27.09.2014 Views

View - Theoretische Physik IV - Ruhr-Universität Bochum

View - Theoretische Physik IV - Ruhr-Universität Bochum

View - Theoretische Physik IV - Ruhr-Universität Bochum

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Appendix<br />

A. Definitions: characteristic frequencies and coefficients<br />

We have defined the longitudinal/transverse oscillation characteristic frequencies<br />

ω 2 0,L = U ′′ (r 0 )/M , ω 2 0,T = − U ′ (r 0 )/(Mr 0 ), (29)<br />

(both assumed to be positive for any given form of U; such is the case for the Debye potential: see below)<br />

and the quantities<br />

a 20 = − 1<br />

2M U ′′′ (r 0 ), a 02 = − 1<br />

a 30 = 1<br />

6M U ′′′′ (r 0 ), a 12 = − 1<br />

Mr 3 0<br />

2Mr 2 0<br />

[<br />

U ′ (r 0 ) − r 0 U ′′ (r 0 ) + r 2 0<br />

[<br />

U ′ (r 0 ) − r 0 U ′′ (r 0 ) ] ,<br />

1<br />

2 U ′′′ (r 0 ) ] , (30)<br />

which are related to coupling nonlinearities. The gap frequency ω g and the nonlinearity coefficients α<br />

and β are related to the form of the sheath anharmonic potential Φ via<br />

ω 2 g = Φ ′′ (z 0 )/M , α = Φ ′′′ (z 0 )/(2M), β = Φ ′′′′ (z 0 )/(6M). (31)<br />

The prime denotes differentiation, e.g. U ′′ (r 0 ) = d 2 U(r)/dr 2∣ ∣<br />

r=r0<br />

.<br />

The continuum description involves the definitions: p 0 = −r 3 0 U ′′′ (r 0 )/M ≡ 2a 20 r 3 0 and q 0 = U ′′′′ (r 0 )r 4 0 /(2M)<br />

≡ 3a 30 r 4 0; see that both are positive quantities of similar order of magnitude for Debye interactions (see<br />

in [Kourakis & Shukla, 2004a] for details).<br />

B. Form of the coefficients for the Debye interaction potential<br />

Consider the Debye potential (energy) U D (r) = qφ D (r) = q 2 e −r/λD /r. Let us define the (positive real)<br />

lattice parameter κ = r 0 /λ D , which expresses the ratio between the lattice spacing r 0 and the Debye<br />

(screening) length λ D . Applying the above definitions, one straightforward has<br />

U D(r ′ 0 ) = − q2<br />

λ 2 e −κ 1 + κ<br />

D<br />

κ 2 , U D(r ′′<br />

0 ) = + 2q2<br />

κ2<br />

−κ<br />

1 + κ +<br />

2<br />

λ 3 e<br />

D<br />

κ 3 ,<br />

U D ′′′ (r 0 ) = − 6q2<br />

κ2<br />

−κ<br />

1 + κ +<br />

2<br />

λ 4 e + κ3<br />

6<br />

D<br />

κ 4 , U D ′′′′ (r 0 ) = + 24q2<br />

κ2<br />

−κ<br />

1 + κ +<br />

2<br />

λ 5 e + κ3<br />

6 + κ4<br />

24<br />

D<br />

κ 5 ,<br />

where the prime denotes differentiation and l = 1, 2, 3, ... is a positive integer. Now, combining with<br />

definitions (29, 30), we have:<br />

ωL,0 2 = 2q2<br />

Mλ 3 e −κ 1 + κ + κ2 /2<br />

D<br />

κ 3 ≡ c 2 L /(κ2 λ 2 D ) , ω2 T,0 = q2<br />

Mλ 3 e −κ 1 + κ<br />

D<br />

κ 3 ≡ c 2 T /(κ2 λ 2 D ) ,<br />

(<br />

p 0 ≡ 2a 20 κ 3 λ 3 D = 6q2 1<br />

e −κ<br />

Mλ D κ + 1 + κ )<br />

(<br />

2 + κ2<br />

, h 0 ≡ 2a 02 κ 3 λ 3 D = 3q2 1<br />

e −κ<br />

6<br />

Mλ D κ + 1 + κ )<br />

3 ,<br />

a 30 =<br />

q2<br />

6Mλ 5 e −κ 1 )<br />

(κ 4<br />

D<br />

κ 5 + 4κ 3 + 12κ 2 + 24κ + 24<br />

, a 12 = q2<br />

2Mλ 5 e −κ 1 (κ 3<br />

D<br />

κ 5 + 5κ 2 + 12κ + 12<br />

Note that κ is of the order of unity in experiments (roughly, κ ≃ 0.5 −1.5); therefore, all coefficients turn<br />

out to be of similar order of magnitude, as one may check numerically.<br />

Let us retain, for later use, the characteristic dust lattice frequency scale ω 0 = [q 2 /(Mλ 3 D )]1/2 which<br />

naturally arises from the above definitions; in real experiments, this is of the order of XX Hz.<br />

)<br />

.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!