04.10.2014 Views

Assessment of the agronomic performance of Malayan Yellow Dwarf × Vanuatu Tall coconut (Cocos nucifera L.) hybrid variety tolerant to lethal yellowing disease of Ghana in Côte d’Ivoire.

This article aims to study the agronomic performance of 18 hybrid progenies of coconut MYD x VTT and their parents VTT in Côte d'Ivoire. The evaluation was focused on the number of bunches per year (Nbb), the number of fruits per year (NBFR), copra produced per tree per year (Cop / tree / year) and per hectare per year (Cop / hectare / year). It appears from this work that the hybrids MYD x VTT produces 9 to 11 bunches and 76 to 121 fruits, per year with the weight of 12.54 to 19.82 kg of copra per tree and 2.01 and 3.17t of copra per hectare. These values are statistically equal to those of PB121+ used as a control in the study. Progenies of d5 , d6 , d8 , d11, d12, d15 and d18 give the best yields and similar to the control PB121+. VTT Parent produce an average of 11 bunches 96 fruits, and 11.62 kg of copra per tree and 1.66 t of copra per hectare per year. Parent G1, G 4, G6, G7, G12, G15 and G16 have the best yield. Heterosis effects were observed for copra tree (42.08%) and copra per hectare (50.04%). Parents that have better yields with best progenies can be selected for the seed production of MYD x VTT (tolerant and good yield). MYD x VTT hybrid results are advised to Ivorian and Ghanaian farmers to prevent expansion of this disease.

This article aims to study the agronomic performance of 18 hybrid progenies of coconut MYD x VTT and their parents VTT in Côte d'Ivoire. The evaluation was focused on the number of bunches per year (Nbb), the number of fruits per year (NBFR), copra produced per tree per year (Cop / tree / year) and per hectare per year (Cop / hectare / year). It appears from this work that the hybrids MYD x VTT produces 9 to 11 bunches and 76 to 121 fruits, per year with the weight of 12.54 to 19.82 kg of copra per tree and 2.01 and 3.17t of copra per hectare. These values are statistically equal to those of PB121+ used as a control in the study. Progenies of d5 , d6 , d8 , d11, d12, d15 and d18 give the best yields and similar to the control PB121+. VTT Parent produce an average of 11 bunches 96 fruits, and 11.62 kg of copra per tree and 1.66 t of copra per hectare per year. Parent G1, G 4, G6, G7, G12, G15 and G16 have the best yield. Heterosis effects were observed for copra tree (42.08%) and copra per hectare (50.04%). Parents that have better yields with best progenies can be selected for the seed production of MYD x VTT (tolerant and good yield). MYD x VTT hybrid results are advised to Ivorian and Ghanaian farmers to prevent expansion of this disease.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <strong>of</strong> Research <strong>in</strong> Biology<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology<br />

ISSN No: Pr<strong>in</strong>t: 2231 –6280; Onl<strong>in</strong>e: 2231- 6299<br />

An International Scientific Research Journal<br />

Orig<strong>in</strong>al Research<br />

<strong>Assessment</strong> <strong>of</strong> <strong>the</strong> <strong>agronomic</strong> <strong>performance</strong> <strong>of</strong> <strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong> <strong>×</strong> <strong>Vanuatu</strong> <strong>Tall</strong><br />

<strong>coconut</strong> (<strong>Cocos</strong> <strong>nucifera</strong> L.) <strong>hybrid</strong> <strong>variety</strong> <strong><strong>to</strong>lerant</strong> <strong>to</strong> <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong> <strong>disease</strong> <strong>of</strong><br />

<strong>Ghana</strong> <strong>in</strong> <strong>Côte</strong> <strong>d’Ivoire</strong>.<br />

Authors:<br />

Zadjéhi Eric-Blanchard<br />

KOFFI 1,2* , Jean Louis<br />

Konan KONAN 2 , Raoul<br />

Sylvère SIE 1 , Didier-Martial<br />

Saraka YAO 1,2 , Yoboué<br />

KOFFI 1,2 ,Ysidor N’guessan<br />

KONAN 2,3 , Emmanuel<br />

Auguste ISSALI 2 , Thierry<br />

Lékadou Tacra 2 et Kouassi<br />

ALLOU 2 .<br />

Institution:<br />

1. Labora<strong>to</strong>ire de Biologie et<br />

d’Amélioration des<br />

Productions végétales,<br />

UFR Sciences de la Nature,<br />

Université Nangui<br />

Abrogoua, 02 BP 801<br />

Abidjan 02, <strong>Côte</strong> d'Ivoire.<br />

2. Centre National de<br />

Recherche Agronomique,<br />

Station de recherche Marc<br />

Delorme, 07 BP 13 Abidjan<br />

07, <strong>Côte</strong> d'Ivoire.<br />

3. Labora<strong>to</strong>ire de biochimie<br />

et science des aliments,<br />

Université Félix Houphouet<br />

Boigny, Abidjan, <strong>Côte</strong><br />

<strong>d’Ivoire</strong>, 22 BP 582<br />

Abidjan 22.<br />

ABSTRACT:<br />

This article aims <strong>to</strong> study <strong>the</strong> <strong>agronomic</strong> <strong>performance</strong> <strong>of</strong> 18 <strong>hybrid</strong> progenies<br />

<strong>of</strong> <strong>coconut</strong> MYD x VTT and <strong>the</strong>ir parents VTT <strong>in</strong> <strong>Côte</strong> d'Ivoire. The evaluation was<br />

focused on <strong>the</strong> number <strong>of</strong> bunches per year (Nbb), <strong>the</strong> number <strong>of</strong> fruits per year<br />

(NBFR), copra produced per tree per year (Cop / tree / year) and per hectare per year<br />

(Cop / hectare / year). It appears from this work that <strong>the</strong> <strong>hybrid</strong>s MYD x VTT produces<br />

9 <strong>to</strong> 11 bunches and 76 <strong>to</strong> 121 fruits, per year with <strong>the</strong> weight <strong>of</strong> 12.54 <strong>to</strong> 19.82 kg <strong>of</strong><br />

copra per tree and 2.01 and 3.17t <strong>of</strong> copra per hectare. These values are statistically<br />

equal <strong>to</strong> those <strong>of</strong> PB121 + used as a control <strong>in</strong> <strong>the</strong> study. Progenies <strong>of</strong> d 5 , d 6 , d 8 , d 11 ,<br />

d 12 , d 15 and d 18 give <strong>the</strong> best yields and similar <strong>to</strong> <strong>the</strong> control PB121 + . VTT Parent<br />

produce an average <strong>of</strong> 11 bunches 96 fruits, and 11.62 kg <strong>of</strong> copra per tree and 1.66 t<br />

<strong>of</strong> copra per hectare per year. Parent G 1 , G 4 , G 6 , G 7 , G 12 , G 15 and G 16 have <strong>the</strong> best<br />

yield. Heterosis effects were observed for copra tree (42.08%) and copra per hectare<br />

(50.04%). Parents that have better yields with best progenies can be selected for <strong>the</strong><br />

seed production <strong>of</strong> MYD x VTT (<strong><strong>to</strong>lerant</strong> and good yield). MYD x VTT <strong>hybrid</strong> results are<br />

advised <strong>to</strong> Ivorian and <strong>Ghana</strong>ian farmers <strong>to</strong> prevent expansion <strong>of</strong> this <strong>disease</strong>.<br />

Keywords:<br />

Hybrid <strong>coconut</strong> MYD x VTT, <strong><strong>to</strong>lerant</strong>, productivity.<br />

Abbreviations:<br />

Nbb: Number <strong>of</strong> bunches per year, NBFR: Number <strong>of</strong> fruits per year, Cop/<br />

tree / year: copra produced per tree per year, Cop / hectare / year: copra produced per<br />

hectare per year., MYD: <strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong>, VTT: <strong>Vanuatu</strong> <strong>Tall</strong>, WAT: West<br />

African <strong>Tall</strong> MYD x VTT : <strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong> cross <strong>Vanuatu</strong> <strong>Tall</strong>, MYD<br />

x WAT+ : <strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong> cross improved West African <strong>Tall</strong>, Bunch.<br />

Correspond<strong>in</strong>g author:<br />

K<strong>of</strong>fi Eric Blanchard<br />

Zadjéhi.<br />

Email Id:<br />

Web Address:<br />

http://jresearchbiology.com/<br />

documents/RA0448.pdf<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology<br />

An International<br />

Scientific Research Journal<br />

Article Citation:<br />

Zadjéhi Eric-Blanchard KOFFI, Jean Louis Konan KONAN, Raoul Sylvère SIE, Didier-<br />

Martial Saraka YAO, Yoboué KOFFI, Ysidor N’guessan KONAN, Emmanuel Auguste<br />

ISSALI, Thierry Lékadou Tacra, et Kouassi ALLOU.<br />

<strong>Assessment</strong> <strong>of</strong> <strong>the</strong> <strong>agronomic</strong> <strong>performance</strong> <strong>of</strong> <strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong> <strong>×</strong> <strong>Vanuatu</strong> <strong>Tall</strong><br />

<strong>coconut</strong> (<strong>Cocos</strong> <strong>nucifera</strong> L.) <strong>hybrid</strong> <strong>variety</strong> <strong><strong>to</strong>lerant</strong> <strong>to</strong> <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong> <strong>disease</strong> <strong>of</strong> <strong>Ghana</strong><br />

<strong>in</strong> <strong>Côte</strong> <strong>d’Ivoire</strong>.<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440<br />

Dates:<br />

Received: 14 Mar 2014 Accepted: 04 Jul 2014 Published: 22 Aug 2014<br />

This article is governed by <strong>the</strong> Creative Commons Attribution License (http://creativecommons.org/<br />

licenses/by/2.0), which gives permission for unrestricted use, non-commercial, distribution and<br />

reproduction <strong>in</strong> all medium, provided <strong>the</strong> orig<strong>in</strong>al work is properly cited.<br />

1427-1440| JRB | 2014 | Vol 4 | No 6<br />

www.jresearchbiology.com


Zadjéhi et al., 2014<br />

INTRODUCTION<br />

Coconut (<strong>Cocos</strong> <strong>nucifera</strong> L.) is <strong>the</strong> most widely<br />

cultivated oilseed plant <strong>in</strong> <strong>the</strong> coastal areas <strong>of</strong> tropics.<br />

The global area <strong>of</strong> <strong>coconut</strong> plantation is 12.05 million<br />

hectares (ha), <strong>of</strong> which approximately 88% are <strong>in</strong> Asia<br />

and Pacific and 5.27% <strong>in</strong> Africa (AMRIZAL, 2003).<br />

Besides its <strong>in</strong>terest for millions <strong>of</strong> smallholders, this tree<br />

is <strong>of</strong> a global economic importance, is a source <strong>of</strong> fat and<br />

many <strong>in</strong>dustrial products (Bourdeix et al., 2005a).<br />

In <strong>Côte</strong> d'Ivoire, <strong>the</strong> <strong>coconut</strong> is <strong>the</strong> ma<strong>in</strong> cash<br />

crop on <strong>the</strong> coast where <strong>the</strong> vast majority <strong>of</strong> <strong>coconut</strong><br />

trees are located. The surfaces used <strong>in</strong> this part <strong>of</strong> <strong>the</strong><br />

Ivory Coast represent about 80% <strong>of</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong><br />

Ivorian <strong>coconut</strong> grove cover<strong>in</strong>g 50,000 ha (Konan, 2002<br />

and Assa et al., 2006) and its culture has more than<br />

12,000 families (Bourdeix Konan, 2005). However, <strong>the</strong><br />

economic challenge posed by <strong>coconut</strong> is compromised<br />

by several <strong>disease</strong>s, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong> which<br />

is <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> devastation <strong>of</strong> thousands <strong>of</strong> acres <strong>of</strong><br />

<strong>coconut</strong> groves <strong>in</strong> <strong>the</strong> world (Van Der Vossen and<br />

Chipungahelo, 2007) <strong>in</strong>clud<strong>in</strong>g Jamaica, Mexico,<br />

Tanzania, Mozambique, <strong>Ghana</strong> and <strong>Côte</strong> d'Ivoire;<br />

phy<strong>to</strong>plasmas are responsible for this <strong>disease</strong> (Rohde<br />

et al., 1993). It is manifested by <strong>the</strong> fruit drop, <strong>yellow<strong>in</strong>g</strong><br />

and fall <strong>of</strong> all <strong>the</strong> leaves. On affected by this <strong>disease</strong>,<br />

<strong>coconut</strong> trees die with<strong>in</strong> months, leav<strong>in</strong>g a field bare<br />

trunks. This is a threat <strong>to</strong> <strong>the</strong> global area <strong>of</strong> <strong>coconut</strong><br />

plantations and <strong>the</strong>refore its production. There is no<br />

chemical control and / or potential mechanics for its<br />

cure. The only possible solution <strong>to</strong> <strong>the</strong> fight aga<strong>in</strong>st this<br />

<strong>disease</strong> is genetic method <strong>of</strong> selection or creat<strong>in</strong>g<br />

resistant varieties (Oropeza et al., 2005). Behavioral tests<br />

conducted <strong>in</strong> <strong>Ghana</strong> have identified sources <strong>of</strong> varietal<br />

<strong>to</strong>lerance which MYD x VTT <strong>hybrid</strong> (Dery et al., 2005.<br />

Bonnot et al., 2009). However, <strong>agronomic</strong> characteristics<br />

<strong>of</strong> <strong>the</strong>se <strong>hybrid</strong> <strong>of</strong>fspr<strong>in</strong>gs have never been studied. In<br />

addition, <strong>the</strong> <strong>disease</strong> is discovered <strong>in</strong> <strong>Côte</strong> d'Ivoire s<strong>in</strong>ce<br />

2012 and is similar <strong>to</strong> that <strong>of</strong> <strong>Ghana</strong> (Konan et al., 2013).<br />

The objective <strong>of</strong> this paper is <strong>to</strong> evaluate <strong>the</strong><br />

<strong>agronomic</strong> <strong>performance</strong> <strong>of</strong> MYD x VTT <strong>hybrid</strong> progeny<br />

planted <strong>in</strong> <strong>Côte</strong> d'Ivoire. This study will provide <strong>the</strong> best<br />

MYD x VTT progeny with dual ability <strong>of</strong> <strong>to</strong>lerance and<br />

good productivity <strong>of</strong>fer for growers. VTT parent may<br />

provide <strong>the</strong> best progeny is also revealed by this study,<br />

for <strong>to</strong> be use <strong>in</strong> <strong>the</strong> seed production.<br />

MATERIALS AND METHODS<br />

Study site and plant material<br />

The test PBGC43 (Port-Bouet Genetics Coconut<br />

No. 43) is located on <strong>the</strong> plot 034 <strong>of</strong> Marc Delorme<br />

research station (5°14' and 5°15' north latitude and 3°54'<br />

and 3°55' W) <strong>in</strong> Abidjan <strong>in</strong> sou<strong>the</strong>rn <strong>Côte</strong> d'Ivoire. The<br />

climate <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn region <strong>of</strong> <strong>Côte</strong> d'Ivoire has four<br />

seasons, two ra<strong>in</strong>y (April-July and Oc<strong>to</strong>ber-November)<br />

and two dry (December-March and August-September).<br />

The average temperature varies between 24.50°C and<br />

27.73°C. The <strong>to</strong>tal <strong>in</strong>solation reached 2,238.3 hours per<br />

year with an average moisture content <strong>of</strong> 86.02%.<br />

Ra<strong>in</strong>fall is characterized by an average annual<br />

precipitation <strong>of</strong> 1673.99 mm and <strong>the</strong> floor <strong>of</strong> Marc<br />

Delorme station consists <strong>of</strong> tertiary sands.<br />

The plant material consists <strong>of</strong> 18 <strong>hybrid</strong><br />

progenies (coded d 1 <strong>to</strong> d 18 ) from crosses between<br />

<strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong> (MYD) and <strong>Vanuatu</strong> <strong>Tall</strong><br />

(VTT). These crosses <strong>in</strong>volved 18 male brood s<strong>to</strong>ck VTT<br />

(coded G 1 <strong>to</strong> G 18 ) and a female parent MYD us<strong>in</strong>g <strong>the</strong><br />

technique <strong>of</strong> assisted poll<strong>in</strong>ation (Wuidart and Rognon,<br />

1981). Choos<strong>in</strong>g brood s<strong>to</strong>ck VTT was conducted<br />

visually on <strong>the</strong> general morphology shaft. VTT were<br />

planted <strong>in</strong> 1988 on plot 022. Their progeny produced on<br />

<strong>the</strong> seed field plot 033 <strong>of</strong> Marc Delorme Station, were<br />

planted <strong>in</strong> 1998.<br />

Experimental design<br />

MYD x VTT Seedl<strong>in</strong>gs were planted follow<strong>in</strong>g a<br />

randomized complete block design at a density <strong>of</strong> 160<br />

trees per ha with six repetitions (Fig 1). In each block,<br />

<strong>the</strong> repetition by progeny varied from 3 <strong>to</strong> 10 <strong>coconut</strong>s<br />

1428 Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26<br />

1 B B B B B B B B B B B B B B B B B B B B B B B B B B<br />

2 B 4 10 1 9 15 12 15 4 10 20 1 12 16 19 3 20 5 15 2 19 13 7 4 1 B<br />

3 B 19 3 13 14 4 15 5 17 3 15 1 14 10 7 1 9 20 13 20 17 18 4 16 1 B<br />

4 B 2 20 8 2 8 17 16 16 17 2 5 8 20 2 5 11 19 9 4 14 11 19 16 7 B<br />

5 B 3 12 3 9 16 15 18 11 10 6 14 1 10 20 10 3 14 16 2 20 9 10 2 3 B<br />

Bloc 1 6 B 9 2 2 19 12 11 7 18 16 20 9 13 18 9 12 12 8 7 4 10 1 10 16 15 B Bloc 2<br />

7 B 10 19 11 16 10 7 20 6 10 4 12 20 3 11 18 17 5 11 18 20 6 16 14 17 B<br />

8 B 18 18 6 18 10 1 14 7 2 20 2 5 20 1 3 4 8 15 5 6 11 17 2 13 B<br />

9 B 11 4 5 4 18 6 18 16 10 4 4 19 15 2 20 19 15 10 11 1 5 14 7 10 B<br />

10 B 16 1 19 7 5 14 6 16 19 2 14 7 20 7 16 16 2 20 6 20 14 4 8 12 B<br />

11 B 14 10 2 4 17 15 19 2 10 4 19 6 4 16 2 11 6 18 4 3 11 15 10 2 B<br />

12 B 4 10 6 20 16 6 16 14 12 18 10 2 20 13 11 6 15 16 2 18 4 17 6 15 B<br />

13 B 2 20 15 10 3 14 2 15 20 10 5 12 3 2 7 10 7 20 9 1 10 5 3 16 B<br />

14 B 10 4 16 3 10 15 9 15 16 4 5 8 20 11 9 10 1 4 13 11 13 14 2 1 B<br />

15 B 2 5 14 2 4 18 11 7 14 6 2 1 12 19 18 17 19 6 19 8 16 20 4 5 B<br />

Bloc 3 16 B 15 1 16 4 20 6 11 9 17 8 2 6 8 3 5 16 20 7 14 17 9 10 16 7 B Bloc 4<br />

17 B 5 7 13 10 19 3 4 13 11 13 3 13 2 14 4 1 10 20 12 20 18 15 8 19 B<br />

18 B 1 17 4 2 9 16 7 15 19 18 19 17 4 20 10 1 16 15 18 17 5 16 19 4 B<br />

19 B 3 18 8 18 5 11 14 17 20 1 8 10 2 16 19 20 10 4 3 9 12 4 14 10 B<br />

20 B 14 16 20 2 10 10 20 9 19 6 16 19 17 10 2 5 7 6 11 1 19 2 19 6 B<br />

21 B 19 6 1 19 20 19 16 15 7 4 19 7 20 2 14 17 13 14 15 7 18 6 16 2 B<br />

Zadjéhi et al., 2014<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440 1429


22 B 4 20 3 10 20 3 18 14 4 11 10 19 8 20 2 4 15 13 9 11 19 1 20 18 B<br />

23 B 2 10 2 16 1 11 5 7 16 15 14 6 10 12 13 19 17 7 3 10 12 8 19 5 B<br />

24 B 4 16 10 4 2 16 15 10 20 1 4 16 9 11 9 20 18 19 10 2 14 16 7 20 B<br />

25 B 10 6 2 6 15 19 7 14 5 2 6 19 7 16 17 5 14 8 1 3 6 20 4 19 B<br />

Bloc 5 26 B 4 9 8 18 5 20 19 18 12 7 18 9 13 6 19 18 7 14 14 10 11 16 10 11 B Bloc 6<br />

27 B 9 16 7 20 16 1 12 4 20 8 17 2 9 18 15 1 19 17 14 18 5 20 5 7 B<br />

28 B 10 17 4 15 14 2 13 5 3 15 13 20 2 3 12 4 10 16 4 3 16 4 10 6 B<br />

29 B 19 3 11 10 19 1 20 14 6 19 3 11 16 6 4 15 19 3 15 5 4 20 19 2 B<br />

30 B 12 19 20 17 15 19 3 7 19 6 10 4 2 19 4 17 1 19 16 20 6 7 9 19 B<br />

31 B 20 2 13 14 19 1 8 2 16 18 5 4 6 2 10 19 20 2 20 15 10 20 2 20 B<br />

Zadjéhi et al., 2014<br />

32 B B B B B B B B B B B B B B B B B B B B B B B B B B<br />

Figure 1: Experimental setup <strong>of</strong> <strong>the</strong> test PBGC 43 <strong>coconut</strong> Marc Delorme, Abidjan, <strong>Côte</strong> d'Ivoire.<br />

NB: The numbers 1 <strong>to</strong> 18 correspond <strong>to</strong> <strong>the</strong> 18 progenies NJM x GVT. Numbers 19 and 20 are respectively <strong>hybrid</strong> NJM x GOA improved and unimproved. The<br />

NJM x GOA improved or PB121 + is derived from a cross between <strong>the</strong> female parent NJM and improved GOA (GOA male parent + ). At <strong>the</strong> NJM x GOA<br />

unimproved or PB121 <strong>the</strong> male parent GOA is not improved.<br />

1430 Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440


Zadjéhi et al., 2014<br />

and each block is composed <strong>of</strong> 10 l<strong>in</strong>es <strong>of</strong> 12 trees. The<br />

l<strong>in</strong>es 1 and 32 and <strong>the</strong> trees 1 and 26 constitutes <strong>the</strong><br />

borders. A <strong>to</strong>tal <strong>of</strong> 832 <strong>coconut</strong> trees have been planted<br />

on an area <strong>of</strong> 5.2 ha. The PB121 +<br />

<strong>hybrid</strong>s from <strong>the</strong><br />

cross<strong>in</strong>g <strong>of</strong> MYD and WAT + (MYD x WAT + ) have been<br />

used as control. The PB121 + <strong>coconut</strong> trees stay <strong>the</strong> more<br />

popularized <strong>in</strong> <strong>the</strong> world and ever studied (BOURDEIX<br />

et al., 2005a).<br />

METHODS<br />

Variable number <strong>of</strong> bunches per year (Nbb),<br />

number <strong>of</strong> fruits per year (NBFR), weight <strong>of</strong> copra per<br />

tree per year (Cop / tree / year), weight <strong>of</strong> copra per<br />

hectare per year (Cop / hectare / year) were considered<br />

for <strong>the</strong> analysis. Production data <strong>of</strong> <strong>the</strong> adulthood where<br />

productivity is stabilized (from 9 years) were collected<br />

on <strong>the</strong> progeny <strong>of</strong> MYD x VTT (<strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong><br />

<strong>×</strong> <strong>Vanuatu</strong> <strong>Tall</strong>) and VTT (<strong>Vanuatu</strong> <strong>Tall</strong>). Productivity <strong>of</strong><br />

MYD x VTT has been compared <strong>to</strong> that <strong>of</strong> MYD x<br />

WAT+ (<strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong> x Improved West<br />

African <strong>Tall</strong>) used as a control.<br />

All data obta<strong>in</strong>ed were subjected <strong>to</strong> statistical<br />

analysis. SPSS 16.0 (s<strong>of</strong>tware Statistical Package for<br />

Social Sciences 16.0) and CDM 3.0 (Coconut Data<br />

Management 3.0) were used for this purpose. ANOVA<br />

and Duncan test at <strong>the</strong> 5% level were used <strong>to</strong> compare<br />

<strong>the</strong> productivity <strong>in</strong> MYD x VTT <strong>hybrid</strong> progenies and<br />

DUNNET test (5%) was used <strong>to</strong> compare <strong>the</strong><br />

productivity <strong>of</strong> <strong>hybrid</strong> MYD x VTT with PB121 + . The<br />

student t-test at <strong>the</strong> 5% level was used <strong>to</strong> compare parent<br />

VTT and progenies. The heterosis effect was estimated<br />

us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g formula:<br />

(Average <strong>of</strong>fspr<strong>in</strong>g - male Sire Average) x 100<br />

Average male Sire<br />

The strict sense heritability (h 2 ) was estimated by<br />

parent-<strong>of</strong>fspr<strong>in</strong>g regression (Jayaraman 1999; Verrier<br />

et al., 2001). The regression coefficient is equal <strong>to</strong> ½ h 2<br />

when we only know <strong>the</strong> value <strong>of</strong> s<strong>in</strong>gle parent and h 2<br />

when <strong>the</strong> values <strong>of</strong> both <strong>the</strong> parents are known.<br />

Cov (Pi, D)<br />

h 2 = 2b = 2x<br />

Var Pi<br />

b = regression coefficient, h 2 = heritability <strong>in</strong> <strong>the</strong> narrow<br />

sense, Cov = covariance, Pi = phenotypic value <strong>of</strong> <strong>the</strong><br />

parent VTT i, D = phenotypic value <strong>of</strong> <strong>the</strong> progeny and<br />

Var = variance.<br />

RESULTS<br />

Evaluation <strong>of</strong> <strong>the</strong> productivity <strong>of</strong> <strong>hybrid</strong> MYD x VTT<br />

progenies<br />

MYD x VTT <strong>hybrid</strong>s progenies have <strong>the</strong> same<br />

level <strong>of</strong> production plans. The probability P = 0.44<br />

<strong>in</strong>dicates that <strong>the</strong>re is no difference between <strong>hybrid</strong>s for<br />

this trait. They produced an average <strong>of</strong> 9 ± 1 <strong>to</strong> 11 ± 1.35<br />

bunches per year (Table-1). ANOVA allows <strong>to</strong><br />

discrim<strong>in</strong>ate MYD x VTT progenies for <strong>the</strong> number <strong>of</strong><br />

fruits, <strong>the</strong> amount <strong>of</strong> copra produced per tree and copra<br />

per hectare. The descendants <strong>of</strong> d 9 have <strong>the</strong> lowest fruit<br />

production (76 ± 12 fruits), <strong>coconut</strong> tree / year (12.54 ±<br />

2.05 kg) and copra per hectare (2.01 ± 0.33t). For <strong>the</strong><br />

same variables, <strong>the</strong> d 11 provided <strong>the</strong> highest values with<br />

121 ± 16 fruits per year, 19.82 ± 2.62 kg <strong>of</strong> copra per<br />

tree / year 3.17 ± 0.42t copra per hectare per year. These<br />

values <strong>of</strong> d11are not significantly different from those <strong>of</strong><br />

most <strong>of</strong> <strong>the</strong> o<strong>the</strong>r progeny. MYD x VTT progenies<br />

produced an average <strong>of</strong> 10 bunches and 104 fruits per<br />

year; 16.51 kg <strong>of</strong> copra per tree and 2.64t copra per<br />

hectare per year. These progeny may <strong>the</strong>n be classified<br />

<strong>in</strong><strong>to</strong> two groups. Firstly whose values are greater than <strong>the</strong><br />

average and secondly those values below <strong>the</strong> average.<br />

The first group consists <strong>of</strong> progenies d 5 , d 6 , d 8 , d 11 , d 12 ,<br />

d 15 and d 18 . The second group consists <strong>of</strong> progenies d 1 ,<br />

d 2 , d 3 , d 4 , d 7 , d 9 , d 10 , d 13 , d 14 , d 16 , d 17 .<br />

In this test, <strong>the</strong> PB 121+ produced 10 ± 0.73<br />

bunches and 94 ± 5.69 fruits per year per tree. Copra<br />

yields per tree and per hectare per year are respectively<br />

15.58 ± 0.95 kg and 2.49 ± 0.15t. All values are<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440 1431


Zadjéhi et al., 2014<br />

Table 1 : Productivity <strong>of</strong> <strong>coconut</strong> <strong>hybrid</strong>s MYD x VTT studied<br />

MYD x VTT Nbb/year NbFr/year Cop/arbre/year (kg) Cop/hectare/year (t)<br />

<strong>hybrid</strong>es<br />

d 1<br />

9 ± 1.25 083 ± 13cd 13.24 ± 2.05 cd 2.12 ± 0.33cd<br />

d 2<br />

10 ± 0.78 100 ± 14abcd 16.31 ± 2.31 abcd 2.61 ± 0.37abcd<br />

d 3 10 ± 0.89 090 ± 15bcd 15.45 ± 2.54 abcd 2.47 ± 0.41abcd<br />

d 4<br />

10 ± 0.57 101 ± 11abcd 15.61 ± 1.77 abcd 2.50 ± 0.28abcd<br />

d 5<br />

11 ± 0.68 114 ± 17ab 17.90 ± 2.68 ab. 2.86 ± 0.43ab<br />

d 6<br />

10 ± 0.65 108 ± 09abc 17.64 ± 1.53 abc.. 2.82 ± 0.24abc<br />

d 7<br />

10 ± 0.98 112 ± 24ab 17.21 ± 3.72 abc.. 2.75 ± 0.60abc<br />

d 8<br />

11 ± 1.35 111 ± 18abc 18.42 ± 2.92 ab… 2.95 ± 0.47ab<br />

d 9<br />

9 ± 1.24 076 ± 12d 12.54 ± 2.05 d..… 2.01 ± 0.33d<br />

d 10<br />

10 ± 0.73 104 ± 10abc 16.73 ± 2.00abcd... 2.68 ± 0.26abcd<br />

d 11<br />

11 ± 0.86 121 ± 16a 19.82 ± 2.62a.… 3.17 ± 0.42a<br />

d 12<br />

11 ± 1.11 118 ± 19ab 17.49 ± 2.75abc… 2.80 ± 0.44abc<br />

d 13<br />

10 ± 1.06 106 ± 15abc 17.43 ± 2.50abc… 2.79 ± 0.40abc<br />

d 14<br />

10 ± 1.25 097 ± 25abcd 15.12 ± 3.84bcd… 2.42 ± 0.61bcd<br />

d 15<br />

11 ± 0.66 113 ± 16ab 18.94 ± 2.74ab… 3.03 ± 0.44ab<br />

d 16<br />

10 ± 0.76 101 ± 18abcd 14.70 ± 2.60bcd 2.35 ± 0.42bcd<br />

d 17<br />

10 ± 0.71 101 ± 14abcd 16.12 ± 2.19abcd 2.58 ± 0.35abcd<br />

d 18<br />

11 ± 1.10 116 ± 21ab 16.55 ± 2.96abcd 2.65 ± 0.47abcd<br />

Average 10 ± 1.00 104 ± 18... 16.51 ± 2.91… 2.64 ± 0.47...<br />

Nbb/year= Number <strong>of</strong> bunches per year, NbFr/year= Number <strong>of</strong> fruits per year, Cop/arbre/year= Copra product<br />

per tree per year, Cop/hectare/year= Copra product per hectare per year<br />

statistically identical <strong>to</strong> <strong>the</strong> 18 MYD x VTT progenies<br />

studied (Table -2).<br />

Evaluation <strong>of</strong> <strong>the</strong> productivity <strong>of</strong> VTT parent<br />

Number <strong>of</strong> bunches produced per year differs<br />

from VTT Parent with a significant probability <strong>of</strong><br />

P = 0.016. The number <strong>of</strong> fruits, weight <strong>of</strong> copra per tree<br />

per year and <strong>the</strong> weight <strong>of</strong> copra per hectare per year<br />

permit with <strong>the</strong> probabilities P


Zadjéhi et al., 2014<br />

Table 2: Comparison <strong>of</strong> <strong>the</strong> productivity <strong>of</strong> MYD x VTT <strong>hybrid</strong> witness PB 121 + (t test <strong>of</strong> DUNETT @5%) <strong>in</strong>terval.<br />

Variables<br />

Nbb<br />

NbFr<br />

MYD x VTT<br />

<strong>hybrid</strong>es<br />

d 1<br />

Control P Variables<br />

0.98<br />

MYD x VTT<br />

<strong>hybrid</strong>es<br />

Control<br />

d 2 1.00 d 2 1.00<br />

d 3 1.00 d 3 1.00<br />

d 4 1.00 d 4 1.00<br />

d 5 1.00 d 5 0.88<br />

d 6 1.00 d 6 0.94<br />

d 7 1.00 d 7 0.99<br />

d 8 0.90 d 8 0.68<br />

d 9 0.73 Crop/tree/year d 9 0.61<br />

d 19 (10 ± 0.73)<br />

d<br />

(kg)<br />

19 (15.58 ± 0.95)<br />

d 10 1.00 d 10 1.00<br />

d 11 0.99 d 11 0.20<br />

d 12 0.98 d 12 0.97<br />

d 13 1.00 d 13 0.98<br />

d 14 1.00 d 14 1.00<br />

d 15 0.99 d 15 0.47<br />

d 16 1.00 d 16 1.00<br />

d 17 1.00 d 17 1.00<br />

d 18 0.96 d 18 1.00<br />

d 1<br />

0.99<br />

d 2 1.00 d 2 1.00<br />

d 3 1.00 d 3 1.00<br />

d 4 1.00 d 4 1.00<br />

d 5 0.56 d 5 0.88<br />

d 6 0.91 d 6 0.94<br />

d 7 0.71 d 7 0.99<br />

d 8 0.76 d 8 0.68<br />

d 9 0.69 Crop/hectare/ d 9 0.61<br />

d 19 (94 ±5.69)<br />

d<br />

year (t)<br />

19 (2.49 ± 0.15)<br />

d 10 0.99 d 10 1.00<br />

d 11 0.18 d 11 0.20<br />

d 12 0.33 d 12 0.97<br />

d 13 0.97 d 13 0.98<br />

d 14 1.00 d 14 1.00<br />

d 15 0.62 d 15 0.47<br />

d 16 1.00 d 16 1.00<br />

d 17 1.00 d 17 1.00<br />

d 18 0.40 d 18 1.00<br />

Nbb/year= Number <strong>of</strong> bunches per year, NbFr/year= Number <strong>of</strong> fruits per year, Cop/tree/year= Copra product per<br />

tree per year, Cop/hectare/year= Copra product per hectare per year<br />

d 1<br />

d 1<br />

P<br />

0.88<br />

0.88<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440 1433


Zadjéhi et al., 2014<br />

Table 3 : Productivity 18 parent males <strong>coconut</strong> VTT studied<br />

VTT Nbb / year NbFr/year Cop/tree/year (Kg) Cop/hectare/year (t)<br />

G 1<br />

13 ± 1 a 145 ± 44a. 22.20 ± 6.77a 3.18 ± 0.97a<br />

G 2 11 ± 2 ab 085 ± 36abc 06.76 ± 2.88cde 0.97 ± 0.41cde<br />

G 3 08 ± 1 b 029 ± 20c. 04.53 ± 3.20e. 0.65 ± 0.46e.<br />

G 4 11 ± 3 ab 114 ± 62ab 20.01 ± 10.98ab 2.86 ± 1.57ab<br />

G 5 11 ± 2 ab 078 ± 43abc 06.37 ± 3.49cde 0.91 ± 0.50cde<br />

G 6 12 ± 4ab 116 ± 56ab 14.72 ± 7.11abcd 2.10 ± 1.02abcd<br />

G 7 12 ± 3ab 128 ± 61ab 13.14 ± 6.32bcde 1.88 ± 0.90bcde<br />

G 8 11 ± 3ab 096 ± 44abc 15.66 ± 7.25abcd 2.24 ± 1.04abcd<br />

G 9 10 ± 2ab 063 ± 25bc 06.81 ± 2.72cde 0.97 ± 0.39cde<br />

G 10 10 ± 2ab 073 ± 33abc 09.16 ± 4.16cde 1.31 ± 0.60cde<br />

G 11 09 ± 3ab 060 ± 36bc 05.98 ± 3.55de 0.86 ± 0.51de<br />

G 12 12 ± 3ab 121 ± 51ab 12.80 ± 5.39bcde 1.83 ± 0.77bcde<br />

G 13 10 ± 2ab 067 ± 31abc 08.59 ± 3.97cde 1.23 ± 0.57cde<br />

G 14 12 ± 3ab 105 ± 71abc 10.58 ± 7.14cde 1.51 ± 1.02cde<br />

G 15 14 ± 3a 146 ± 64a 16.08 ± 7.00abc 2.30 ± 1.00abc<br />

G 16 13 ± 2a 132 ± 35ab 15.97 ± 4.29abc 2.28 ± 0.61abc<br />

G 17 11 ± 2ab 072 ± 18abc 06.36 ± 1.64cde 0.91 ± 0.23cde<br />

G 18 11 ± 3ab 085 ± 47abc 11.44 ± 6.28bcde 1.64 ± 0.90bcde<br />

Average 11 ± 3.. 096 ± 53.. 11.62 ± 7.34… 1.66 ± 1.05….<br />

Nbb/year= Number <strong>of</strong> bunches per year, NbFr/year= Number <strong>of</strong> fruits per year, Cop/arbre/year= Copra<br />

product per tree per year, Cop/hectare/year= Copra product per hectare per year<br />

The heterosis effect is almost non-existent for<br />

many bunch products per year (Table-4) <strong>in</strong> all progenies.<br />

Reductions <strong>of</strong> bunch production, materialized by<br />

negative values are observed (-2.27% <strong>to</strong> -27.19%) among<br />

all progeny except d 3 (25.61%), d 8 (0, 41%), d 11<br />

(24.01%) and d 13 (3.43%) who improved productions <strong>of</strong><br />

bunches are observed. For <strong>the</strong> production <strong>of</strong> fruit, this<br />

value ranges from 15.43% (d 8 ) <strong>to</strong> 214.66% (d 3 ). Copra<br />

per hectare per year is raised from 2.98% <strong>to</strong> 281.6%.<br />

However, a loss <strong>of</strong> -33.27% is observed with progeny d 1 .<br />

On progeny average, heterosis effects were observed for<br />

number <strong>of</strong> fruits per year (8.33%), copra per tree<br />

(42.08%) and copra per hectare (50.04%).<br />

Low heritability values were observed for <strong>the</strong><br />

production <strong>of</strong> traits are measured. Heritability <strong>of</strong> number<br />

<strong>of</strong> bunches, number <strong>of</strong> fruits per tree and copra per tree<br />

are respectively 04% and 10% (Table 5).<br />

DISCUSSION<br />

The realized trial compare <strong>coconut</strong> <strong>hybrid</strong>s come<br />

from <strong>of</strong> <strong>the</strong> cross between a <strong>Dwarf</strong> <strong>coconut</strong> and <strong>the</strong> tall<br />

one. In practice, a simplified cross<strong>in</strong>g plan was adopted<br />

when <strong>the</strong> two ecotypes crossed did not have <strong>the</strong> same<br />

variability levels. So for <strong>the</strong> improvement <strong>of</strong> <strong>the</strong> <strong>hybrid</strong>s<br />

<strong>Dwarf</strong> x Grand, several male tall <strong>coconut</strong>s are tested <strong>to</strong><br />

suppress <strong>the</strong> reciprocal test. Indeed, <strong>the</strong> dwarfs <strong>of</strong> <strong>the</strong><br />

collection are au<strong>to</strong>gamous, <strong>the</strong>y have very low<br />

phenotypic variability and are probably close <strong>to</strong> <strong>the</strong> pure<br />

l<strong>in</strong>e. The results showed that <strong>the</strong> MYD x VTT progenies<br />

produces bunch per year. The MYD which is <strong>the</strong><br />

common parent <strong>of</strong> all <strong>the</strong> progenies would have<br />

<strong>in</strong>fluenced <strong>the</strong> cross<strong>in</strong>g and would have standardized <strong>the</strong><br />

production <strong>of</strong> bunch. However, it is necessary <strong>to</strong> <strong>in</strong>dicate<br />

that <strong>the</strong> progenies d 5 , d 6 , d 8 , d 11 , d 12 , d 15 and d 18 give <strong>the</strong><br />

best results for <strong>the</strong> number <strong>of</strong> fruit per year and <strong>the</strong><br />

copra/tree/year and <strong>the</strong> copra / ha/year. These progenies<br />

could be selected <strong>to</strong> farmers; o<strong>the</strong>rwise, VTT parents G 5 ,<br />

G 6 , G 8 , G 11 , G 12 , G 15 and G 18 could be selected <strong>to</strong><br />

produce MYD x VTT seeds. However, some parents<br />

such as G 5 , G 8 , G 11 and G 18 that give <strong>the</strong> progenies d 5 , d 8 ,<br />

d 11 , and d 18 with good productions, hasn’t a good<br />

productivity. Contrary <strong>to</strong> those, parents G 1 , G 4 , G 7 and<br />

1434 Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440


Number <strong>of</strong> fruits<br />

Number <strong>of</strong> fruits<br />

Number <strong>of</strong> Bunches<br />

Number <strong>of</strong> bunches<br />

Zadjéhi et al., 2014<br />

16<br />

14<br />

12<br />

10<br />

8<br />

b<br />

a<br />

a<br />

a<br />

a a b<br />

b<br />

a a<br />

a<br />

a b b<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a a<br />

a<br />

a<br />

a a a<br />

a a a b b a<br />

b<br />

a<br />

a<br />

dx<br />

Gx<br />

6<br />

4<br />

2<br />

0<br />

d 1 d1G1 G 1 d 2 d2G2 G 2 d 3 d3G3 G 3 d 4 d4G4 G 4 d 5 d5G5 G 5 d 6 d6G6 G 6 d 7 d7G7 G 7 d 8 d8G8 G 8 d 9 d9G9 G 9 d 10 d10G10 G d d11G11 G d d12G12 2 dd13G13 G d d14G14 G d d15G15 G d d16G16 G d d17G17 G d d18G18 G Parents and progenies<br />

Parents and progenies<br />

Figure 2: Comparison <strong>of</strong> <strong>the</strong> number <strong>of</strong> bunches produced by year <strong>of</strong> MYD x VTT <strong>hybrid</strong>s with <strong>the</strong>ir<br />

males parents VTT (Student's t test at 5%).<br />

G 16 that have <strong>the</strong> best yield give progenies with low<br />

yield. It shows that <strong>the</strong> productivity <strong>of</strong> <strong>the</strong> progenies is<br />

not always l<strong>in</strong>ked <strong>to</strong> <strong>the</strong> one <strong>of</strong> <strong>the</strong> parents VTT. It could<br />

<strong>in</strong>dicate that bunch production, fruit and copra is not<br />

heritable or are <strong>in</strong>fluenced by <strong>the</strong> environment. The lows<br />

heritability observed for <strong>the</strong> measured traits prove this<br />

hypo<strong>the</strong>sis. It also <strong>in</strong>dicates that <strong>the</strong> VTT parents that<br />

give <strong>the</strong> best progenies with good yield would comb<strong>in</strong>e<br />

<strong>the</strong>mselves better with <strong>the</strong> cultivar <strong>Dwarf</strong> <strong>Yellow</strong><br />

Malaysia. However with <strong>coconut</strong>, <strong>the</strong> choice <strong>of</strong> a tester<br />

<strong>in</strong> <strong>the</strong> progeny tests is a compromise between two<br />

contradic<strong>to</strong>ry necessities (BOURDEIX et al., 1991).<br />

Indeed, it has <strong>to</strong> be an representative <strong>of</strong> its orig<strong>in</strong>al<br />

population and at <strong>the</strong> same time transmit high potential<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

b<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

a<br />

b<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

a<br />

b<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

b<br />

a<br />

b<br />

dx<br />

Gx<br />

20<br />

0<br />

d d1G1 1 G 1 d d2G2 2 G 2 d d3G3 3 G 3 d d4G4 4 G 4 d d5G5 5 G 5 d d6G6 6 G 6 d d7G7 7 G 7 d d8G8 8 G 8 d d9G9 9 G 9 d d10G10 G d d11G11 G d d12G12 2 d d13G13 G 13 d d14G14 G d d15G15 G d d16G16 G 16 d d17G17 G 17 d d18G18<br />

G Parents and progenies<br />

Parents and progenies<br />

Figure 3: Comparison <strong>of</strong> <strong>the</strong> number <strong>of</strong> fruits produced per year by MYD x VTT <strong>hybrid</strong>s with <strong>the</strong>ir males<br />

parents VTT (Student's t test at 5%).<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440 1435


Copra/hectare/year (T)<br />

Copra/hectare/year<br />

(T)<br />

Copra/hectare/year (T)<br />

Copra/tree/year<br />

(kg)<br />

Zadjéhi et al., 2014<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

b<br />

a<br />

a a b<br />

b<br />

b<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

a<br />

b<br />

a<br />

b<br />

dx<br />

Gx<br />

0<br />

d 1 d1G1 G 1 dd2G2 2 G 2 dd3G3 3 G 3 dd4G4 4 G 4 dd5G5 5 G 5 dd6G6 6 G 6 dd7G7 7 G 7 dd8G8 8 G 8 dd9G9 9 G 9 dd10G10 G d11G11 G d12G12 d 2 d13G13 d G 13 d14G14 d G d15G15 d G 15 d16G16 d G 16 d17G17 d G 17 d18G18 d G 18<br />

Parents and progenies<br />

Parents and progenies<br />

Figure 4: Comparison <strong>of</strong> copra weight product per trees per year <strong>of</strong> <strong>coconut</strong> MYD x VTT <strong>hybrid</strong>s with<br />

<strong>the</strong>ir males parents VTT (Student's t test at 5%).<br />

<strong>of</strong> production <strong>to</strong> its progeny. Cross<strong>in</strong>gs between VTT<br />

parents <strong>in</strong> order <strong>to</strong> stabilize some traits <strong>of</strong> <strong>in</strong>terest, before<br />

use <strong>in</strong> <strong>the</strong> production <strong>of</strong> MYD x VTT <strong>hybrid</strong> could<br />

improve and correct some pre-occupations on <strong>the</strong><br />

productivity <strong>of</strong> <strong>the</strong> progenies.<br />

In this trial, MYD x VTT <strong>hybrid</strong>s produced on<br />

average <strong>of</strong> 10 bunches per year; this average value is<br />

below one <strong>of</strong> <strong>the</strong> parents VTT. However, different results<br />

showed that <strong>Dwarf</strong> x Grand <strong>coconut</strong> <strong>hybrid</strong>s give out<br />

more bunches per year than <strong>the</strong>ir male parents<br />

(BOURDEIX et al., 1992; LABOUISSE et al., 2005).<br />

The tall <strong>coconut</strong>s have more developed vegetative traits<br />

on <strong>the</strong> whole than <strong>Dwarf</strong> x Grand <strong>hybrid</strong>s. Their more<br />

robust stem gives <strong>the</strong>m <strong>the</strong> advantage <strong>to</strong> resist <strong>the</strong><br />

drought more that <strong>the</strong> <strong>Dwarf</strong> x Grand. Therefore, <strong>the</strong>se<br />

trees would keep a good level <strong>of</strong> production dur<strong>in</strong>g <strong>the</strong><br />

difficult periods than <strong>hybrid</strong>s <strong>Dwarf</strong> x Grand. The<br />

<strong>coconut</strong> is <strong>in</strong>fluenced <strong>to</strong> <strong>the</strong> variations <strong>of</strong> <strong>the</strong><br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

b<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

b<br />

a<br />

a<br />

a<br />

b<br />

a<br />

b<br />

dx<br />

Gx<br />

0,5<br />

0<br />

d1G1 1 1 d2G2 2 2 d3G3 3 3 dd4G4 4 4 dd5G5 5 5 dd6G6 6 6 dd7G7 7 7 dd8G8 8 8 d 9 d9G9 G 9 d 10 d10G10 G d d11G11 G d d12G12 2 dd13G13 13 dd14G14 G d 15 d15G15G d 16 d16G16G d 17 d17G17G d 18 d18G18 G Parents and progenies<br />

Parents and progenies<br />

Figure 5: Comparison <strong>of</strong> <strong>the</strong> production <strong>of</strong> copra per hectare per year <strong>of</strong> progenies <strong>coconut</strong> MYD x VTT<br />

and <strong>the</strong>ir spawn<strong>in</strong>g males VTT (Student's t test at 5%).<br />

1436 Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440


Zadjéhi et al., 2014<br />

Effets hétérosis (%)<br />

VTT/ MYD x VTT Bunches/year Fruits/year Copra/tree/year Copra/hectare/year<br />

G 1 d 1 -27.19 -42.46 -40.36 -33.27<br />

G 2 d 2 -05.46 17.97 141.27 169.94<br />

G 3 d 3 25.61 214.66 241.04 281.60<br />

G 4 d 4 -10.80 -10.95 -22.00 -12.73<br />

G 5 d 5 -01.82 45.55 181.17 214.62<br />

G 6 d 6 -13.05 -06.62 19.85 34.10<br />

G 7 d 7 -16.21 -12.80 31.00 46.57<br />

G 8 d 8 0.41 15.43 17.61 31.59<br />

G 9 d 9 -10.40 21.41 84.11 106.01<br />

G 10 d 10 -02.27 41.81 82.69 104.41<br />

G 11 d 11 24.01 100.97 231.24 270.62<br />

G 12 d 12 -07.07 -02.30 36.67 52.91<br />

G 13 d 13 3.43 58.40 102.85 126.96<br />

G 14 d 14 -11.99 -07.74 42.95 59.94<br />

G 15 d 15 -21.46 -22.81 17.84 31.85<br />

G 16 d 16 -24.92 -23.48 -07.96 02.98<br />

G 17 d 17 -03.14 40.70 153.59 183.72<br />

G 18 d 18 -02.82 36.55 44.69 61.90<br />

On <strong>the</strong> average -09.00 08.33 42.08 50.04<br />

NB: Figures <strong>in</strong> bold represent losses<br />

Table 4 : Heterosis for <strong>the</strong> productivity <strong>of</strong> 18 <strong>hybrid</strong> progenies <strong>coconut</strong><br />

MYD x VTT <strong>in</strong> relation <strong>to</strong> <strong>the</strong>ir spawns VTT.<br />

environment (ROUPSARD et al., 2007), that could<br />

expla<strong>in</strong> difference between parents VTT and <strong>the</strong>ir<br />

progenies <strong>Dwarf</strong> x Grand for <strong>the</strong> bunch produced per<br />

year.<br />

In <strong>the</strong> trial <strong>the</strong> MYD x VTT <strong>hybrid</strong>s produced an<br />

average <strong>of</strong> 2.64t <strong>of</strong> copra/hectare/year. This yield is<br />

lower <strong>to</strong> <strong>the</strong> one <strong>of</strong> <strong>the</strong> PB 121 + accord<strong>in</strong>g <strong>the</strong> results <strong>of</strong><br />

BOURDEIX et al., (1992) but is statistically identical <strong>to</strong><br />

<strong>the</strong> one <strong>of</strong> <strong>the</strong> PB121 + used as control <strong>in</strong> our trial. Indeed,<br />

<strong>the</strong>se authors who worked on <strong>the</strong> Station <strong>of</strong> research<br />

Marc Delorme found that between 9 and 12 years <strong>the</strong><br />

MYD x WAT + Hybrids or PB 121 + produce on average<br />

<strong>of</strong> 17 bunches, 124 fruits and 4.06 t <strong>of</strong> copra per hectare<br />

per year. This difference would be due <strong>to</strong> <strong>the</strong> selection<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440 1437


Zadjéhi et al., 2014<br />

Table 5: Narrow-sense heritability for production<br />

traits <strong>in</strong> <strong>coconut</strong>s studied<br />

Variables Héritabilités (%)<br />

Régime 4<br />

Fruit 10<br />

Cop/arbre 10<br />

criterion <strong>of</strong> <strong>the</strong> parents. These researchers selected <strong>the</strong><br />

parents produc<strong>in</strong>g more 20 kg <strong>of</strong> copra by tree per year.<br />

To <strong>the</strong> contrary <strong>in</strong> our trial <strong>the</strong> choice <strong>of</strong> <strong>the</strong> parents has<br />

been achieved visually on <strong>the</strong> good general aspect <strong>of</strong> <strong>the</strong><br />

tree. Indeed, <strong>the</strong> <strong>in</strong>itial objective <strong>of</strong> this trial was not <strong>to</strong><br />

achieve an aptitude test <strong>to</strong> <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>dividuals, but <strong>to</strong> provide <strong>to</strong> <strong>Ghana</strong> <strong>the</strong> <strong>coconut</strong> tree<br />

descended from <strong>the</strong> cross<strong>in</strong>g between MYD cultivars and<br />

VTT for a resistance screen<strong>in</strong>g trial <strong>to</strong> <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong> <strong>in</strong><br />

this country. O<strong>the</strong>rwise <strong>the</strong> devastation <strong>of</strong><br />

Pseudo<strong>the</strong>raptus devastans cannot be controlled. In this<br />

trial <strong>the</strong> damages <strong>of</strong> <strong>the</strong>se <strong>in</strong>sects have also been<br />

accessed. Unfortunately <strong>in</strong>secticide has not been applied.<br />

The comparative survey <strong>of</strong> <strong>the</strong> productivity <strong>of</strong> every<br />

progeny <strong>to</strong> his ascendant permitted <strong>to</strong> appreciate<br />

heterosis effects. These effects that are more observed<br />

with <strong>the</strong> copra by tree and by hectare showed <strong>the</strong><br />

<strong>performance</strong> <strong>of</strong> <strong>coconut</strong> tree <strong>hybrid</strong>s returned by some<br />

authors (BOURDEIX et al., 2005b). Heterosis that is<br />

generally observed at <strong>the</strong> <strong>in</strong>dividual heterozygote could<br />

expla<strong>in</strong> itself by <strong>the</strong> effects <strong>of</strong> dom<strong>in</strong>ance and<br />

superdom<strong>in</strong>ance <strong>of</strong> <strong>the</strong> genes implied <strong>in</strong> <strong>the</strong><br />

determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> quantitative traits (QTLs) or by <strong>the</strong><br />

<strong>in</strong>teraction between two complementary genes<br />

(VERRIER et al., 2001; LU et al., 2003). The <strong>hybrid</strong><br />

vigor or <strong>in</strong>crease <strong>of</strong> <strong>the</strong> <strong>performance</strong> <strong>of</strong> <strong>the</strong> <strong>hybrid</strong>s<br />

appear when <strong>the</strong> crossed <strong>in</strong>dividuals are genetically<br />

distant. Indeed, <strong>the</strong> cross<strong>in</strong>g between <strong>coconut</strong>s and<br />

genetically distant would <strong>in</strong>crease heterozygote and<br />

<strong>the</strong>refore <strong>the</strong> <strong>hybrid</strong> vigor. These results would <strong>in</strong>dicate<br />

<strong>the</strong>refore, a good genetic distance between <strong>the</strong> <strong>Dwarf</strong><br />

<strong>Yellow</strong> Malaysia used here as female parent and <strong>the</strong><br />

parents males VTT.<br />

CONCLUSION<br />

The study assessed <strong>the</strong> <strong>agronomic</strong> <strong>performance</strong><br />

<strong>of</strong> 18 <strong>Malayan</strong> <strong>Yellow</strong> <strong>Dwarf</strong> x <strong>Vanuatu</strong> <strong>Tall</strong> <strong>coconut</strong><br />

<strong>hybrid</strong>s coded d1 <strong>to</strong> d18 and <strong>the</strong>ir parent VTT codes G 1<br />

<strong>to</strong> G 18 . The results showed that MYD x VTT <strong>hybrid</strong>s<br />

produces per year 9 <strong>to</strong> 10 bunches, 76 <strong>to</strong> 121 fruits,<br />

12.54 <strong>to</strong> 19.82 kg <strong>of</strong> copra by tree and 2.01t <strong>to</strong> 3, 17t <strong>of</strong><br />

copra by hectare. These yields are statistically equal <strong>to</strong><br />

<strong>the</strong> one <strong>of</strong> <strong>the</strong> control PB121 + . The progenies d 5 , d 6 , d 8 ,<br />

d 11 , d 12 , d 15 and d 18 had <strong>the</strong> best yields. The parents VTT<br />

produced 8 <strong>to</strong> 13 bunches, 29 <strong>to</strong> 146 fruits per year<br />

4.53 kg <strong>to</strong> 22.20 kg copra by tree, 0.65t <strong>to</strong> 3,18t <strong>of</strong> copra<br />

by hectare. The parents G 1 , G 4 , G 6 , G 7 , G 12 , G 15 and G 16<br />

have <strong>the</strong> best yields. On <strong>the</strong> average <strong>of</strong> <strong>the</strong> progenies,<br />

heterosis effects have been observed for <strong>the</strong> copra by tree<br />

(42.08%) and <strong>the</strong> copra by hectare (50.04%). Parents G 6 ,<br />

G 12 and G 15 who give <strong>the</strong> best yields and provide better<br />

<strong>of</strong>fspr<strong>in</strong>g (d 6 , d 12 and d 15 ) are <strong>to</strong> be used for seed<br />

production MYD x VTT. These three types <strong>of</strong> best<br />

progenies MYD x VTT are advis<strong>in</strong>g farmers <strong>to</strong> prevent<br />

<strong>the</strong> spread <strong>of</strong> <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong> <strong>disease</strong> <strong>in</strong> <strong>Ghana</strong> and <strong>Côte</strong><br />

d'Ivoire.<br />

REFERENCES<br />

Amrizal L. 2003. Coconut Statistical yearbook. Asian<br />

and Pacific <strong>coconut</strong> community.276 p.<br />

Assa RRA, Konan JL, Neml<strong>in</strong> J, Prades A, Agbo N<br />

and Sie RS. 2006. Diagnostic de la cocoteraie paysanne<br />

du lit<strong>to</strong>ral ivoirien. Sciences et nature 3(2): 113-120.<br />

Bonnot F, Danyo G, Philippe R, Dery S and<br />

Ransford A. 2009. Prelim<strong>in</strong>ary results on epidemiology<br />

<strong>of</strong> Coconut Lethal <strong>Yellow</strong><strong>in</strong>g <strong>in</strong> <strong>Ghana</strong>.Oléag<strong>in</strong>eux,<br />

Corps Gras, Lipides.16(2):116-122.<br />

1438 Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440


Zadjéhi et al., 2014<br />

Bourdeix R, Konan JL and N’cho YP. 2005a.<br />

Cocotier, guide des variétés traditionnelles et améliorées.<br />

Co-production CIRAD /CNRA, edition diversiflora;<br />

Montpellier (France). 58p.<br />

Bourdeix R, Baudou<strong>in</strong> L and Konan JL. 2005b.<br />

Coconut <strong>hybrid</strong>s developed by CIRAD and its partner<br />

<strong>in</strong>stitutions. In Coconut Hybrids for Smallholders:<br />

Batugal P, Dante B, Oliver J. (eds). CFC technical paper<br />

No.42.Chapter. II: o<strong>the</strong>r experiences related <strong>to</strong> <strong>coconut</strong><br />

<strong>hybrid</strong> development, Common Fund for Commodities /<br />

International Plant Genetic Resources. Institute (CFC /<br />

IPGRI): Amsterdam, Ne<strong>the</strong>rlands. 111-131.<br />

Bourdeix R et Konan JL. 2005. Coconut <strong>hybrid</strong> trials<br />

<strong>in</strong> <strong>Côte</strong> <strong>d’Ivoire</strong>. Coconut <strong>hybrid</strong>s for smallholders CFC<br />

technical paper No.42.Chapter.I: results <strong>of</strong> <strong>the</strong> Common<br />

Fund for Commodities-funded multilocation <strong>hybrid</strong> trials<br />

project, Common Fund for Commodities / International<br />

Plant Genetic Resources Institute (CFC/IPGRI),<br />

Amsterdam (Ne<strong>the</strong>rlands). 26-51.<br />

Bourdeix R, N’cho YP, Sangare A, Baudo<strong>in</strong> L and<br />

De Nuce De Lamo<strong>the</strong> M. 1992. L’<strong>hybrid</strong>e de cocotier<br />

PB 121 amélioré, croisement du na<strong>in</strong> Jaune Malaiset<br />

de géniteurs grand Ouest-Africa<strong>in</strong> sélectionnés.<br />

Oléag<strong>in</strong>eux.47(11) : 619-633.<br />

Dery SK, Owusu Nipah J, Andoh-Mensah E,<br />

Nuertey BN, Nkansah Poku J, Arthur R and<br />

Philippe R. 2005. On-farm evaluation <strong>of</strong> <strong>the</strong> <strong>coconut</strong><br />

<strong>hybrid</strong>, <strong>Malayan</strong> yellow dwarf x <strong>Vanuatu</strong> tall for<br />

<strong>to</strong>lerance <strong>to</strong> <strong>the</strong> <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong> <strong>disease</strong> <strong>of</strong> <strong>coconut</strong> <strong>in</strong><br />

<strong>Ghana</strong>. Cord. 21 (1): 50-56.<br />

Jayaraman K. 1999. Manuel de statistique pour la<br />

recherche forestière. FAO, Coopération Hollandaise,<br />

Commission Européenne. 239p.<br />

Konan Konan JL, Allou K, Atta Diallo H, Saraka<br />

Yao D, Koua B, Kouassi N, Benabid R, Michelutti R,<br />

Scott J and Arocha-Rosete Y. 2013. First report on <strong>the</strong><br />

molecular identification <strong>of</strong> <strong>the</strong> phy<strong>to</strong>plasma associated<br />

with a <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong>-type <strong>disease</strong> <strong>of</strong> <strong>coconut</strong> palms <strong>in</strong><br />

<strong>Côte</strong> <strong>d’Ivoire</strong>.NewDiseaseReports.28 :3.<br />

Konan JL. 2002. Le programme cocotier :Pilier du<br />

développement de la filière cocotier. Atelier bilan des<br />

programmes de recherches. Centre National de<br />

Recherche Agronomique, Direction Générale Abidjan<br />

(<strong>Côte</strong> <strong>d’Ivoire</strong>). 15p.<br />

Labouisse J.-P, Sileye T, Mor<strong>in</strong> J.-P, Hamel<strong>in</strong> C,<br />

Baudou<strong>in</strong> L, Bourdeix R and Rouziere A. 2005.<br />

Coconut (<strong>Cocos</strong><strong>nucifera</strong> L.) genetic improvement <strong>in</strong><br />

<strong>Vanuatu</strong>: Overview <strong>of</strong> research achievements from 1962<br />

<strong>to</strong> 2002. Part 2: Improvement <strong>of</strong> <strong>the</strong> <strong>Vanuatu</strong> <strong>Tall</strong> by<br />

<strong>hybrid</strong>ization. Oléag<strong>in</strong>eux, Corps Gras, Lipides.12 (2):<br />

170-179.<br />

Lu H, Romero-Severson J and Bernardo R. 2003.<br />

Genetic basis <strong>of</strong> heterosis explored by simple sequence<br />

repeat markers <strong>in</strong> a random-mated maize<br />

population.Theor Appl Genet. 107(3): 494–502.<br />

Oropeza C, Escamilla JA, Mora G, Zizumbo D and<br />

Harrison NA. 2005. Coconut <strong>lethal</strong> <strong>yellow<strong>in</strong>g</strong>. In<br />

Coconut genetic resources, edited by Batugal p.,<br />

Ramanatha Rao V., et Oliver J, IPGRI, Selangor Darul<br />

Ehsan (Malaysia).349-363.<br />

Rohde W, Kullaya A, Mpunami A and Becker D.<br />

1993. Rapid and sensitive diagnosis <strong>of</strong> mycoplasma like<br />

organisms associated with <strong>lethal</strong> <strong>disease</strong> <strong>of</strong> <strong>coconut</strong> palm<br />

by a specially primed polymerase cha<strong>in</strong> reaction for <strong>the</strong><br />

amplification <strong>of</strong> 16S rDNA. Oléag<strong>in</strong>eux. 48 (7): 319-<br />

322.<br />

Roupsard O, Bonnefond JM and Luyssaert S. 2007.<br />

Productivity <strong>of</strong> a tropical plantation <strong>of</strong> <strong>coconut</strong> tree<br />

(<strong>Cocos</strong><strong>nucifera</strong> L.) compared with tropical evergreen<br />

humid forests. AsiaFlux Newsletter. 23: 4-9.<br />

Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440 1439


Zadjéhi et al., 2014<br />

Wuidart W and Rognon F. 1981. La production de<br />

semences de cocotier. Oléag<strong>in</strong>eux.36 (3) : 131-134.<br />

Van Der Vossen HAM and Chipungahelo GSE. 2007.<br />

<strong>Cocos</strong><strong>nucifera</strong> L. In: van der Vossen, H.A.M.<br />

&Mkamilo, G.S. (Edi<strong>to</strong>rs). PROTA 14: Vegetable oils/<br />

Oléag<strong>in</strong>eux. [CD-Rom]. PROTA, Wagen<strong>in</strong>gen, Pays<br />

Bas.<br />

Verrier E, Brabant P and Gallais A. 2001. Faits et<br />

concepts de base en génétique quantitative. Polycopié<br />

INA Paris-Grignon.2001 ; 134<br />

Submit your articles onl<strong>in</strong>e at www.jresearchbiology.com<br />

Advantages<br />

Easy onl<strong>in</strong>e submission<br />

Complete Peer review<br />

Affordable Charges<br />

Quick process<strong>in</strong>g<br />

Extensive <strong>in</strong>dex<strong>in</strong>g<br />

You reta<strong>in</strong> your copyright<br />

submit@jresearchbiology.com<br />

www.jresearchbiology.com/Submit.php.<br />

1440 Journal <strong>of</strong> Research <strong>in</strong> Biology (2014) 4(6): 1427-1440

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!