0.052 23. -2.51 6 S 2.0b9 NS 2.807 1.330 ().30] NS 3.325 0.200 NS 4.996<br />

2.00-2.99 11 -0·2170 0.060 12 -0.2658 0.036 21. -0.553 NS 2.080 NS 2.831 2.759 1.284 NS 3.52b O.lH~ NS ·5;418<br />

3.00-3.99 12 -0.29 53 0,050 9 -0.2242 0.121 19. -\.845 S 2.093 NS 2.861 0.lb7 ·u.235 S 4.247 0.141 NS 7.113<br />

4.00-4.99 10 -0.2961 O.O3~ 11 -0.2374 0.104 19. -1. 699 S 2.093 S 2.861 O. III ('.265 S 3.179 0.168 S 5.968<br />

PERMANENT RFAD REDUNDANCY<br />

EXECUTION TERMINATED.<br />

Uill TOB


TABLE B-1.<br />

F AND t TESTS (continued)<br />

I. Results for the February 20, 1975 flight period 0 f N-377 on the 1508 feet level altitude<br />

flight along the Final Approach Path<br />

PROCESSED DHE<br />

"CNTH D~Y YEAR<br />

12 2 15<br />

ERROR OF GLIDE SLOPE ERROR OF GLIDE SLOPE<br />

(DEG. I<br />

(DEG.)<br />

Runs 3 and 4<br />

Runs 9 and lU<br />

02l2C175 02120115 S- SIGNIFICANT DIFFERENCE BETWEEN BINS<br />

BIN NO. MEAN STD NO. MEAN STD T-TEST F-TEST<br />

S lLE OF DEV. OF DEV. DF CCMPUTED CR IT ICAL CRITICAL COMPUTEO CRITICAL CRITICAL CRITICAl CRI TICAL'<br />

SCANS SCANS T T T F F F F F<br />

IN IN VALUE VALUE VALUE VALUE VALUE VALUI' VALUF VALlJ~<br />

DIN BIN .95 .99 LOWER LPPE R LOWI'R UPPF"<br />

LIMIT LIMIT LIMIT llMtl<br />

.95 .9S .99 .99<br />

o. -0.99 6 25.6128 24.661 9 33.6062 21.012 13. -0.615 !'IS 2.160 NS 3.012 1.317 0.208 NS 4.817 0.170 NS 8.302<br />

1.00-1.99 1 -6.6528 1.258 6 -7.3119 0.976 11. 1.041 !'IS 2.201 NS 3.106 1.661 C.143 NS 6.978 0.069 NS 14.SH<br />

2.00-2.99 8 -403836 2.282 8 - 3.7308 2.928 14. -0.497 NS 2.145 NS 2.977 0.6C8 0.2CO NS 4.995 o. II 3 /l;S 8.88~<br />

3.00-3.99 9 0.0561 0.777 8 -0.5247 0.459 15. 1.844 NS 2.131 NS 2.947 2.861 0.204 NS 4.89~<br />

6.0C-6.99 12 0.3666 0.127 10 0.3356 0.158 20. 0.511 NS 2.086 NS 2.845 0.644 0.255 NS 3.91f> 0.158 NS 6.3;>;;<br />

7.CC-7.99 1 0.1286 -0. 4 0.034 0.048 3. 1.756 NS 3.182 NS 5.841 o. -0. NS -C. -0. NS -0.<br />

I<br />

'"<br />

"" J. Results for different flight periods of N-377 on the 3° ILS Glide Slope<br />

PROCESSED OAF<br />

I10NTH DAY YEAI<<br />

2 21 76<br />

BIN<br />

SIZE<br />

O. -0.99<br />

1.00-1.99<br />

2.00-2.99<br />

3.00-3.99<br />

4.00-4.99<br />

ERRQR Or GLIDE SLuPE [RRDR OF ~ IDf S nPE<br />

(I;EG. l (OF • I<br />

Runs 7 and 8 Runs 4 and 5<br />

12/2,/74<br />

1/ 3 ,/15<br />

"Ill, '1tAN '>TI) • MEAN Sf!)<br />

~) E,,' •<br />

OF<br />

SCA'.S<br />

11\<br />

B1N<br />

11<br />

II,<br />

l4<br />

l4<br />

14<br />

' (1.3 4 \:><br />

-O.234~<br />

-'1.2\4,:<br />

-0.2345<br />

001 9 24<br />

) • j f< r:<br />

(). Ct'4<br />

O. \)1''­<br />

O.()'I'J<br />

O. 'if, I<br />

,: ANS<br />

N<br />

14<br />

9<br />

,1<br />

J 7<br />

'2<br />

0.1~H9<br />

-o. 1'I ""I )<br />

~O. !(l I:­<br />

-0.27­<br />

- 0.1 4 '<br />

f1 V. OF i.Dr:olll:-O<br />

T<br />

1/ iJ. L t.,J f<br />

').2:


TABLE B~l.<br />

F AND t TESTS (continued)<br />

K. Results for different flight periods of N-9093P on the 3° ILS Glide Slope<br />

PROCESSED DATf..<br />

'40NTIof DAY YEAR<br />

L-.L~ . .__.__ •<br />

---- ERROR OF GLIDE SLOPE ERROR OF GLIOE SLOPE<br />

_. iIlE.hL . ~.f..G...l '<br />

Runs 10 and 11 Runs 10 and 11<br />

01/Z9(75 2/07/75 S- SIGNIFICANT DIFFERENCE BETWEEN BINS<br />

BIN NO, MEAN STD NO, MEAN STD T-TEST F-TEST<br />

SIZE OF DEV. OF DeV. OF COMPUTED CRITICAL CRITJC·AL COMPUTED CRITICAL 'cRITICAL CRITICAL CRITICAL<br />

SCANS SCANS T TTl' --I' II F F<br />

____~I~N'_ .-.l.f'l VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE<br />

BIN BIN .95 .99 LOWER UPPER I.DWER UPPEIt<br />

LIMIT LIMIT LIMIT LIMIT<br />

.95 ." • 99 ---.-..<br />

O. -0,99 11 -0.31]8 D.188 12 -0.1947 0.193 21. -1.497 NS 2.080 NS 2.131 0.946 0.284 NS 3.'26 0.185 NS '.4\1<br />

1.00-1.99 11 -0.2296 0.103 10 -0.2121 0.156 25. -0.353 NS 2.060 NS 2.'87 0.432 0.267 NS 3.'49 0.167 NS ,."t<br />

2.00-2.99 .15 __=~~ __().._~~_-.!1m~(L,..z.~1. __0.10' 25. -0.492 NS 2.060 NS' 2.787 0.921 0.297 NS 3.'63 0.196 NS J.Ul<br />

3.00-3.99 17 ,-0.22!1 0.093 7 -0.1948 0.079 22. -0.157 NS Z.074 Ns 2.819 1.370 0.191 NS 5.~49 0.102 NS 9.169<br />

.,00-4.99 15 -0.~69L_Q-,-~~_L_-0.2629 _ 0.140 20. -0.092 NS 2.086 NS 2.845 1.204 001 89 NS 5.10'1 0.1-01 NS 9.ln<br />

'.00-5.99 4 -0.2268 0.082 6 -0.2954 0.047 8. 1.102 NS 2.3~6 NS 3.355 3.132 0.129 N5 7.'64 0.060 NS 16.'30<br />

.,00-6,99 0 -0.0000 -0.000 2 -0.3424 0.068 O. O. S 20.768 S 102.B05 O. -0.002 S 647.'90 -0.000 S 211.000<br />

I<br />

.... '"<br />

STANDARO DEVIATION - 2 SIGMA<br />

"<br />

L. ,Results for different flight periods and different aircraft on the 3° ILS Glide Slope<br />

PRl'lCESSEn DATI'<br />

"IONTIoI DAY YEAR<br />

3 2 76<br />

ERRoR DF GLIDE SLOPE ERROR OF GLIDE SLOPE<br />

IDEG.)<br />

IDEG.)<br />

Ruos 7 and B<br />

Run 10 and 11<br />

12/20/74 2/07/75 5- SiGNIFICANT DIFFERENCE BeTWEEN BINS"<br />

BIN 1'l0~ MEAI~ STD NO, MEANSTD T-TESf F-TEST<br />

SHE OF DEV. OF DEV. OF COMPUTED CRITICAL CRITICAL COMPUTED CRITICAL CRITfCAL CRITICAL CRIT1CAL<br />

SCANS SCANS T TTl' I' F I' F<br />

_____+l l1 fV_ IN VALUE VALUE VALUE_ VALUE VALUE VALUE VALUE VALUe<br />

8IN BIN .95 ~99 LOWER UPPER LOWER UPPER<br />

LIMIT LIMIT LIMIt LJMIT<br />

.95 .9' .99 .9'J<br />

O. -0.99 11 -0,3415 0,382 12 -0.194~ 0.193 21. -1.180 S 2.090 NS 2.831 3.904 0.284 5 3.526 0.185 NS 5.411<br />

1.00-1.99 14 -0.2345 0.064 10 -0.2121 0.156 22. _0.486 S 2.074 NS 2.819 0.170 0.261 S 3.835 .0.162 NS 6.162<br />

~~ 14 -0.2140 0.037 12 -~.2099 0.10' Z4. -0.136 S 2.064 S 2.797 0.126 0.294 S 3.396 0.193 S ~.174<br />

'.00-3.99 14 -0.2345 0,039 7 -0.1948 0.079 19. -1.565 NS 2.093 NS 2.861 0.237 0.187 NS 5.334 0.100 NS 9.961<br />

t.OO-4.9Q 14~ -0,19 24 0.067 1 _~Q.Z629 0.140 19. 1.582 ~S 2.093 NS 2.861 0.22Q 0.187 NS 5.334 0.100 NS 9.961<br />

.00-5.9? 11 -0.1922 0.081 ~ -0.2954 0.047 15. 2.834 S 2.131 NS 2.947 3.067 O.~51 NS 6.619 0.073 NS 13.618<br />

••00-6.99 4 0.00b7 0,714 2 -0.3424 O.Dbe 4. 0.651 ~IS 2.776 NS 4,604 110.025 O.bOl NS 864.160 0.000 NS 615.000<br />

STANDARD DEViATION -<br />

2 SIGMA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!