29.10.2014 Views

Young Bae - NASA's Institute for Advanced Concepts

Young Bae - NASA's Institute for Advanced Concepts

Young Bae - NASA's Institute for Advanced Concepts

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NIAC 8 th Annual Meeting: 2006<br />

Photon Tether Formation Flight (PTFF)<br />

<strong>Young</strong> K. <strong>Bae</strong>, Ph.D.<br />

<strong>Bae</strong> <strong>Institute</strong><br />

Tustin, Cali<strong>for</strong>nia, USA<br />

www.baeinstitute.com


NIAC 8 th Annual Meeting: 2006<br />

Participants<br />

• Joseph Carroll, Tether Applications Inc.<br />

-- General Tether Aspects and Hardware<br />

• Claude Phipps, Ph.D., Photonics Associates<br />

-- Nano-Newton Thruster Stand<br />

• Eugene Levin, Ph.D., STARS, Inc.<br />

-- Dynamics of Tethers and Formation Flying<br />

• Bob Scaringe, AVG Communications<br />

-- Business Development


NIAC 8 th Annual Meeting: 2006<br />

Examples of Revolutionary/Disruptive Technologies<br />

Key Enabling Factor:<br />

Orders of Magnitude Enhancement in Critical Parameters<br />

• Subatomic Dimension -- Particle Accelerators<br />

Critical Parameter: Particle Energy<br />

• Atomic Dimension – STM/AFM<br />

Critical Parameter: Scanning Ability/Noise Reduction<br />

• Molecular to Daily Life Dimension -- Lasers<br />

Critical Parameter: Coherence of Photons<br />

• Astronomical Dimension – Precision Formation Flying (?)<br />

Critical Parameter: Control Accuracy (?)


NIAC 8 th Annual Meeting: 2006<br />

Examples of Precision Formation Flying <strong>Concepts</strong><br />

TPF<br />

MAXIM<br />

SI Mission<br />

LISA<br />

SPECS


Control Accuracy<br />

NIAC 8 th Annual Meeting: 2006<br />

Selected Formation Flying Missions<br />

Baseline Distance<br />

GRACE<br />

>1 km<br />

SNAP 1<br />

Tsinghua<br />

1 m<br />

TechSat<br />

21<br />

DARWIN<br />

GEMINI<br />

1 mm<br />

XEUS<br />

ESA Proba-3<br />

Control Limitation with Conventional Thrusters?<br />

1 µ m<br />

SPECS<br />

MAXIM<br />

1 nm<br />

PTFF<br />

FTXR<br />

LISA<br />

1 m 10 m 100 m 1 km 10 km 100 km >1,000 km


NIAC 8 th Annual Meeting: 2006<br />

Nano-Meter Precision Spacecraft Formation Flying:<br />

-- is able to cover most of critical missions planned<br />

-- enables many other new missions<br />

• Thus, it is Potentially a Revolutionary/Disruptive<br />

Technology of the 21 st Century in Astronomical<br />

Dimension.<br />

• So far, its Enabling Technology has been illusive.<br />

• We believe that PTFF could be the Enabling Technology,<br />

if successfully demonstrated.<br />

• The Primary Goal of this NIAC Phase II is to demonstrate<br />

a sub-scale prototype PTFF engine.


NIAC 8 th Annual Meeting: 2006<br />

Photon Tether Formation Flight (PTFF)<br />

• Force Structure: Counter Balance of Two Forces:<br />

Contracting Force: Tether Tension<br />

Extending Force: Photon Thrust<br />

- Intracavity Arrangement<br />

- Thrust Multiplied by Tens of Thousand Times by Bouncing<br />

Photons between Spacecraft<br />

• Geometrical Structure: Crystalline Structure<br />

• Interspacecraft Distance Accuracy: better than nm<br />

• Maximum Operation Range: Tens of kms (Limited by<br />

Laser Mirror Size)<br />

• Can be Used <strong>for</strong> both Static and Dynamic Applications


NIAC 8 th Annual Meeting: 2006<br />

Major Advantages of PTFF<br />

• Ultra-High Baseline and Pointing Accuracy<br />

-- Baseline Accuracy: better than 1 Nano-Meter<br />

-- Pointing Accuracy: better than 0.1 micro-arcsec <strong>for</strong> 1 km baseline system<br />

– Enabling Wide Ranges of Imaging Missions<br />

• Propellantless<br />

-- System Mass Savings, Contamination Free, Long Mission Lifetime<br />

• Low Power Consumption<br />

• Low Construction Cost<br />

• Dual Usage of Photon Thruster Laser <strong>for</strong> Interferometric Ranging<br />

System<br />

-- Simplified System Architecture and Control, Low System Weight<br />

• Readily Downscalable to Nano- and Pico- Satellites Usage<br />

-- Ideal <strong>for</strong> Sophisticated Fractionated Spacecraft or Space Structures


NIAC 8 th Annual Meeting: 2006<br />

PTFF System Architecture<br />

Nano-Precision Formation Flying System Architecture<br />

Satellite I<br />

Satellite II<br />

Photon Thruster<br />

System<br />

Interferometric<br />

Ranging System<br />

Precision Laser<br />

Power Meter<br />

Lens<br />

Partial Mirror<br />

Photodetector<br />

Partial Mirror<br />

HR Mirror<br />

Intracavity Laser Beam<br />

Ultrahigh Precision CW Photon Thrust<br />

Laser Gain Media<br />

HR Mirror<br />

HR Mirror<br />

Pump<br />

Laser<br />

Beam<br />

Diode<br />

Pump<br />

Laser<br />

Partial Mirror<br />

HR Mirror<br />

Tether System<br />

Tether<br />

Reel<br />

Clamp<br />

Tether<br />

Tension<br />

Piezo-Translator<br />

Stepper Motor


NIAC 8 th Annual Meeting: 2006<br />

Photon Thruster System: TRL 3<br />

Satellite I<br />

Satellite II<br />

Lens<br />

Intracavity Laser Beam<br />

Laser Gain Media<br />

Pump<br />

Laser<br />

Beam<br />

Precision Laser<br />

Power Meter<br />

Ultrahigh Precision CW Photon Thrust<br />

HR Mirror<br />

HR Mirror<br />

Diode<br />

Pump<br />

Laser<br />

• Laser System<br />

-- Diode Pumped Intracavity Laser<br />

-- Lifetime of Diodes<br />

1 Year <strong>for</strong> Continuous Operation<br />

• Pump Diode Carousel Design – Tens of Years


NIAC 8 th Annual Meeting: 2006<br />

10000<br />

Intracavity Photon Thrust as a Function of the Mirror Reflectance (R)<br />

10 W System<br />

1000<br />

Photon Thrust (µN)<br />

100<br />

10<br />

1<br />

Predicted Capability of the Proposed System<br />

Off-the-Shelf<br />

Super Mirror<br />

0.1<br />

10 100 1000 10000 100000<br />

1<br />

1 - R


NIAC 8 th Annual Meeting: 2006<br />

Specific thrusts as functions of I sp of various conventional and photon thrusters.<br />

Intracavity Multiplication Factors<br />

10 -1<br />

10 0 X 1,000<br />

X 20,000<br />

X 10,000<br />

Specific Thrust (mN/W)<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

Electric Thrusters<br />

Photon Thrusters<br />

X 100<br />

10 -6<br />

10 -7<br />

10 2 10 3 10 4 10 5 10 6 10 7 10 8<br />

I sp (sec)


NIAC 8 th Annual Meeting: 2006<br />

Photon Thruster System: Mirror Diameter vs. Operation Distance<br />

Mirror Diamter (cm)<br />

10<br />

1<br />

0.01 0.1 1 10 100<br />

Intersatellite Distance (km)


NIAC 8 th Annual Meeting: 2006<br />

Satellite I<br />

Interferometric Ranging System: TRL 5<br />

Satellite II<br />

Precision Laser<br />

Power Meter<br />

Lens<br />

Partial Mirror<br />

Intracavity Laser Beam<br />

Laser Gain Media<br />

Pump<br />

Laser<br />

Beam<br />

Partial Mirror<br />

HR Mirror<br />

Ultrahigh Precision CW Photon Thrust<br />

HR Mirror<br />

HR Mirror<br />

Diode<br />

Pump<br />

Laser<br />

Photodetector<br />

Partial Mirror<br />

HR Mirror<br />

• Dual Usage of Photon Thruster Laser <strong>for</strong> Interferometric<br />

Ranging System Source Laser<br />

-- System Architecture Simplification<br />

-- System Mass Reduction


NIAC 8 th Annual Meeting: 2006<br />

Heterodyne Interferometric Ranging System Integrated with Photon Thruster System<br />

Satellite I<br />

Satellite II<br />

Lens<br />

Partial Mirror<br />

Intracavity Laser Beam<br />

Laser Gain Media<br />

Pump<br />

Laser<br />

Beam<br />

Precision Laser<br />

Power Meter<br />

HR Mirror<br />

Ultrahigh Precision CW Photon Thrust<br />

HR Mirror<br />

Diode<br />

Pump<br />

Laser<br />

Beam Splitter<br />

AOM<br />

AOM<br />

Mirror<br />

Retroreflector<br />

Measurement<br />

Detector<br />

ODL<br />

Reference<br />

Detector


NIAC 8 th Annual Meeting: 2006<br />

Satellite I<br />

Tether System: TRL 5<br />

Electromechnical Damper<br />

Satellite II<br />

Tether<br />

Tether<br />

Reel<br />

Clamp<br />

Piezo-Translator<br />

Inchworm<br />

• Coarse Control: Reel System-- mm Accuracy<br />

• Fine Control: Inchworm or Stepper Motor-- µm Accuracy<br />

• Ultrafine Control: Piezo-Translator (off-the-shelf) -- 0.1 nm<br />

Accuracy


NIAC 8 th Annual Meeting: 2006<br />

Method of Tether Vibration Suppression<br />

• Major Tether Vibrations will Result from Reorientation of the Whole<br />

Formation Structure, and other Sudden Environmental Perturbations,<br />

such as Meteoroid Impacts.<br />

• Longitudinal Tether Wave Damping<br />

Tether Material Friction/ Modulation of Photon Thruster Power<br />

• Transverse Tether Wave Damping<br />

Electromechanical Damper with Impedance Matching<br />

Damping Applied<br />

Electromechanical Damping<br />

Simulation by Lorenzini et al.<br />

For 1 km Baseline System


NIAC 8 th Annual Meeting: 2006<br />

Example I: 10 km 1-D PTFF at L2


NIAC 8 th Annual Meeting: 2006<br />

Example II: 1 km PTFF Telescope at L2


NIAC 8 th Annual Meeting: 2006<br />

1 km PTFF Telescope:<br />

Enables New World Imager Freeway Mission<br />

By Prof. W. Cash – 2005 NIAC Fellow Meeting<br />

-- Searching <strong>for</strong> <strong>Advanced</strong> Civilization in Exo-Planets<br />

• 300 m resolution at 10 parsecs = 0.02 nano-arcseconds<br />

• 500,000 km based line distance between Collectors<br />

• Huge collecting area – one square kilometer


NIAC 8 th Annual Meeting: 2006<br />

More <strong>Advanced</strong> PTFF Telescope<br />

Image Processing<br />

With Real-Time<br />

Holographic<br />

Aberration<br />

Correction (NIAC)<br />

Stretched Membrane<br />

Mirror (NIAC)<br />

James Webb<br />

Space Telescope


NIAC 8 th Annual Meeting: 2006<br />

Technology Readiness Assessment Summary<br />

• Photon Thrusters: TRL 3<br />

• Interferometric Ranging System: TRL 5<br />

• Tether System: TRL 5<br />

• System Integration and Control: TRL 2<br />

• R&D 3 : II - III (moderate -high) (Degree of Difficulty)<br />

-- Requires to optimize photon thrust design based<br />

on the current laboratory system and system<br />

integration, and to develop control system.


NIAC 8 th Annual Meeting: 2006<br />

Phase II Work Started Since Sept. 1 st 2006<br />

• Proof-of-Concept Demonstration of Photon Thruster<br />

• Construction of a Thrust Stand with nN Accuracy<br />

• Overall System Stability and Control<br />

• Tether Vibration Dynamics<br />

• Environment Perturbation<br />

• 3-D Simulation<br />

• Design of Prototype Interferometric Ranging System<br />

• Design of Prototype Tether System<br />

• Detailed Study of Specific Applications<br />

• In-Depth Revisits of Existing <strong>Concepts</strong> -- SPECS and MAXIM<br />

• Ultralarge Membrane Space Telescopes<br />

• Ultralarge Sparse Aperture Space Telescopes<br />

• Others


NIAC 8 th Annual Meeting: 2006<br />

Prototype Sub-scale PTFF Engine Demonstration<br />

Counter<br />

Weight<br />

Interference Pattern<br />

Torsion<br />

Fiber<br />

Corner Cube<br />

Optical Fiber<br />

Low Power Laser<br />

Photo Detector<br />

<strong>for</strong> Fringe Monitoring<br />

Computer<br />

Windows<br />

Concave HR Mirror<br />

Laser Media<br />

Intracavity Laser Beam<br />

HR Mirror<br />

Pump Laser Diode<br />

Feedback<br />

Electronics<br />

Laser Power Meter<br />

Tether<br />

Vacuum Chamber<br />

Piezo-Translator


NIAC 8 th Annual Meeting: 2006<br />

Conclusions I<br />

• If successful, PTFF technology will be<br />

revolutionary/disruptive technology of 21 st Century<br />

in Astronomical Dimension.<br />

• If successful, PTFF technology will open new<br />

innovative (revolutionary) ways to implementing<br />

new and existing mission concepts at very<br />

af<strong>for</strong>dable costs. -- Many applications can be<br />

implemented at fractional costs of HST.<br />

• Preliminary Studies concluded that PTFF system<br />

can be implemented with off-the-shelf technologies<br />

– This will be tried to be proved during this study.


NIAC 8 th Annual Meeting: 2006<br />

Conclusions II<br />

• Mission Specific Applications<br />

• PTFF Simplifies the Architecture and Reduces the Weight<br />

in<br />

Space Interferometery Missions -- TPF, DARWIN,<br />

MAXIM,<br />

SPECS, FTXR etc.<br />

• Ultra-large PTFF Space Telescopes<br />

-- For New World Imager (300 m Resolution – Freeway<br />

Mission with km Mirror)<br />

-- Earth imaging/Monitoring/Surveillance (10 cm<br />

Resolution<br />

Monitoring at GEO with 200 m Mirror)


NIAC 8 th Annual Meeting: 2006<br />

The Support by NIAC and NASA <strong>for</strong> this project is greatly appreciated.<br />

“I believe in intuitions and inspirations.<br />

I sometimes feel that I am right.<br />

I do not know that I am.”<br />

by Albert Einstein

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!