12.10.2014 Views

The left and the right parts of a module category - Université de ...

The left and the right parts of a module category - Université de ...

The left and the right parts of a module category - Université de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LEFT AND RIGHT PARTS 5<br />

(b) L A consists <strong>of</strong> <strong>the</strong> <strong>module</strong>s N ∈ indA such that, if <strong>the</strong>re exists<br />

a path from an in<strong>de</strong>composable injective <strong>module</strong> to N, <strong>the</strong>n this<br />

path can be refined to a path <strong>of</strong> irreducible morphisms, <strong>and</strong> any<br />

such path <strong>of</strong> irreducible morphisms is sectional.<br />

1.5. Lemma. Let A be an artin algebra, <strong>and</strong> Γ be a component <strong>of</strong><br />

Γ(modA).<br />

(a) If Γ contains projective <strong>module</strong>s, <strong>the</strong>n R A ∩ Γ is directed.<br />

(b) If Γ contains injective <strong>module</strong>s, <strong>the</strong>n L A ∩ Γ is directed.<br />

Pro<strong>of</strong>. (a) Assume M ∈R A ∩ Γ, <strong>and</strong> that M = M 0 −→ · · · −→ M t =<br />

M is a cycle. By (1.2), <strong>the</strong>re exists a path M = N 0 −→ ··· −→<br />

N s = P ,whereP is projective. By (1.3)(a), <strong>the</strong> composed path M =<br />

M 0 −→ ··· −→ M t = M = N 0 −→ ··· −→ N s = P is refinable to<br />

a sectional path <strong>of</strong> irreducible morphisms. But this contradicts <strong>the</strong><br />

non-sectionality <strong>of</strong> cycles [10, 11, 18].<br />

□<br />

1.6. Corollary. Let A be a representation-finite artin algebra. <strong>The</strong>n<br />

L A <strong>and</strong> R A are directed.<br />

2. <strong>The</strong> <strong>left</strong> <strong>and</strong> <strong>right</strong> support algebras.<br />

[ ]<br />

B 0<br />

2.1. Proposition. Let A =<br />

be an artin algebra written<br />

M C<br />

in triangular matrix form. <strong>The</strong>n L A ⊆L B if <strong>and</strong> only if, for each<br />

primitive i<strong>de</strong>mpotent e c ∈ C, <strong>the</strong> corresponding projective A-<strong>module</strong> P c<br />

does not lie in L A .<br />

Pro<strong>of</strong>. Sufficiency. We first observe that L A ⊆ indB. In<strong>de</strong>ed, if<br />

X ∈L A <strong>and</strong> does not lie in indB, <strong>the</strong>n <strong>the</strong>re exists an i<strong>de</strong>mpotent<br />

e c ∈ C such that <strong>the</strong>re exists a non-zero morphism P c −→ X. However,<br />

P c /∈L A <strong>and</strong> X ∈L A contradict <strong>the</strong> fact that L A is closed un<strong>de</strong>r<br />

pre<strong>de</strong>cessors.<br />

Let now X ∈L A . We claim that <strong>the</strong> full subcategories Pred A X <strong>and</strong><br />

Pred B X consisting <strong>of</strong> <strong>the</strong> pre<strong>de</strong>cessors <strong>of</strong> X in modA <strong>and</strong> modB respectively,<br />

coinci<strong>de</strong>. It is clear that Pred B X ⊆ Pred A X. Let Y ∈<br />

Pred A X, <strong>the</strong>n <strong>the</strong>re exists a path Y = Y 0 −→ Y 1 −→ ··· −→ Y t = X<br />

in indA. However, X ∈L A , hence each Y i ∈L A . Since L A ⊆ indB,<br />

this means that each Y i is a B-<strong>module</strong>. <strong>The</strong>refore, Y ∈ Pred B X.This<br />

establishes our claim.<br />

In or<strong>de</strong>r to show that X ∈L B , we assume that Y is a pre<strong>de</strong>cessor <strong>of</strong> X.<br />

Since Y prece<strong>de</strong>s X in L A , <strong>the</strong>re exists a minimal projective resolution<br />

in modA<br />

0 −→ P 1 −→ P 0 −→ Y −→ 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!