24.10.2014 Views

Reflections and Notes on E745 - Euler Archive Home Page

Reflections and Notes on E745 - Euler Archive Home Page

Reflections and Notes on E745 - Euler Archive Home Page

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

<str<strong>on</strong>g>Reflecti<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Notes</str<strong>on</strong>g> <strong>on</strong> <strong>Euler</strong>’s paper <strong>E745</strong>:<br />

De fracti<strong>on</strong>ibus c<strong>on</strong>tinuis Wallisii<br />

(On the c<strong>on</strong>tinued fracti<strong>on</strong>s of Wallis)<br />

Thomas J Osler,<br />

Christopher Tippie <str<strong>on</strong>g>and</str<strong>on</strong>g> Kristin Masters<br />

Secti<strong>on</strong> 1.<br />

<strong>Euler</strong> refers to the book by John Wallis “Arithmetica Infinitorum” in which we<br />

find a sequence of c<strong>on</strong>tinued fracti<strong>on</strong>s due to Lord Brouncker. These are given without a<br />

complete derivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>Euler</strong> wishes to provide this. <strong>Euler</strong> states that Brouncker<br />

discovered the first c<strong>on</strong>tinued fracti<strong>on</strong> in this sequence <str<strong>on</strong>g>and</str<strong>on</strong>g> Wallis discovered the<br />

remaining fracti<strong>on</strong>s. This is c<strong>on</strong>trary to recent investigati<strong>on</strong>s [5] by Jacqueline A. Stedall<br />

which show that Brouncker obtained the entire sequence himself, but never published it.<br />

It was Wallis who made the sequence known to the world. The importance of <strong>Euler</strong>’s<br />

paper is that he finds a nice derivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> generalizati<strong>on</strong> of this sequence for the first<br />

time.<br />

Secti<strong>on</strong> 2.<br />

<strong>Euler</strong> examines the list of integrals<br />

x<br />

x<br />

1 xx<br />

1<br />

1<br />

x<br />

1<br />

3<br />

x<br />

xx<br />

2<br />

3<br />

2<br />

2<br />

2<br />

3


2<br />

x<br />

1<br />

5<br />

x<br />

xx<br />

2<br />

3<br />

4<br />

5<br />

2<br />

2<br />

2<br />

3<br />

4<br />

4<br />

4<br />

5<br />

x<br />

1<br />

7<br />

x<br />

xx<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

2<br />

2<br />

2<br />

3<br />

4<br />

4<br />

4<br />

5<br />

6<br />

6<br />

6<br />

7<br />

x<br />

1<br />

9<br />

x<br />

xx<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

2<br />

2<br />

2<br />

3<br />

4<br />

4<br />

4<br />

5<br />

6<br />

6<br />

6<br />

7<br />

8<br />

8<br />

8<br />

, etc…<br />

9<br />

2 2<br />

Using the substituti<strong>on</strong> t 1 x we can c<strong>on</strong>vert these integrals to the form<br />

1<br />

0<br />

x<br />

1<br />

P<br />

dx<br />

x<br />

2<br />

1<br />

0<br />

1<br />

t<br />

2<br />

P<br />

dt . In Wallis, we find a table of the reciprocal integrals<br />

1<br />

P<br />

1/ Q<br />

1 / 1 x dx. Wallis after much work obtains the following table:<br />

0<br />

P<br />

0<br />

P P 1<br />

1/ 2<br />

Q 0 1 1 2<br />

1 1<br />

1 2<br />

Q 1 2 2 3<br />

1<br />

1/ 2<br />

1 2<br />

Q 1 1 1 3 4<br />

1<br />

2 1 2<br />

Q 1 4 4 5<br />

1<br />

3/ 2 3 1 2<br />

Q 2 1 3 5 6<br />

1<br />

8 1 2<br />

Q 1 16 6 7<br />

1<br />

5 / 2 15 1 2<br />

P P 2<br />

3/ 2<br />

1 3 2 4<br />

1 1<br />

1 3 2 4<br />

2 2 4 3 5<br />

1<br />

1 3 2 4<br />

1 3 5 4 6<br />

1<br />

2 1 3 2 4<br />

4 4 6 5 7<br />

1<br />

3 1 3 2 4<br />

3 5 7 6 8<br />

1<br />

8 1 3 2 4<br />

16 6 8 7 9<br />

1<br />

15 1 3 2 4<br />

P P 3<br />

5 / 2<br />

1 3 5 2 4 6<br />

1<br />

1<br />

1 3 5 2 4 6<br />

2 2 4 6 3 5 7<br />

1<br />

1 3 5 2 4 6<br />

1 3 5 7 4 6 8<br />

1<br />

2 1 3 5 2 4 6<br />

4 4 6 8 5 7 9<br />

1<br />

3 1 3 5 2 4 6<br />

3 5 7 9 6 8 10<br />

1<br />

8 1 3 5 2 4 6<br />

16 6 8 10 7 9 11<br />

1<br />

15 1 3 5 2 4 6<br />

Q 3 1<br />

5<br />

8<br />

7<br />

1<br />

1<br />

8<br />

2<br />

5<br />

8<br />

7<br />

1<br />

9<br />

3<br />

1<br />

8<br />

2<br />

10<br />

4<br />

5<br />

8<br />

7<br />

1<br />

9<br />

3<br />

11<br />

5<br />

1<br />

8<br />

2<br />

10<br />

4<br />

12<br />

6


3<br />

The list of integrals that <strong>Euler</strong> is studying,<br />

1<br />

0<br />

x P dx<br />

, are from the row where Q 1/ 2 .<br />

2<br />

1 x<br />

Secti<strong>on</strong>s 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.<br />

<strong>Euler</strong> now wishes to find expressi<strong>on</strong>s, A, B, C, D, E so that<br />

2<br />

AB 1 ,<br />

2<br />

BC 2 ,<br />

2<br />

CD 3 ,<br />

DE<br />

2<br />

4<br />

, etc. Then he can write the above list of integrals<br />

as<br />

x<br />

1<br />

x<br />

xx<br />

1<br />

1<br />

A<br />

A<br />

,<br />

1<br />

x<br />

1<br />

3<br />

x<br />

xx<br />

BC<br />

2 3<br />

1<br />

A<br />

ABC<br />

,<br />

1 2 3<br />

x<br />

1<br />

5<br />

x<br />

xx<br />

BCDE<br />

2 3 4 5<br />

1<br />

A<br />

1<br />

ABCDE<br />

,<br />

2 3 4 5<br />

x<br />

1<br />

7<br />

x<br />

xx<br />

BCDEFG<br />

2 3 4 5 6<br />

7<br />

1<br />

A<br />

1<br />

ABCDEFG<br />

2 3 4 5 6<br />

,<br />

7<br />

etc…<br />

The above integrals have odd powers in the numerators. <strong>Euler</strong> now wishes to find<br />

expressi<strong>on</strong>s for integrals with even powers. For this purpose, he studies the third column<br />

of expressi<strong>on</strong>s above <str<strong>on</strong>g>and</str<strong>on</strong>g> “interpolates” to get<br />

x 1<br />

1 xx A<br />

1,<br />

xx x<br />

1 xx<br />

1<br />

A<br />

AB<br />

,<br />

1 2


4<br />

x<br />

1<br />

4<br />

x<br />

xx<br />

1<br />

A<br />

ABCD<br />

,<br />

1 2 3 4<br />

x<br />

1<br />

6<br />

x<br />

xx<br />

1<br />

A<br />

1<br />

ABCDEF<br />

2 3 4 5<br />

,<br />

6<br />

etc…<br />

This is a c<strong>on</strong>jecture totally in the spirit of Wallis.<br />

For c<strong>on</strong>venience, we also use the modern notati<strong>on</strong><br />

L ( 0)<br />

A, L ( 1)<br />

B , L ( 2)<br />

C , etc.<br />

Secti<strong>on</strong> 5.<br />

<strong>Euler</strong> knows that<br />

1<br />

0<br />

1<br />

dx<br />

2<br />

x<br />

. He calls this value q. From the first integral<br />

2<br />

above we see that<br />

q<br />

1 . Since AB 1 we now have B 1 q . From BC 4 we get<br />

A<br />

A<br />

C<br />

4<br />

B<br />

4<br />

, etc. <strong>Euler</strong> lists these values <str<strong>on</strong>g>and</str<strong>on</strong>g> there numerical equivalents in a table.<br />

q<br />

A<br />

B<br />

C<br />

D<br />

1<br />

q<br />

q<br />

4<br />

q<br />

9q<br />

4<br />

0,636620<br />

1,570796<br />

2,546479<br />

3,534292<br />

Difference<br />

0,934176<br />

0,975683<br />

0,987813<br />

0,992782


5<br />

E<br />

F<br />

4 16<br />

4,527074<br />

9q<br />

0,995257<br />

9 25<br />

q 5,522331<br />

4 16<br />

<strong>Euler</strong> now makes the following troubling statement:<br />

“Here I attached a third column, which exhibits the numeric values of these letters to<br />

show more clearly the extent that these numbers increase according to the law of<br />

uniformity. This does not happen if I take a false value in the place of q.”<br />

Just what is this law of uniformity? <strong>Euler</strong> hints that the value<br />

2<br />

q has a special value.<br />

Somehow it creates some uniform flow to the numbers A, B, C as they increase.<br />

We can start with any value for A, then all the remaining letters are determined by<br />

this choice. However, there is something special about the choice<br />

q<br />

2<br />

. Let us study<br />

this as apparently <strong>Euler</strong> did. (We use our notati<strong>on</strong>:<br />

L ( 0)<br />

A, L ( 1)<br />

B , L ( 2)<br />

C , etc.).<br />

We calculate the following:<br />

L (2)<br />

2<br />

1<br />

L(1)<br />

L (3)<br />

2<br />

2<br />

L(2)<br />

2<br />

2 L(1)<br />

2<br />

1<br />

2 2 2<br />

3 1 3<br />

L ( 4)<br />

2<br />

L(3)<br />

2 L(1)<br />

L (5)<br />

2<br />

4<br />

L(4)<br />

2 2<br />

2 4 L(1)<br />

2 2<br />

1 3<br />

2 2 2 2<br />

5 1 3 5<br />

L ( 6)<br />

2 2<br />

L(5)<br />

2 4 L(1)


6<br />

Let us denote the partial product in the Wallis product as<br />

1 3 3 5 5 7 (2n<br />

1)(2n<br />

1)<br />

W(<br />

n)<br />

.<br />

2 2 4 4 6 6 (2n)(2n)<br />

Then from the above calculati<strong>on</strong>s we can write in general<br />

2 2 2<br />

2<br />

( 1 3 5 (2n<br />

1)<br />

L 2n)<br />

2 2 2<br />

2 4 6 (2n<br />

2)<br />

2 L(1)<br />

W ( n<br />

(2n<br />

1)<br />

1) , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

L(1)<br />

2 2 2<br />

2<br />

( 2 4 6 (2n)<br />

L(1)<br />

L 2n<br />

1)<br />

2 2 2<br />

1 3 5 (2n<br />

1)<br />

2<br />

(2n<br />

1) L(1)<br />

.<br />

W ( n)<br />

Since<br />

2<br />

limW ( n)<br />

we get the two limits<br />

(5.1)<br />

L(2n)<br />

lim<br />

2n<br />

1<br />

L(2n)<br />

lim<br />

2n<br />

2<br />

L(1)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(5.2)<br />

L(2n<br />

lim<br />

2n<br />

1)<br />

1<br />

L(1)<br />

.<br />

2<br />

From these last two results we see that<br />

L ( n)<br />

lim exists <str<strong>on</strong>g>and</str<strong>on</strong>g> equals 1 if <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly if<br />

n<br />

L (1)<br />

2<br />

. Otherwise, if<br />

L (1)<br />

2<br />

, the limit does not exist, but the separate limits through<br />

even <str<strong>on</strong>g>and</str<strong>on</strong>g> odd values <strong>on</strong> n do exist. Thus it is clear that the choice<br />

2<br />

q A L(1) is<br />

very special.<br />

<strong>Euler</strong> will work intuitively in the next secti<strong>on</strong>s to move “uniformly” from A to B<br />

to C <str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>on</strong> in the hope of getting the right result. Later in the paper, he will<br />

dem<strong>on</strong>strate that his intuitive guess is correct.<br />

Secti<strong>on</strong> 6.


7<br />

<strong>Euler</strong> now hunts for A, B, C, D, E. He states his problem in a more general form:<br />

Problem:<br />

To find a series of letters A, B, C, D, etc…progressing by the law of uniformity in such a<br />

way that AB =ff; BC=<br />

f<br />

a<br />

2<br />

; CD=<br />

f<br />

2a<br />

2<br />

; etc.<br />

Given f <str<strong>on</strong>g>and</str<strong>on</strong>g> a we wish to have<br />

2<br />

AB f ,<br />

2<br />

BC ( f a) ,<br />

CD<br />

2<br />

( f 2a)<br />

, etc.<br />

Secti<strong>on</strong> 7.<br />

<strong>Euler</strong> begins with the problem of finding expressi<strong>on</strong>s A, B, C, D, etc., such that<br />

2<br />

AB f ;<br />

2<br />

BC ( f a) ;<br />

CD<br />

2<br />

( f 2a)<br />

; etc.<br />

Noticing that<br />

f<br />

a<br />

2<br />

f<br />

a<br />

2<br />

f<br />

2<br />

2 a<br />

4<br />

, <strong>Euler</strong> asks how he might increase<br />

these two factors <strong>on</strong> the LHS so that the product is exactly<br />

2<br />

f .<br />

We start with<br />

(7.1)<br />

2<br />

AB f ,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> assume that the desired increase is given by<br />

a s / 2<br />

A f ,<br />

2 A'<br />

a s / 2<br />

B f ,<br />

2 B'<br />

where s , A’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’ are to be determined. Multiplying by 2 we get<br />

(7.2)<br />

s<br />

2A 2 f a ,<br />

A'<br />

s<br />

2B 2 f a .<br />

B'<br />

Multiplying the above together we get using (7.1)<br />

(7.3)<br />

s<br />

s<br />

2 f<br />

A'<br />

B'<br />

2<br />

f a 2 f a 4 ,


8<br />

which can also be written as<br />

2<br />

2 2 s s<br />

s<br />

4AB 4 f a (2 f a)<br />

(2 f a)<br />

.<br />

B'<br />

A'<br />

A'<br />

B'<br />

Since<br />

4 4 f<br />

2<br />

AB we have<br />

2<br />

2 s s<br />

s<br />

a (2 f a)<br />

(2 f a)<br />

,<br />

B'<br />

A'<br />

A'<br />

B'<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> multiplying by<br />

A ' B'<br />

we get<br />

(7.4)<br />

2<br />

2<br />

a A'<br />

B'<br />

A'<br />

s(2<br />

f a)<br />

B'<br />

s(2<br />

f a)<br />

s .<br />

We are free to choose s as we like, <str<strong>on</strong>g>and</str<strong>on</strong>g> a reas<strong>on</strong>able choice to simplify (7.4) is<br />

(7.5)<br />

2<br />

s a .<br />

After we divide (7.4) by<br />

2<br />

a we get<br />

2<br />

A ' B'<br />

A'(2<br />

f a)<br />

B'(2<br />

f a)<br />

a .<br />

Notice that this last expressi<strong>on</strong> can be written as<br />

( A ' (2 f a))(<br />

B'<br />

(2 f a))<br />

4 f<br />

2<br />

or<br />

(7.6)<br />

( f<br />

2<br />

A ' 2 f a)(<br />

B'<br />

2 f a)<br />

4 .<br />

We also notice that because of (7.5), (7.2) has become the important equati<strong>on</strong>s<br />

(7.7)<br />

2A<br />

2 f<br />

a<br />

2<br />

a<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'<br />

2<br />

a<br />

2B 2 f a .<br />

B'<br />

Secti<strong>on</strong> 8.<br />

We now wish to determine appropriate expressi<strong>on</strong>s for A’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’. We see from<br />

(7.6) that these expressi<strong>on</strong>s should start as A' 4 f <str<strong>on</strong>g>and</str<strong>on</strong>g> B'<br />

4 f . How does a fit<br />

with<br />

4 f ? Since we have been examining the three equally spaced numbers<br />

a<br />

f , f ,<br />

2


9<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

a<br />

f , it seems reas<strong>on</strong>able to think of 4 f 2a<br />

, 4 f , <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 f 2a<br />

. Thus we now<br />

2<br />

try the equati<strong>on</strong>s<br />

(8.1)<br />

A '<br />

4 f<br />

2a<br />

s'<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A''<br />

s'<br />

B ' 4 f 2a<br />

,<br />

B''<br />

where s’ , A’’, <str<strong>on</strong>g>and</str<strong>on</strong>g> B’’ are to be found. Using (8.1) to remove A’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’ from (7.6) we get<br />

(8.2)<br />

s'<br />

s'<br />

2 f<br />

A''<br />

B''<br />

2<br />

f 3a<br />

2 f 3a<br />

4 .<br />

Now compare (8.2) with (7.3). If in (7.3) we replace<br />

s s'<br />

, A'<br />

A'',<br />

B'<br />

B'<br />

' ,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

a<br />

3a<br />

we get (8.2). Therefore (7.4) becomes after these substituti<strong>on</strong>s<br />

(8.3)<br />

3 s<br />

2 2<br />

2<br />

a A''<br />

B''<br />

A''<br />

s'(2<br />

f 3a)<br />

B''<br />

s'(2<br />

f 3a)<br />

' .<br />

We are free to select a value for s’ <str<strong>on</strong>g>and</str<strong>on</strong>g> a nice choice to simplify (8.3) is<br />

(8.4)<br />

2 2<br />

s ' 3 a .<br />

Dividing (8.3) by by s’ get<br />

2 2<br />

A ''<br />

B''<br />

A''(2<br />

f 3a)<br />

B''(2<br />

f 3a)<br />

3 a .<br />

Corresp<strong>on</strong>ding to (7.6), this last expressi<strong>on</strong> can be written as<br />

(8.5)<br />

( f<br />

2<br />

A '' 2 f 3a)(<br />

B''<br />

2 f 3a)<br />

4 .<br />

Notice that equati<strong>on</strong>s (8.1) are now the important relati<strong>on</strong>s<br />

(8.6)<br />

A '<br />

4 f<br />

2a<br />

2<br />

3 a<br />

A''<br />

2<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2 2<br />

3 a<br />

B ' 4 f 2a<br />

.<br />

B''<br />

Secti<strong>on</strong> 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10.<br />

Next we seek appropriate expressi<strong>on</strong>s for A’’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’’. As we reas<strong>on</strong>ed above to<br />

get (8.1) we now try<br />

(9.1)<br />

s''<br />

A '' 4 f 2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'''<br />

s''<br />

B '' 4 f 2a<br />

.<br />

B'''


10<br />

Using (9.1) to remove A’’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’’ from (8.5) we now have (corresp<strong>on</strong>ding to (8.2))<br />

(9.2)<br />

s''<br />

s''<br />

2 f<br />

A'''<br />

B'''<br />

2<br />

f 5a<br />

2 f 5a<br />

4 ,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> by a similar reas<strong>on</strong>ing we will arrive at<br />

(9.3)<br />

2 2<br />

5 a<br />

A '' 4 f 2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'''<br />

2 2<br />

5 a<br />

B '' 4 f 2a<br />

.<br />

B'''<br />

Summarizing our results for (7.7), (8.6) <str<strong>on</strong>g>and</str<strong>on</strong>g> (9.3) we see<br />

2A<br />

2 f<br />

a<br />

2<br />

a<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'<br />

2<br />

a<br />

2B 2 f a ,<br />

B'<br />

A '<br />

4 f<br />

2a<br />

2<br />

3 a<br />

A''<br />

2<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2 2<br />

3 a<br />

B ' 4 f 2a<br />

,<br />

B''<br />

2 2<br />

5 a<br />

A '' 4 f 2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'''<br />

2 2<br />

5 a<br />

B '' 4 f 2a<br />

.<br />

B'''<br />

Secti<strong>on</strong> 11.<br />

The general pattern is now emerging <str<strong>on</strong>g>and</str<strong>on</strong>g> we can write our c<strong>on</strong>tinued fracti<strong>on</strong>s as<br />

(11.1) 2A<br />

2 f a<br />

2<br />

2 2<br />

2 2<br />

a 3 a 5 a<br />

4 f 2a<br />

4 f 2a<br />

4 f 2a<br />

,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(11.2) 2B<br />

2 f a<br />

2<br />

2 2<br />

2 2<br />

a 3 a 5 a<br />

4 f 2a<br />

4 f 2a<br />

4 f 2a<br />

.<br />

Notice that (11.2) is obtained from (11.1) by replacing f by<br />

f<br />

a . In a similar way,<br />

replacing f by<br />

f<br />

2 a in (11.1) gives us<br />

2C<br />

2 f<br />

3a<br />

a<br />

4 f<br />

2<br />

6a<br />

3<br />

4 f<br />

2<br />

2<br />

a<br />

6a<br />

5<br />

4 f<br />

2<br />

2<br />

a<br />

6a<br />

,<br />

replacing f by<br />

f<br />

3 a in (11.1) yields


11<br />

2D<br />

2 f<br />

5a<br />

2<br />

a<br />

4 f 10a<br />

3<br />

4 f<br />

2<br />

2<br />

a<br />

10a<br />

5<br />

4 f<br />

2<br />

2<br />

a<br />

10a<br />

,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> replacing f by<br />

f<br />

4 a in (11.1) yields<br />

2E<br />

2 f<br />

7a<br />

2<br />

a<br />

4 f 14a<br />

3<br />

4 f<br />

2<br />

2<br />

a<br />

14a<br />

5<br />

4 f<br />

2<br />

2<br />

a<br />

14a<br />

<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> so forth.<br />

Secti<strong>on</strong> 12.<br />

f<br />

a<br />

The c<strong>on</strong>tinued fracti<strong>on</strong>s of Brouncker are obtained from the above by writing<br />

1. We get<br />

2 2 2<br />

1 3 5 4<br />

2A 1<br />

,<br />

2 2 2<br />

2 2 2<br />

1 3 5<br />

2B 3<br />

,<br />

6 6 6<br />

2 2 2<br />

1 3 5 16<br />

2C 5<br />

,<br />

10 10 10<br />

2 2 2<br />

1 3 5 9<br />

2E 7<br />

,<br />

14 14 14 4<br />

2 2 2<br />

1 3 5 256<br />

2F 9<br />

.<br />

18 18 18 9<br />

Secti<strong>on</strong> 13.<br />

<strong>Euler</strong> remind us that he previously derived<br />

2 2 2<br />

1 3 5 4<br />

2A 1<br />

from<br />

2 2 2<br />

the Gregory Leibniz series<br />

1 1 1<br />

(13.1) 1<br />

.<br />

4 3 5 7<br />

<strong>Euler</strong> has a neat way of doing this. From (13.1) we have


12<br />

(13.2) 1<br />

4<br />

.<br />

So<br />

(13.3)<br />

4<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

.<br />

From (13.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> (13.2) we have<br />

(13.4)<br />

1<br />

3<br />

.<br />

So proceeding as before<br />

(13.5)<br />

1<br />

1<br />

1<br />

3<br />

1<br />

3<br />

3<br />

3<br />

9<br />

1<br />

3<br />

9<br />

3<br />

9<br />

1 3<br />

3<br />

3<br />

9<br />

1<br />

.<br />

Combining (13.3) with (13.5) we get<br />

(13.6)<br />

4<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

3<br />

1<br />

3<br />

9<br />

1<br />

1<br />

2<br />

1<br />

9<br />

3<br />

1<br />

.<br />

From 13.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> (13.4) we have<br />

(13.7)<br />

1<br />

5<br />

.<br />

So proceeding as before<br />

(13.8)<br />

1<br />

1<br />

1<br />

5<br />

1<br />

5<br />

5<br />

5<br />

25<br />

1<br />

5<br />

25<br />

5<br />

25<br />

1 5<br />

5<br />

25<br />

.<br />

1<br />

5


13<br />

Combining (13.6) with (13.8) we get<br />

4<br />

1<br />

2<br />

1<br />

9<br />

3<br />

1<br />

1<br />

2<br />

3<br />

1<br />

9<br />

5<br />

25<br />

1<br />

5<br />

1<br />

2<br />

2<br />

1<br />

9<br />

25<br />

1<br />

5<br />

,<br />

etc.<br />

Secti<strong>on</strong> 14.<br />

<strong>Euler</strong> now poses the problem to find representati<strong>on</strong>s for A, B, C, …, as infinite<br />

products <str<strong>on</strong>g>and</str<strong>on</strong>g> ratios of integrals.<br />

Problem.<br />

To investigate the values of the individual letters, expressed first (1) through c<strong>on</strong>tinual<br />

products, then (2) however expressed through integral formulas, for the series A, B, C, D,<br />

etc…that c<strong>on</strong>tinues according to the law of uniformity in such a way that<br />

AB<br />

ff ; BC<br />

( f<br />

2<br />

a)<br />

; CD<br />

( f<br />

2<br />

2a)<br />

; etc...<br />

Secti<strong>on</strong> 15.<br />

Since<br />

A<br />

2<br />

f<br />

B<br />

,<br />

B<br />

( f<br />

a)<br />

C<br />

2<br />

,<br />

C<br />

( f<br />

2a)<br />

D<br />

2<br />

, etc., we have<br />

A<br />

2<br />

f<br />

B<br />

( f<br />

2<br />

f<br />

a)<br />

C<br />

2<br />

f<br />

( f<br />

2<br />

C<br />

a)<br />

2<br />

( f<br />

2<br />

f<br />

a)<br />

2<br />

( f<br />

2a)<br />

D<br />

2<br />

.


14<br />

(Notice the morphing of the c<strong>on</strong>tinued fracti<strong>on</strong> A into the Wallis like product!)<br />

C<strong>on</strong>tinuing in this way we get the infinite product<br />

A<br />

ff ( f<br />

( f<br />

2<br />

2a)<br />

( f<br />

2<br />

a)<br />

( f<br />

2<br />

4a)<br />

( f<br />

2<br />

3a)<br />

( f<br />

2<br />

6a)<br />

( etc...<br />

2<br />

5a)<br />

( etc...<br />

which can be written for the purpose of c<strong>on</strong>vergence as<br />

(15.1)<br />

A<br />

f<br />

f ( f aa)<br />

( f a)(<br />

f a)<br />

( f<br />

( f<br />

2a)(<br />

f<br />

3a)(<br />

f<br />

4a)<br />

3a)<br />

( f<br />

( f<br />

4a)(<br />

f<br />

5a)(<br />

f<br />

6a)<br />

5a)<br />

etc...<br />

The above product <str<strong>on</strong>g>and</str<strong>on</strong>g> the products for B, C, D, have been checked with Mathematica<br />

( a 1, <str<strong>on</strong>g>and</str<strong>on</strong>g> f 1,<br />

2, 3, 4.).<br />

Secti<strong>on</strong> 16.<br />

<strong>Euler</strong> has previously derived the following lemma:<br />

Integrating from 0 to 1 we have<br />

n<br />

x<br />

1<br />

m 1<br />

x<br />

n<br />

x<br />

n<br />

k<br />

m k<br />

m<br />

m k n<br />

m n<br />

m k 2n<br />

m 2n<br />

m k 3n<br />

m 3n<br />

m k 4n<br />

...<br />

m 4n<br />

n<br />

x<br />

1<br />

x<br />

n<br />

x<br />

n<br />

k<br />

.


15<br />

(Here we see eighteenth century mathematics. In the above expressi<strong>on</strong>, the<br />

infinite product <strong>on</strong> the RHS l diverges to infinity while the integral tends to zero. No<br />

doubt <strong>Euler</strong> is aware of this, <str<strong>on</strong>g>and</str<strong>on</strong>g> the results he will obtain are valid.)<br />

We will be more careful than <strong>Euler</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> avoid x . To derive an improvement <strong>on</strong> the<br />

above expressi<strong>on</strong> for the integral<br />

1<br />

m 1<br />

x dx<br />

I we make the substituti<strong>on</strong><br />

n ( n k )/ n<br />

1 x<br />

0<br />

(16.1)<br />

t<br />

n<br />

x<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> get<br />

I<br />

1 m<br />

k<br />

1<br />

n<br />

n<br />

1<br />

n<br />

t<br />

(1<br />

t)<br />

dt<br />

1<br />

n<br />

m<br />

n<br />

m k<br />

n<br />

k<br />

n<br />

.<br />

Using z ( z)<br />

( z 1)<br />

we get<br />

I<br />

1<br />

n<br />

m<br />

n<br />

m k<br />

n<br />

k<br />

n<br />

m k<br />

n<br />

m<br />

n<br />

m<br />

n<br />

m k<br />

n<br />

1<br />

1<br />

k<br />

n<br />

n


16<br />

( m k)<br />

m<br />

m k<br />

n<br />

m n<br />

n<br />

n<br />

m<br />

m<br />

n<br />

k<br />

n<br />

n<br />

n<br />

1<br />

1<br />

k<br />

n<br />

n<br />

.<br />

C<strong>on</strong>tinuing in this way we get<br />

I<br />

( m k)(<br />

m k<br />

m(<br />

m n)(<br />

m<br />

m ( r 1) n k<br />

n)(<br />

m k 2n)<br />

( m k rn)<br />

n<br />

n<br />

,<br />

2n)(<br />

m 3n)<br />

( m rn)<br />

m k ( r 1) n n<br />

n<br />

Using (16.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> the beta integral we can finally write our improved form of <strong>Euler</strong>’s<br />

lemma<br />

(16.2)<br />

1<br />

0<br />

1<br />

x<br />

m 1<br />

x<br />

dx<br />

n ( n<br />

k ) / n<br />

( m k)(<br />

m k<br />

m(<br />

m n)(<br />

m<br />

m ( r 1) n 1<br />

n)(<br />

m k 2n)<br />

( m k rn)<br />

x dx<br />

.<br />

( n k ) / n<br />

2n)(<br />

m 3n)<br />

( m rn)<br />

n<br />

1 x<br />

1<br />

0<br />

Next <strong>Euler</strong> lets<br />

n 2 a , m f <str<strong>on</strong>g>and</str<strong>on</strong>g> k a in (16.2) to get<br />

x<br />

1<br />

f<br />

1<br />

x<br />

x<br />

2a<br />

f<br />

f<br />

a<br />

f<br />

f<br />

3a<br />

2a<br />

f<br />

f<br />

5a<br />

...<br />

3a<br />

x<br />

1<br />

x<br />

x<br />

2a<br />

(Note the typo in the third factor in the denominator of the RHS, 3a should be 4a.)<br />

1<br />

0<br />

1<br />

x<br />

f<br />

x<br />

1<br />

2a<br />

dx<br />

1/ 2<br />

( f<br />

f ( f<br />

a)(<br />

f<br />

2a)(<br />

f<br />

3a)(<br />

f<br />

4a)(<br />

f<br />

f 2( r 1) a 1<br />

5a)<br />

( f (2r<br />

1) a)<br />

x dx<br />

.<br />

2 1/ 2<br />

6a)<br />

( f 2ra)<br />

a<br />

1 x<br />

1<br />

0


17<br />

a<br />

r<br />

a<br />

f<br />

r<br />

a<br />

f<br />

ra<br />

f<br />

a<br />

r<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

2<br />

2<br />

1<br />

2<br />

3/<br />

2<br />

1<br />

2<br />

)<br />

2<br />

(<br />

)<br />

1)<br />

(2<br />

(<br />

)<br />

6<br />

)(<br />

4<br />

)(<br />

2<br />

(<br />

)<br />

5<br />

)(<br />

3<br />

)(<br />

(<br />

<br />

Using<br />

2)<br />

1/<br />

(<br />

)<br />

lim(<br />

1)<br />

(<br />

2)<br />

1/<br />

(<br />

n<br />

x<br />

n<br />

x<br />

n<br />

x<br />

n<br />

(see (16.5) below) we get<br />

(16.3)<br />

2<br />

1/<br />

2<br />

2<br />

)<br />

2<br />

(<br />

)<br />

1)<br />

(2<br />

(<br />

)<br />

6<br />

)(<br />

4<br />

)(<br />

2<br />

(<br />

)<br />

5<br />

)(<br />

3<br />

)(<br />

(<br />

lim<br />

1<br />

1<br />

0<br />

2<br />

1/<br />

2<br />

1<br />

r<br />

a<br />

f<br />

a<br />

ra<br />

f<br />

a<br />

r<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

x<br />

dx<br />

x<br />

r<br />

a<br />

f<br />

<br />

Next <strong>Euler</strong> replaces f by<br />

a<br />

f in the last expressi<strong>on</strong> to get<br />

(16.4)<br />

1<br />

2<br />

2<br />

)<br />

1)<br />

(2<br />

(<br />

)<br />

2)<br />

(2<br />

(<br />

)<br />

5<br />

)(<br />

3<br />

)(<br />

(<br />

)<br />

6<br />

)(<br />

4<br />

)(<br />

2<br />

(<br />

lim<br />

1<br />

1<br />

0<br />

2<br />

1/<br />

2<br />

1<br />

r<br />

a<br />

f<br />

a<br />

a<br />

r<br />

f<br />

a<br />

r<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

a<br />

f<br />

x<br />

dx<br />

x<br />

r<br />

a<br />

a<br />

f<br />

<br />

Lemma <strong>on</strong> limits<br />

(16.5)<br />

2)<br />

1/<br />

(<br />

)<br />

(<br />

1)<br />

(<br />

2)<br />

1/<br />

(<br />

lim<br />

n<br />

x<br />

n<br />

x<br />

n<br />

x<br />

n<br />

Proof:


18<br />

Using Stirlings formula<br />

( m 1) lim 2<br />

m m<br />

m m e for large m we get<br />

m<br />

( x<br />

( x<br />

n 1/ 2)<br />

lim<br />

n 1) n<br />

( x<br />

n<br />

1/ 2)(<br />

( x<br />

x<br />

n<br />

n)(<br />

x<br />

1/ 2)<br />

n)<br />

( x<br />

( x n<br />

n)<br />

e<br />

1/ 2)<br />

( x<br />

n)<br />

e<br />

( x<br />

n<br />

1/ 2)<br />

.<br />

Now the numerator can be written as<br />

( x<br />

n<br />

1/ 2)(<br />

x<br />

n<br />

1/ 2)<br />

( x<br />

n<br />

1/ 2)<br />

e<br />

( x<br />

n<br />

1/ 2)<br />

( x<br />

n)<br />

1<br />

1<br />

2( x<br />

( x<br />

n)<br />

n)<br />

( x<br />

n<br />

1/ 2)<br />

(1<br />

1<br />

2( x<br />

n)<br />

( x<br />

n<br />

1/ 2)<br />

e<br />

( x<br />

n<br />

1/ 2)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> so we have for large n<br />

( x<br />

( x<br />

n 1/ 2)<br />

n 1)<br />

lim<br />

n<br />

( x<br />

n)<br />

1<br />

1<br />

2( x<br />

( x<br />

n)<br />

( x<br />

n)<br />

( x n<br />

n)(<br />

x<br />

1/ 2)<br />

n)<br />

( x<br />

(1<br />

n)<br />

e<br />

1<br />

2( x<br />

( x<br />

n)<br />

n)<br />

( x<br />

n<br />

1/ 2)<br />

e<br />

( x<br />

n<br />

1/ 2)<br />

lim<br />

n<br />

1<br />

1<br />

2( x<br />

( x<br />

n)<br />

n)<br />

(<br />

1/ 2)<br />

(1<br />

1<br />

2( x<br />

n)<br />

( x<br />

n<br />

1/ 2)<br />

e<br />

1/ 2<br />

lim( x<br />

n<br />

n)<br />

(<br />

1/ 2)<br />

This checks with Mathematica <str<strong>on</strong>g>and</str<strong>on</strong>g> completes our lemma.<br />

Secti<strong>on</strong> 17.<br />

<strong>Euler</strong> gets the ratios of integrals<br />

A<br />

x<br />

f<br />

1<br />

a 1<br />

x<br />

x<br />

a<br />

2<br />

:<br />

x<br />

1<br />

f<br />

1<br />

x<br />

x<br />

a<br />

2<br />

.


19<br />

B<br />

x<br />

f 2a<br />

1<br />

1<br />

x<br />

x<br />

:<br />

a<br />

2<br />

x<br />

f<br />

1<br />

a 1<br />

x<br />

x<br />

a<br />

2<br />

C<br />

x<br />

f 3a<br />

1<br />

1<br />

x<br />

x<br />

:<br />

a<br />

2<br />

x<br />

f 2a<br />

1<br />

1<br />

x<br />

x<br />

a<br />

2<br />

etc…<br />

We will show that <strong>Euler</strong> has made a rare error here. The right h<str<strong>on</strong>g>and</str<strong>on</strong>g> sides should be<br />

multiplied by f,<br />

f a , <str<strong>on</strong>g>and</str<strong>on</strong>g> f 2 a . This error has been checked with Mathematica.<br />

<strong>Euler</strong> now divides (16.4) by (16.3)<br />

1<br />

0<br />

1<br />

0<br />

1<br />

1<br />

x<br />

f a 1<br />

x<br />

x<br />

f<br />

x<br />

2a<br />

1<br />

2a<br />

dx<br />

dx<br />

1/ 2<br />

(1/ 2<br />

f ( f 2a)<br />

( f<br />

lim<br />

r ( f a)(<br />

f a)<br />

( f<br />

2a)(<br />

f<br />

3a)(<br />

f<br />

4a)<br />

( f<br />

<br />

3a)<br />

( f<br />

(2r<br />

(2r<br />

2) a)(<br />

f<br />

1) a)(<br />

f<br />

(2r<br />

(2r<br />

2) a)<br />

1) a)<br />

f<br />

2a<br />

f<br />

2a<br />

r<br />

r<br />

1/ 2<br />

1<br />

.<br />

f<br />

r 1/ 2<br />

2a<br />

Since 1 we have<br />

f<br />

r 1<br />

2a


20<br />

(17.1)<br />

1<br />

0<br />

1<br />

0<br />

1<br />

1<br />

x<br />

f a 1<br />

x<br />

x<br />

f<br />

x<br />

2a<br />

1<br />

2a<br />

dx<br />

dx<br />

1/ 2<br />

1/ 2<br />

f ( f 2a)<br />

( f<br />

lim<br />

r ( f a)(<br />

f a)<br />

( f<br />

2a)(<br />

f<br />

3a)(<br />

f<br />

4a)<br />

( f<br />

<br />

3a)<br />

( f<br />

(2r)<br />

a)(<br />

f<br />

(2r<br />

1) a)(<br />

f<br />

(2r<br />

2) a)<br />

(2r<br />

1) a)<br />

Comparing this with <strong>Euler</strong>’s (15.1)<br />

A<br />

f<br />

f ( f aa)<br />

( f a)(<br />

f a)<br />

( f<br />

( f<br />

2a)(<br />

f<br />

3a)(<br />

f<br />

4a)<br />

3a)<br />

( f<br />

( f<br />

4a)(<br />

f<br />

5a)(<br />

f<br />

6a)<br />

5a)<br />

etc...<br />

we see that they differ by the factor f.<br />

This shows that<br />

1<br />

x<br />

f a 1<br />

2a<br />

1 x<br />

0<br />

A L(0)<br />

1<br />

(17.2)<br />

f 1<br />

f f<br />

x dx<br />

0<br />

1<br />

x<br />

2a<br />

dx<br />

1/ 2<br />

1/ 2<br />

.<br />

(For c<strong>on</strong>venience, we use the modern notati<strong>on</strong><br />

L ( 0)<br />

A, L ( 1)<br />

B , L (2) 3, etc.)<br />

Replacing f by<br />

f ma in (17.2) we get<br />

(17.3)


21<br />

1<br />

0<br />

1<br />

0<br />

x<br />

1<br />

x<br />

1<br />

f ma a 1<br />

x<br />

x<br />

2a<br />

f ma 1<br />

2a<br />

dx<br />

1/ 2<br />

dx<br />

1/ 2<br />

( f ma)(<br />

f ma 2a)<br />

( f ma 2a)(<br />

f<br />

lim<br />

r ( f ma a)(<br />

f ma a)<br />

( f ma 3a)(<br />

f<br />

( f ma<br />

( f ma<br />

(2r)<br />

a)(<br />

f<br />

(2r<br />

1) a)(<br />

f<br />

ma (2r<br />

2) a)<br />

ma (2r<br />

1) a)<br />

ma<br />

ma<br />

4a)<br />

<br />

3a)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(17.4)<br />

1<br />

0<br />

1<br />

0<br />

x<br />

1<br />

f ma a 1<br />

x<br />

1<br />

x<br />

f ma 1<br />

x<br />

2a<br />

2a<br />

dx<br />

1/ 2<br />

dx<br />

1/ 2<br />

L(<br />

m)<br />

.<br />

f ma<br />

(This completes our dem<strong>on</strong>strati<strong>on</strong> of <strong>Euler</strong>’ omissi<strong>on</strong> of the factor<br />

f ma from (17.4) .<br />

In secti<strong>on</strong> 27, equati<strong>on</strong> (27.3) as well as in secti<strong>on</strong> 30 <strong>Euler</strong> does not omit this factor in<br />

essentially the same equati<strong>on</strong>s.)<br />

<strong>Euler</strong> now poses a generalizati<strong>on</strong> of his previous problem.<br />

A MORE GENERAL PROBLEM<br />

To find a series A, B, C, D, etc. that proceeds uniformly in such a way that<br />

AB<br />

ff<br />

c;<br />

BC<br />

( f<br />

a)<br />

2<br />

c;<br />

CD<br />

( f<br />

2a)<br />

2<br />

c;<br />

DE<br />

( f<br />

3a)<br />

2<br />

c;<br />

where, in the case of single products, the letter f is increased by a quantity a.


22<br />

PREVIOUS SOLUTION FOR CONTINUAL FRACTIONS<br />

Secti<strong>on</strong> 18.<br />

<strong>Euler</strong> begins with the problem of finding expressi<strong>on</strong>s A, B, C, D, etc., such that<br />

AB<br />

f<br />

2<br />

2<br />

2<br />

c ; BC ( f a)<br />

c ; CD ( f 2a)<br />

c ; etc. The soluti<strong>on</strong> is an alterati<strong>on</strong><br />

<strong>on</strong> the previous work. The following secti<strong>on</strong>s 19 to 23 are a very minor variati<strong>on</strong> <strong>on</strong><br />

secti<strong>on</strong>s 7 to 11.<br />

Secti<strong>on</strong> 19.<br />

We start with<br />

2<br />

(19.1) AB f c ,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> assume that the desired increase is given by<br />

a s / 2<br />

A f ,<br />

2 A'<br />

a s / 2<br />

B f ,<br />

2 B'<br />

where s , A’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’ are to be determined. Multiplying by 2 we get<br />

(19.2)<br />

s<br />

2A 2 f a ,<br />

A'<br />

s<br />

2B 2 f a .<br />

B'<br />

Multiplying the above together we get using (19.1)<br />

s s<br />

2<br />

(19.3) 2 f a 2 f a 4 f 4c<br />

,<br />

A B<br />

which can also be written as<br />

2<br />

2 2 s s<br />

s<br />

4AB 4 f a (2 f a)<br />

(2 f a)<br />

.<br />

B'<br />

A'<br />

A'<br />

B'<br />

Since<br />

2<br />

4AB 4 f 4c<br />

we have


23<br />

2<br />

2 s s<br />

s<br />

a 4c<br />

(2 f a)<br />

(2 f a)<br />

,<br />

B'<br />

A'<br />

A'<br />

B'<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> multiplying by<br />

A ' B'<br />

we get<br />

(19.4)<br />

( s<br />

2<br />

2<br />

a 4c)<br />

A'<br />

B'<br />

A'<br />

s(2<br />

f a)<br />

B'<br />

s(2<br />

f a)<br />

.<br />

We are free to choose s as we like, <str<strong>on</strong>g>and</str<strong>on</strong>g> a reas<strong>on</strong>able choice to simplify (19.4) is<br />

2<br />

(19.5 divide (19.4) by a 4c<br />

we get<br />

2<br />

A'<br />

B'<br />

A'(2<br />

f a)<br />

B'(2<br />

f a)<br />

a 4c<br />

.<br />

Notice that this last expressi<strong>on</strong> can be written as<br />

or<br />

2<br />

( A'<br />

(2 f a))(<br />

B'<br />

(2 f a))<br />

4 f 4c<br />

2<br />

(19.6) ( A'<br />

2 f a)(<br />

B'<br />

2 f a)<br />

4 f 4c<br />

.<br />

We also notice that because of (19.5), (19.2) has become the important equati<strong>on</strong>s<br />

(19.7)<br />

2A<br />

2 f<br />

a<br />

a<br />

2<br />

4c<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'<br />

2<br />

a 4c<br />

2B 2 f a .<br />

B'<br />

Secti<strong>on</strong> 20.<br />

We now wish to determine appropriate expressi<strong>on</strong>s for A’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’. We see from<br />

(19.6) that these expressi<strong>on</strong>s should start as A' 4 f <str<strong>on</strong>g>and</str<strong>on</strong>g> B'<br />

4 f . How does a<br />

fit with<br />

4 f ? Since we have been examining the three equally spaced numbers<br />

f<br />

a<br />

2<br />

, f<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

a<br />

f , it seems reas<strong>on</strong>able to think of 4 f 2a<br />

, 4 f , <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 f 2a<br />

. Thus we now<br />

2<br />

try the equati<strong>on</strong>s<br />

(20.1)<br />

A '<br />

4 f<br />

2a<br />

s'<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A''<br />

s'<br />

B ' 4 f 2a<br />

,<br />

B''


24<br />

where s’ , A’’, <str<strong>on</strong>g>and</str<strong>on</strong>g> B’’ are to be found. Using (20.1) to remove A’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’ from (19.6) we<br />

get<br />

s'<br />

s'<br />

2<br />

(20.2) 2 f 3a<br />

2 f 3a<br />

4 f 4c<br />

.<br />

A''<br />

B''<br />

Now compare (20.2) with (19.3). If in (19.3) we replace<br />

s s'<br />

, A'<br />

A'',<br />

B'<br />

B''<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g> a 3a<br />

we get (20.2). Therefore (19.4) becomes after<br />

these substituti<strong>on</strong>s<br />

(20.3)<br />

( 3<br />

s<br />

2 2<br />

2<br />

a 4c)<br />

A''<br />

B''<br />

A''<br />

s'(2<br />

f 3a)<br />

B''<br />

s'(2<br />

f 3a)<br />

' .<br />

We are free to select a value for s’ <str<strong>on</strong>g>and</str<strong>on</strong>g> a nice choice to simplify (20.3) is<br />

2 2<br />

(20.4) s'<br />

3 a 4c<br />

.<br />

Dividing (20.3) by by s’ get<br />

2 2<br />

A''<br />

B''<br />

A''(2<br />

f 3a)<br />

B''(2<br />

f 3a)<br />

3 a 4c<br />

.<br />

Corresp<strong>on</strong>ding to (19.6), this last expressi<strong>on</strong> can be written as<br />

2<br />

(20.5) ( A''<br />

2 f 3a)(<br />

B''<br />

2 f 3a)<br />

4 f 4c<br />

.<br />

Notice that equati<strong>on</strong>s (20.1) are now the important relati<strong>on</strong>s<br />

(20.6)<br />

A '<br />

4 f<br />

2a<br />

2 2<br />

3 a<br />

A''<br />

4c<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2 2<br />

3 a 4c<br />

B ' 4 f 2a<br />

.<br />

B''<br />

Secti<strong>on</strong> 21 <str<strong>on</strong>g>and</str<strong>on</strong>g> 22.<br />

Next we seek appropriate expressi<strong>on</strong>s for A’’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’’. As we reas<strong>on</strong>ed above to<br />

get (20.1) we now try<br />

(21.1)<br />

s''<br />

A '' 4 f 2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'''<br />

s''<br />

B '' 4 f 2a<br />

.<br />

B'''<br />

Using (9.1) to remove A’’ <str<strong>on</strong>g>and</str<strong>on</strong>g> B’’ from (20.5) we now have (corresp<strong>on</strong>ding to (20.2))


25<br />

s''<br />

s''<br />

2<br />

(21.2) 2 f 5a<br />

2 f 5a<br />

4 f 4c<br />

,<br />

A'''<br />

B'''<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> by a similar reas<strong>on</strong>ing we will arrive at<br />

(21.3)<br />

2 2<br />

5 a 4c<br />

A '' 4 f 2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'''<br />

2 2<br />

5 a 4c<br />

B '' 4 f 2a<br />

.<br />

B'''<br />

Summarizing our results for (19.7), (20.6) <str<strong>on</strong>g>and</str<strong>on</strong>g> (21.3) we see<br />

2A<br />

2 f<br />

a<br />

a<br />

2<br />

4c<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'<br />

2<br />

a 4c<br />

2B 2 f a ,<br />

B'<br />

A '<br />

4 f<br />

2a<br />

2 2<br />

3 a<br />

A''<br />

4c<br />

, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2 2<br />

3 a 4c<br />

B ' 4 f 2a<br />

,<br />

B''<br />

2 2<br />

5 a 4c<br />

A '' 4 f 2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

A'''<br />

2 2<br />

5 a 4c<br />

B '' 4 f 2a<br />

.<br />

B'''<br />

Secti<strong>on</strong> 23.<br />

The general pattern is now emerging <str<strong>on</strong>g>and</str<strong>on</strong>g> we can write our c<strong>on</strong>tinued fracti<strong>on</strong>s as<br />

(23.1) 2A<br />

2 f a<br />

2<br />

a 4c<br />

2 2<br />

3 a 4c<br />

2 2<br />

5 a 4c<br />

4 f 2a<br />

4 f 2a<br />

4 f 2a<br />

,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(23.2) 2B<br />

2 f a<br />

2<br />

a 4c<br />

2 2<br />

3 a 4c<br />

2 2<br />

5 a 4c<br />

4 f 2a<br />

4 f 2a<br />

4 f 2a<br />

.<br />

Notice that (23.2) is obtained from (23.1) by replacing f by<br />

f<br />

a . In a similar way,<br />

replacing f by<br />

f<br />

2 a in (23.1) gives us<br />

2C<br />

2 f<br />

3a<br />

2<br />

a<br />

4 f<br />

4c<br />

6a<br />

2<br />

3 a<br />

4 f<br />

2<br />

4c<br />

6a<br />

2<br />

5 a<br />

4 f<br />

2<br />

4c<br />

6a<br />

,<br />

replacing f by<br />

f<br />

3 a in (23.1) yields<br />

2D<br />

2 f<br />

5a<br />

a<br />

4 f<br />

2<br />

4c<br />

10a<br />

2<br />

3 a<br />

4 f<br />

2<br />

4c<br />

10a<br />

2<br />

5 a<br />

4 f<br />

2<br />

4c<br />

10a<br />

,


26<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> replacing f by<br />

f<br />

4 a in (23.1) yields<br />

2E<br />

2 f<br />

7a<br />

a<br />

4 f<br />

2<br />

4c<br />

14a<br />

2<br />

3 a<br />

4 f<br />

2<br />

4c<br />

14a<br />

2<br />

5 a<br />

4 f<br />

2<br />

4c<br />

14a<br />

<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> so forth.<br />

Secti<strong>on</strong> 24.<br />

With<br />

AB<br />

f<br />

2<br />

2<br />

2<br />

2<br />

c , BC ( f a)<br />

c CD ( f 2a)<br />

c , DE ( f 3a)<br />

c<br />

we have<br />

A<br />

f<br />

2<br />

B<br />

c<br />

,<br />

B<br />

( f<br />

a)<br />

C<br />

2<br />

c<br />

,<br />

C<br />

( f<br />

2a)<br />

D<br />

2<br />

c<br />

, etc., so<br />

A<br />

Secti<strong>on</strong> 25.<br />

f<br />

2<br />

B<br />

c<br />

( f<br />

2<br />

f c<br />

2<br />

a)<br />

C<br />

c<br />

( f<br />

( f<br />

2<br />

c)<br />

C<br />

2<br />

a)<br />

c<br />

2<br />

( f c)<br />

2<br />

( f a)<br />

c<br />

( f<br />

2a)<br />

D<br />

2<br />

c<br />

.<br />

The product emerging is<br />

(25.1)<br />

2<br />

( f c)<br />

2<br />

( f a)<br />

c<br />

( f<br />

( f<br />

2a)<br />

3a)<br />

2<br />

c<br />

c<br />

( f<br />

( f<br />

4a)<br />

5a)<br />

c<br />

c<br />

( f<br />

( f<br />

6a)<br />

7a)<br />

A 2<br />

2<br />

2<br />

2<br />

2<br />

c<br />

.<br />

c<br />

This product will not c<strong>on</strong>verge as written. Squaring we can write<br />

2<br />

2<br />

2<br />

2<br />

( ff c)((<br />

f 2a)<br />

c)<br />

(( f 2a)<br />

c)((<br />

f 4a)<br />

c)<br />

(25.2) A ( ff c)<br />

etc...<br />

2<br />

2<br />

2<br />

2<br />

(( f a)<br />

c)((<br />

f a)<br />

c)<br />

(( f 3a)<br />

c)((<br />

f 3a)<br />

c)<br />

which does c<strong>on</strong>verge.<br />

Case 1 in which c = - bb<br />

Secti<strong>on</strong> 26.<br />

Replacing c by<br />

2<br />

b in (23.1) we get


27<br />

2 2 2 2 2 2 2 2<br />

a 4b<br />

3 a 4b<br />

5 a 4b<br />

(26.1) 2A<br />

2 f a<br />

<br />

4 f 2a<br />

4 f 2a<br />

4 f 2a<br />

which can also be written as<br />

( a 2b)(<br />

a 2b)<br />

2A 2 f a<br />

.<br />

(3a<br />

2b)(3a<br />

2b)<br />

4 f 2a<br />

(5a<br />

2b)(5a<br />

2b)<br />

4 f 2a<br />

(7a<br />

2b)(7a<br />

2b)<br />

4 f 2a<br />

4 f 2a<br />

etc...<br />

Returning to (25.1) we have<br />

A<br />

2 2<br />

( f b )<br />

2<br />

( f a)<br />

b<br />

2<br />

( f<br />

( f<br />

2a)<br />

3a)<br />

2<br />

2<br />

b<br />

b<br />

2<br />

2<br />

( f<br />

( f<br />

4a)<br />

5a)<br />

2<br />

2<br />

b<br />

b<br />

2<br />

2<br />

( f<br />

( f<br />

6a)<br />

7a)<br />

2<br />

2<br />

b<br />

b<br />

2<br />

2<br />

<br />

which we rewrite in the c<strong>on</strong>vergent form<br />

( f b)(<br />

f 2a<br />

b)<br />

( f 2a<br />

b)(<br />

f 4a<br />

b)<br />

(26.2) A ( f b)<br />

etc...<br />

( f a b)(<br />

f a b)<br />

( f 3a<br />

b)(<br />

f 3a<br />

b)<br />

There is a misprint in the last factor. It should be<br />

( f<br />

( f<br />

2a<br />

3a<br />

b)(<br />

f<br />

b)(<br />

f<br />

4a<br />

3a<br />

b)<br />

.<br />

b)<br />

Secti<strong>on</strong> 27.<br />

This secti<strong>on</strong> is a slight variati<strong>on</strong> <strong>on</strong> secti<strong>on</strong> 16. <strong>Euler</strong> begins again with his lemms:<br />

Integrating from 0 to 1 we have<br />

n<br />

x<br />

1<br />

m 1<br />

x<br />

x<br />

n<br />

n<br />

k<br />

m k<br />

m<br />

m k n<br />

m n<br />

m k 2n<br />

m 2n<br />

m k 3n<br />

m 3n<br />

m k 4n<br />

...<br />

m 4n<br />

n<br />

x<br />

1<br />

x<br />

n<br />

x<br />

n<br />

k<br />

.<br />

Again he lets n 2 a <str<strong>on</strong>g>and</str<strong>on</strong>g> k a , but he changes m from f to m f b <str<strong>on</strong>g>and</str<strong>on</strong>g> gets<br />

f b 1<br />

f a b f 3a<br />

b f 5a<br />

b x x x x<br />

(27.1) .<br />

f b f 2a<br />

b f 4a<br />

b<br />

2a<br />

2a<br />

(1 x ) 1 x


28<br />

Next he lets<br />

n 2 a <str<strong>on</strong>g>and</str<strong>on</strong>g> k a , but now he changes m from f to m f a b<br />

f a b 1<br />

f 2a<br />

b f 4a<br />

b f 6a<br />

b x x x x<br />

(27.2) .<br />

f a b f 3a<br />

b f 5a<br />

b<br />

2a<br />

2a<br />

1 x 1 x<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> gets<br />

Dividing (27.2) by (27.1) he gets the product in (26.2). Therefore<br />

f a b 1<br />

f b 1<br />

x x x x<br />

(27.3) A ( f b)<br />

: .<br />

2a<br />

2a<br />

1 x 1 x<br />

Note that this time he has the correct factor ( f b)<br />

which he neglected in (17.2)<br />

when b 0.<br />

Secti<strong>on</strong> 28.<br />

<strong>Euler</strong> exhibits the example of (26.1)<br />

2A<br />

2 f<br />

a<br />

2<br />

a<br />

4 f<br />

2<br />

4b<br />

2a<br />

2<br />

3 a<br />

4 f<br />

2<br />

4b<br />

2a<br />

2<br />

2<br />

5 a<br />

4 f<br />

2<br />

4b<br />

2a<br />

2<br />

<br />

With f 2 , a b 1 we have AB<br />

2<br />

f<br />

2<br />

b 3 , BC ( f<br />

2<br />

a)<br />

2<br />

b 8 ,<br />

CD ( f<br />

2<br />

2a)<br />

2<br />

b 15, DE ( f<br />

2<br />

3a)<br />

2<br />

b 24, etc.<br />

(28.1) 2A 3<br />

3 5 21 45 77<br />

6 6 6 6 6<br />

.<br />

<strong>Euler</strong> writes:<br />

“But it will be this in c<strong>on</strong>tinual products: A<br />

3 3 5 5 7 7 9 9<br />

2 4 4 6 6 8 8 10<br />

etc...<br />

Then it will be c<strong>on</strong>sidered this way in integral formulas: A<br />

x x xx x<br />

: . ”<br />

1 xx 1 xx


29<br />

We can also write the infinite product using (26.2)<br />

A<br />

( f b)(<br />

f 2a<br />

b)<br />

( f 2a<br />

b)(<br />

f 4a<br />

b)<br />

( f b)<br />

etc...<br />

( f a b)(<br />

f a b)<br />

( f 3a<br />

b)(<br />

f 3a<br />

b)<br />

3 3 5 5 7 7 9 9<br />

(28.2) A 1<br />

.<br />

2 4 4 6 6 8 8 10<br />

Using (27.3) we get the ratio of integrals<br />

f a b 1<br />

f b 1<br />

x x x x<br />

(28.3) A ( f b)<br />

: .<br />

2a<br />

2a<br />

1 x 1 x<br />

A<br />

x x xx x<br />

: .<br />

1 xx 1 xx<br />

Since the above two integrals are 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> / 4 we get<br />

(28.4) A 4/<br />

.<br />

Secti<strong>on</strong> 29.<br />

Now we let<br />

2<br />

c b in (23.1)<br />

Case 2 in which c = + bb<br />

2A<br />

2 f<br />

a<br />

2<br />

a<br />

4 f<br />

4c<br />

2a<br />

2<br />

3 a<br />

4 f<br />

2<br />

4c<br />

2a<br />

2<br />

5 a<br />

4 f<br />

2<br />

4c<br />

2a<br />

<br />

to get<br />

(29.1) 2A<br />

2 f a<br />

2<br />

a<br />

2<br />

4b<br />

2 2<br />

3 a<br />

2<br />

4b<br />

2 2<br />

5 a<br />

2<br />

4b<br />

4 f 2a<br />

4 f 2a<br />

4 f 2a<br />

.<br />

In the infinite product (26.2)<br />

A<br />

( f b)(<br />

f 2a<br />

b)<br />

( f 2a<br />

b)(<br />

f 4a<br />

b)<br />

( f b)<br />

etc...<br />

( f a b)(<br />

f a b)<br />

( f 3a<br />

b)(<br />

f 3a<br />

b)<br />

we can replace b by either bi or bi to get<br />

(29.2)


30<br />

A<br />

( f b 1)( f 2a<br />

b 1) ( f 2a<br />

b 1)( f 4a<br />

b 1)<br />

( f b 1)<br />

etc...<br />

( f a b 1)( f a b 1) ( f 3a<br />

b 1)( f 3a<br />

b 1)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(29.3)<br />

A<br />

( f b 1)( f 2a<br />

b 1) ( f 2a<br />

b 1)( f 4a<br />

b 1)<br />

( f b 1)<br />

etc...<br />

( f a b 1)( f a b 1) ( f 3a<br />

b 1)( f 3a<br />

b 1)<br />

Multiplying (29.2) times (29.3) we get<br />

A<br />

2<br />

( ff<br />

bb)<br />

(( f<br />

2<br />

bb)((<br />

f 2a)<br />

bb)<br />

2<br />

2<br />

a)<br />

bb)((<br />

f a)<br />

bb<br />

(( f<br />

(( f<br />

2a)<br />

3a)<br />

bb)((<br />

f<br />

bb)((<br />

f<br />

4a)<br />

3a)<br />

2<br />

2<br />

( ff<br />

2<br />

2<br />

bb)<br />

bb)<br />

etc...<br />

which is the same as our (25.1) with<br />

Secti<strong>on</strong> 30.<br />

If we replace b by bi in (27.3)<br />

2<br />

c b .<br />

A<br />

( f<br />

b)<br />

x<br />

f<br />

1<br />

a<br />

b 1<br />

x<br />

2a<br />

x<br />

:<br />

x<br />

f<br />

1<br />

x<br />

.<br />

2a<br />

x<br />

b 1<br />

we get<br />

(30.1) A ( f b 1)<br />

f a 1 b 1<br />

f 1 b 1<br />

x x x<br />

:<br />

x<br />

.<br />

1<br />

2a<br />

x 1<br />

2a<br />

x<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> if we replace b by<br />

bi we get<br />

f a 1 b 1<br />

f 1 b 1<br />

x x x x<br />

(30.2) A ( f b 1)<br />

:<br />

.<br />

2a<br />

2a<br />

1 x 1 x<br />

Secti<strong>on</strong> 31.<br />

If we multiply (30.1) times (30.2) we get,


31<br />

x<br />

f<br />

a<br />

1 b<br />

1<br />

x<br />

x<br />

f<br />

a<br />

1 b<br />

1<br />

x<br />

(31.1)<br />

A<br />

2<br />

( ff<br />

bb)<br />

1<br />

x<br />

x<br />

2a<br />

f 1 b 1<br />

x<br />

x<br />

f<br />

1<br />

1 b<br />

x<br />

1<br />

2a<br />

x<br />

Secti<strong>on</strong> 32.<br />

1<br />

x<br />

2a<br />

1<br />

x<br />

2a<br />

In the denominator of (31.1) we set<br />

x<br />

1<br />

f<br />

1<br />

x<br />

x<br />

2a<br />

V<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> get<br />

x<br />

b<br />

1<br />

V<br />

x<br />

b<br />

1<br />

V.<br />

Now make the substituti<strong>on</strong>s<br />

The sum:<br />

( x<br />

x<br />

b 1 b 1<br />

V<br />

p<br />

Difference:<br />

( x<br />

x<br />

b 1 b 1<br />

V<br />

q<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> get<br />

(32.1)<br />

( x<br />

b<br />

1 b 1 pp qq<br />

V x V<br />

4<br />

Secti<strong>on</strong> 33.<br />

If we replace x by exp(logx ) in p <str<strong>on</strong>g>and</str<strong>on</strong>g> q of the previous secti<strong>on</strong> we get<br />

p<br />

( e<br />

b log x<br />

1<br />

e<br />

b log x<br />

1<br />

)<br />

V ,<br />

q<br />

( e<br />

b log x<br />

1<br />

e<br />

b log x<br />

1<br />

)<br />

V ,<br />

(Here <strong>Euler</strong> writes lx for our<br />

log x .) Using the identities<br />

1<br />

1<br />

1<br />

1<br />

e e 2cos <str<strong>on</strong>g>and</str<strong>on</strong>g> e e 2 1sin<br />

with<br />

blog x we have<br />

p 2 V cos <str<strong>on</strong>g>and</str<strong>on</strong>g> q 2 1 V sin .


32<br />

Using (32.1) we see<br />

(33.1)<br />

pp qq<br />

4<br />

(<br />

V cos<br />

)<br />

2<br />

(<br />

V sin<br />

)<br />

2<br />

which is the denominator of (31.1).<br />

Secti<strong>on</strong> 34.<br />

The same argument with numerator of (31.1) would have given <strong>Euler</strong><br />

a<br />

2 a<br />

( x V cos ) ( x V<br />

sin<br />

)<br />

2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus (31.1) can be expressed as<br />

(34.1)<br />

A<br />

2<br />

( ff<br />

(<br />

bb)<br />

x<br />

(<br />

a<br />

V cos<br />

V cos<br />

)<br />

)<br />

2<br />

2<br />

(<br />

(<br />

x<br />

a<br />

V sin<br />

V sin<br />

)<br />

2<br />

)<br />

2<br />

where we recall<br />

V<br />

x<br />

1<br />

f<br />

1<br />

x<br />

x<br />

2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

blog x.<br />

Secti<strong>on</strong> 35.<br />

<strong>Euler</strong> remarks briefly <strong>on</strong> the integrals (I need help with the Latin here.)<br />

x<br />

f<br />

1<br />

x cos( blog<br />

x)<br />

1<br />

x<br />

2a<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

x<br />

f<br />

1<br />

xsin(<br />

blog<br />

x)<br />

.<br />

2a<br />

1 x<br />

Secti<strong>on</strong> 36.<br />

<strong>Euler</strong> begins by writing the formula for integrati<strong>on</strong> by parts<br />

P Q PQ Q P .<br />

f 1<br />

He then takes P cos( blogx)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Q x x<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> gets<br />

f<br />

f 1<br />

x<br />

(36.1) x x cos( blog<br />

x)<br />

cos( blog<br />

x)<br />

( blog<br />

x)<br />

f


33<br />

f 1<br />

A sec<strong>on</strong>d integrati<strong>on</strong> by parts uses P sin ( blogx)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Q x x<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> we get<br />

f<br />

f 1<br />

x<br />

b f 1<br />

(36.2) x xsin(<br />

blog<br />

x)<br />

sin( blog<br />

x)<br />

x x cos( blog<br />

x)<br />

f<br />

f<br />

Now, starting with (36.1) we can replace the integral <strong>on</strong> the RHS with (36.2) to obtain<br />

1<br />

0<br />

x<br />

f<br />

1<br />

cos( blog<br />

x)<br />

dx<br />

x<br />

f<br />

f<br />

cos( blog<br />

x)<br />

b<br />

f<br />

x<br />

f<br />

f<br />

sin( blog<br />

x)<br />

b<br />

f<br />

1<br />

0<br />

x<br />

f<br />

1<br />

cos( blog<br />

x)<br />

dx<br />

which simplifies to<br />

1<br />

0<br />

x<br />

f<br />

1<br />

cos( blogx)<br />

dx<br />

x<br />

f<br />

f<br />

cos( blogx)<br />

bx<br />

f<br />

f<br />

2<br />

sin( blogx)<br />

b<br />

f<br />

2<br />

2<br />

1<br />

0<br />

x<br />

f<br />

1<br />

cos( blogx)<br />

dx .<br />

Solving for the integral we get<br />

f<br />

f 1<br />

x<br />

(36.3) x x cosblx<br />

( f cos( blog<br />

x)<br />

bsin(<br />

blog<br />

x));<br />

.<br />

ff bb<br />

In a similar way, starting with (36.2) we get<br />

f<br />

f 1<br />

x<br />

(36.4) x xsin(<br />

blog<br />

x)<br />

( f sin( blog<br />

x)<br />

bcos(<br />

blog<br />

x))<br />

ff bb<br />

(Note that neither of the above integrals c<strong>on</strong>nect with the integrals in previous secti<strong>on</strong>s.<br />

All of those had<br />

1 x 2a in the denominator.) Perhaps <strong>Euler</strong> was showing his skill in the<br />

use of complex numbers.<br />

References


34<br />

[1] <strong>Euler</strong>, L., De Fracti<strong>on</strong>ibus C<strong>on</strong>tinuis Wallisii, (<strong>E745</strong>), <strong>on</strong> the web at the <strong>Euler</strong><br />

<strong>Archive</strong>, http://www.math.dartmouth.edu/~euler/.<br />

[2] Khrushchev, S., A recovery of Brouncker’s proof for the quadrature c<strong>on</strong>tinued<br />

fracti<strong>on</strong>s, Publicaci<strong>on</strong>s matermatiques, 50(2006), pp. 2-42.<br />

[3] Nunn, T. Percy, The Arithmetic of Infinites.: A School Introducti<strong>on</strong> to the Integral<br />

Calculus, (Part 1), The Mathematical Gazette, 5(1910), pp. 345-356.<br />

[4] Nunn, T. Percy, The Arithmetic of Infinites.: A School Introducti<strong>on</strong> to the Integral<br />

Calculus, (Part 2), The Mathematical Gazette, 5(1911), pp. 377-386.<br />

[5] Stedall, Jacqueline A., Catching Proteus: The Collaborati<strong>on</strong>s of Wallis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Brouncker. I. Squaring the Circle, <str<strong>on</strong>g>Notes</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Records of the Royal Society of L<strong>on</strong>d<strong>on</strong>,<br />

Vol. 54, No. 3, (Sep., 2000), pp. 293 -316<br />

[6] Wallis, John, The Arithmetic of Infinitesimals, (Translated from Latin by Jacqueline<br />

A. Stedall), Springer Verlag, New York, 2004.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!