12.10.2014 Views

Hochschild Cohomology and Representation-finite Algebras Ragnar ...

Hochschild Cohomology and Representation-finite Algebras Ragnar ...

Hochschild Cohomology and Representation-finite Algebras Ragnar ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

17<br />

⊕ n i=1 u jA φ ⊕ m j=1 v i A ε M <br />

0<br />

<br />

β<br />

α <br />

δ(φ)<br />

<br />

<br />

<br />

⊕ m j=1 v M⊗j A<br />

iA M ⊗ A Ω A<br />

M ⊗ A M⊗µA M 0<br />

ε<br />

M⊗ Af<br />

<br />

M.<br />

In fact, since ε(v i )⊗v i =(ε(v i )⊗v i )v i ∈ (M ⊗A)v i , there exists a unique A-linear<br />

map α : ⊕ m i=1 v iA → M ⊗A such that α(v i )=ε(v i )⊗v i for all 1 ≤ i ≤ m. Moreover,<br />

assume that the matrix of φ is (a ij ) m×n with a ij ∈ v i Au j .Thenφ(u j )= ∑ m<br />

i=1 v ia ij<br />

<strong>and</strong> δ(φ)(u j )= ∑ m<br />

i=1 v iδ(a ij ) for all 1 ≤ j ≤ n. Let<br />

x j = ∑ m<br />

i=1 ε(v i) ⊗ A (a ij ⊗ 1 − 1 ⊗ a ij ) ∈ M ⊗ A Ω A .<br />

Note that a ij = a ij u j <strong>and</strong> ∑ m<br />

i=1 ε(v i)a ij = ε(φ(u j )) = 0. This implies that x j =<br />

x j u j ∈ (M ⊗ A Ω A )u j . Therefore, there exists a unique A-linear map<br />

β : ⊕ n j=1 u jA → M ⊗ A Ω A<br />

such that β(u j )=x j for all 1 ≤ j ≤ n. It is now easy to verify that the above<br />

diagram is commutative. Consider now the following exact commutative diagram:<br />

j<br />

0 −−−−→ Ω M −−−−→<br />

⏐<br />

γ↓<br />

⊕ m i=1 v iA<br />

⏐<br />

α↓<br />

ε<br />

−−−−→ M −−−−→ 0<br />

∥<br />

M ⊗ A ω A : 0 −−−−→ M ⊗ A Ω A<br />

⏐<br />

M⊗ Af↓<br />

M⊗ Aj A<br />

M⊗ Aµ A<br />

−−−−−→ M ⊗ A −−−−−→ M −−−−→ 0<br />

⏐<br />

↓<br />

∥<br />

η : 0 −−−−→ M −−−−→ E −−−−→ M −−−−→ 0,<br />

where j is the inclusion map <strong>and</strong> γ is induced by α. Let ˜φ : ⊕ n j=1 u jA → Ω M be<br />

such that φ = j ˜φ. Then β = γ ˜φ, <strong>and</strong> hence εδ(φ) =(M ⊗ A f)γ ˜φ. Note that<br />

˜φψ = 0. This implies εδ(φ) ∈ Ker(ψ, M) <strong>and</strong> exhibits η as the self-extension of M<br />

corresponding to εδ(φ). The proof of the lemma is completed.<br />

Next, we look more carefully at the image of the map χ M .<br />

3.4. Lemma. Let M be a B-A-bimodule with M = ⊕ n<br />

i=1 M i a decomposition of<br />

right A-modules. Then χ M factors as follows :<br />

HH 1 χ M<br />

(A) ✲ Ext<br />

1<br />

A (M,M)<br />

❅ ✻<br />

∑ ❅❅<br />

i χ ∪<br />

M i<br />

❘ n⊕<br />

Ext 1 A(M i ,M i ).<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!