12.10.2014 Views

The cohomology structure of string algebras

The cohomology structure of string algebras

The cohomology structure of string algebras

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE COHOMOLOGY STRUCTURE OF STRING ALGEBRAS 7<br />

Pro<strong>of</strong> : By construction we have φ ≤ ∈ B n 0<br />

∐ B<br />

n<br />

+ , and φ ≥ ∈ B n −<br />

∐ B<br />

n<br />

0 . □<br />

2.3. Lemma. Let φ ∈ Kerδ n , and α 1 · · · α n ∈ Γ n such that φ(α 1 · · · α n ) ≠ 0.<br />

a) If there exists α n+1 such that α 1 · · · α n+1 ∈ Γ n+1 then φ ≤ (α 1 · · · α n )α n+1 =<br />

0,<br />

b) If there exists α 0 such that α 0 · · · α n ∈ Γ n+1 then α 0 φ ≥ (α 1 · · · α n ) = 0<br />

Pro<strong>of</strong> : We only prove a). Let φ ∈ Kerδ n . <strong>The</strong>n, since φ − φ ≤ ∈ Imδ n−1 , we have<br />

φ ≤ ∈ Kerδ n , thus<br />

0 = δ n φ ≤ (α 1 · · · α n α n+1 )<br />

= α 1 φ ≤ (α 2 · · · α n+1 ) + (−1) n+1 φ ≤ (α 1 · · · α n )α n+1 .<br />

<strong>The</strong> statement follows from the fact that paths are linearly independent, and from<br />

the preceding lemma.<br />

□<br />

3. <strong>The</strong> <strong>cohomology</strong> <strong>structure</strong><br />

<strong>The</strong> morphisms µ • : K min • (A) K<br />

rad • (A), and ω • : K<br />

rad • (A) K min • (A) allow<br />

us to carry the products defined in C<br />

rad • (A, A) to C• min (A, A). In this way we<br />

obtain a cup product and a bracket, which we still denote ∪ and [−, −]. More<br />

precisely, applying the functor Hom A e(−, A) and making the identifications <strong>of</strong> section<br />

1.5, we obtain morphisms <strong>of</strong> complexes µ • : C min • (A, A) C<br />

rad • (A, A), and<br />

ω • : C<br />

rad • (A, A) C min • (A, A). Given f ∈ Cn min (A, A), g ∈ Cm min (A, A), define<br />

f ∪ g ∈ C n+m<br />

min (A, A) as<br />

f ∪ g = µ n+m (ω n f ∪ ω m f).<br />

Thus, given an element α 1 · · · α n β 1 · · · β m ∈ Γ n+m , we have<br />

f ∪ g(α 1 · · · α n β 1 · · · β m ) = f(α 1 · · · α n )g(β 1 · · · β m ).<br />

As usual, we have δ n+m (f ∪ g) = δ n f ∪ g + (−1) m f ∪ δ m g, so the product ∪<br />

defined in C min • (A, A) induces a product at the <strong>cohomology</strong> level. In fact, the latter<br />

coincides with the cup-product <strong>of</strong> section 1.5 and the Yoneda product. In what<br />

follows, we work with the product ∪ defined in C min • (A, A).<br />

3.1. <strong>The</strong>orem. Let A = kQ/I be a triangular quadratic <strong>string</strong> algebra, n > 0<br />

and m > 0. <strong>The</strong>n HH n (A) ∪ HH m (A) = 0.<br />

Pro<strong>of</strong> : Let φ ∈ HH n (A), and ψ ∈ HH m (A). We will show that φ ≤ ∪ ψ ≥ = 0<br />

in HH n+m (A). Assume the contrary is true. In particular there exist an element<br />

α 1 · · · α n β 1 · · · β m ∈ Γ n+m such that<br />

φ ≤ (α 1 · · · α n )ψ ≥ (β 1 · · · β m ) ≠ 0.<br />

With the notations <strong>of</strong> Lemma 2.2, this is equivalent to<br />

(1) (W + Qα n )(W ′ + β 1 P ) ∉ I.<br />

Now, since α n β 1 ∈ I, Lemma 2.3 gives<br />

(W + Qα n )β 1 ∈ I, and α 1 (W ′ + β 1 P ) ∈ I.<br />

Thus, equation (1) gives W W ′ ∉ I. Let w and w ′ be paths appearing in W and<br />

W ′ respectively, such that ww ′ ∉ I. Moreover, write w = uγ, w ′ = γ ′ u ′ with γ, γ ′<br />

arrows <strong>of</strong> Q. Since ww ′ ∉ I, we have that γγ ′ ∉ I. But then, since (Q, I) satisfies<br />

(S3), this implies α n γ ′ ∈ I, so that α 1 · · · α n γ ′ ∈ Γ n+1 and, again, Lemma 2.3 gives<br />

(W + Qα n )γ ′ ∈ I so that W γ ′ ∈ I, and, in particular wγ ′ ∈ I, a contradiction. □

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!