22.10.2014 Views

TCAD Technology CAD Process Simulation Dr. Lynn Fuller - People ...

TCAD Technology CAD Process Simulation Dr. Lynn Fuller - People ...

TCAD Technology CAD Process Simulation Dr. Lynn Fuller - People ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>T<strong>CAD</strong></strong><br />

ROCHESTER INSTITUTE OF TECHNOLOGY<br />

MICROELECTRONIC ENGINEERING<br />

<strong>T<strong>CAD</strong></strong> <strong>Technology</strong> <strong>CAD</strong><br />

<strong>Process</strong> <strong>Simulation</strong><br />

<strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong><br />

Webpage: http://people.rit.edu/lffeee<br />

Microelectronic Engineering<br />

Rochester Institute of <strong>Technology</strong><br />

82 Lomb Memorial <strong>Dr</strong>ive<br />

Rochester, NY 14623-5604<br />

Tel (585) 475-2035<br />

Fax (585) 475-5041<br />

Email: <strong>Lynn</strong>.<strong>Fuller</strong>@rit.edu<br />

Department webpage: http://www.microe.rit.edu<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

3-10-2008 lec_tcad.ppt<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 1


<strong>T<strong>CAD</strong></strong><br />

OUTLINE<br />

Introduction<br />

Why Simulate<br />

<strong>Process</strong> <strong>Simulation</strong><br />

Device <strong>Simulation</strong><br />

Circuit <strong>Simulation</strong><br />

Historical Perspective of Simulators<br />

Evolution of the Complexity of <strong>Process</strong> Simulators<br />

Oxidation <strong>Simulation</strong><br />

Implant <strong>Simulation</strong><br />

Diffusion <strong>Simulation</strong><br />

2-d and 3-d <strong>Simulation</strong><br />

Summary<br />

References<br />

Homework<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 2


<strong>T<strong>CAD</strong></strong><br />

HIERARCHY OF SIMULATION TOOLS FOR IC<br />

DEVELOPMENT<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 3


<strong>T<strong>CAD</strong></strong><br />

WHY SIMULATION<br />

Emperical Models (Analytic fits to emperical data) can not be<br />

extended beyond the limits for which data is available.<br />

Physical Models (models based on the physical and chemical<br />

fundamentals) can be extended into new regions<br />

<strong>Process</strong> <strong>Simulation</strong> – carrying out processing experiments with the<br />

aid of a computer, much less expensive.<br />

<strong>Process</strong> Sensitivity Studies – How much of a variation in oxide<br />

thickness can the device withstand and still meet specifications.<br />

These types of studies can be done much less expensively by<br />

simulation.<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 4


<strong>T<strong>CAD</strong></strong><br />

PROCESS APPLICATIONS OF SIMULATION<br />

<strong>Process</strong> Information Obtained by <strong>Simulation</strong><br />

Doping profiles in silicon substrate<br />

Doping profiles in SiO2, Polysilicon and Silicide layers<br />

Junction depths<br />

Thickness of Material Layers<br />

Topography<br />

Lithography: resist profiles after develop<br />

Device cross-sections from layout<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 5


<strong>T<strong>CAD</strong></strong><br />

PROCESS SIMULATION<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 6


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE DOPING PROFILES<br />

2-D Doping Profile<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

1-D Doping Profile<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 7


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE DOPING PROFILES<br />

Arsenic<br />

Boron<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

Surface Plot of Arsenic and Boron<br />

Concentrations in a 1 µm NMOSFET<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 8


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE DOPING PROFILES<br />

Before<br />

Oxidation<br />

After<br />

Oxidation<br />

Lateral Diffusion<br />

Of Impurities<br />

During Field<br />

Oxide Growth<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 9


<strong>T<strong>CAD</strong></strong><br />

DEPICT LITHOGRAPHY AND ETCH SIMULATOR<br />

DEPICT<br />

Resist Develop<br />

Poly Etch<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

Oxide Etch<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 10


<strong>T<strong>CAD</strong></strong><br />

DEVICE APPLICATIONS OF SIMULATION<br />

Device Characteristics Obtained by <strong>Simulation</strong><br />

Potential and Electric Field Strength<br />

Carrier Concentrations<br />

Space Charge Regions<br />

Current Flow Paths<br />

Film Sheet Resistance<br />

Threshold Voltage<br />

Subthreshlod Currents<br />

Device Isolation Characteristics<br />

Latch-up Effects in CMOS<br />

Punchthrough<br />

Hot-carrier effects<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 11


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE OF BJT SIMULATION<br />

Base<br />

Current<br />

Collector<br />

Current<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 12


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE SIMULATION OF VT<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 13


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE OF SIMULATION OF SPACE CHARGE REGION<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 14


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE DEVICE POTENTIAL AND ELECTRIC FIELD<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 15


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE OF SUB VT SLOPE SIMULATION<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 16


<strong>T<strong>CAD</strong></strong><br />

CIRCUIT APPLICATIONS OF SIMULATION<br />

Circuit Characteristics Obtained by <strong>Simulation</strong><br />

Device Parameters for Circuit Models<br />

Propagation Delay and Rise/Fall Times<br />

Voltages and Currents<br />

Power Consumption<br />

Parasitic Resistance and Capacitance of Interconnect<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 17


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE OF CIRCUIT SIMULATION<br />

Exclusive OR Circuit drawn by Jane Doe 10-3-97<br />

Input A<br />

Port<br />

in<br />

Input B<br />

Port<br />

in<br />

Vcc<br />

A’<br />

B<br />

A<br />

B’<br />

A’B<br />

AB’<br />

XOR<br />

Port<br />

out<br />

XOR = A’B+AB’<br />

Mentor Graphics<br />

QuickSim (Digital<br />

Circuit <strong>Simulation</strong>)<br />

Verification<br />

of the XOR<br />

circuit<br />

/A input<br />

/B input<br />

/XOR<br />

output<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

0 1 0 1 0 1 0 1 0<br />

0<br />

1<br />

0<br />

1 0<br />

0 1 0<br />

1<br />

0<br />

0 100ns 200ns 300ns 400ns<br />

repeats<br />

time<br />

nano<br />

seconds<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 18


<strong>T<strong>CAD</strong></strong><br />

EXAMPLE OF CIRCUIT SIMULATION<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 19


<strong>T<strong>CAD</strong></strong><br />

PROCESS SIMULATORS<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 20


<strong>T<strong>CAD</strong></strong><br />

PROCESS SIMULATORS<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 21


<strong>T<strong>CAD</strong></strong><br />

AVALIABILITY OF PROCESS, DEVICE AND CIRCUIT<br />

SIMULATORS<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 22


<strong>T<strong>CAD</strong></strong><br />

HISTORICAL VIEW OF PROCESS SIMULATION<br />

1-D Doping Profile and Oxidation Simulators<br />

SUPREM I – Stanford University, 1977<br />

SUPREM II – Stanford University, 1979<br />

SUPREM III – Stanford University, 1983<br />

2-D Doping Profile and 2-D Oxidation Simulators<br />

SUPRA – Stanford University, 1982<br />

SUPREM IV – Stanford University, 1986<br />

2-D Topographical Simulators<br />

SAMPLE – Berkeley, 1982<br />

Prolith – Dept. of Defense, 1986, now offered<br />

by Finle Technologies Inc.<br />

DEPICT-2 <strong>Technology</strong> Modeling Associates, 1985<br />

SIML – 1, SIMPL-2, SIMPL/DIX U.C. Berkeley, 1983<br />

In the past it was said that Stanford did from the surface down<br />

into the silicon and Berkeley did from the surface up (topography)<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 23


<strong>T<strong>CAD</strong></strong><br />

1-D SUPREM-3 SIMULATION<br />

Poly<br />

Oxide<br />

P-type well<br />

N-type Silicon<br />

starting wafer<br />

Layer 3<br />

Layer 2<br />

Layer 1 Region 2<br />

Layer 1 Region 1<br />

SUPREM-3 does a one dimensional<br />

analysis of doping concentration, for a<br />

variety of oxide, diffusion, implant,<br />

deposition and etch processes.<br />

X<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

N(x)<br />

Boron<br />

Phosphorous<br />

0 1 2 3 4µm<br />

x<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 24


<strong>T<strong>CAD</strong></strong><br />

SUPREM-3 INPUT FILE DETAILS<br />

1… TITLE SIMULATION FOR NMOS TRANSISTOR IN THE PWELL<br />

3… Com Date: 5/3/99<br />

4… Com edited by L.<strong>Fuller</strong> for EMCR 732<br />

5… Com Location pwellcmos1.in 635dept emcr650.suprem<br />

6… Com<br />

7… Initialize silicon (100) P=7E14 thickness=8 dx=0.02<br />

8… Com<br />

9… Com Ramp Rate is taken as 16 C/min up and –8 C/min down<br />

10… Com All furnace steps push at 12 in/min at 900 C then<br />

11… Com Ramp up to soak temp ant then soak for the given time followed<br />

12… Com by ramp down to 1000 C and pull at 12 in/min<br />

13… Com Step1 ID01 Scribe Wafers<br />

14… Com Step2 DE01 Four Point Probe<br />

15… Com Step3 CL01 RCA Cleaned<br />

16… Com Step4 Alignment Oxide Growth<br />

18… Diffusion Time=12.5 Temp=900 WetO2 T.Rate=12<br />

19… Diffusion Time=35 Temp=1100 WetO2<br />

20… Diffusion Time=12.5 Temp=1100 WetO2 T.Rate=-8<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 25


<strong>T<strong>CAD</strong></strong><br />

WELL MASKING OXIDE<br />

22… Print layers concentrations active phosphorous s.max=0 electric<br />

23… Com<br />

24… plot active phosphorous layer=2 title= “WELL MASKING OXIDE”<br />

…… + bottom=1e13 top=1e16 left=0 right=2.0 timestamp<br />

25… Com<br />

26… Extract Name=xox1 thickness layer=2<br />

27… label label=“ Oxide thickness: “@xox1” microns”<br />

28… label label=“ Masking Oxide Time = 35 min.”<br />

29… label label=“ Masking Oxide Temp = 1100 C”<br />

30… label label = “TMA LFF” CM X=17.0 Y=2.1<br />

31… Com<br />

Xox = 0.5748 µm<br />

= 5748 Å<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 26


<strong>T<strong>CAD</strong></strong><br />

WELL IMPLANT AND DRIVE<br />

32… Com Step5 Ph03 Photo level 1 Well Region<br />

33… Com Step6 ET06 Oxide Etch<br />

34… Etch Oxide<br />

35… Com Step7 IM01 Implant Well<br />

36… Assign name=dwell n.value=4E12<br />

37… Assign name=ewell N.value=50<br />

38… Implant Boron Dose = dwell Energy = ewell<br />

39… Com Step 8 ET07 Strip photoresist<br />

40… Com Step9 Cl01 RCA Clean<br />

41… Com Step10 OX06 Well <strong>Dr</strong>ive<br />

41… Diffusion Temperature = 900 t.Final = 1125 <strong>Dr</strong>yo2 Time=14<br />

42… Diffusion Time=240 Temperature= 1125 <strong>Dr</strong>yo2<br />

43… Diffusion Time=960 Temperature=1125 Nitrogen<br />

45… Diffusion Temperature=1125 T.Final=1000 Nitrogen Time=15.6<br />

46… print layers concentrations_active_phosphorous boron combine layer=1<br />

+ x.max=0 electric<br />

48… Extract Name=xox3 thickness layer=2<br />

49… Extract Name=xjw net active x.extract y=0<br />

50… Electrical steps = 1<br />

51… Bias layer=1 V=0<br />

52… End<br />

53… Extract Rochester Institute Name=Rsw of <strong>Technology</strong>h.resistance layer=1 min.region=2<br />

Microelectronic Engineering<br />

55… Plot net active title=“IMPURITY PROFILE AFTER WELL DRIVE”<br />

… +<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 27


<strong>T<strong>CAD</strong></strong><br />

AFTER WELL DRIVE<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 28


<strong>T<strong>CAD</strong></strong><br />

PAD OXIDE GROWTH<br />

65… ETCH OXIDE<br />

66… Com Step 12 Gr01 Groove and Stain<br />

67… Com Step13 De01 Four Point Probe<br />

68… Com Step14 Ox05 Pad Oxide<br />

69… Diffusion Time=12.5 Temp=900 <strong>Dr</strong>yO2 T.Rate=16<br />

70… Diffusion Time=50 Temp=1100 <strong>Dr</strong>yO2<br />

71… Diffusion Time=12.5 Temp=1100 Nitrogen T.Rate=-8<br />

…<br />

85… Deposit Nitride Thickness = 0.15 Temperature = 810 Time = 20<br />

Xox = 0.099 µm<br />

= ~1000 Å<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 29


<strong>T<strong>CAD</strong></strong><br />

AFTER FIELD OXIDE GROWTH<br />

97… Com Step24 Ox05 Field Oxide<br />

98… Diffusion Time=12.5 Temp=900 WetO2 T.Rate=16<br />

99… Diffusion Time=210 Temp=1100 WetO2<br />

100… Diffusion Time=12.5 Temp=1100 Nitrogen T.Rate=-8<br />

…<br />

115… Etch Oxide<br />

116… Etch Nitride<br />

117… Etch Oxide<br />

Xox = ~ 1000 Å<br />

Because nitride<br />

protects area over<br />

the well<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 30


<strong>T<strong>CAD</strong></strong><br />

KOOI OXIDE GROWTH<br />

120… Com Step29 Ox04 Kooi Oxide Growth<br />

121… Diffusion Time=45 Temp=900 WetO2<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 31


<strong>T<strong>CAD</strong></strong><br />

NMOS THRESHOLD ADJUST IMPLANT & ANNEAL<br />

135… Com Step30 Im01 PMOS Vt Adjust Ion Implant (blanket Implant)<br />

136… Assign Name=DPVT N.Value=5.3E11<br />

137… Assign Name=EPVT N.Value=60<br />

138… Implant Boron Dose= DPVT Energy=EPVT<br />

139… Com Step31 Ph03 Photo Level 4 NMOS Vt Adjust<br />

140… Com Step32 Im01 NMOS VT Adjust Ion Implant (masked Implant)<br />

141… Assign Name=DNVT N.Value=4E12<br />

142… Assign Name=ENVT N.Value=60<br />

138… Implant Boron Dose= DNVT Energy=ENVT<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 32


<strong>T<strong>CAD</strong></strong><br />

AFTER GATE OXIDE GROWTH<br />

155… Etch Oxide<br />

156… Com Step35 Cl01 RCA Clean<br />

156… Com Step36 Ox06 Gate Oxide Growth<br />

98… Diffusion Time=12.5 Temp=900 Nitrogen T.Rate=16<br />

99… Diffusion Time=30 Temp=1100 <strong>Dr</strong>yO2<br />

100… Diffusion Time=12.5 Temp=1100 Nitrogen T.Rate=-8<br />

…<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 33


<strong>T<strong>CAD</strong></strong><br />

AFTER POLY DOPING AND LPCVD GLASS<br />

175… Com Step39 Cv01 LPCVD Polysilicon<br />

176… Deposit Polysilicon Thickness=o.6 Temperature = 610 Time=60<br />

178… Diffusion Time=10 Temperature=900 SS.Phosphorous<br />

…<br />

186… Com Step52 CVD LPCVD Oxide<br />

187… Com Step53 Anneal Oxide<br />

187… Diffusion Time = 30 Temperature=1000 Nitrogen<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 34


<strong>T<strong>CAD</strong></strong><br />

TRANSISTOR THRESHOLD VOLTAGE<br />

212… Com Electrical Analysis<br />

213… Electrical Steps=101 Vth.elect layer=1 file=Vth.dat min.regi=2 max.regi=2<br />

214… Bias Layer=1 Region=1 V=5<br />

215… Bias Layer=1 Region=2 V=0 V.min=0<br />

216… Bias Layer=3 V=-10 DV=0.2 Abscissa<br />

217… Assign Name=Qss N.value=3.6E11<br />

218… Qss Layer=1 Concentration=Qss<br />

219… End.Electrical<br />

220… Extract name=Vt V.threshold<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 35


<strong>T<strong>CAD</strong></strong><br />

2-D SUPREM-4 P-WELL CMOS<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 37


<strong>T<strong>CAD</strong></strong><br />

2-D SUPREM-4 CHANNEL STOP IMPLANT<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 38


<strong>T<strong>CAD</strong></strong><br />

P-WELL CMOS SIMULATION USING SILVACO ATHENA<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 39


<strong>T<strong>CAD</strong></strong><br />

2-D SUPREM-4 ANALYSIS OF BIRDS BEAK<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 40


<strong>T<strong>CAD</strong></strong><br />

DEFECTS CAUSED BY STRESS IN LOCOS PROCESS<br />

The stress can be large enough to<br />

cause damage in the silicon at the edge<br />

of the LOCOS. The D/S junctions are<br />

also located at the edge of the LOCOS.<br />

The result is that the junctions are<br />

leaky.<br />

Stress increases with increased nitride<br />

thickness, increased field oxide<br />

thickness and decreased pad oxide<br />

thickness. In the RIT Pwell CMOS<br />

process pad oxide is 500 Å, nitride is<br />

1500 Å and field oxide is 11,000 Å.<br />

We may get more reliable results by<br />

decreasing the nitride to 1000 Å and<br />

decreasing the field oxide to 8000 Å<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 41


<strong>T<strong>CAD</strong></strong><br />

HISTORY OF SILICON OXIDE SIMULATION<br />

All oxide simulations are based on the work of Deal and Grove done<br />

in the early 1960’s<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 42


<strong>T<strong>CAD</strong></strong><br />

HISTORY OF SILICON OXIDE SIMULATION<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 43


<strong>T<strong>CAD</strong></strong><br />

HISTORY OF SUPREM SIMULATIONS<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 44


<strong>T<strong>CAD</strong></strong><br />

SYSTEM OF EQUATIONS TO BE SOLVED<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 45


<strong>T<strong>CAD</strong></strong><br />

SUMMARY<br />

SUPREM analysis allows for the calculation of resultant impurity<br />

concentrations for processes such as oxidation, diffusion,<br />

implantation and deposition for temperatures above 800 C.<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 46


<strong>T<strong>CAD</strong></strong><br />

REFERENCES<br />

1. Silicon <strong>Process</strong>ing for the VLSI Era, Vol.2., Stanly Wolf, 1990.<br />

2. The Science and Engineering of Microelectronic <strong>Process</strong>ing,<br />

Stephen Campbell.<br />

3. <strong>Technology</strong> Modeling Associates, TMA-SUPREM-4, Instruction<br />

Manual.<br />

4. Silvaco Modeling, Inc.<br />

5. MicroTec-3.03 release note of March 27, 1998 floppy-disk<br />

contains a complete set of MicroTec-3.03 programs for 2D<br />

semiconductor process and device simulation and the Manual in<br />

Adobe Acrobat format. http://www.siborg.ca<br />

6. Silicon <strong>Process</strong>ing for the VLSI Era, Vol.3., Ch.9., StanlyWolf<br />

7. VLSI <strong>Technology</strong>, 2 nd Ed. By S.M.Sze, McGraw Hill, Ch.10.,<br />

1988.<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 47


<strong>T<strong>CAD</strong></strong><br />

HOMEWORK - <strong>T<strong>CAD</strong></strong><br />

1.<br />

Rochester Institute of <strong>Technology</strong><br />

Microelectronic Engineering<br />

© March 10, 2008, <strong>Dr</strong>. <strong>Lynn</strong> <strong>Fuller</strong>, Professor<br />

Page 48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!