30.10.2014 Views

SAXS and Scatter

SAXS and Scatter

SAXS and Scatter

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TRACK B<br />

<strong>SAXS</strong> AND SCATTER<br />

Robert P. Rambo<br />

Advanced Light Source<br />

Berkeley CA<br />

BL 12.3.1<br />

Thursday, August 1, 13


<strong>SAXS</strong><br />

Small Angle X-ray <strong>Scatter</strong>ing<br />

How does <strong>SAXS</strong> relate to structure?<br />

Source<br />

scattering angle<br />

Sample<br />

log I(q)<br />

∫<br />

I molecule<br />

(q)= p(r)⋅<br />

sin(q ⋅ r)<br />

q ⋅ r<br />

dr<br />

q, Å -1<br />

Set of all distance vectors<br />

within the particle<br />

€<br />

P(r) ~ Pair Distance Distribution Function<br />

Thursday, August 1, 13


<strong>SAXS</strong><br />

Small Angle X-ray <strong>Scatter</strong>ing<br />

What can you derive directly from a single curve?<br />

•Radius-of-gyration, Rg (real <strong>and</strong> reciprocal space)<br />

•Porod exponent, PE<br />

•Volume-of-correlation, Vc<br />

•Particle volume, V<br />

•Surface-to-volume ratio, S/V<br />

•correlation length, lc<br />

•mass<br />

•particle shape<br />

Thursday, August 1, 13


<strong>SAXS</strong> Invariants<br />

(structural parameters derived directly from <strong>SAXS</strong>)<br />

Q, Porod Invariant<br />

Directly related to mean square electron density of particle.<br />

Requires convergence in Kratky plot (q 2 I(q) vs q).<br />

Vp, Porod Volume<br />

Requires Q<br />

lc, correlation length<br />

Q acts as a normalization constant <strong>and</strong> corrects for:<br />

1.concentration<br />

2.instrumentation parameters<br />

3.contrast, (Δρ) 2<br />

Rg, radius-of-gyration<br />

Does not require Q<br />

Concentration independent<br />

Contrast independent (as long as structure does not<br />

change)<br />

Essentially normalized to I(0)<br />

Thursday, August 1, 13


Porod Invariant<br />

Assessing flexibility<br />

G. Porod deduced an integral constant contained within a <strong>SAXS</strong> curve:<br />

Assumption:<br />

1.defined Δρ exists between particle <strong>and</strong> solvent<br />

2.scatterer has homogenous electron density<br />

Integration of data transformed as q 2 • I(q) should be constant<br />

Q = 1<br />

2π 2 ∫ ∞<br />

0<br />

q 2 · I(q) dq<br />

Q =2π 2 · (∆ρ) 2 · V<br />

Q is the direct product of the excess scattering<br />

electrons of the particle <strong>and</strong> Vparticle<br />

Q =2π 2 · c · (∆ρ) 2 · V<br />

Regardless of beamline, source, or wavelength;<br />

Data should have the same constant with the same sample at the same concentration.<br />

Thursday, August 1, 13


Porod Invariant<br />

Assessing flexibility<br />

Q = 1<br />

2π 2 ∫ ∞<br />

0<br />

Kratky Plot<br />

q 2 · I(q) dq<br />

• visualization of Q<br />

• used to interpret samples with flexibility<br />

A plot of q 2 • I(q) vs q should show a curve that captures a<br />

defined area, hence the integral.<br />

Defined area means transformed data converges.<br />

Asymptotic behavior predicted by Debye<br />

equation for a Gaussian r<strong>and</strong>om coil<br />

RNA riboswitch (+/- Mg 2+ )<br />

flexible-unfolded<br />

compact-folded<br />

Defined, captured area<br />

predicted by Q<br />

q, Å<br />

Unfolded particle does not capture a defined area (flexible, unfolded, gaussian chain like)<br />

Folded particle converges at higher q in Kratky plot (folded, compact particle)<br />

Thursday, August 1, 13


Defining a new Invariant<br />

Kratky Plot<br />

flexible-unfolded<br />

compact-folded<br />

q, Å<br />

plot differently<br />

q, Å<br />

Data converges for both<br />

• compact - folded<br />

• flexible - unfolded<br />

7<br />

Thursday, August 1, 13


The Volume-of-Correlation<br />

= =<br />

independent of:<br />

1. contrast<br />

2. concentration<br />

1. substitute for I(q)<br />

lc is the expected correlation length<br />

2. collect like terms<br />

5. collect like terms<br />

3. integrate by parts<br />

∞<br />

4. substitute P(r) = 4π r 2 γ(r)<br />

0<br />

correlation function<br />

Thursday, August 1, 13


Pair-distance Distribution Function<br />

Set of all distances measured within the particle.<br />

∑<br />

= ∑ ∫<br />

r ij =<br />

internal distances<br />

ρ(r) dr<br />

logically this must be Vparticle<br />

p(r) = 0 when r > d max<br />

• defined in real space<br />

•<br />

V particle =<br />

no negative values (R + )<br />

• zero except for defined distances<br />

• expected to be smooth as r → dmax<br />

peak ⇒〈r〉 =<br />

∫<br />

r · ρ(r) dr<br />

∫ dmax<br />

0<br />

ρ(r) =r 2 γ(r)<br />

ρ(r) dr<br />

implies p(r) has units of Å 2<br />

γ(r): correlation function<br />

R g 2 = 1 2 ·<br />

∫<br />

r2 · ρ(r) dr<br />

∫<br />

ρ(r) dr<br />

P(r)<br />

Knowing P(r):<br />

1. Determine Vparticle<br />

2. Rg (real space)<br />

3. Correlation function<br />

r<br />

Thursday, August 1, 13


Correlation Function<br />

Debye <strong>and</strong> Bueche (1947)<br />

Thursday, August 1, 13


Correlation Function<br />

• displace particle by a small distance, ∆r<br />

Debye <strong>and</strong> Bueche (1947)<br />

Thursday, August 1, 13


Correlation Function<br />

• displace particle by a small distance, ∆r<br />

Debye <strong>and</strong> Bueche (1947)<br />

Thursday, August 1, 13


Correlation Function<br />

• displace particle by a small distance, ∆r<br />

• calculate how well the particle correlates with its previous self<br />

Debye <strong>and</strong> Bueche (1947)<br />

Thursday, August 1, 13


Correlation Function<br />

• displace particle by a small distance, ∆r<br />

• calculate how well the particle correlates with its previous self<br />

increase Δr<br />

Debye <strong>and</strong> Bueche (1947)<br />

Thursday, August 1, 13


Correlation Function<br />

• displace particle by a small distance, ∆r<br />

• calculate how well the particle correlates with its previous self<br />

increase Δr<br />

Debye <strong>and</strong> Bueche (1947)<br />

Thursday, August 1, 13


Correlation Function<br />

recalculate<br />

• displace particle by a small distance, ∆r<br />

• calculate how well the particle correlates with its previous self<br />

increase Δr<br />

Debye <strong>and</strong> Bueche (1947)<br />

Thursday, August 1, 13


Correlation Function<br />

recalculate<br />

• displace particle by a small distance, ∆r<br />

• calculate how well the particle correlates with its previous self<br />

increase Δr<br />

Debye <strong>and</strong> Bueche (1947)<br />

Correlation Function<br />

γ(r)<br />

r, Å<br />

Maximum self-correlation occurs at r = 0<br />

Correlation decays to 0 at r > dmax<br />

Thursday, August 1, 13


Correlation Function<br />

recalculate<br />

• displace particle by a small distance, ∆r<br />

• calculate how well the particle correlates with its previous self<br />

increase Δr<br />

Debye <strong>and</strong> Bueche (1947)<br />

Correlation Function<br />

ρ(r) =r 2 γ(r)<br />

Pair-distance Function<br />

γ(r)<br />

P(r)<br />

r, Å<br />

r, Å<br />

Maximum self-correlation occurs at r = 0<br />

Correlation decays to 0 at r > dmax<br />

Thursday, August 1, 13


Correlation Function<br />

recalculate<br />

• displace particle by a small distance, ∆r<br />

• calculate how well the particle correlates with its previous self<br />

increase Δr<br />

Debye <strong>and</strong> Bueche (1947)<br />

Correlation Function<br />

ρ(r) =r 2 γ(r)<br />

Pair-distance Function<br />

γ(r)<br />

P(r)<br />

r, Å<br />

r, Å<br />

Maximum self-correlation occurs at r = 0<br />

Correlation decays to 0 at r > dmax<br />

l c , mean width of γ(r)<br />

l c = l2 ave<br />

l ave<br />

Thursday, August 1, 13


Developed in JAVA 1.6 using:<br />

• Mac 10.6.8 <strong>and</strong> greater (RPR)<br />

• Windows XP <strong>and</strong> LINUX (Ivan R. )<br />

SCÅTTER<br />

Software for <strong>SAXS</strong> Analysis<br />

Free for academic, non-profit, <strong>and</strong> industry!<br />

Specific to <strong>SAXS</strong> <strong>and</strong> biological materials but can be used with SANS data <strong>and</strong> non-biological samples.<br />

Reads in 3 column delimited by /[\s\t]+/ or *.brml (Bruker files)<br />

• if you have problems, remove header or footer or email me at irodic@lbl.gov!<br />

Want users to know they have bad data! (minimal automation)<br />

Available for download at SIBYLS <strong>and</strong> BioIsis:<br />

• http://www.bioisis.net/tutorial<br />

• http://bl1231.als.lbl.gov<br />

try 1 st !<br />

Thursday, August 1, 13


Tutorial links at BIOISIS<br />

Thursday, August 1, 13


SCÅTTER<br />

Software for <strong>SAXS</strong> Analysis<br />

Go to website<br />

start <strong>Scatter</strong><br />

Load data show basics are automatic<br />

Thursday, August 1, 13


Detecting Flexibility<br />

Debye P. Molecular-weight Determination by Light <strong>Scatter</strong>ing (1947) J. of Physical <strong>and</strong> Colloid Chemistry<br />

<strong>Scatter</strong>ing by a Gaussian Coil<br />

I(q) = 2(e−R2 g·q2 + R 2 g · q 2 − 1)<br />

(R 2 g · q 2 ) 2<br />

ASYMPTOTIC CHARACTERISTIC<br />

lim I(q) ·<br />

q→∞ q2 =<br />

2 R 2 g<br />

(<br />

1 − 1<br />

q 2 · R 2 g<br />

)<br />

q 2 · I(q) ≈ K<br />

within a limited q range<br />

where q 2 •Rg 4


Kratky Plot<br />

Qualitative Assessment of flexibility<br />

for q•Rg > 1.3, the scattering decays as 1/q 2<br />

A plot of q 2 •I(q) vs. q<br />

should approach a constant<br />

Data must be collected<br />

to sufficiently high q with<br />

good S-to-N ratio<br />

Thursday, August 1, 13


Porod’s Law<br />

Porod, G. (1951). Kolloid-Z. 124, 83<br />

Fourth Power law (Porod’s Law)<br />

I particle (q) =V ·<br />

∫ dmax<br />

0<br />

ρ(r) ·<br />

sin(q · r)<br />

q · r<br />

dr<br />

ASSUMING:<br />

•compact particle<br />

•discrete en - contrast<br />

S<br />

V<br />

= π · limI(q)<br />

· q4<br />

Q<br />

I(q) =∆ρ 2 V · 1<br />

l · 8π<br />

q 4<br />

I(q) =k ·<br />

1<br />

q 4<br />

q 4 · I(q) =constant<br />

I(q) decays as q -4 scaled by a constant value<br />

q 4 • I(q) becomes constant at high q<br />

k proportional to surface area (V/l)<br />

Thursday, August 1, 13


Power Law Relationship<br />

log vs. log plot<br />

if particle is compact, should see a plateau in q 2 • I(q) vs. q<br />

Porod<br />

q 4 · I(q) =constant<br />

Debye<br />

constant ≈ q 2 · I(q)<br />

if particle is compact, should see a plateau in q 4 • I(q) vs. q <strong>and</strong> q 4 • I(q) vs. q 4<br />

Defines a power law relationship!<br />

I(q) = 1<br />

q P · S′<br />

where 2 ≤ P ≤ 4<br />

lnI(q) =−P · ln(q)+ln(S ′ )<br />

Does this work?<br />

Does a plateau form?<br />

Can it be quantified?<br />

Thursday, August 1, 13


Power Law Relationship<br />

log vs. log plot<br />

if particle is compact, should see a plateau in q 2 • I(q) vs. q<br />

Porod<br />

q 4 · I(q) =constant<br />

Debye<br />

constant ≈ q 2 · I(q)<br />

if particle is compact, should see a plateau in q 4 • I(q) vs. q <strong>and</strong> q 4 • I(q) vs. q 4<br />

Defines a power law relationship!<br />

I(q) = 1<br />

q P · S′<br />

where 2 ≤ P ≤ 4<br />

lnI(q) =−P · ln(q)+ln(S ′ )<br />

Does this work?<br />

Does a plateau form?<br />

Can it be quantified?<br />

Thursday, August 1, 13


SCÅTTER<br />

Software for <strong>SAXS</strong> Analysis<br />

Perform PE Fit:<br />

•HRP (7 kDa)<br />

•GI (173 kDa)<br />

link at BIOISIS<br />

“Characterizing flexible <strong>and</strong> intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law”<br />

Biopolymers 95: 559-571 Rambo, R.P. <strong>and</strong> Tainer, J.A.<br />

Thursday, August 1, 13


Single to Many Particle <strong>Scatter</strong>ing<br />

I macromolecules<br />

(q) = I macromolecule<br />

(q)⋅c⋅ I e ⋅ N l ⋅ P ⋅ d<br />

M ⋅ a 2<br />

substitute constants for k<br />

c - concentration (gm/cm 3 )<br />

I e – 7.9 x 10 -26 (cm 2 )<br />

N L - 6.0223 x 10 23 (mol -1 )<br />

P – total energy over the irradiated area<br />

d - sample thickness (cm)<br />

M – molecular weight (gm • mol -1 )<br />

a – distance to detector (cm)<br />

€<br />

€<br />

I macromolecules<br />

(q) = I macromolecule<br />

(q)⋅c⋅k<br />

rearrange<br />

1<br />

k ⋅ 1 c ⋅ I macromolecules (q) = I macromolecule (q)<br />

divide observed intensities by concentration<br />

extrapolates to single particle<br />

€<br />

I sin gle particle<br />

(q) = k'⋅ 1 c ⋅ I sample (q)<br />

limit as q → 0<br />

I sin gle particle<br />

(0) = (Δρ) 2 ⋅ V 2 = (Δη e<br />

) 2<br />

Allows for the determination of M.W. by either:<br />

1. St<strong>and</strong>ard curve with proteins of known M.W.<br />

• assume particles have same packing density<br />

2. Determination of I(0) on an absolute scale.<br />

• convert signal into number of electrons<br />

Thursday, August 1, 13


<strong>Scatter</strong>ing Contrast<br />

Mass Estimation <strong>and</strong> I(0)<br />

I particle (0) = (∆ρ) 2 V ·<br />

∫ dmax<br />

0<br />

P (r) · 1 dr =(∆ρ) 2 · V 2<br />

In real experiments, Iparticle(0) has to be scaled by concentration, c<br />

I particles (0) = c · I particle (0) = c · (∆ρ) 2 · V 2<br />

Estimated by<br />

Guinier method<br />

I particles (0)<br />

c<br />

divide both sides by c = [particle]<br />

=(∆ρ) 2 · V 2<br />

For a given protein, ratio is a constant at a specific (Δρ) 2<br />

Mass, kDa<br />

I particles (0)<br />

c<br />

=(∆ρ) 2 · V 2 ∝ Mass<br />

This relationship can be used to make a st<strong>and</strong>ard curve to determine:<br />

• mass of either protein, RNA or particles of same composition<br />

• requires accurate knowledge of concentration<br />

I(0)/c<br />

20<br />

Thursday, August 1, 13


<strong>Scatter</strong>ing Contrast<br />

Alternative method for mass determination from I(zero)<br />

• use a single st<strong>and</strong>ard (xylanase)<br />

• do a dilution series (e.g., 2/3rds)<br />

• determine slope<br />

Performed as a 2/3rds dilution series:<br />

Xylanase in Two Different Buffers<br />

52 ul sample<br />

34 ul sample<br />

17 ul buffer<br />

34 ul sample<br />

17 ul buffer<br />

34 ul sample<br />

17 ul buffer<br />

∆I protein (0)<br />

∆c<br />

= m protein ∝ Mass<br />

I(0)<br />

Mass unkn = m unkn<br />

m std<br />

· Mass std<br />

<strong>SAXS</strong> data must be collected in same buffer as sample.<br />

relative concentration<br />

21<br />

Thursday, August 1, 13


Vc: A Novel SAS Ratio<br />

“Accurate Assessment of Mass, Models <strong>and</strong> Resolution by SAS” Nature, 496, 477-481 Rambo, R.P. <strong>and</strong> Tainer, J.A.<br />

Vc<br />

MD simulation of SAM-1<br />

• 8 different protein <strong>and</strong> RNA samples<br />

• 4 to 7 different concentrations<br />

67% variance is contained within 2% mean<br />

Vc sensitive to conformational state like Rg<br />

CONCENTRATION INDEPENDENCE!<br />

22<br />

Thursday, August 1, 13


Direct Mass Determination<br />

the power law distribution<br />

9446 PDB entries range from 8 to 400 kDa (protein only)<br />

• QR scales with mass, linear via power-law distribution.<br />

• Using actual data, 9% mass error with previously frozen samples.<br />

• Linear relationship covers a large mass range 20 to 1,000 kDa.<br />

• Effective for RNA samples 5% error.<br />

Simulated <strong>SAXS</strong><br />

Use to infer mixtures:<br />

...expect 26 kDa <strong>and</strong> get 40 kDa<br />

• monomer ↔ dimer?<br />

Protein<br />

taken from BioIsis.net<br />

purified via SEC-MALS<br />

RNA<br />

purified via SEC-MALS<br />

23<br />

Experimental <strong>SAXS</strong><br />

Thursday, August 1, 13


SCÅTTER<br />

Software for <strong>SAXS</strong> Analysis<br />

Perform MW<br />

•HRP (7 kDa)<br />

•preQ1 (25 kDa)<br />

link at BIOISIS<br />

“Characterizing flexible <strong>and</strong> intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law”<br />

Biopolymers 95: 559-571 Rambo, R.P. <strong>and</strong> Tainer, J.A.<br />

Thursday, August 1, 13


Distance Distribution Function<br />

2° Structure Molecular Envelope Distance Distribution P(r) Function<br />

p(r)<br />

r, Ǻ<br />

Goal is to recover<br />

(decode) signal<br />

b<strong>and</strong>-limited function (signal)<br />

I particle (q) =V ·<br />

∫ dmax<br />

0<br />

ρ(r) ·<br />

sin(q · r)<br />

q · r<br />

dr<br />

Properties of P(r)<br />

P(-r) = - P(r) thus P(r) is an “odd” function i.e., f(x) = x 3 , sin(x),...<br />

Defined on 0 < r < dmax<br />

How do we calculate P(r) from I(q) data?<br />

Thursday, August 1, 13


Indirect Fourier Transform<br />

A measured <strong>SAXS</strong> curve determines a unique P(r)-distribution.<br />

A P(r) distribution (from a model) can be used to determine a scattering curve.<br />

GNOM (Svergun)<br />

• guess at the distribution<br />

• uses L2 regularization<br />

GIFT (Glatter’s method)<br />

• uses cubic splines<br />

Expect a smooth curve<br />

Minimal oscillations<br />

No negative values<br />

Iterative process in determining dmax<br />

Moore’s Method<br />

• uses Fourier sine series<br />

• true propagation of I(q)<br />

uncertainties<br />

My Method<br />

• use Shannon theorem<br />

Implemented in <strong>Scatter</strong><br />

Developing L1 regularization<br />

26<br />

Thursday, August 1, 13


Information Content<br />

Using Shannon Sampling theorem, P. Moore determined the number<br />

of independent parameters that can be extracted from a single <strong>SAXS</strong><br />

curve.<br />

N<br />

I(q) = 8π ⋅ a n<br />

⋅ 1 q ⋅ π ⋅ n ⋅ d max<br />

(−1) n +1 N<br />

⎡⎡<br />

⋅ sin(d max<br />

⋅ q) ⎤⎤<br />

⎛⎛<br />

∑ ⎢⎢<br />

⎥⎥<br />

p(r) = 8π ⋅ r ∑ a n<br />

⋅ sin π ⋅ r ⋅ n ⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎣⎣ (π ⋅ n) 2 − (d max<br />

⋅ q) 2<br />

⎦⎦<br />

n=1 ⎝⎝ d max ⎠⎠<br />

Moore, P.B. J. Appl. Cryst. (1980). 13, 168-175<br />

n=1<br />

How large should N be?<br />

Represent <strong>SAXS</strong> data using a Fourier sine series<br />

€<br />

Consider the denominator…<br />

(π ⋅ n) 2 −(d max<br />

⋅ q) 2 ⇒ (π ⋅ n) 2 ≠(d max<br />

⋅ q) 2<br />

q max d max<br />

n<br />

0.32 71 7<br />

The inequality naturally limits the expansion.<br />

Notice, increasing d max naturally increases n (same for q max )<br />

0.32<br />

240<br />

25<br />

Noisy coding channel theorem<br />

Recovery of <strong>SAXS</strong> signal is largely independent of noise<br />

Δq<br />

xylanase (dmax: 43) <strong>and</strong> S-to-N: 0.9 C = 0.068 bits per Å -1<br />

Δq at SIBYLS ~ 0.006


I/σ 1.06<br />

I/σ 3.3<br />

Recover identical P(r)<br />

distributions (overlay)<br />

Dependence on how the recovery (decoding) is achieved!<br />

i.e., GNOM, SCATTER, FOXS, CRYSOL<br />

28<br />

Thursday, August 1, 13


SCÅTTER<br />

Software for <strong>SAXS</strong> Analysis<br />

link at BIOISIS<br />

Thursday, August 1, 13


Dimensionless Kratky<br />

scale free analysis<br />

Receveur-Brechot V, Dur<strong>and</strong> D. How r<strong>and</strong>om are intrinsically disordered proteins? A small angle scattering perspective.<br />

Curr Protein Pept Sci. 2012 Feb;13(1):55-75.<br />

Dur<strong>and</strong> D, et al. J Struct Biol. 2010 Jan;169(1):45-53.<br />

Multiply I(q) by (q•Rg) 2 <strong>and</strong> divide by I(0)<br />

I(q) is scaled by c <strong>and</strong> V<br />

I macromolecules<br />

(q) = I macromolecule<br />

(q)⋅c⋅ k<br />

€<br />

Divide by I(0)<br />

I particles (0) = c · I particle (0) = c · (∆ρ) 2 · V 2<br />

I(q) is independent of concentration <strong>and</strong><br />

normalized to V<br />

q, Å<br />

Still have units of Å -2 , multiply by Rg 2<br />

What does it all mean?<br />

Use Guinier approximation to get some insights...<br />

30<br />

Thursday, August 1, 13


Dimensionless Kratky<br />

Guinier approximation relates scattering to Rg<br />

Derivation shows all particles that can be<br />

approximated by Guinier relation should have a<br />

peak value occurring at: q•Rg = 1.732<br />

peak value of 3•e -1 = 1.104<br />

Really about particles that can be<br />

approximated by the same correlation function<br />

such as:<br />

31<br />

Thursday, August 1, 13


Dimensionless Kratky<br />

only a button away<br />

unfolded-flexible<br />

RAD51-AP1<br />

1.104<br />

SAM riboswitch (-Mg 2+ )<br />

xylanase<br />

(21 kDa)<br />

MBP-RAD51-AP1<br />

SAM Riboswitch (-SAM)<br />

SAM Riboswitch (+SAM)<br />

folded-compact<br />

√3<br />

glucose isomerase (173 kDa)<br />

Flexible, unfolded bounded: 1.104 < peak < 2 (Debye equation Gaussian chain)<br />

32<br />

Thursday, August 1, 13


Dimensionless Kratky<br />

using Volume-of-Correlation<br />

q 2 ⨯Vc I(q)/I(0)<br />

glucose isomerase (173 kDa)<br />

xylanase (21 kDa)<br />

SAM Riboswitch (+SAM)<br />

SAM Riboswitch (-SAM)<br />

SAM riboswitch (-Mg 2+ )<br />

similar shapes but not exactly.<br />

GI is more spherical than XY<br />

MBP-RAD51-AP1<br />

RAD51-AP1<br />

Thursday, August 1, 13<br />

q 2 ⨯Vc<br />

Peak is inversely proportional to S-to-V ratio<br />

Max value is 0.82 (sphere)<br />

For a fixed molecule, any decrease suggests increase in surface area<br />

Illustrate differences better than previous (see SAM)<br />

Fully unfolded particle should have largest S-to-V ratio (low on graph)<br />

(Presented in our <strong>SAXS</strong> database paper in 2013)<br />

33


SCÅTTER<br />

Software for <strong>SAXS</strong> Analysis<br />

Perform DK<br />

•HRP (7 kDa)<br />

•preQ1 (25 kDa)<br />

link at BIOISIS<br />

Thursday, August 1, 13


References<br />

“Super-Resolution in <strong>SAXS</strong> <strong>and</strong> its application to Structural Systems Biology”<br />

Annual Review of Biophysics, Volume 42, 415-441 Rambo, R.P. <strong>and</strong> Tainer, J.A.<br />

“Accurate Assessment of Mass, Models <strong>and</strong> Resolution by SAS”<br />

Nature, 496, 477-481 Rambo, R.P. <strong>and</strong> Tainer, J.A.<br />

“Small-Angle <strong>Scatter</strong>ing for Structural Biology — exp<strong>and</strong>ing the frontier while<br />

avoiding the pitfalls.”<br />

Protein Sci. 2010 19(4):642-57. Jacques DA, Trewhella J.<br />

“Small Angle X-ray <strong>Scatter</strong>ing”<br />

Book circa 1982 Glatter O. <strong>and</strong> Kratky O. (very technical, freely available online)<br />

“Structure Analysis by Small-angle X-ray <strong>and</strong> Neutron <strong>Scatter</strong>ing”<br />

Book circa 1987 Fiegin LA. <strong>and</strong> Svergun DI. (very technical, freely available online)<br />

35<br />

Thursday, August 1, 13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!