15.10.2014 Views

Community structure of macrobenthos in two tropical sandy ... - UFF

Community structure of macrobenthos in two tropical sandy ... - UFF

Community structure of macrobenthos in two tropical sandy ... - UFF

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Mar<strong>in</strong>e Ecology. ISSN 0173-9565<br />

ORIGINAL ARTICLE<br />

<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong><br />

<strong>sandy</strong> beaches with different morphodynamic features,<br />

Rio de Janeiro, Brazil<br />

Renata Soares Ramalho Fernandes 1 & Abilio Soares-Gomes 2<br />

1 Programa de Pós-Graduação em Biologia Mar<strong>in</strong>ha, Universidade Federal Flum<strong>in</strong>ense, Niterói, RJ, Brazil<br />

2 Departamento de Biologia Mar<strong>in</strong>ha, Universidade Federal Flum<strong>in</strong>ense, Niterói, RJ, Brazil<br />

Keywords<br />

Beach morphodynamic; community <strong>structure</strong>;<br />

<strong>in</strong>tertidal zonation; s<strong>of</strong>t-bottom benthos.<br />

Correspondence<br />

Renata Soares-Ramalho Fernandes, Programa<br />

de Pós-Graduação em Biologia Mar<strong>in</strong>ha,<br />

Universidade Federal Flum<strong>in</strong>ense, Caixa Postal<br />

100.644, Niterói, RJ – 24001-970, Brazil.<br />

E-mail: retfernandes2003@yahoo.com.br<br />

Accepted: 3 May 2006<br />

doi:10.1111/j.1439-0485.2006.00093.x<br />

Abstract<br />

The <strong>macrobenthos</strong> <strong>of</strong> <strong>two</strong> exposed <strong>tropical</strong> <strong>sandy</strong> beaches <strong>in</strong> Rio de Janeiro<br />

(Brazil) were compared <strong>in</strong> relation to density, species richness, and vertical<br />

zonation. Biological and sediment sampl<strong>in</strong>gs were carried out <strong>in</strong> the austral<br />

w<strong>in</strong>ter <strong>of</strong> 2002 and the austral summer <strong>of</strong> 2003. The sampl<strong>in</strong>g design consisted<br />

<strong>of</strong> 10 transects perpendicular to the water l<strong>in</strong>e, evenly divided <strong>in</strong>to strata. A<br />

sampl<strong>in</strong>g unit was taken <strong>in</strong> each stratum with a 0.04 m 2 quadrat sampler. Beaches<br />

were also compared accord<strong>in</strong>g to physical features, such as slope, wave<br />

period, wave height, and gra<strong>in</strong> size. Accord<strong>in</strong>g to Dean’s X morphodynamic<br />

<strong>in</strong>dex the Pontal is a dissipative beach while the Costa Azul is a reflective one.<br />

The mean gra<strong>in</strong> size ranged from median to coarse sand <strong>in</strong> Costa Azul,<br />

whereas <strong>in</strong> Pontal it ranged from median to very f<strong>in</strong>e sand. Eleven species were<br />

collected <strong>in</strong> the <strong>two</strong> beaches. Crustaceans were the dom<strong>in</strong>ant <strong>in</strong> the Costa Azul<br />

Beach, while the polychaete Scolelepis squamata dom<strong>in</strong>ated the Pontal beach. A<br />

negative correlation was found between the density <strong>of</strong> the <strong>macrobenthos</strong> and<br />

mean gra<strong>in</strong> size, and beach slope. On the other hand, the Dean’s parameter<br />

correlated positively with faunal density. Based on the results <strong>of</strong> ANOSIM, <strong>in</strong><br />

both beaches, <strong>two</strong> groups <strong>of</strong> stations were identified, def<strong>in</strong><strong>in</strong>g an upper and a<br />

lower beach zone along the vertical distribution <strong>of</strong> the <strong>macrobenthos</strong>.<br />

Problem<br />

Several environmental abiotic factors have been used to<br />

expla<strong>in</strong> variations <strong>in</strong> composition and abundance <strong>of</strong><br />

<strong>in</strong>tertidal <strong>macrobenthos</strong>, such as mean gra<strong>in</strong> size and<br />

sort<strong>in</strong>g <strong>of</strong> sediment gra<strong>in</strong>s, wave action, and dra<strong>in</strong>age <strong>of</strong><br />

the sediment column (Salvat 1964; McLachlan et al. 1981;<br />

Jaramillo & Gonzalez 1991). In relation to biotic factors,<br />

events related to the life cycle and <strong>in</strong>teractions among<br />

species (e.g. symbioses) could expla<strong>in</strong> some observed variations<br />

(Boesch 1973).<br />

The <strong>in</strong>teractions between tidal regime, wave climate,<br />

and sediment type produce a range <strong>of</strong> beach morphodynamic<br />

types, which span a cont<strong>in</strong>uum from microtidal<br />

reflective beaches, narrow and steep, to macrotidal dissipative<br />

systems, which are wide and flat, and under conditions<br />

<strong>of</strong> large tides, graded <strong>in</strong>to flats (Defeo & McLachlan<br />

2005).<br />

Ecological diversity, species richness, overall abundance,<br />

and biomass <strong>of</strong> macrobenthic communities <strong>in</strong>habit<strong>in</strong>g<br />

exposed <strong>sandy</strong> beaches present a clear <strong>in</strong>creas<strong>in</strong>g trend<br />

from reflective to dissipative conditions (McLachlan 1990;<br />

McLachlan et al. 1993).<br />

In oceanic beaches, where strong variation <strong>of</strong> abiotic<br />

variables are observed, physical factors are usually more<br />

important than biological ones <strong>in</strong> controll<strong>in</strong>g the community<br />

<strong>structure</strong> <strong>of</strong> <strong>in</strong>tertidal benthos. The morphodynamic<br />

state <strong>of</strong> the beaches reflects the harshness <strong>of</strong> these environments<br />

and could <strong>in</strong>dicate the k<strong>in</strong>d <strong>of</strong> fauna that<br />

colonize different beaches (Dexter 1983; Brown &<br />

160 Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd


Fernandes & Soares-Gomes<br />

<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

McLachlan 1990; Jaramillo & McLachlan 1993). Dissipative<br />

beaches are hydrodynamically more stable than<br />

reflective ones, harbor<strong>in</strong>g a more diverse fauna. The composition<br />

<strong>of</strong> these <strong>two</strong> types <strong>of</strong> beaches is quite different,<br />

with polychaetes be<strong>in</strong>g predom<strong>in</strong>ant <strong>in</strong> the dissipative<br />

beaches, and crustaceans be<strong>in</strong>g abundant <strong>in</strong> the reflective<br />

beaches (Dexter 1984; McLachlan et al. 1993).<br />

Although not so evident as <strong>in</strong> hard-bottoms, the fauna<br />

may exhibit a discrete distribution along the beach pr<strong>of</strong>ile<br />

<strong>in</strong> response to abiotic and biotic variables, form<strong>in</strong>g a typical<br />

zonation pattern worldwide (Dahl 1952; Salvat 1964).<br />

Zonation is highly dynamic and not sharply def<strong>in</strong>ed<br />

(Defeo & McLachlan 2005).<br />

The <strong>in</strong>fluence <strong>of</strong> beach morphodynamics and sediments<br />

on benthic communities and populations was studied,<br />

among others, by McLachlan (1990, 1996), Jaramillo &<br />

McLachlan (1993), McLachlan et al. (1993), Borzone<br />

et al. (1996), Bentes et al. (1997), Defeo et al. (1997,<br />

2001), Brazeiro (2001), Veloso & Cardoso (2001), Rodil<br />

& Lastra (2004). Only a few studies were carried out on<br />

the subtidal portion <strong>of</strong> the beach (Hill & Hunter 1976;<br />

Leber 1982; Knott et al. 1983; Borzone et al. 1996),<br />

because this required an <strong>in</strong>tensive and special sampl<strong>in</strong>g<br />

effort (Borzone et al. 1996).<br />

The ‘‘swash exclusion hypothesis’’ (SEH) ga<strong>in</strong>ed wide<br />

acceptability <strong>in</strong> expla<strong>in</strong><strong>in</strong>g the control <strong>of</strong> species, abundance<br />

and diversity <strong>of</strong> the <strong>sandy</strong> beach <strong>macrobenthos</strong> by<br />

swash climate, determ<strong>in</strong>ed by wave height and beach slope.<br />

This hypothesis predicts a consistent <strong>in</strong>crease <strong>in</strong> species<br />

richness, abundance and biomass from reflective to dissipative<br />

conditions (Defeo et al. 2001). It is hypothesized that<br />

only true <strong>in</strong>tertidal species will be affected by the differences<br />

<strong>in</strong> beach morphodynamic types (Contreras et al. 2003).<br />

Gómez & Defeo (1999) formulated new additions to the<br />

orig<strong>in</strong>al SEH (postulated at the community level), to<br />

account for predictions at the population level (reproductive<br />

sizes, fecundity, growth and mortality rates). They<br />

argued that <strong>in</strong> harsh reflective beaches, organisms would<br />

need to divert more energy to ma<strong>in</strong>tenance processes, rather<br />

than for reproductive growth (Defeo & Martínez 2003).<br />

The aim <strong>of</strong> this work was to verify if the above cited<br />

paradigms are true for <strong>two</strong> beaches at <strong>tropical</strong> latitudes and<br />

to describe the local vertical zonation <strong>of</strong> their fauna.<br />

Material and Methods<br />

Study area<br />

Both beaches studied (Rio de Janeiro, Brazil) are relatively<br />

free from anthropogenic impacts, except for human<br />

recreation, which is especially <strong>in</strong>tense on holidays and<br />

dur<strong>in</strong>g summer vacations. Praia do Pontal (22°57¢58¢¢ S)<br />

is a 700m long and 35m wide <strong>in</strong>tertidal beach, located <strong>in</strong><br />

BRASIL<br />

Arraial do Cabo Municipality, with a median to f<strong>in</strong>e sand<br />

granulometry. Costa Azul beach (22°31¢37¢¢) is a waveexposed,<br />

900m long and 50m wide <strong>in</strong>tertidal beach,<br />

located <strong>in</strong> Rio das Ostras Municipality, with a predom<strong>in</strong>ance<br />

<strong>of</strong> coarse sand (Fig. 1).<br />

Sampl<strong>in</strong>g design<br />

Sampl<strong>in</strong>g was carried out <strong>in</strong> the austral w<strong>in</strong>ter <strong>of</strong> 2002<br />

and the austral summer <strong>of</strong> 2003, dur<strong>in</strong>g low-spr<strong>in</strong>g tides.<br />

At each beach, <strong>two</strong> sectors (S1, S2), <strong>of</strong> 40 m distance,<br />

were sampled along five transects (T1–T5) perpendicular<br />

to the water l<strong>in</strong>e, from below the swash l<strong>in</strong>e and the<br />

supralittoral vegetation.<br />

Each transect was divided <strong>in</strong>to 10 strata, equally<br />

spaced, consistent with the follow<strong>in</strong>g beach width: Pontal<br />

beach width 35 m ¼ 3.5 m, the distance between the levels;<br />

Costa Azul Beach width 50 m ¼ 5 m, the distance<br />

between the levels.<br />

A sampl<strong>in</strong>g unit was taken <strong>in</strong> each stratum with a<br />

0.04 m 2 quadrat sampler, buried to a depth <strong>of</strong> 25 cm,<br />

and the <strong>macrobenthos</strong> were sorted us<strong>in</strong>g a 0.5mm-mesh<br />

sieve. To verify if some species occurred beyond the limits<br />

<strong>of</strong> the <strong>in</strong>tertidal zone, a triplicate sample was collected <strong>in</strong><br />

the break<strong>in</strong>g zone contiguous to each transect, with a<br />

mean depth <strong>of</strong> 2 m, us<strong>in</strong>g a hand corer <strong>of</strong> 0.00785 m 2 ,<br />

buried to a depth <strong>of</strong> 25 cm, and the <strong>macrobenthos</strong> were<br />

sorted us<strong>in</strong>g a 0.5mm-mesh sieve.<br />

As the sampl<strong>in</strong>g device used to sample the surf zone<br />

was different from the one used to sample the <strong>in</strong>tertidal<br />

zone, a comparison between both zones was not made.<br />

However, the surf zones <strong>of</strong> the <strong>two</strong> beaches were compared<br />

so as to test the differences.<br />

Habitat featur<strong>in</strong>g<br />

Rio de Janeiro<br />

45° 44° 43°W 42° 41°<br />

Fig. 1. Geographic location <strong>of</strong> the beaches studied.<br />

Costa Azul<br />

Pontal<br />

22°S<br />

The sediment samples for gra<strong>in</strong>-size analyses were collected<br />

at each stratum by <strong>in</strong>sert<strong>in</strong>g a 3.5cm diameter<br />

21°<br />

23°<br />

Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd 161


<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

Fernandes & Soares-Gomes<br />

cyl<strong>in</strong>drical corer to a depth <strong>of</strong> 15 cm. Samples were<br />

dried at 70 °C <strong>in</strong> an oven and sieved through graded<br />

screens so as to determ<strong>in</strong>e mean particle size and sort<strong>in</strong>g<br />

parameters (Folk & Ward 1957); the sediments were<br />

classified accord<strong>in</strong>g to the Wen<strong>two</strong>rth (1922) scale.<br />

Wave height was estimated by measur<strong>in</strong>g the height <strong>of</strong><br />

the waves with graduated poles aga<strong>in</strong>st the horizon.<br />

Beach slope at each site was determ<strong>in</strong>ed by Emery’s<br />

(1961) pr<strong>of</strong>il<strong>in</strong>g technique, from the average wave height<br />

(Hb), wave period (T) and sand fall velocity <strong>of</strong> the particles<br />

(values estimated us<strong>in</strong>g the mean gra<strong>in</strong> size from<br />

the swash zone and conversion tables given by Gibbs<br />

et al. 1971). Dimensionless Dean’s parameter (X) (Short<br />

& Wright 1983) was calculated for each beach as a<br />

measure <strong>of</strong> its morphodynamic state: X ¼ Hb/Ws · T.<br />

The wave period was the time <strong>in</strong>terval between breakers,<br />

and the swash period was estimated measur<strong>in</strong>g the<br />

maximum swash amplitude, calculated as the distance<br />

between the highest and the lowest turn<strong>in</strong>g po<strong>in</strong>ts <strong>of</strong><br />

the up-swash and back-swash, respectively, dur<strong>in</strong>g a 10-<br />

m<strong>in</strong> period.<br />

Data analysis<br />

The hypothesis that total <strong>macrobenthos</strong> density and species<br />

richness were different <strong>in</strong> the <strong>two</strong> sectors with<strong>in</strong> each<br />

beach was tested by the one-way ANOVA<br />

(T1 · T2 · T3 · T4 · T5). The a posteriori Tukey test<br />

was adopted to determ<strong>in</strong>e if there were significant differences<br />

among the transects. The one-way ANOVA was also<br />

adopted to test the differences between the sectors<br />

(S1 · S2).<br />

A Student’s t-test was used to compare the total<br />

abundance <strong>of</strong> sublittoral macr<strong>of</strong>auna between the beaches.<br />

All data were first tested for normality (Kolmogorov–<br />

Smirnov test) and homoscedasticity (Bartelett test) prior<br />

to all parametric analyses.<br />

The data set <strong>of</strong> each beach were arranged <strong>in</strong> an ecological<br />

matrix and analyzed by the Unweighted Pair<br />

Group Method, Average Cluster<strong>in</strong>g and Non-metric<br />

Multidimensional Scal<strong>in</strong>g Ord<strong>in</strong>ation Methods, adopt<strong>in</strong>g<br />

the Bray–Curtis similarity <strong>in</strong>dex. To test the hypothesis<br />

that the strata were different along the vertical distribution<br />

(levels, zonation), a one-way analysis <strong>of</strong> similarity<br />

(ANOSIM) was carried out us<strong>in</strong>g the Bray–Curtis similarity<br />

matrix.<br />

The samples were pooled for each level/stratum as the<br />

sum <strong>of</strong> the species abundance <strong>of</strong> the five transects for<br />

each stratum and sector, because the ANOVA results<br />

showed that there were no differences between the<br />

transects.<br />

The relationship between the abiotic and biotic variables<br />

was determ<strong>in</strong>ed by the Spearman rank correlation.<br />

Results<br />

Well-sorted f<strong>in</strong>e sands predom<strong>in</strong>ated at Pontal Beach<br />

while moderately sorted coarse sand was the ma<strong>in</strong> type <strong>of</strong><br />

sediment found at Costa Azul. Accord<strong>in</strong>g to the mean<br />

Dean’s X <strong>in</strong>dex, Pontal is a dissipative beach (X ¼<br />

6.120), and Costa Azul is a reflective beach (X ¼ 0.568).<br />

Table 1 shows the other abiotic features <strong>of</strong> the <strong>two</strong> sectors<br />

at each beach, separated by summer and w<strong>in</strong>ter surveys.<br />

Eleven species belong<strong>in</strong>g to crustaceans, molluscs, polychaetes<br />

and <strong>in</strong>sects were collected, four <strong>of</strong> which were<br />

common to both beaches. At each beach, a set <strong>of</strong> seven<br />

species was collected and some species were found only<br />

<strong>in</strong> one <strong>of</strong> the studied periods.<br />

In Pontal Beach, organisms were collected <strong>in</strong> all the 10<br />

levels analysed, while <strong>in</strong> Costa Azul, organisms were miss<strong>in</strong>g<br />

from levels 9 and 10.<br />

The polychaete Scolelepis squamata, the crustacean Excirolana<br />

armata and the <strong>in</strong>sect Phaleria testacea were found<br />

only at Pontal Beach; the latter species were found only<br />

<strong>in</strong> the w<strong>in</strong>ter survey. The polychaetes Pisionides <strong>in</strong>dica<br />

and Hemipodus olivieri, and the mollusc Olivancillaria vesica<br />

vesica occurred only at the Costa Azul Beach. Hemipodus<br />

olivieri was found only <strong>in</strong> w<strong>in</strong>ter and O. vesica<br />

vesica only <strong>in</strong> summer sampl<strong>in</strong>g.<br />

The dom<strong>in</strong>ant species at Pontal, on both surveys, was<br />

S. squamata while Excirolana braziliensis dom<strong>in</strong>ated at<br />

Costa Azul Beach. At Pontal E. armata co-dom<strong>in</strong>ated <strong>in</strong><br />

the w<strong>in</strong>ter survey and at Costa Azul, Donax hanleyanus<br />

co-dom<strong>in</strong>ated <strong>in</strong> w<strong>in</strong>ter, while Emerita brasiliensis<br />

Table 1. Physical characteristics <strong>of</strong> the beaches studied <strong>in</strong> w<strong>in</strong>ter (W)<br />

and summer (S).<br />

physical characteristics/<br />

beaches<br />

Pontal,<br />

sector 1<br />

Pontal,<br />

sector 2<br />

Costa Azul,<br />

sector 1<br />

Costa Azul,<br />

sector 2<br />

wave height [m]<br />

W 1.0 1.0 1.0 1.0<br />

S 1.0 1.0 0.8 0.8<br />

wave period [s]<br />

W 6.0 6.0 16.93 11.93<br />

S 5.8 5.8 10.2 10.2<br />

swash period [s]<br />

W 16.2 15.3 7.4 6.2<br />

S 14.1 14.5 7.3 7.2<br />

<strong>in</strong>tertidal slope [1/m]<br />

W 1:21.4 1:20 1:10.4 1:12.1<br />

S 1:22.5 1:20.8 1:12.1 1:15<br />

length [m]<br />

W 35 35 50 50<br />

S 35 25 50 50<br />

Dean parameter X<br />

W 6.01 6.01 0.48 0.51<br />

S 6.22 6.22 0.78 0.49<br />

162 Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd


Fernandes & Soares-Gomes<br />

<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

Table 2. The dom<strong>in</strong>ant species <strong>of</strong> the beaches studied <strong>in</strong> w<strong>in</strong>ter and<br />

summer.<br />

w<strong>in</strong>ter % summer %<br />

Pontal beach species<br />

Scolelepis squamata (Muller, 1806) 41.08 63.65<br />

Emerita brasiliensis (Schmitt, 1935) 21.40 17.37<br />

Excirolana armata (Dana, 1853) 32.37 13.37<br />

Excirolana braziliensis (Richardson, 1912) 4.25 4.62<br />

Donax hanleyanus (Philippi, 1842) 0.07 0.70<br />

Pseudorchestoidea brasiliensis (Dana, 1853) 0.55 0.28<br />

Phaleria testacea (Say, 1824) 0.27 –<br />

Costa Azul beach species<br />

Pisionides <strong>in</strong>dica (Aiyar & Alikunhi, 1940) 8.40 0.82<br />

Emerita brasiliensis (Schmitt, 1935) 20.15 30.23<br />

Donax hanleyanus (Philippi, 1842) 27.50 19.15<br />

Hemipodus olivieri (Orensanz &<br />

– 1.40<br />

Gianuca, 1974)<br />

Excirolana braziliensis (Richardson, 1912) 38.10 44.87<br />

Pseudorchestoidea brasiliensis (Dana, 1853) 5.30 3.56<br />

Olivancillaria vesica vesica (Gmel<strong>in</strong>, 1791) 0.36 –<br />

Table 4. Density <strong>of</strong> species [<strong>in</strong>d.Æm )2 ] and total number <strong>of</strong> <strong>in</strong>dividuals<br />

per beach, <strong>in</strong> w<strong>in</strong>ter (W) and summer (S).<br />

species PO, W PO, S C.A, W C.A, S<br />

Scolelepis squamata 3337.6 4602.5 – –<br />

Pisionides <strong>in</strong>dica – – 192.3 21.36<br />

Hemipodus olivieri – – – 29.91<br />

Emerita brasiliensis – – 192.3 200.85<br />

Donax hanleyanus – – 363.24 213.67<br />

Olivancillaria vesica vesica – – 68.37 –<br />

total faunal density 3337.6 4602.5 816.23 465.81<br />

total number <strong>of</strong> <strong>in</strong>d. 781 1077 191 109<br />

PO, Pontal Beach; CA, Costa Azul Beach.<br />

co-dom<strong>in</strong>ated <strong>in</strong> summer (Table 2). At Pontal Beach, the<br />

higher density <strong>of</strong> <strong>in</strong>tertidal <strong>in</strong>dividuals was found <strong>in</strong> the<br />

w<strong>in</strong>ter survey, and at Costa Azul the higher density was<br />

found <strong>in</strong> summer. However, at the break<strong>in</strong>g zone, the<br />

opposite pattern was observed with the higher density<br />

occurr<strong>in</strong>g <strong>in</strong> summer at Pontal Beach, and <strong>in</strong> w<strong>in</strong>ter at<br />

Costa Azul (Tables 3 and 4).<br />

Accord<strong>in</strong>g to the cluster and MDS analyses (Figs 2 and<br />

3) there were three groups <strong>of</strong> stations at Pontal and <strong>two</strong><br />

at Costa Azul. On the other hand, when apply<strong>in</strong>g the<br />

ANOSIM test, only <strong>two</strong> <strong>of</strong> these groups were statistically<br />

significant for both the beaches (global R ¼ 1.0).<br />

Compar<strong>in</strong>g the <strong>in</strong>tertidal zones, the Pontal Beach showed<br />

a higher species richness than Costa Azul. However, species<br />

richness at the break<strong>in</strong>g zone at the Costa Azul Beach<br />

Fig. 2. Cluster analysis and n-MDS ord<strong>in</strong>ations. Above: Pontal Beach<br />

w<strong>in</strong>ter; Below: Pontal Beach summer.<br />

Table 3. Density <strong>of</strong> species [<strong>in</strong>d.Æm )2 ], and total number <strong>of</strong> <strong>in</strong>dividuals per beach, <strong>in</strong> w<strong>in</strong>ter (W) and summer (S).<br />

species PO, W [m )1 ] PO, W [m )2 ] PO, S [m )1 ] PO, S [m )2 ] C.A, W [m )1 ] C.A, W [m )2 ] C.A, S [m )1 ] C.A, S [m )2 ]<br />

Scolelepis squamata 1636.6 3140 2651.2 4545 – – – –<br />

Pisionides <strong>in</strong>dica – – – – 1150 230 150 30<br />

Hemipodus olivieri – – – – 200 40 250 50<br />

Emerita brasiliensis 1150.6 1315 1446.6 1240 2550 550 5300 1105<br />

Excirolana braziliensis 259 370 288.7 330 4920 1040 795 1640<br />

Excirolana armata 2030 2400 1114.1 955 – – – –<br />

Pseudorchestoidea brasiliensis 70 40 87.5 50 500 115 416.6 130<br />

Ocypode quadrada – – – – 25 5 – –<br />

Donax hanleyanus 323.7 5 – – 3325 750 2950 700<br />

Olivancillaria vesica vesica – – – – 50 10 – –<br />

Phaleria testacea 35 20 70 20 – – – –<br />

total density 5504.9 7290 5658.1 7140 12720 2740 9861.6 3655<br />

total number <strong>of</strong> <strong>in</strong>d. 1458 1428 548 731<br />

PO, Pontal Beach; C.A, Costa Azul Beach.<br />

Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd 163


<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

Fernandes & Soares-Gomes<br />

stratum 8, at about 40 m from the water l<strong>in</strong>e. Accord<strong>in</strong>g<br />

to the ANOVA results, the density <strong>of</strong> E. braziliensis did<br />

not differ significantly between the sectors or periods<br />

(P > 0.05) (Fig. 4).<br />

Accord<strong>in</strong>g to the results from the Student’s t-test, the<br />

abundance <strong>of</strong> macrobenthic fauna was significantly different<br />

<strong>in</strong> the sublittoral zone between Pontal and Costa Azul<br />

(P < 0.05). At Pontal Beach, the macrobenthic fauna were<br />

more abundant <strong>in</strong> summer, whereas at Costa Azul they<br />

were more abundant <strong>in</strong> w<strong>in</strong>ter.<br />

The Spearman rank correlation analyses revealed a significant<br />

positive relationship between mean gra<strong>in</strong> size and<br />

beach slope (P < 0.005), and between omega (X) and<br />

macr<strong>of</strong>aunal density (P < 0.005). Conversely, significant<br />

negative correlations were found between mean gra<strong>in</strong> size<br />

and macr<strong>of</strong>aunal density (P < 0.005), and between beach<br />

slope and macr<strong>of</strong>auna density (P < 0.005) (Table 5).<br />

Discussion<br />

Fig. 3. Cluster analysis and n-MDS ord<strong>in</strong>ations. Above: Costa Azul<br />

beach w<strong>in</strong>ter. Below: Costa Azul Beach summer.<br />

was higher than at Pontal. At Costa Azul the species richness<br />

<strong>in</strong>creased from the higher to the lower <strong>in</strong>tertidal<br />

zone, while at Pontal, the higher species richness occurred<br />

at the <strong>in</strong>termediate levels (c. 23 m from the water l<strong>in</strong>e).<br />

On both beaches the total macrobenthic fauna did not<br />

differ significantly between <strong>in</strong>tra-sector transects (S1 –<br />

T1 · T2 · T3 · T4 · T5; P > 0.05) and (S2 – T1 · T2 ·<br />

T3 · T4 · T5; P > 0.05). Also, no significant differences<br />

were found between <strong>in</strong>ter-sectors (S1 · S2; P > 0.05) as<br />

well as between the <strong>two</strong> sampl<strong>in</strong>g periods (P > 0.05).<br />

At Pontal Beach, S. squamata occurred from the sublittoral<br />

zone to stratum 7, at approximately 24 m distance<br />

from the water l<strong>in</strong>e. The distribution <strong>of</strong> E. brasiliensis ranged<br />

from the sublittoral to stratum 5, peak<strong>in</strong>g at stratum<br />

4 (c. 14 m distance from the water l<strong>in</strong>e). Excirolana<br />

armata and E. braziliensis occurred from stratum 4 to<br />

stratum 7, and from stratum 5 to 10, respectively.<br />

Accord<strong>in</strong>g to the results from the ANOVA, the density <strong>of</strong><br />

S. squamata, E. brasiliensis and E. braziliensis did not differ<br />

between sectors or periods (Two-Way ANOVA factors<br />

sector and periods P > 0.05). The density <strong>of</strong> E. armata<br />

was higher <strong>in</strong> the w<strong>in</strong>ter (P < 0.05) but did not differ<br />

between sectors (P > 0.05).<br />

At Costa Azul, the highest density <strong>of</strong> E. brasiliensis<br />

occurred <strong>in</strong> stratum 1, at about 5 m distance from the<br />

water l<strong>in</strong>e. Donax hanleyanus ranged from strata 1 to 5,<br />

about 15 m above the water l<strong>in</strong>e. Its density was statistically<br />

different between the <strong>two</strong> sectors but did not differ<br />

between the seasons. Excirolana braziliensis occurred from<br />

stratum 2, at about 10-m distance from the water l<strong>in</strong>e, to<br />

Gra<strong>in</strong> size and swash period are the physical factors that<br />

control community <strong>structure</strong>. Gra<strong>in</strong> size <strong>of</strong>ten tends to be<br />

coarser at reflective rather than at dissipative beaches, as<br />

a result <strong>of</strong> <strong>in</strong>tense wave action <strong>in</strong> the former (McLachlan<br />

1990; Defeo et al. 1992; McArdle & McLachlan 1992;<br />

Borzone et al. 1996). The physical features <strong>of</strong> both beaches<br />

studied <strong>in</strong> this work are <strong>in</strong> accordance with these<br />

statements; the Pontal Beach has a slight slope and f<strong>in</strong>e<br />

gra<strong>in</strong>s, while the Costa Azul Beach has a steeper slope<br />

and coarser gra<strong>in</strong>s.<br />

Dexter (1983) and Borzone et al. (1996) showed that<br />

the density <strong>of</strong> the macr<strong>of</strong>auna was negatively correlated to<br />

mean gra<strong>in</strong> size. In addition, Defeo et al. (1992) found a<br />

negative correlation between beach slope and macr<strong>of</strong>aunal<br />

density, conclud<strong>in</strong>g that both slope and gra<strong>in</strong> size are<br />

factors determ<strong>in</strong><strong>in</strong>g beach macr<strong>of</strong>aunal <strong>structure</strong>. Accord<strong>in</strong>g<br />

to McLachlan (1990), the abundance <strong>of</strong> macr<strong>of</strong>auna is<br />

best correlated with Dean’s parameter. On the other hand,<br />

Jaramillo & McLachlan (1993) observed that gra<strong>in</strong> size<br />

was the sediment factor that best correlated with variations<br />

<strong>of</strong> macr<strong>of</strong>aunal abundance <strong>in</strong> Chilean beaches. For<br />

those beaches, slope, gra<strong>in</strong> size, and the Dean parameter<br />

were positively correlated with macr<strong>of</strong>aunal density.<br />

Some authors, when compar<strong>in</strong>g morphodynamic types,<br />

found an <strong>in</strong>crease <strong>in</strong> the abundance <strong>of</strong> macr<strong>of</strong>auna, from<br />

reflective to dissipative beaches (Brown & McLachlan<br />

1990; Defeo et al. 1992; Borzone et al. 1996; Brazeiro<br />

1999). Jaramillo et al. (2001) however, stated that the<br />

morphodynamics was not always a useful predictor <strong>of</strong><br />

<strong>sandy</strong> beach community <strong>structure</strong>.<br />

McArdle & McLachlan (1992) observed that variations<br />

<strong>in</strong> swash, a factor that is related to slope, lead to changes<br />

<strong>in</strong> the distribution <strong>of</strong> macr<strong>of</strong>auna. Accord<strong>in</strong>g to Bowman<br />

164 Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd


Fernandes & Soares-Gomes<br />

<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

Fig. 4. Variation <strong>in</strong> the number <strong>of</strong> <strong>in</strong>dividuals and slope along the water level.<br />

Table 5. Spearman Rank Correlation between abiotic and biotic variables<br />

<strong>of</strong> the beaches studied.<br />

variables R P significance<br />

gra<strong>in</strong> size versus faunal density )0.8982 0.0046 *<br />

gra<strong>in</strong> size versus <strong>in</strong>tertidal slope )0.7785 0.0279 *<br />

gra<strong>in</strong> size versus species richness 0.2191 0.6021 n.s.<br />

Intertidal slope versus faunal density 0.9048 0.0046 *<br />

Intertidal slope versus species richness 0.5361 0.1710 n.s.<br />

X versus density 0.8675 0.007 *<br />

X versus richness 0.3061 0.418 n.s.<br />

n.s., not significant.<br />

*P < 0.05.<br />

& Dolan (1985), beaches that have slight slopes and long<br />

swash periods are more favourable for filterfeed<strong>in</strong>g<br />

animals. The difference <strong>in</strong> the abundance <strong>of</strong> the<br />

<strong>sandy</strong> crab, E. brasiliensis between the beaches <strong>in</strong> this<br />

study, corroborates these ideas. The swash period at<br />

Pontal Beach was <strong>two</strong> times that at Costa Azul Beach,<br />

where the abundance <strong>of</strong> E. brasiliensis was very low, thus<br />

<strong>in</strong> agreement with the SEH, proposed by McLachlan et al.<br />

(1993).<br />

At Costa Azul Beach, where the animals were more<br />

exposed to wave action, crustaceans were the dom<strong>in</strong>ant<br />

taxa, whereas the polychaete S. squamata dom<strong>in</strong>ated at<br />

Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd 165


<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

Fernandes & Soares-Gomes<br />

Pontal Beach. Along the Brazilian coast, S. squamata<br />

occurs <strong>in</strong> beaches along São Paulo and Paraná State coasts<br />

(Amaral 1979; Amaral et al. 1990; Shimizu 1991, 1995;<br />

Omena & Amaral 1997), and it is the most characteristic<br />

macr<strong>of</strong>auna species, both <strong>in</strong> abundance and frequency<br />

(Souza & Gianuca 1995; Borzone et al. 1996). Similarly,<br />

Barros et al. (2001) found that S. squamata was the most<br />

representative species on a dissipative beach <strong>of</strong> the Paraná<br />

State coast, represent<strong>in</strong>g 70% <strong>of</strong> the total macr<strong>of</strong>auna<br />

abundance.<br />

Cirolanidae crustaceans were abundant at both the beaches<br />

studied. At Costa Azul, E. braziliensis was the most<br />

abundant species, and at Pontal, E. armata was the second<br />

most abundant species, coexist<strong>in</strong>g with the hippidean<br />

E. braziliensis. Defeo et al. (1997), compar<strong>in</strong>g the different<br />

beaches along the Uruguayan coast, concluded that<br />

E. braziliensis and E. armata prefer f<strong>in</strong>e <strong>sandy</strong> habitats,<br />

although E. braziliensis seems to be more eurytopic, also<br />

occurr<strong>in</strong>g at high densities <strong>in</strong> coarse <strong>sandy</strong> habitats. The<br />

lower abundance <strong>of</strong> E. braziliensis at Pontal Beach compared<br />

with Costa Azul might suggest a competitive <strong>in</strong>teraction<br />

with E. armata.<br />

Defeo et al. (2001), showed that E. brasiliensis was<br />

more abundant at dissipative beaches, corroborat<strong>in</strong>g the<br />

‘swash exclusion hypothesis’, which predicts a consistent<br />

<strong>in</strong>crease <strong>in</strong> species richness, abundance and biomass from<br />

reflective to dissipative conditions (Defeo et al. 2001).<br />

Conversely, it has been hypothesized that only true <strong>in</strong>tertidal<br />

species will be affected by differences <strong>in</strong> beach<br />

morphodynamic types (Contreras et al. 2003).<br />

In the present study, Pseudorchestoidea brasiliensis was<br />

found <strong>in</strong> both dissipative and reflective beaches. Gianuca<br />

(1983) has found that this crustacean was more abundant<br />

<strong>in</strong> dissipative beaches. On the other hand, it has been<br />

demonstrated that P. brasiliensis was more typical <strong>of</strong><br />

reflective beaches (Cardoso & Veloso 1996). Gómez &<br />

Defeo (1999) suggested that P. brasiliensis was more resistant<br />

to immersion, desiccation and least prone to predation<br />

at reflective beaches. These results show that this<br />

species is able to successfully colonize beaches that are<br />

morphodynamically dist<strong>in</strong>ct. However, <strong>in</strong> this study,<br />

P. brasiliensis was found at low densities at both the beaches<br />

studied. Barros et al. (2001) suggested that the<br />

absence <strong>of</strong> some species <strong>in</strong> the beaches could be associated<br />

with a high level <strong>of</strong> recreational activities (i.e. tramp<strong>in</strong>g)<br />

and the usual practice <strong>of</strong> removal <strong>of</strong> artificial and<br />

natural detritus from those beaches. Studies have shown<br />

that some species can be elim<strong>in</strong>ated or have their population<br />

densities reduced as a result <strong>of</strong> the <strong>in</strong>crease <strong>of</strong> recreational<br />

activities <strong>in</strong> beach ecosystems (M<strong>of</strong>fet et al. 1998).<br />

The total abundance and dom<strong>in</strong>ance <strong>of</strong> species were not<br />

different between w<strong>in</strong>ter and summer surveys. The same<br />

has been found <strong>in</strong> beaches along the Paraná State coast <strong>in</strong><br />

Southern Brazil, where crustaceans dom<strong>in</strong>ated or co-dom<strong>in</strong>ated<br />

together with polychaetes, regardless <strong>of</strong> the period<br />

(Barros et al. 2001). Therefore, the absence and/or the low<br />

abundance <strong>of</strong> some species can also be related to their life<br />

cycle. Monthly and annual fluctuations <strong>in</strong> population density<br />

are common among <strong>sandy</strong> beach macr<strong>of</strong>auna, where<br />

peaks <strong>in</strong> abundance are <strong>of</strong>ten a consequence <strong>of</strong> variations<br />

<strong>in</strong> recruitment rates (Souza & Gianuca 1995).<br />

Species richness <strong>in</strong> this study was low and similar to<br />

that recorded <strong>in</strong> the exposed Chilean beaches (Jaramillo<br />

et al. 2001), when compared with the west coast beaches<br />

<strong>of</strong> the United States, South Africa, Australia, and Oman.<br />

Otherwise, the macr<strong>of</strong>aunal density <strong>in</strong> the Chilean<br />

beaches is <strong>of</strong>ten higher than at other localities. Those high<br />

densities, <strong>in</strong> the majority <strong>of</strong> the cases studied, were largely<br />

a result <strong>of</strong> great densities <strong>of</strong> the sand crab Emerita<br />

analoga, that could reach 50% <strong>of</strong> the total density <strong>in</strong> the<br />

different types <strong>of</strong> beaches <strong>in</strong> Chile (Jaramillo & Lastra<br />

2001). Similar results have also been found by Dugan<br />

et al. (2000) along the California beaches. At Pontal<br />

Beach, densities were comparable with those <strong>of</strong> the Chile<br />

and California beaches, but are attributed to the high<br />

density <strong>of</strong> the polychaete S. squamata.<br />

Dahl (1952) and Salvat (1964), among others, have<br />

proposed a vertical zonation pattern for <strong>sandy</strong> beach<br />

assemblages. For Brown & McLachlan (1990) it was possible<br />

to recognize <strong>two</strong> vertical zones: a subaerial or resurgence<br />

zone and a subaquatic or retention zone. However,<br />

there are controversies about a global pattern <strong>of</strong> zonation<br />

<strong>in</strong> sedimentary beaches. Defeo et al. (1992) were not able<br />

to recognize a unique pattern for five beaches studied <strong>in</strong><br />

the coast <strong>of</strong> Uruguay. In addition Brazeiro & Defeo<br />

(1996) demonstrated that zonation at dissipative beaches<br />

could exhibit either a seasonal or a short-time variation.<br />

Beach species could have their distribution altered <strong>in</strong><br />

response to environmental changes such as beach width<br />

and slope, position <strong>of</strong> the swash zone, food availability,<br />

and competition (Brazeiro & Defeo 1996; Giménez &<br />

Yannicelli 1997).<br />

At Pontal Beach, our results po<strong>in</strong>ted out three groups<br />

<strong>of</strong> stations correspond<strong>in</strong>g to biological zones: a lower<br />

zone, where S. squamata was a conspicuous species, an<br />

<strong>in</strong>termediate zone, characterized by the high abundance<br />

<strong>of</strong> E. brasiliensis and E. armata, and a higher zone, where<br />

E. braziliensis was the characteristic species. At Costa<br />

Azul, only <strong>two</strong> zones could be dist<strong>in</strong>guished: a lower zone<br />

characterized by E. brasiliensis and D. hanleyanus, and a<br />

higher zone by E. braziliensis. When zonation patterns<br />

were tested us<strong>in</strong>g ANOSIM, only <strong>two</strong> zones were evident<br />

at both beaches; a zone located <strong>in</strong> the lower portion <strong>of</strong><br />

the beach, encompass<strong>in</strong>g <strong>in</strong>tertidal migratory species, and<br />

a zone where those migratory species were excluded.<br />

These results are <strong>in</strong> agreement with Brown & McLachlan<br />

166 Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd


Fernandes & Soares-Gomes<br />

<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

(1990), who suggested that the only valid zonation<br />

scheme might be a division <strong>of</strong> the air-breather, high-shore<br />

assemblages from the water-breather, lower shore assemblages.<br />

Giménez & Yannicelli (1997) suggested that on beaches<br />

with a steeper slope, E. brasiliensis and D. hanleyanus<br />

could def<strong>in</strong>e the zones more properly, while the high<br />

zone was characterized by E. braziliensis.<br />

Species that depend upon swash have their distribution<br />

limited to reflective beaches because on those beaches the<br />

slope is steeper and the swash is shorter. Correlation analysis<br />

between swash and slope suggested that slope controls<br />

zonation patterns on <strong>sandy</strong> beaches. At Costa Azul,<br />

the steep slope might act as a barrier h<strong>in</strong>der<strong>in</strong>g the migration<br />

<strong>of</strong> species that occupy the lower zone. As a result <strong>of</strong><br />

the fast water dra<strong>in</strong>age at the <strong>in</strong>termediate zone, only<br />

organisms adapted to dry sand such as E. braziliensis can<br />

persist.<br />

At Pontal Beach, P. brasiliensis and E. brasiliensis cooccur<br />

<strong>in</strong> the supralittoral zone. The occurrence <strong>of</strong> these<br />

cirolanid isopods at higher levels on the coast is opposite<br />

to the pattern proposed by Dahl (1952). The same occurrence<br />

was also reported by Jaramillo (1978), Gianuca<br />

(1983), Defeo et al. (1992) and Brazeiro & Defeo (1996)<br />

for temperate sites <strong>in</strong> South America.<br />

Defeo et al. (1997) studied the distribution <strong>of</strong> E. armata<br />

and E. braziliensis, and observed that when these species<br />

co-occur, E. braziliensis is found <strong>in</strong> lower densities and<br />

occupies the high mediolittoral zone, above the zone where<br />

E. armata occurs. The same was observed <strong>in</strong> the present<br />

study at Costa Azul.<br />

Few studies <strong>of</strong> beaches <strong>in</strong>clude samples taken <strong>in</strong> the<br />

sublittoral zone. Some studies showed that the sublittoral<br />

assemblages are more structurally variable than <strong>in</strong>tertidal<br />

ones (Borzone et al. 1996). Hill & Hunter (1976); Leber<br />

(1982) and Knott et al. (1983). In our study the results<br />

were contradictory. At Pontal, the density <strong>of</strong> S. squamata<br />

was higher <strong>in</strong> the sublittoral zone while the richness <strong>of</strong><br />

species was lower, while at Costa Azul, the species richness<br />

was higher <strong>in</strong> the sublittoral zone.<br />

Hill & Hunter (1976), Leber (1982) and Knott et al.<br />

(1983) concluded that species composition between the<br />

<strong>in</strong>tertidal and sublittoral zones differs. Contrary to those<br />

results, no exclusive species were found <strong>in</strong> the sublittoral<br />

zones at Costa Azul and Pontal.<br />

Fleischack & Freitas (1989) studied the sublittoral portion<br />

<strong>of</strong> several beaches and suggested an <strong>in</strong>verse relationship<br />

between species diversity and turbulence <strong>in</strong> the<br />

sublittoral zone. Barros et al. (2001) studied six beaches<br />

<strong>of</strong> the Paraná state coast (South Brazil), and found that<br />

higher values <strong>of</strong> species diversity occurred <strong>in</strong> a reflective<br />

beach. The same was found <strong>in</strong> our study, where the<br />

diversity was higher <strong>in</strong> the reflective beach <strong>of</strong> Costa Azul.<br />

The reflective beaches, be<strong>in</strong>g more stable, possibly also<br />

have more stable macr<strong>of</strong>aunal assemblages, but this test<br />

would need careful temporal sampl<strong>in</strong>g, consider<strong>in</strong>g the<br />

great variability <strong>in</strong> time and space <strong>of</strong> these environments<br />

(Barros et al. 2001).<br />

References<br />

Amaral A.C.Z. (1979) Ecologia e contribuição dos anelídeos<br />

poliquetos para a biomassa bêntica da zona das marés, no<br />

litoral norte do Estado de São Paulo. Boletim do Instituto<br />

Oceanográfico Press, São Paulo, 28, 1–52.<br />

Amaral A.C.Z., Morgado E.H., Lopes P.P., Belúcio L.F., Leite<br />

F.P.P., Ferreira C.P. (1990) Composition and distribution <strong>of</strong><br />

the <strong>in</strong>tertidal macr<strong>of</strong>auna <strong>of</strong> <strong>sandy</strong> beaches on São Paulo<br />

Coast. In: Anais do Simpósio de Ecossistemas da Costa Sul e<br />

Sudeste – Estrutura, Função e Manejo 2. ACIESP Press, São<br />

Paulo, 3, 258–279.<br />

Barros F., Borzone A.B., Sergio R. (2001) Macro<strong>in</strong>fauna <strong>of</strong> six<br />

beaches near Guaratuba Bay, Southern Brazil. Brazilian<br />

Archives Biology Technology, 44, 351–364.<br />

Bentes A.M.L., Fernandez G.B., Ribeiro A.Y. (1997) Estudo da<br />

morfod<strong>in</strong>âmica de praias compreendidas entre Saquarema e<br />

Macaé, RJ.Oecologia Brasiliensis, 3, 229–243.<br />

Boesch D.F. (1973) Classification and community <strong>structure</strong> <strong>of</strong><br />

<strong>macrobenthos</strong> <strong>in</strong> Hampton Roads Area, Virg<strong>in</strong>ia. Mar<strong>in</strong>e<br />

Biology, 21, 226–244.<br />

Borzone C.A., Souza J.R.B., Soares A.G. (1996) Morphodynamic<br />

<strong>in</strong>fluence on the <strong>structure</strong> <strong>of</strong> <strong>in</strong>ter and subtidal<br />

macr<strong>of</strong>aunal communities <strong>of</strong> sub<strong>tropical</strong> <strong>sandy</strong> beaches.<br />

Revista Chilena de Historia Natural, 69, 565–577.<br />

Bowman M.L., Dolan R. (1985) The relationship <strong>of</strong> Emerita<br />

talpoida to beach characteristics. Journal <strong>of</strong> Coastal Research,<br />

1, 151–163.<br />

Brazeiro A. (1999) Effects <strong>of</strong> harvest<strong>in</strong>g and density-dependence<br />

on the demography <strong>of</strong> <strong>sandy</strong> beach populations: the<br />

yellow clam Mesodesma mactroides <strong>of</strong> Uruguay. Mar<strong>in</strong>e Ecology<br />

Progress Series, 182, 127–135.<br />

Brazeiro A. (2001) Relationship between species richness and<br />

morphodynamics <strong>in</strong> <strong>sandy</strong> beaches: what are the underly<strong>in</strong>g<br />

factors. Mar<strong>in</strong>e Ecology Progress Series, 224, 35–44.<br />

Brazeiro A., Defeo O. (1996) Macro<strong>in</strong>fauna zonation <strong>in</strong> microtidal<br />

<strong>sandy</strong> beaches; is it possible to identify patterns <strong>in</strong><br />

such variable environments? Estuar<strong>in</strong>e, Coastal and Shelf Science,<br />

42, 523–536.<br />

Brown A.C., McLachlan A. (1990) Ecology <strong>of</strong> Sandy Shores.<br />

Elsevier Science Press, Amsterdam: 328 pp.<br />

Cardoso R.S., Veloso V.G. (1996) Population biology and<br />

secondary production <strong>of</strong> the sandhopper Pseudorchestoidea<br />

brasiliensis (Amphipoda: Talitridae) at Pra<strong>in</strong>ha Beach, Brazil.<br />

Mar<strong>in</strong>e Ecology Progress Series, 142, 111–119.<br />

Contreras H., Jaramillo E., Duarte C., McLachlan A. (2003)<br />

Population abundance, growth and natural mortality <strong>of</strong> the<br />

crustacean macro<strong>in</strong>fauna at <strong>two</strong> sand beach morphodynamic<br />

Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd 167


<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

Fernandes & Soares-Gomes<br />

types <strong>in</strong> southern Chile. Revista Chilena de Historia Natural,<br />

76, 543–561.<br />

Dahl E. (1952) Some aspects <strong>of</strong> the ecology and zonation <strong>of</strong><br />

the fauna on <strong>sandy</strong> beaches. Oikos, 4, 1–27.<br />

Defeo O., McLachlan A. (2005) Patterns, processes and<br />

regulatory mechanisms <strong>in</strong> <strong>sandy</strong> beach macr<strong>of</strong>auna: a multiscale<br />

analysis. Mar<strong>in</strong>e Ecology Progress Series, 295, 1–20.<br />

Defeo O., Martínez G. (2003) The habitat harshness hypothesis<br />

revisited: life history <strong>of</strong> the isopod Excirolana braziliensis <strong>in</strong><br />

<strong>sandy</strong> beaches with contrast<strong>in</strong>g morphodynamics. Journal <strong>of</strong><br />

the Mar<strong>in</strong>e Biological Association <strong>of</strong> the United K<strong>in</strong>gdom, 83,<br />

331–340.<br />

Defeo O., Jaramillo E., Lyonnet A. (1992) <strong>Community</strong> <strong>structure</strong><br />

and <strong>in</strong>tertidal zonation <strong>of</strong> the macro<strong>in</strong>fauna <strong>in</strong> the Atlantic<br />

coast <strong>of</strong> Uruguay. Journal Coastal Research, 8, 830–839.<br />

Defeo O., Brazeiro A., Alava A., Riestra G. (1997) Is <strong>sandy</strong><br />

beach macr<strong>of</strong>auna only physically controlled? Role <strong>of</strong> substrate<br />

and competition <strong>in</strong> isopods. Estuar<strong>in</strong>e, Coastal and<br />

Shelf Science, 45, 453–462.<br />

Defeo O., Gómez J., Lercari D. (2001) Test<strong>in</strong>g the swash exclusion<br />

hypothesis <strong>in</strong> <strong>sandy</strong> beach populations: the mole crab<br />

Emerita brasiliensis <strong>in</strong> Uruguay. Mar<strong>in</strong>e Ecology Progress Series,<br />

212, 159–170.<br />

Dexter D.M. (1983) <strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>in</strong>tertidal <strong>sandy</strong><br />

beaches <strong>in</strong> New South Wales. Austrália. In: McLachlan A.,<br />

Erasmus T. (Eds), Sandy Beaches as Ecosystems. W. Junk,<br />

The Hague: 461–472.<br />

Dexter D.M. (1984) Temporal and spatial variability <strong>in</strong> the<br />

community <strong>structure</strong> <strong>of</strong> the fauna for four <strong>sandy</strong> beaches <strong>in</strong><br />

southeastern New South Wales. Journal <strong>of</strong> Mar<strong>in</strong>e and Freshwater<br />

Research, 5, 663–672.<br />

Dugan J.E., Hubbard D.M., Lastra M. (2000) Burrow<strong>in</strong>g abilities<br />

and swash behavior <strong>of</strong> three crabs, Emerita analoga<br />

Stimpson, Blepharipoda occidentalis Randall, and Lepidopa<br />

californica Efford (Anomura, Hippoidea), <strong>of</strong> exposed <strong>sandy</strong><br />

beaches. Journal <strong>of</strong> Experimental Mar<strong>in</strong>e Biology and Ecology,<br />

255, 229–245.<br />

Emery K.O. (1961) A simple method <strong>of</strong> measur<strong>in</strong>g beach<br />

pr<strong>of</strong>iles. Limnology and Oceanography, 6, 90–93.<br />

Fleischack P.C., Freitas A.J. (1989) Physical parameters <strong>in</strong>fluenc<strong>in</strong>g<br />

the zonation <strong>of</strong> surf zone benthos. Estuar<strong>in</strong>e, Coastal<br />

and Shelf Science, 28, 517–530.<br />

Folk R.L., Ward W.C. (1957) Brazos River bar, a study <strong>in</strong> significance<br />

<strong>of</strong> gra<strong>in</strong> size parameters. Journal <strong>of</strong> Sedimentary<br />

Petrology, 27, 3–26.<br />

Gianuca N.M. (1983) A prelim<strong>in</strong>ary account <strong>of</strong> the ecology <strong>of</strong><br />

<strong>sandy</strong> beaches <strong>in</strong> southern Brazil. In: McLachlan A., T.<br />

Erasmus (Eds), Sandy Beaches as Ecosystems. W. Junk, The<br />

Netherlands: 413–420.<br />

Gibbs R.J., Matthews M.D., L<strong>in</strong>k D.A. (1971) The relationship<br />

between sphere size and settl<strong>in</strong>g velocity. Journal <strong>of</strong> Sedimentary<br />

Petrology, 41, 7–18.<br />

Giménez L., Yannicelli B. (1997) Variability <strong>of</strong> zonation patterns<br />

<strong>in</strong> temperate microtidal Uruguayan beaches with different<br />

morphodynamic types. Mar<strong>in</strong>e Ecology Progress Series,<br />

182, 209–220.<br />

Gómez J., Defeo O. (1999) Life history <strong>of</strong> the sandhopper<br />

Pseudorchestoidea brasiliensis (Amphipoda) <strong>in</strong> <strong>sandy</strong> beaches<br />

with contrast<strong>in</strong>g morphodynamics. Mar<strong>in</strong>e Ecology Progress<br />

Series, 182, 209–220.<br />

Hill G.W., Hunter R.E. (1976) Interaction <strong>of</strong> biological and<br />

geological process <strong>in</strong> the beach and nearshore, northern<br />

Padre Island, Texas. In: Davis J.C., Eth<strong>in</strong>gton E. (Eds),<br />

Beach and Nearshore Sedimentation. Tulsa, Okla: 169–187.<br />

Jaramillo E. (1978) Zonacion y estructura de la comunidad<br />

macr<strong>of</strong>aunistica en playas de arena del sur de Chile (Mehu<strong>in</strong>,<br />

Valdivia). Studies Neo<strong>tropical</strong> Fauna Environment, 17,<br />

175–194.<br />

Jaramillo E., Gonzalez M. (1991) <strong>Community</strong> <strong>structure</strong> and<br />

zonation <strong>of</strong> the macro<strong>in</strong>fauna along a dissipative-reflective<br />

range <strong>of</strong> beach category <strong>in</strong> Southern Chile. Studies Neo<strong>tropical</strong><br />

Fauna Environment, 26, 193–212.<br />

Jaramillo E., Lastra M. (2001) Suspension feeders on <strong>sandy</strong><br />

beaches. In: Reise K. (Ed.), Ecological Comparisons <strong>of</strong> Sedimentary<br />

Shores. Spr<strong>in</strong>g – Verlag, Heidelberg. Ecological<br />

Studies, 151, 61–72.<br />

Jaramillo E., McLachlan A. (1993) <strong>Community</strong> and population<br />

responses <strong>of</strong> the macro<strong>in</strong>fauna to physical factors over a<br />

range <strong>of</strong> exposed <strong>sandy</strong> beaches <strong>in</strong> south-central Chile. Estuar<strong>in</strong>e,<br />

Coastal and Shelf Science, 37, 615–624.<br />

Jaramillo E., Contreras H., Duarte C., Quijón P. (2001)<br />

Relationships between community <strong>structure</strong> <strong>of</strong> the<br />

<strong>in</strong>tertidal macro<strong>in</strong>fauna and <strong>sandy</strong> beach characteristics<br />

along the Chilean coast. P.S.Z.N: Mar<strong>in</strong>e Ecology, 22(4),<br />

323–342.<br />

Knott D.M., Calder D.R., Van Dolah R.F. (1983) Macrobenthos<br />

<strong>of</strong> <strong>sandy</strong> beach and nearshore environments at Murrells<br />

Inlet. South Carol<strong>in</strong>a USA. Estuar<strong>in</strong>e, Coastal and Shelf<br />

Science, 16, 573–590.<br />

Leber K.M. (1982) Seasonality <strong>of</strong> macro<strong>in</strong>vertebrates on a temperate<br />

high wave energy <strong>sandy</strong> beach. Biological Mar<strong>in</strong>e<br />

Science, 32, 86–98.<br />

McArdle S.B., McLachlan A. (1992) Sand beach ecology: swash<br />

features relevant to the macr<strong>of</strong>auna. Journal Coastal<br />

Research, 8, 398–407.<br />

McLachlan A. (1990) Dissipative beaches and macr<strong>of</strong>auna<br />

communities on exposed <strong>in</strong>tertidal sands. Journal Coastal<br />

Research, 6, 57–71.<br />

McLachlan A. (1996) Physical factors <strong>in</strong> benthic ecology:<br />

effects <strong>of</strong> chang<strong>in</strong>g sand particle size on beach fauna. Mar<strong>in</strong>e<br />

Ecology Progress Series, 131, 205–221.<br />

McLachlan A., Dye A.H., Harty B. (1981) Simulation <strong>of</strong> the<br />

<strong>in</strong>terstitial system <strong>of</strong> exposed <strong>sandy</strong> beaches. Estuar<strong>in</strong>e, Coastal<br />

and Shelf Science, 12, 267–278.<br />

McLachlan A., Jaramillo E., Donn T.E., Wessels F. (1993)<br />

Sandy beach macr<strong>of</strong>auna communities and their control by<br />

the physical environment: a geographical comparison. Journal<br />

Coastal Research, 15(Special Issue), 27–38.<br />

168 Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd


Fernandes & Soares-Gomes<br />

<strong>Community</strong> <strong>structure</strong> <strong>of</strong> <strong>macrobenthos</strong> <strong>in</strong> <strong>two</strong> <strong>tropical</strong> <strong>sandy</strong> beaches<br />

M<strong>of</strong>fet M.D., McLachlan A., W<strong>in</strong>ter P.E.D., De Ruyek A.M.C.<br />

(1998) Impact <strong>of</strong> trampl<strong>in</strong>g on <strong>sandy</strong> beach macr<strong>of</strong>auna.<br />

Journal Coastal Conservation, 4, 87–90.<br />

Omena E.P., Amaral A.C.Z. (1997) Distribuição espacial de<br />

Polychaeta (Annelida) em diferentes ambiente sentremarés<br />

de praias de São Sebastião (SP). In: Absalão R., Esteves<br />

A.M. (Eds) Oecologia Braziliensis. Ecologia de Praias Arenosas<br />

do Litoral Brasileiro, III, 183–196.<br />

Rodil I.F., Lastra M. (2004) Environmental factors affect<strong>in</strong>g<br />

benthic macr<strong>of</strong>auna along a gradient <strong>of</strong> <strong>in</strong>termediate <strong>sandy</strong><br />

beaches <strong>in</strong> northern Spa<strong>in</strong>. Estuar<strong>in</strong>e, Coastal and Shelf Science,<br />

61, 37–44.<br />

Salvat B. (1964) Les conditions hydrodynamiques <strong>in</strong>tertitielles<br />

des sédiment meubles <strong>in</strong>tertidaux et la repartition verticale<br />

de la jemme endogée. Comptes Rendus Academie Sciences<br />

Paris, 256, 1576–1579.<br />

Shimizu R.M. (1991) A comunidade de macro<strong>in</strong>vertebrados da<br />

região entre marés da Praia de Barequeçaba, São Sebastião,<br />

São Paulo. MSc thesis, Universidade de São Paulo, São<br />

Paulo: 72 pp.<br />

Shimizu R.M. (1995) Influência de um derramamento de óleo<br />

numa espécie dom<strong>in</strong>ante de fauna de praias arenosas no<br />

litoral paulista. In: Anais: IX Simpósio de Recursos Hídricos/II<br />

Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua<br />

Oficial Portuguesa. ABRH/ UFPE, Recife, 4: 399–404.<br />

Short A.D., Wright L.D. (1983) Physical variability <strong>of</strong> <strong>sandy</strong><br />

beaches. In: McLachlan A., Erasmus T. (Eds), Sandy Beaches<br />

as Ecosystems. W. Junk Publishers, The Netherlands: 133–<br />

144.<br />

Souza J.R.B., Gianuca N.M. (1995) Zonation and seasonal<br />

variation <strong>of</strong> the <strong>in</strong>tertidal macr<strong>of</strong>auna on a <strong>sandy</strong> beach <strong>of</strong><br />

Paraná State, Brazil. Scientia Mar<strong>in</strong>a, 59, 103–111.<br />

Veloso V.G., Cardoso R.S. (2001) The effect <strong>of</strong> morphodynamics<br />

on the spatial and temporal variation <strong>of</strong> the macr<strong>of</strong>auna<br />

<strong>of</strong> three <strong>sandy</strong> beaches on the Rio de Janeiro State, Brazil.<br />

Journal <strong>of</strong> the Mar<strong>in</strong>e Biological Association <strong>of</strong> the United<br />

K<strong>in</strong>gdom, 81, 369–375.<br />

Wen<strong>two</strong>rth C.H. (1922) A scale <strong>of</strong> grade and class terms for<br />

clastic sediments. Journal Geological, 30, 377–392.<br />

Mar<strong>in</strong>e Ecology 27 (2006) 160–169 ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publish<strong>in</strong>g Ltd 169

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!