17.10.2014 Views

Ground Motion for the Maximum Credible Earthquake in Kentucky ...

Ground Motion for the Maximum Credible Earthquake in Kentucky ...

Ground Motion for the Maximum Credible Earthquake in Kentucky ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

24<br />

24<br />

65<br />

65<br />

65<br />

65<br />

264<br />

265<br />

64<br />

71<br />

275<br />

71<br />

71<br />

75<br />

64<br />

4<br />

275<br />

75<br />

471<br />

64<br />

80<br />

75<br />

75<br />

North<br />

64<br />

80<br />

114<br />

64<br />

23<br />

23<br />

23<br />

460<br />

23<br />

119<br />

<strong>Kentucky</strong> Geological Survey<br />

James C. Cobb, State Geologist and Director<br />

University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton<br />

<strong>Ground</strong> <strong>Motion</strong> <strong>for</strong> <strong>the</strong> <strong>Maximum</strong> <strong>Credible</strong><br />

<strong>Earthquake</strong> <strong>in</strong> <strong>Kentucky</strong><br />

Zhenm<strong>in</strong>g Wang<br />

0 50 Miles<br />

Acceleration<br />

0.05 g<br />

0.10 g<br />

0.20 g<br />

0.30 g<br />

0.40 g<br />

BALLARD<br />

CARLISLE<br />

HICKMAN<br />

FULTON<br />

McCRACKEN<br />

Parkway<br />

GRAVES<br />

LIVINGSTON<br />

MARSHALL<br />

CALLOWAY<br />

CRITTENDEN<br />

LYON<br />

UNION<br />

HOPKINS<br />

CALDWELL<br />

TRIGG<br />

HENDERSON<br />

WEBSTER<br />

Western<br />

Audubon<br />

Pennyrile<br />

CHRISTIAN<br />

Parkway<br />

DAVIESS<br />

McLEAN<br />

MUHLENBERG<br />

TODD<br />

Interstate highway<br />

Parkway<br />

U.S. or Ky. highway<br />

BRACKEN<br />

CARROLL GRANT<br />

MASON<br />

GREENUP<br />

OWEN<br />

LEWIS<br />

HENRY<br />

HARRISON<br />

OLDHAM<br />

FLEMING<br />

NICHOLAS<br />

CARTER BOYD<br />

SCOTT<br />

SHELBY FRANKLIN<br />

BOURBON BATH ROWAN<br />

ELLIOTT<br />

LAWRENCE<br />

SPENCER<br />

FAYETTE<br />

ANDERSON<br />

MEADE<br />

BULLITT<br />

CLARK<br />

MENIFEE MORGAN<br />

JESSA-<br />

JOHNSON<br />

NELSON<br />

MINE<br />

MARTIN<br />

MERCER<br />

POWELL WOLFE<br />

MADISON<br />

MAGOFFIN<br />

HARDIN<br />

ESTILL<br />

BOYLE<br />

LEE<br />

MARION<br />

BREATHITT<br />

OHIO<br />

LARUE<br />

FLOYD PIKE<br />

GRAYSON<br />

LINCOLN<br />

JACKSON OWSLEY<br />

KNOTT<br />

TAYLOR<br />

PERRY<br />

CASEY<br />

BUTLER<br />

HART<br />

GREEN<br />

CLAY<br />

ADAIR<br />

LETCHER<br />

LAUREL<br />

LESLIE<br />

WARREN<br />

PULASKI<br />

RUSSELL<br />

BARREN<br />

KNOX<br />

LOGAN<br />

HARLAN<br />

WAYNE<br />

SIMPSON ALLEN<br />

WHITLEY<br />

MONROE<br />

McCREARY<br />

BELL<br />

Natcher<br />

HANCOCK<br />

BRECKINRIDGE<br />

EDMONSON<br />

JEFFERSON<br />

METCALFE<br />

TRIMBLE<br />

Blue<br />

CUMBERLAND<br />

WASHINGTON<br />

CLINTON<br />

Parkway<br />

Parkway<br />

GALLATIN<br />

BOONE<br />

WOODFORD<br />

KENTON<br />

GARRARD<br />

CAMPBELL<br />

PENDLETON<br />

ROCKCASTLE<br />

ROBERT-<br />

SON<br />

MONTGOMERY<br />

Daniel<br />

Mounta<strong>in</strong><br />

Parkway<br />

Pa r kway<br />

0<br />

SCALE<br />

50 Kilometers


<strong>Kentucky</strong> Geological Survey<br />

James C. Cobb, State Geologist and Director<br />

University of <strong>Kentucky</strong>, Lex<strong>in</strong>gton<br />

<strong>Ground</strong> <strong>Motion</strong> <strong>for</strong> <strong>the</strong> <strong>Maximum</strong> <strong>Credible</strong><br />

<strong>Earthquake</strong> <strong>in</strong> <strong>Kentucky</strong><br />

Zhenm<strong>in</strong>g Wang<br />

Report of Investigations 22 Series XII, 2010


Our Mission<br />

Our mission is to <strong>in</strong>crease knowledge and understand<strong>in</strong>g of <strong>the</strong> m<strong>in</strong>eral,<br />

energy, and water resources, geologic hazards, and geology of <strong>Kentucky</strong><br />

<strong>for</strong> <strong>the</strong> benefit of <strong>the</strong> Commonwealth and Nation.<br />

© 2006<br />

University of <strong>Kentucky</strong><br />

For fur<strong>the</strong>r <strong>in</strong><strong>for</strong>mation contact:<br />

Technology Transfer Officer<br />

<strong>Kentucky</strong> Geological Survey<br />

228 M<strong>in</strong><strong>in</strong>g and M<strong>in</strong>eral Resources Build<strong>in</strong>g<br />

University of <strong>Kentucky</strong><br />

Lex<strong>in</strong>gton, KY 40506-0107<br />

Earth Resources—Our Common Wealth<br />

www.uky.edu/kgs<br />

ISSN 0075-5591<br />

Technical Level<br />

Technical Level<br />

General Intermediate Technical<br />

General Intermediate Technical<br />

ISSN 0075-5591


Contents<br />

Abstract.........................................................................................................................................................1<br />

Introduction..................................................................................................................................................1<br />

<strong>Ground</strong>-<strong>Motion</strong> Hazard Maps...................................................................................................................2<br />

Explanation...................................................................................................................................................3<br />

References Cited..........................................................................................................................................8<br />

Figures<br />

1. Map show<strong>in</strong>g measures of maximum credible earthquakes <strong>in</strong> and around <strong>Kentucky</strong>.......4<br />

2. Map show<strong>in</strong>g peak ground acceleration, measured <strong>in</strong> g, on hard rock from <strong>the</strong> maximum<br />

credible earthquake <strong>in</strong> <strong>Kentucky</strong>.......................................................................................5<br />

3. Map show<strong>in</strong>g response acceleration, measured <strong>in</strong> g, <strong>for</strong> short-period (0.2 second) with<br />

5 percent critical damp<strong>in</strong>g on hard rock from <strong>the</strong> maximum credible earthquake..............6<br />

4. Map show<strong>in</strong>g response acceleration, measured <strong>in</strong> g, <strong>for</strong> long-period (1.0 second) with<br />

5 percent critical damp<strong>in</strong>g on hard rock from <strong>the</strong> maximum credible earthquake..............7<br />

Tables<br />

1. Relationship between perceived shak<strong>in</strong>g, potential damage, MMI, and PGA.....................2


<strong>Ground</strong> <strong>Motion</strong> <strong>for</strong> <strong>the</strong> <strong>Maximum</strong><br />

<strong>Credible</strong> <strong>Earthquake</strong> <strong>in</strong> <strong>Kentucky</strong><br />

Zhenm<strong>in</strong>g Wang<br />

1<br />

Abstract<br />

Although <strong>the</strong>y are not frequent, earthquakes occur <strong>in</strong> and around <strong>Kentucky</strong> and<br />

pose certa<strong>in</strong> hazards. Assess<strong>in</strong>g seismic hazards is challeng<strong>in</strong>g, however, because of a<br />

lack of observations. The best estimates of ground motions that could be expected if<br />

<strong>the</strong> maximum credible earthquake occurs <strong>in</strong> or around <strong>Kentucky</strong> are depicted <strong>in</strong> maps<br />

show<strong>in</strong>g peak ground acceleration and short-period (0.2 second) and long-period (1.0<br />

second) response accelerations with 5 percent critical damp<strong>in</strong>g on hard rock. Ano<strong>the</strong>r<br />

consideration <strong>for</strong> seismic safety is that <strong>the</strong> maximum credible earthquake has a long<br />

recurrence <strong>in</strong>terval, from 500 to 1,000 years <strong>in</strong> <strong>the</strong> New Madrid Seismic Zone and from<br />

2,000 to 5,000 years <strong>in</strong> <strong>the</strong> Wabash Valley Seismic Zone.<br />

These maps can be used <strong>for</strong> seismic safety design <strong>for</strong> build<strong>in</strong>gs, bridges, dams, and<br />

o<strong>the</strong>r structures. In comb<strong>in</strong>ation with local geologic and geotechnical <strong>in</strong><strong>for</strong>mation, <strong>the</strong>se<br />

maps can also be used to develop a variety of hazard mitigation strategies, such as landuse<br />

plann<strong>in</strong>g, emergency plann<strong>in</strong>g and preparedness, and lifel<strong>in</strong>e plann<strong>in</strong>g.<br />

Introduction<br />

<strong>Earthquake</strong>s such as <strong>the</strong> 1980 Sharpsburg,<br />

Ky., earthquake (moment magnitude 1 M w<br />

5.2)<br />

(Street and Foley, 1982) and <strong>the</strong> 2008 sou<strong>the</strong>rn Ill<strong>in</strong>ois<br />

earthquake (M w<br />

5.2) (Herrmann and o<strong>the</strong>rs,<br />

2008) have periodically occurred <strong>in</strong> and around<br />

<strong>Kentucky</strong> throughout history. The most widely<br />

felt and damag<strong>in</strong>g earthquakes <strong>in</strong> <strong>the</strong> state are <strong>the</strong><br />

great earthquakes of <strong>the</strong> w<strong>in</strong>ter of 1811-12, which<br />

were centered <strong>in</strong> nor<strong>the</strong>astern Arkansas, northwestern<br />

Tennessee, southwestern <strong>Kentucky</strong>, and<br />

sou<strong>the</strong>astern Missouri—<strong>the</strong> New Madrid Seismic<br />

Zone (Nuttli, 1973). The 1811-12 earthquakes, of<br />

modified Mercalli <strong>in</strong>tensity (MMI) VII to IX, are<br />

reported to have caused moderate to heavy damage<br />

throughout much of <strong>the</strong> commonwealth. Table<br />

1 shows <strong>the</strong> relationship between MMI, peak<br />

ground acceleration, perceived shak<strong>in</strong>g, and potential<br />

damage. The 1980 Sharpsburg earthquake<br />

(MMI VII) caused significant damage ($3 million)<br />

<strong>in</strong> Maysville (Street and Foley, 1982).<br />

<strong>Earthquake</strong>s are not well understood because<br />

<strong>the</strong> mechanisms caus<strong>in</strong>g <strong>the</strong>m are still not clear <strong>in</strong><br />

<strong>the</strong> central United States, and <strong>the</strong>y are difficult to<br />

predict. Yet <strong>the</strong>y cont<strong>in</strong>ue to occur <strong>in</strong> and around<br />

<strong>Kentucky</strong> and pose certa<strong>in</strong> hazards (i.e., potential<br />

to cause harm). Assess<strong>in</strong>g <strong>the</strong> seismic hazards is<br />

challeng<strong>in</strong>g, however. Three sets of seismological<br />

parameters—earthquake magnitude and location,<br />

occurrence frequency, and ground-motion attenuation<br />

(how strong <strong>the</strong> ground shak<strong>in</strong>g will be at<br />

a site a specified distance from an earthquake’s<br />

source)—are needed <strong>for</strong> seismic hazard assessment.<br />

These parameters have a large uncerta<strong>in</strong>ty<br />

associated with <strong>the</strong>m because of a lack of observations<br />

<strong>in</strong> <strong>the</strong> central United States. The exact boundary<br />

of <strong>the</strong> New Madrid Seismic Zone is still difficult<br />

to def<strong>in</strong>e, even though it is <strong>the</strong> most active and well<br />

1<br />

Moment magnitude is a measure of earthquake size calculated from <strong>the</strong> seismic moment of <strong>the</strong> earthquake<br />

(a measure of <strong>the</strong> strength of an earthquake, particularly of <strong>the</strong> low-frequency wave motion). It is<br />

considered <strong>the</strong> most valid size calculation <strong>for</strong> earthquakes measur<strong>in</strong>g 7 to 7.5 on <strong>the</strong> Richter scale. From<br />

Jackson (1997).


2<br />

<strong>Ground</strong>-<strong>Motion</strong> Hazard Maps<br />

Table 1. Relationship between perceived shak<strong>in</strong>g, potential damage, MMI and PGA.<br />

Perceived<br />

Shak<strong>in</strong>g not felt weak light moderate strong<br />

very<br />

strong severe violent extreme<br />

Potential<br />

Damage none none none very light light moderate<br />

moderate/<br />

heavy heavy<br />

very<br />

heavy<br />

PGA (%g) < 0.17 0.17–1.4 1.4–3.9 3.9–9.2 9.2–18 18–34 34–65 65–124 > 124<br />

MMI I II–III IV V VI VII VIII IX X+<br />

studied seismic zone <strong>in</strong> <strong>the</strong> central United States.<br />

The estimated moment magnitude <strong>for</strong> <strong>the</strong> largest<br />

event of <strong>the</strong> New Madrid series ranges from 7 to<br />

8—a large range. <strong>Earthquake</strong>s are also <strong>in</strong>frequent<br />

<strong>in</strong> <strong>the</strong> central United States, especially large ones<br />

that have significant impact on humans and <strong>the</strong><br />

built environment. Recurrence <strong>in</strong>terval estimates<br />

<strong>for</strong> large earthquakes range from about 500 to 1,000<br />

years <strong>in</strong> <strong>the</strong> New Madrid Seismic Zone to about<br />

2,000 to 5,000 years <strong>in</strong> <strong>the</strong> Wabash Valley Seismic<br />

Zone; <strong>the</strong>y are even longer <strong>in</strong> o<strong>the</strong>r zones. Several<br />

ground-motion attenuation relationships are available<br />

<strong>for</strong> <strong>the</strong> central United States, but all are based<br />

on numerical model<strong>in</strong>g and sparse strong-motion<br />

records from small earthquakes.<br />

Although earthquakes cannot be prevented<br />

and are difficult to predict, disasters caused by<br />

<strong>the</strong>m can be mitigated. Mitigation is <strong>the</strong> most effective<br />

and viable approach to deal<strong>in</strong>g with seismic<br />

hazards. Seismic hazard assessment is <strong>the</strong> basis <strong>for</strong><br />

development, adaptation, and implementation of<br />

mitigation policies and measures. Seismic hazard<br />

maps, depict<strong>in</strong>g a level of ground motion with an<br />

associated recurrence <strong>in</strong>terval <strong>in</strong> a region, are developed<br />

from a seismic hazard assessment.<br />

<strong>Ground</strong>-<strong>Motion</strong> Hazard Maps<br />

Different k<strong>in</strong>ds of seismic hazard maps are<br />

be<strong>in</strong>g produced from seismic hazard assessments.<br />

Probabilistic seismic hazard analysis (PSHA) and<br />

determ<strong>in</strong>istic seismic hazard analysis (DSHA) are<br />

<strong>the</strong> most commonly used methods of assessment.<br />

PSHA and DSHA use <strong>the</strong> same seismological <strong>in</strong>put<br />

parameters, but def<strong>in</strong>e and calculate seismic<br />

hazard fundamentally differently. In PSHA, seismic<br />

hazard is def<strong>in</strong>ed as <strong>the</strong> ground motion with<br />

an annual probability of be<strong>in</strong>g exceeded (i.e., probability<br />

of exceedance <strong>in</strong> one year) and calculated<br />

from a triple <strong>in</strong>tegration (i.e., a pure ma<strong>the</strong>matical<br />

model<strong>in</strong>g). PSHA was developed from <strong>the</strong><br />

approximation of an earthquake as a s<strong>in</strong>gle po<strong>in</strong>t<br />

source (i.e., a po<strong>in</strong>t-source model <strong>for</strong> earthquakes)<br />

(Cornell, 1968; McGuire, 2004). In modern seismology,<br />

however, an earthquake is considered a<br />

f<strong>in</strong>ite fault, not a s<strong>in</strong>gle po<strong>in</strong>t; this is particularly<br />

true <strong>for</strong> large earthquakes, which are of safety concern.<br />

The ma<strong>the</strong>matical <strong>for</strong>mulation of PSHA has<br />

been found to be <strong>in</strong>correct (Wang and Zhou, 2007;<br />

Wang, 2009). There<strong>for</strong>e, PSHA is not consistent<br />

with modern earthquake science (Wang and Zhou,<br />

2007; Wang, 2009), and results from PSHA are difficult<br />

to understand and use. For example, PSHA<br />

has been used to develop national seismic hazard<br />

maps (Frankel and o<strong>the</strong>rs, 1996, 2002; Petersen and<br />

o<strong>the</strong>rs, 2008). Use of <strong>the</strong> national hazard maps <strong>in</strong><br />

<strong>the</strong> central United States has caused problems <strong>in</strong><br />

many communities, such as Memphis, Tenn. (Ste<strong>in</strong><br />

and o<strong>the</strong>rs, 2003), and Paducah, Ky. (Wang, 2003,<br />

2005). As a result, <strong>the</strong> 2008 national seismic hazard<br />

maps have not been recommended <strong>for</strong> use <strong>in</strong> <strong>the</strong><br />

new edition of <strong>the</strong> “NEHRP Recommended Provisions<br />

<strong>for</strong> Seismic Regulations <strong>for</strong> New Build<strong>in</strong>gs<br />

and O<strong>the</strong>r Structures,” published by <strong>the</strong> Build<strong>in</strong>g<br />

Seismic Safety Council (Kircher and o<strong>the</strong>rs, 2008). 1<br />

The U.S. Geological Survey (2009) also cautioned<br />

that “<strong>the</strong> 2008 national seismic hazard maps should<br />

not be substituted <strong>for</strong> <strong>the</strong> model build<strong>in</strong>g code design<br />

maps nor should <strong>the</strong>y be used with ASCE/SEI<br />

41 or 31 <strong>for</strong> seismic rehabilitation or evaluation.” 2<br />

In DSHA, seismic hazard is def<strong>in</strong>ed as <strong>the</strong><br />

maximum ground motion from a s<strong>in</strong>gle earthquake<br />

or set of earthquakes, and is calculated directly<br />

from statistics on earthquakes and ground motion.<br />

Although DSHA is not <strong>the</strong> preferred method, it has<br />

1<br />

NEHRP stands <strong>for</strong> <strong>the</strong> National <strong>Earthquake</strong> Hazards Reduction Program, authorized by <strong>the</strong> U.S. Congress.<br />

2<br />

AESC/SEI 31 and 41 are standards <strong>for</strong> seismic rehabilitation of exist<strong>in</strong>g build<strong>in</strong>gs, put toge<strong>the</strong>r by <strong>the</strong> American<br />

Society of Civil Eng<strong>in</strong>eers’ Structural Eng<strong>in</strong>eer<strong>in</strong>g Institute.


Explanation<br />

3<br />

been more widely used because of its advantages:<br />

(1) it is an easily understood method of estimat<strong>in</strong>g<br />

seismic hazard and (2) its results are clear to <strong>the</strong> analyst<br />

(earth scientist), user (eng<strong>in</strong>eer), and general<br />

public (Reiter, 1990).The ground motion specified<br />

<strong>for</strong> bridge design <strong>in</strong> Cali<strong>for</strong>nia is <strong>the</strong> determ<strong>in</strong>istic<br />

ground motion from <strong>the</strong> maximum credible earthquake<br />

(MCE) (Caltrans, 1999). The determ<strong>in</strong>istic<br />

ground motion from <strong>the</strong> maximum considered<br />

earthquake is used <strong>for</strong> seismic design of build<strong>in</strong>gs<br />

<strong>in</strong> Cali<strong>for</strong>nia (BSSC, 1998, 2004; Kircher and o<strong>the</strong>rs,<br />

2008). The maximum considered earthquake, def<strong>in</strong>ed<br />

by <strong>the</strong> Build<strong>in</strong>g Seismic Safety Council (1998),<br />

has a similar mean<strong>in</strong>g as <strong>the</strong> maximum credible<br />

earthquake commonly def<strong>in</strong>ed <strong>in</strong> DSHA. So we<br />

see that <strong>in</strong> Cali<strong>for</strong>nia, DSHA, not PSHA, is used to<br />

develop <strong>the</strong> design ground motion <strong>for</strong> build<strong>in</strong>gs,<br />

bridges, and o<strong>the</strong>r structures.<br />

DSHA has been used to determ<strong>in</strong>e groundmotion<br />

hazards associated with three earthquake<br />

scenarios: <strong>the</strong> expected earthquake, probable<br />

earthquake, and maximum credible earthquake <strong>for</strong><br />

bridge and highway eng<strong>in</strong>eer<strong>in</strong>g design <strong>in</strong> <strong>Kentucky</strong><br />

(Street and o<strong>the</strong>rs, 1996; Wang and o<strong>the</strong>rs,<br />

2007). The expected earthquake is def<strong>in</strong>ed as <strong>the</strong><br />

earthquake that could be expected to occur any time<br />

<strong>in</strong> <strong>the</strong> next 50 to 75 years. The probable earthquake<br />

is def<strong>in</strong>ed as <strong>the</strong> earthquake that could be expected<br />

to occur <strong>in</strong> <strong>the</strong> next 250 years. The maximum credible<br />

earthquake is def<strong>in</strong>ed as <strong>the</strong> maximum event<br />

considered likely to occur <strong>in</strong> a reasonable amount<br />

of time <strong>in</strong> and around <strong>Kentucky</strong> (Fig. 1). The phrase<br />

“reasonable amount of time” is def<strong>in</strong>ed by <strong>the</strong> historical<br />

or geologic record. For <strong>in</strong>stance, <strong>the</strong> reasonable<br />

amount of time <strong>for</strong> <strong>the</strong> maximum earthquake <strong>in</strong><br />

<strong>the</strong> New Madrid Seismic Zone is about 500 to 1,000<br />

years, based on paleoseismic records. The reasonable<br />

amount of time <strong>for</strong> <strong>the</strong> maximum earthquake<br />

<strong>in</strong> <strong>the</strong> Wabash Valley Seismic Zone is about 2,000<br />

to 5,000 years. Associated time histories (ground<br />

shak<strong>in</strong>g <strong>in</strong>tensity vary<strong>in</strong>g with time at a site) were<br />

also developed <strong>for</strong> expected earthquakes, probable<br />

earthquakes, and maximum credible earthquakes<br />

(Street and o<strong>the</strong>rs, 1996; Wang and o<strong>the</strong>rs, 2007).<br />

Three maps (Figs. 2–4) <strong>for</strong> <strong>the</strong> maximum credible<br />

earthquake scenario are published here. Figure<br />

2 shows peak ground acceleration (PGA) measured<br />

<strong>in</strong> g (<strong>the</strong> acceleration due to <strong>the</strong> earth’s gravity). As<br />

shown <strong>in</strong> Table 1, <strong>the</strong> higher <strong>the</strong> PGA, <strong>the</strong> more<br />

damage it will cause and <strong>the</strong> higher <strong>the</strong> assigned<br />

MMI. Thus, PGA can be used as a measure of seismic<br />

hazard. Figures 3 and 4 show <strong>the</strong> short-period<br />

(0.2 second) and long-period (1.0 second) response<br />

accelerations with 5 percent critical damp<strong>in</strong>g (how<br />

quickly <strong>the</strong> vibration dissipates), also measured <strong>in</strong><br />

g. The response acceleration is used to measure <strong>the</strong><br />

response of a s<strong>in</strong>gle-degree-of-freedom system (i.e.,<br />

a s<strong>in</strong>gle spr<strong>in</strong>g, mass, and damper) to <strong>the</strong> earthquake<br />

ground motion. In eng<strong>in</strong>eer<strong>in</strong>g, build<strong>in</strong>gs<br />

and o<strong>the</strong>r structures can be simplified as a s<strong>in</strong>gledegree-of-freedom<br />

system with a predom<strong>in</strong>ant period<br />

(or frequency) and critical damp<strong>in</strong>g. Two periods,<br />

short (0.2 second) and long (1.0 second), and<br />

5 percent critical damp<strong>in</strong>g are of specific <strong>in</strong>terest to<br />

eng<strong>in</strong>eers. There<strong>for</strong>e, <strong>the</strong> maps show<strong>in</strong>g short-period<br />

and long-period response acceleration with 5<br />

percent critical damp<strong>in</strong>g are also produced <strong>for</strong> use<br />

by eng<strong>in</strong>eers. As shown <strong>in</strong> Figures 2–4, <strong>the</strong> higher<br />

response acceleration means higher PGA or higher<br />

seismic hazard. Caution must be exercised when<br />

<strong>the</strong> response acceleration maps are used <strong>for</strong> o<strong>the</strong>r<br />

purposes.<br />

Explanation<br />

Uncerta<strong>in</strong>ty is <strong>in</strong>herent <strong>in</strong> <strong>the</strong>se hazard maps<br />

because of <strong>in</strong>herent uncerta<strong>in</strong>ties <strong>in</strong> <strong>the</strong> seismological<br />

parameters used to construct <strong>the</strong> maps. The<br />

hazard maps predict <strong>the</strong> maximum median ground<br />

motion on hard rock <strong>for</strong> <strong>the</strong> MCE <strong>in</strong> each county.<br />

The ground motion is <strong>the</strong> best estimate (median),<br />

not a worst-case scenario, if <strong>the</strong> earthquake that<br />

has a maximum impact on <strong>the</strong> county occurs. For<br />

example, <strong>the</strong> best estimate of PGA on hard rock<br />

<strong>for</strong> McCracken County is 0.3 g if an earthquake of<br />

moment magnitude 7.7 occurs <strong>in</strong> <strong>the</strong> New Madrid<br />

Seismic Zone. The best estimate of PGA on hard<br />

rock <strong>for</strong> Henderson County is 0.2 g if an earthquake<br />

of moment magnitude 6.8 occurs <strong>in</strong> <strong>the</strong> Wabash<br />

Valley Seismic Zone. The ground motion may<br />

vary slightly across each <strong>in</strong>dividual county. These<br />

maps can be used <strong>for</strong> seismic safety consideration<br />

<strong>for</strong> build<strong>in</strong>gs, bridges, dams, and o<strong>the</strong>r structures.<br />

As discussed earlier, <strong>the</strong> MCE has a long recurrence<br />

<strong>in</strong>terval, vary<strong>in</strong>g from 500 to 1,000 years <strong>in</strong><br />

<strong>the</strong> New Madrid Seismic Zone to 2,000 to 5,000<br />

years <strong>in</strong> <strong>the</strong> Wabash Valley Seismic Zone to much<br />

longer <strong>in</strong> o<strong>the</strong>r zones. The long recurrence <strong>in</strong>terval


0 50 Miles<br />

0<br />

North<br />

SCALE<br />

50 Kilometers<br />

McCRACKEN<br />

JEFFERSON<br />

BRECKINRIDGE<br />

CRITTENDEN<br />

HENDERSON<br />

EDMONSON<br />

MUHLENBERG<br />

CUMBERLAND<br />

WASHINGTON<br />

ROCKCASTLE<br />

ROBERT-<br />

SON<br />

4 Explanation<br />

CAMPBELL<br />

KENTON<br />

LYON<br />

CALDWELL<br />

LIVINGSTON<br />

BALLARD<br />

FULTON<br />

CARLISLE<br />

HICKMAN<br />

GRAVES<br />

MARSHALL<br />

CALLOWAY<br />

TRIGG<br />

MEADE<br />

HARDIN<br />

BULLITT<br />

HANCOCK<br />

UNION<br />

WEBSTER<br />

HOPKINS<br />

DAVIESS<br />

McLEAN<br />

OHIO<br />

BUTLER<br />

GRAYSON<br />

HART<br />

LARUE<br />

GREEN<br />

MARION<br />

TAYLOR<br />

METCALFE<br />

CHRISTIAN<br />

TODD<br />

LOGAN<br />

SIMPSON<br />

WARREN<br />

ALLEN<br />

BARREN<br />

MONROE<br />

RUSSELL<br />

LINCOLN<br />

JACKSON<br />

Figure 1. <strong>Maximum</strong> credible earthquakes <strong>in</strong> and around <strong>Kentucky</strong>.<br />

ADAIR<br />

FRANKLIN<br />

CASEY<br />

WAYNE<br />

SCOTT<br />

FAYETTE<br />

PULASKI<br />

McCREARY<br />

CLARK<br />

LAUREL<br />

WHITLEY<br />

KNOX<br />

MENIFEE<br />

BELL<br />

ROWAN<br />

ELLIOTT<br />

LAWRENCE<br />

MONTGOMERY<br />

WOODFORD<br />

NELSON<br />

SPENCER<br />

SHELBY<br />

ANDERSON<br />

MERCER<br />

BOYLE<br />

BOONE<br />

GALLATIN<br />

JESSA-<br />

MINE<br />

BRACKEN<br />

PENDLETON<br />

GRANT<br />

MADISON<br />

ESTILL<br />

MASON<br />

POWELL<br />

LEE<br />

OWSLEY<br />

CLAY<br />

LEWIS<br />

MORGAN<br />

BREATHITT<br />

LESLIE<br />

PERRY<br />

HARLAN<br />

MAGOFFIN<br />

GREENUP<br />

TRIMBLE<br />

OLDHAM<br />

CARROLL<br />

HENRY<br />

OWEN<br />

HARRISON<br />

BOURBON<br />

NICHOLAS<br />

BATH<br />

FLEMING<br />

WOLFE<br />

CARTER<br />

JOHNSON<br />

KNOTT<br />

LETCHER<br />

BOYD<br />

FLOYD<br />

MARTIN<br />

GARRARD<br />

PIKE<br />

CLINTON<br />

New Madrid Seismic Zone<br />

Mw 7.7<br />

Wabash Valley Seismic Zone<br />

Mw 6.8<br />

Interstate highway<br />

Parkway<br />

U.S. or Ky. highway<br />

264<br />

265<br />

471<br />

Eastern Tennessee Seismic Zone<br />

Mw 6.3<br />

24<br />

24<br />

65<br />

65<br />

Parkway<br />

Audubon<br />

460<br />

80<br />

75<br />

Natcher<br />

119<br />

65<br />

65<br />

64<br />

71<br />

71<br />

71<br />

75<br />

64<br />

75<br />

64<br />

75<br />

80<br />

23<br />

23<br />

23<br />

Mounta<strong>in</strong><br />

23<br />

Parkway<br />

Blue<br />

Pa r kway<br />

Parkway<br />

Western<br />

Daniel<br />

Parkway<br />

Pennyrile<br />

Mw 5.0<br />

Mw 4.1<br />

275<br />

275<br />

Mw 5.5<br />

Mw 4.3<br />

4<br />

64<br />

114<br />

64<br />

Parkway


0 50 Miles<br />

0<br />

North<br />

McCRACKEN<br />

JEFFERSON<br />

BRECKINRIDGE<br />

CRITTENDEN<br />

HENDERSON<br />

EDMONSON<br />

MUHLENBERG<br />

CUMBERLAND<br />

WASHINGTON<br />

ROCKCASTLE<br />

ROBERT-<br />

SON<br />

Explanation<br />

5<br />

0.05 g<br />

0.10 g<br />

0.20 g<br />

0.30 g<br />

0.40 g<br />

LYON<br />

CALDWELL<br />

LIVINGSTON<br />

BALLARD<br />

FULTON<br />

CARLISLE<br />

HICKMAN<br />

GRAVES<br />

MARSHALL<br />

CALLOWAY<br />

TRIGG<br />

MEADE<br />

HARDIN<br />

BULLITT<br />

HANCOCK<br />

UNION<br />

WEBSTER<br />

HOPKINS<br />

DAVIESS<br />

McLEAN<br />

OHIO<br />

BUTLER<br />

GRAYSON<br />

HART<br />

LARUE<br />

GREEN<br />

MARION<br />

TAYLOR<br />

METCALFE<br />

CHRISTIAN<br />

TODD<br />

LOGAN<br />

SIMPSON<br />

WARREN<br />

ALLEN<br />

BARREN<br />

MONROE<br />

ADAIR<br />

RUSSELL<br />

FRANKLIN<br />

CASEY<br />

WAYNE<br />

SCOTT<br />

LINCOLN<br />

FAYETTE<br />

PULASKI<br />

McCREARY<br />

CLARK<br />

JACKSON<br />

LAUREL<br />

WHITLEY<br />

KNOX<br />

MENIFEE<br />

BELL<br />

ROWAN<br />

ELLIOTT<br />

LAWRENCE<br />

MONTGOMERY<br />

WOODFORD<br />

NELSON<br />

SPENCER<br />

SHELBY<br />

ANDERSON<br />

MERCER<br />

BOYLE<br />

JESSA-<br />

MINE<br />

MADISON<br />

ESTILL<br />

POWELL<br />

LEE<br />

OWSLEY<br />

CLAY<br />

MORGAN<br />

BREATHITT<br />

LESLIE<br />

PERRY<br />

HARLAN<br />

MAGOFFIN<br />

GREENUP<br />

CARTER<br />

JOHNSON<br />

KNOTT<br />

LETCHER<br />

BOYD<br />

FLOYD<br />

MARTIN<br />

CLINTON<br />

Figure 2. Peak ground acceleration, measured <strong>in</strong> g, on hard rock from <strong>the</strong> maximum credible earthquake <strong>in</strong> <strong>Kentucky</strong>.<br />

PIKE<br />

CAMPBELL<br />

KENTON<br />

BOONE<br />

GALLATIN<br />

BRACKEN<br />

PENDLETON<br />

HENRY<br />

OWEN<br />

GRANT<br />

HARRISON<br />

BOURBON<br />

NICHOLAS<br />

MASON<br />

BATH<br />

FLEMING<br />

WOLFE<br />

LEWIS<br />

TRIMBLE<br />

264<br />

OLDHAM<br />

265<br />

CARROLL<br />

471<br />

24<br />

24<br />

65<br />

65<br />

80<br />

75<br />

Parkway<br />

Audubon<br />

460<br />

23<br />

GARRARD<br />

Natcher<br />

119<br />

65<br />

65<br />

64<br />

71<br />

71<br />

71<br />

SCALE<br />

50 Kilometers<br />

75<br />

64<br />

75<br />

64<br />

75<br />

80<br />

23<br />

23<br />

23<br />

Mounta<strong>in</strong><br />

Acceleration<br />

Interstate highway<br />

Parkway<br />

U.S. or Ky. highway<br />

275<br />

275<br />

4<br />

64<br />

114<br />

64<br />

Parkway<br />

Blue<br />

Pa r kway<br />

Parkway<br />

Western<br />

Daniel<br />

Parkway<br />

Pennyrile<br />

Parkway


0 50 Miles<br />

0<br />

North<br />

SCALE<br />

50 Kilometers<br />

McCRACKEN<br />

JEFFERSON<br />

BRECKINRIDGE<br />

CRITTENDEN<br />

HENDERSON<br />

EDMONSON<br />

MUHLENBERG<br />

CUMBERLAND<br />

WASHINGTON<br />

ROCKCASTLE<br />

ROBERT-<br />

SON<br />

6 Explanation<br />

CAMPBELL<br />

KENTON<br />

0.05 g<br />

0.10 g<br />

0.20 g<br />

0.30 g<br />

0.50 g<br />

0.90 g<br />

LYON<br />

CALDWELL<br />

LIVINGSTON<br />

BALLARD<br />

FULTON<br />

CARLISLE<br />

HICKMAN<br />

GRAVES<br />

MARSHALL<br />

CALLOWAY<br />

TRIGG<br />

MEADE<br />

HARDIN<br />

BULLITT<br />

HANCOCK<br />

UNION<br />

WEBSTER<br />

HOPKINS<br />

DAVIESS<br />

McLEAN<br />

OHIO<br />

BUTLER<br />

GRAYSON<br />

HART<br />

LARUE<br />

GREEN<br />

MARION<br />

TAYLOR<br />

METCALFE<br />

CHRISTIAN<br />

TODD<br />

LOGAN<br />

SIMPSON<br />

WARREN<br />

ALLEN<br />

BARREN<br />

MONROE<br />

ADAIR<br />

RUSSELL<br />

FRANKLIN<br />

CASEY<br />

WAYNE<br />

SCOTT<br />

LINCOLN<br />

FAYETTE<br />

PULASKI<br />

McCREARY<br />

CLARK<br />

JACKSON<br />

LAUREL<br />

WHITLEY<br />

KNOX<br />

MENIFEE<br />

BELL<br />

ROWAN<br />

ELLIOTT<br />

LAWRENCE<br />

MONTGOMERY<br />

WOODFORD<br />

NELSON<br />

SPENCER<br />

SHELBY<br />

ANDERSON<br />

MERCER<br />

BOYLE<br />

BOONE<br />

GALLATIN<br />

JESSA-<br />

MINE<br />

BRACKEN<br />

PENDLETON<br />

GRANT<br />

MADISON<br />

ESTILL<br />

MASON<br />

POWELL<br />

LEE<br />

OWSLEY<br />

CLAY<br />

LEWIS<br />

MORGAN<br />

BREATHITT<br />

LESLIE<br />

PERRY<br />

HARLAN<br />

MAGOFFIN<br />

GREENUP<br />

TRIMBLE<br />

OLDHAM<br />

CARROLL<br />

HENRY<br />

OWEN<br />

HARRISON<br />

BOURBON<br />

NICHOLAS<br />

BATH<br />

FLEMING<br />

WOLFE<br />

CARTER<br />

JOHNSON<br />

KNOTT<br />

LETCHER<br />

BOYD<br />

FLOYD<br />

MARTIN<br />

Parkway<br />

Audubon<br />

GARRARD<br />

Natcher<br />

24<br />

PIKE<br />

Western<br />

Pennyrile<br />

Parkway<br />

24<br />

CLINTON<br />

65<br />

65<br />

64<br />

75<br />

64<br />

75<br />

Parkway<br />

75<br />

460<br />

119<br />

Figure 3. Response acceleration, measured <strong>in</strong> g, <strong>for</strong> short-period (0.2 second) with 5 percent critical damp<strong>in</strong>g on hard rock from <strong>the</strong> maximum credible earthquake<br />

<strong>in</strong> <strong>Kentucky</strong>.<br />

80<br />

80<br />

23<br />

23<br />

23<br />

Mounta<strong>in</strong><br />

Acceleration<br />

Interstate highway<br />

Parkway<br />

U.S. or Ky. highway<br />

23<br />

Parkway<br />

Blue<br />

65<br />

65<br />

264<br />

265<br />

64<br />

71<br />

275<br />

71<br />

71<br />

75<br />

275<br />

471<br />

64<br />

Par kway<br />

114<br />

64<br />

4<br />

Parkway<br />

Daniel


0 50 Miles<br />

0<br />

North<br />

SCALE<br />

50 Kilometers<br />

McCRACKEN<br />

JEFFERSON<br />

BRECKINRIDGE<br />

CRITTENDEN<br />

HENDERSON<br />

EDMONSON<br />

MUHLENBERG<br />

CUMBERLAND<br />

WASHINGTON<br />

ROCKCASTLE<br />

ROBERT-<br />

SON<br />

Explanation<br />

7<br />

CAMPBELL<br />

KENTON<br />

0.01 g<br />

0.05 g<br />

0.10 g<br />

0.20 g<br />

0.40 g<br />

LYON<br />

CALDWELL<br />

LIVINGSTON<br />

BALLARD<br />

FULTON<br />

CARLISLE<br />

HICKMAN<br />

GRAVES<br />

MARSHALL<br />

CALLOWAY<br />

TRIGG<br />

MEADE<br />

HARDIN<br />

BULLITT<br />

HANCOCK<br />

UNION<br />

WEBSTER<br />

HOPKINS<br />

DAVIESS<br />

McLEAN<br />

OHIO<br />

BUTLER<br />

GRAYSON<br />

HART<br />

LARUE<br />

GREEN<br />

MARION<br />

TAYLOR<br />

METCALFE<br />

CHRISTIAN<br />

TODD<br />

LOGAN<br />

SIMPSON<br />

WARREN<br />

ALLEN<br />

BARREN<br />

MONROE<br />

ADAIR<br />

RUSSELL<br />

FRANKLIN<br />

CASEY<br />

WAYNE<br />

SCOTT<br />

LINCOLN<br />

FAYETTE<br />

PULASKI<br />

McCREARY<br />

CLARK<br />

JACKSON<br />

LAUREL<br />

WHITLEY<br />

KNOX<br />

MENIFEE<br />

BELL<br />

ROWAN<br />

ELLIOTT<br />

LAWRENCE<br />

MONTGOMERY<br />

WOODFORD<br />

NELSON<br />

SPENCER<br />

SHELBY<br />

ANDERSON<br />

MERCER<br />

BOYLE<br />

BOONE<br />

GALLATIN<br />

JESSA-<br />

MINE<br />

BRACKEN<br />

PENDLETON<br />

GRANT<br />

MADISON<br />

ESTILL<br />

MASON<br />

POWELL<br />

LEE<br />

OWSLEY<br />

CLAY<br />

LEWIS<br />

MORGAN<br />

BREATHITT<br />

LESLIE<br />

PERRY<br />

HARLAN<br />

MAGOFFIN<br />

GREENUP<br />

TRIMBLE<br />

OLDHAM<br />

CARROLL<br />

HENRY<br />

OWEN<br />

HARRISON<br />

BOURBON<br />

NICHOLAS<br />

BATH<br />

FLEMING<br />

WOLFE<br />

CARTER<br />

JOHNSON<br />

KNOTT<br />

LETCHER<br />

BOYD<br />

FLOYD<br />

MARTIN<br />

Parkway<br />

Audubon<br />

GARRARD<br />

Natcher<br />

24<br />

PIKE<br />

Western<br />

Pennyrile<br />

Parkway<br />

24<br />

CLINTON<br />

65<br />

65<br />

64<br />

75<br />

64<br />

75<br />

Parkway<br />

75<br />

460<br />

119<br />

Figure 4. Response acceleration, measured <strong>in</strong> g, <strong>for</strong> long-period (1.0 second) with 5 percent critical damp<strong>in</strong>g on hard rock from <strong>the</strong> maximum credible earthquake<br />

<strong>in</strong> <strong>Kentucky</strong>.<br />

80<br />

80<br />

23<br />

23<br />

23<br />

Mounta<strong>in</strong><br />

Acceleration<br />

Interstate highway<br />

Parkway<br />

U.S. or Ky. highway<br />

23<br />

Parkway<br />

Blue<br />

65<br />

65<br />

264<br />

265<br />

64<br />

71<br />

275<br />

71<br />

71<br />

75<br />

275<br />

471<br />

64<br />

Pa r kway<br />

114<br />

64<br />

4<br />

Parkway<br />

Daniel


8<br />

References Cited<br />

of <strong>the</strong> MCE is ano<strong>the</strong>r important factor <strong>for</strong> seismic<br />

safety consideration.<br />

Seismic hazards are also affected by local geologic<br />

and geotechnical conditions. For example,<br />

ground motion can be amplified or even deamplified<br />

by near-surface soft soils. Liquefaction or<br />

landslides can also be triggered by strong ground<br />

motion. There<strong>for</strong>e, <strong>in</strong> comb<strong>in</strong>ation with local geologic<br />

and geotechnical <strong>in</strong><strong>for</strong>mation, <strong>the</strong>se maps can<br />

be used to develop a variety of hazard mitigation<br />

strategies, such as land-use plann<strong>in</strong>g, emergency<br />

plann<strong>in</strong>g and preparedness, and lifel<strong>in</strong>e plann<strong>in</strong>g.<br />

The hazard maps should not serve as a substitute<br />

<strong>for</strong> site-specific seismic hazard assessment.<br />

References Cited<br />

Build<strong>in</strong>g Seismic Safety Council (BSSC), 1998,<br />

NEHRP recommended provisions <strong>for</strong> seismic<br />

regulations <strong>for</strong> new build<strong>in</strong>gs [1997 ed.]: Federal<br />

Emergency Management Agency, 337 p.<br />

Build<strong>in</strong>g Seismic Safety Council (BSSC), 2004,<br />

NEHRP recommended provisions <strong>for</strong> seismic<br />

regulations <strong>for</strong> new build<strong>in</strong>gs [2003 ed.]: Federal<br />

Emergency Management Agency, 338 p.<br />

Cali<strong>for</strong>nia Department of Transportation (Caltrans),<br />

1999, Seismic design methodology,<br />

memo to designers 20-1, January 1999.<br />

Cornell, C.A., 1968, Eng<strong>in</strong>eer<strong>in</strong>g seismic risk analysis:<br />

Bullet<strong>in</strong> of <strong>the</strong> Seismological Society of<br />

America, v. 58, p. 1583–1606.<br />

Frankel, A., Mueller, C., Barnhard, T., Perk<strong>in</strong>s, D.,<br />

Leyendecker, E.V., Dickman, N., Hanson, S.,<br />

and Hopper, M., 1996, National seismic-hazard<br />

maps—Documentation June 1996: U.S.<br />

Geological Survey Open-File Report 96-532,<br />

70 p.<br />

Frankel, A., Petersen, M., Mueller, C., Haller, K.,<br />

Wheeler, R., Leyendecker, E.V., Wesson, R.,<br />

Harmsen, S., Cramer, C., Perk<strong>in</strong>s, D., and Rukstales,<br />

K., 2002, Documentation <strong>for</strong> <strong>the</strong> 2002<br />

update of <strong>the</strong> national seismic hazard maps:<br />

U.S. Geological Survey Open-File Report 02-<br />

420, 33 p.<br />

Herrmann, R.B., Wi<strong>the</strong>rs, M., and Benz, H., 2008,<br />

The April 18, 2008 Ill<strong>in</strong>ois earthquake: An<br />

ANSS monitor<strong>in</strong>g success: Seismological Research<br />

Letters, v. 79, p. 831–843.<br />

Jackson, J.A., ed., 1997, Glossary of geology [4th<br />

ed.]: American Geological Institute, 769 p.<br />

Kircher, C.A., Luco, N., and Whittaker, A., 2008,<br />

Summary of SDPRG proposal <strong>for</strong> changes to<br />

<strong>the</strong> 2009 NEHRP provisions: Build<strong>in</strong>g Seismic<br />

Safety Council Seismic Design Procedures Reassessment<br />

Group (SDPRG) workshop, September<br />

10, 2008, Burl<strong>in</strong>game, Calif., 30 p.<br />

McGuire, R.K., 2004, Seismic hazard and risk analysis:<br />

<strong>Earthquake</strong> Eng<strong>in</strong>eer<strong>in</strong>g Research Institute,<br />

MNO-10, 240 p.<br />

Nuttli, O.W., 1973, The Mississippi Valley earthquakes<br />

of 1811–1812: Intensities, ground motion<br />

and magnitudes: Bullet<strong>in</strong> of <strong>the</strong> Seismological<br />

Society of America, v. 63, p. 227–248.<br />

Petersen, M.D., Frankel, A.D., Harmsen, S.C., Mueller,<br />

C.S., Haller, K.M., Wheeler, R.L., Wesson,<br />

R.L., Zeng, Y., Boyd, O.S., Perk<strong>in</strong>s, D.M.,<br />

Luco, N., Field, E.H., Wills, C.J., and Rukstales,<br />

K.S., 2008, Documentation <strong>for</strong> <strong>the</strong> 2008 update<br />

of <strong>the</strong> United States national seismic hazard<br />

maps: U.S. Geological Survey Open-File Report<br />

08-1128, 60 p.<br />

Reiter, L., 1990, <strong>Earthquake</strong> hazard analysis, issues<br />

and <strong>in</strong>sights: New York, Columbia University<br />

Press, 254 p.<br />

Ste<strong>in</strong>, S., Tomasello, J., and Newman, A., 2003,<br />

Should Memphis build <strong>for</strong> Cali<strong>for</strong>nia’s earthquakes?:<br />

Eos, Transactions of <strong>the</strong> American<br />

Geophysical Union, v. 84, p. 177, 184–185.<br />

Street, R., and Foley, W., 1982, Architectural and<br />

structural damage, and ground effects result<strong>in</strong>g<br />

from <strong>the</strong> July 27, 1980 Sharpsburg, Ky.,<br />

earthquake: NITS Publication PBB2-246794,<br />

60 p.<br />

Street, R., Wang, Z., Harik, I., and Allen, D., 1996,<br />

Source zones, recurrence rates, and time histories<br />

<strong>for</strong> earthquakes affect<strong>in</strong>g <strong>Kentucky</strong>: University<br />

of <strong>Kentucky</strong>, <strong>Kentucky</strong> Transportation<br />

Center, Research Report KCT-96-4, 187 p.<br />

U.S. Geological Survey, 2009, Important note<br />

on use of new 2008 USGS hazard maps:<br />

earthquake.usgs.gov/research/hazmaps/<br />

products_data/2008/disclaimer.php [accessed<br />

9/2/2009].<br />

Wang, Z., comp., 2003, Proceed<strong>in</strong>gs of <strong>the</strong> <strong>Kentucky</strong><br />

NEHRP Seismic Hazards and Design<br />

Maps Workshop, November 18, 2002, Lex<strong>in</strong>gton,<br />

<strong>Kentucky</strong>: <strong>Kentucky</strong> Geological Survey,<br />

ser. 12, Special Publication 5, 38 p.


References Cited<br />

9<br />

Wang, Z., comp., 2005, Better understand<strong>in</strong>g and<br />

communication of <strong>the</strong> national seismic hazard<br />

maps: Summary of USGS-KGS meet<strong>in</strong>g on<br />

seismic hazard assessment <strong>in</strong> western <strong>Kentucky</strong>:<br />

<strong>Kentucky</strong> Geological Survey, ser. 12,<br />

Special Publication 7, 47 p.<br />

Wang, Z., 2009, Comment on “Sigma: Issues, Insights,<br />

and Challenges” by Fleur O. Strasser,<br />

Norman A. Abrahamson, and Julian J. Bommer:<br />

Seismological Research Letters, v. 80, p.<br />

491–493.<br />

Wang, Z., Woolery, E.W., Shi, B., and Harik, I.E.,<br />

2007, Seismic hazard maps and time histories<br />

from earthquakes affect<strong>in</strong>g <strong>Kentucky</strong>: University<br />

of <strong>Kentucky</strong>, <strong>Kentucky</strong> Transportation<br />

Center, Research Report KTC-07-06/SPR246-<br />

02-6F, 96 p.<br />

Wang, Z., and Zhou, M., 2007, Comment on “Why<br />

Do Modern Probabilistic Seismic-Hazard<br />

Analyses Often Lead to Increased Hazard Estimates?”<br />

by Julian J. Bommer and Norman A.<br />

Abrahamson: Bullet<strong>in</strong> of <strong>the</strong> Seismological Society<br />

of America, v. 97, p. 2212–2214.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!