02.11.2012 Views

Fantastic properties of Microbubbles

Fantastic properties of Microbubbles

Fantastic properties of Microbubbles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fantastic</strong> <strong>properties</strong><br />

<strong>of</strong> <strong>Microbubbles</strong><br />

AIST Dr.Masayoshi Takahashi<br />

1


Contents <strong>of</strong> the presentation<br />

・ Fundamental <strong>properties</strong> <strong>of</strong> microbubble<br />

・ Gas hydrate formation<br />

・ Water remediation<br />

・ Waste water treatment<br />

2


Goes up<br />

rapidly<br />

Burst at the surface<br />

Ordinary bubble<br />

(Macrobubble)<br />

---- What is microbubble ? ----<br />

Disappear<br />

(Completely dissolved)<br />

Shrinking<br />

Microbubble<br />

< 50μm<br />

Microbubble<br />

(0.05mm) 7


Dissolved gas type<br />

High<br />

pressure<br />

Release<br />

How to make microbubbles (Examples)<br />

Gas<br />

Microbubble<br />

Hydrodynamic Type<br />

Water & Gas<br />

Nozzle<br />

Circulating flow<br />

Microbubble<br />

8


Hydrodynamic type ( High density type )<br />

distilled water<br />

9


Dissolved gas type<br />

A B<br />

C D


Number(/mL)<br />

Bubble-size distribution ( High density type )<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

10 20 30 40 50 60<br />

Diameter(μm)<br />

-- Distilled water -- 10<br />

( by a liquid particle counter )


In Distilled water<br />

Rising speed (μm/s)<br />

1000<br />

100<br />

23℃<br />

Rising speed <strong>of</strong> microbubbles<br />

10 100<br />

Bubble diameter (μm)<br />

measured<br />

Stokes’ law<br />

Microbubble (10μm) ---- about 4 mm/min<br />

11


Bubble diameter (μm)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Collapsing process <strong>of</strong> microbubble<br />

Disappear<br />

0<br />

0 20 40 60<br />

Time (sec)<br />

80 100 120<br />

Shrinking<br />

12


Fundamental <strong>properties</strong> <strong>of</strong> microbubble<br />

for practical application<br />

1. Increase in interior gas pressure<br />

Pressure<br />

2. Increase in ion concentration<br />

around the gas-water interface<br />

Ions<br />

13


1. Increase in interior gas pressure<br />

Water<br />

Gas<br />

P<br />

P+ΔP<br />

r<br />

Surface tension<br />

Young-Laplace equation<br />

ΔP = 2σ/ r<br />

14


Bubble diameter (μm)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Increase in interior gas pressure<br />

Shrinking over time<br />

Very high pressure<br />

( infinite )<br />

shrinking collapse<br />

0<br />

0 20 40 60<br />

Time (sec)<br />

80 100 120<br />

Diameter ΔP<br />

μm atm<br />

10 0.3<br />

1 3<br />

0.1 30<br />

0 ∞<br />

15


Gas hydrate formation<br />

Gas hydrate = Ice-like material ( with gas molecule )<br />

--- Low temperature / High pressure ---<br />

Normal bubble<br />

( Conventional )<br />

Xe Gas<br />

Comparison<br />

Microbubble<br />

16


Temperature = 3 ºC / 1 Atm.<br />

17


Temperature = 1.1 ºC / 1 Atm.<br />

18


1<br />

Pressure (MPa)<br />

0.1<br />

Hydrate region<br />

Normal bubble<br />

Microbubble<br />

Equilibrium<br />

(Xe Hydrate (1% THF)<br />

-2 0 2 4 Temperature ( ˚C ) 25<br />

Water & Gas<br />

region<br />

Pressure – Temperature diagram <strong>of</strong> Xe hydrate<br />

19


Pressure<br />

Hydrate region<br />

Micro-bubble &<br />

the surrounding area<br />

. C<br />

. B<br />

A<br />

.<br />

Metastable<br />

region<br />

Water & Gas<br />

region<br />

Equilibrium line<br />

Supercooling limit<br />

Temperature<br />

C<br />

B<br />

A<br />

Nucleation<br />

Micro-bubble<br />

20


5m<br />

Remediation <strong>of</strong> water environmental by microbubble<br />

1m<br />

Water surface<br />

Bottom<br />

<strong>Microbubbles</strong><br />

Transparency: < 2m > 5m<br />

DO: 0 >2mg/L (at the bottom)<br />

Oxygen<br />

Light<br />

aerobic microbes<br />

21


Environmental remediation<br />

Shio-Ashiya Port (Osaka bay area, Japan)<br />

22


Microbubble generator for this test<br />

Power :1.5 kW Water flow : 400L/min. Air supply : 10L/min.<br />

23


The microbubble generator under sea<br />

about 4m from the surface (1m from the bottom)<br />

24


Photograph <strong>of</strong> the test site<br />

Microbubble generator<br />

(about 4m from the surface)<br />

The stream <strong>of</strong> microbubbles looks like white smoke<br />

25


Before and after the microbubble treatment<br />

Before / The world <strong>of</strong> death<br />

(with flash light)<br />

At the bottom <strong>of</strong> the sea (-5m)<br />

Ascidians<br />

After about 3 months<br />

( without flash light)<br />

A starfish A sea anemone<br />

26


Fundamental <strong>properties</strong> <strong>of</strong> microbubble<br />

for practical application<br />

1. Increase in interior gas pressure<br />

Pressure<br />

2. Increase in ion concentration<br />

around the gas-water interface<br />

・Generation <strong>of</strong> free-radicals<br />

・Generation <strong>of</strong> Nano-bubble<br />

Ions<br />

27


Electrical property <strong>of</strong> microbubble<br />

- +<br />

Electrophoresis cell<br />

ζ potential<br />

Smoluchowski’s equation<br />

ζ=ημ/ε<br />

μ: the mobility (m 2 s -1 V -1 )<br />

ε: the dielectric constant (JV -2 cm -1 )<br />

η: the viscosity <strong>of</strong> water (gcm -1 s -1 )<br />

Surface electricity<br />

Electrical double layers<br />

ψ0<br />

ζ potential<br />

Counter ions<br />

Slipping plane<br />

28


Movement <strong>of</strong> microbubbles in electrophoresis cell<br />

Electrode<br />

Light Electrode<br />

( + ↔−) (−↔+)<br />

Electrophoresis cell<br />

Microscope<br />

Water + microbubble<br />

29


ζ potential( mV )<br />

ζ potential <strong>of</strong> microbubble in distilled water<br />

-60<br />

-50<br />

-40<br />

-30<br />

-20<br />

-10<br />

0<br />

10 20 30 40 50 60<br />

Bubble diameter (μm)<br />

30


The relationship between ζ potential and pH <strong>of</strong> the water<br />

ζ potential (mV)<br />

-140<br />

-120<br />

-100<br />

-80<br />

-60<br />

-40<br />

-20<br />

+20<br />

+40<br />

0<br />

2 4 6 8 10 12<br />

pH<br />

( adjustment by NaOH and NaCl )<br />

31


Na +<br />

OH -<br />

-<br />

OH<br />

Mechanism <strong>of</strong> bubble electricity<br />

The surface electricity must be caused by<br />

the adsorbed ions at the interface.<br />

H +<br />

OH -<br />

H +<br />

OH -<br />

H +<br />

OH -<br />

OH -<br />

H +<br />

Microbubble<br />

Gas<br />

H +<br />

OH -<br />

OH -<br />

H +<br />

Mg 2+<br />

OH -<br />

Water<br />

Cl<br />

- +<br />

OH and H are adsorbed at the interface<br />

because <strong>of</strong> a structural reason <strong>of</strong> water<br />

32


Change in ζpotential <strong>of</strong> microbubble during collapsing process<br />

ζ-potential ( mV )<br />

-80<br />

-70<br />

-60<br />

-50<br />

-40<br />

-30<br />

-20<br />

-10<br />

0<br />

Condensation<br />

<strong>of</strong> accumulated ions<br />

Time<br />

0 5 10 15 20 25 30<br />

Bubble diameter (μm)<br />

33


+<br />

Water<br />

+<br />

Free-radical generation by collapsing microbubble<br />

Microbubble<br />

+ +<br />

+ -<br />

-<br />

- -<br />

+ - -<br />

+ +<br />

-<br />

+<br />

+<br />

+<br />

- +<br />

- - +<br />

+<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Accumulated ions<br />

Bubble<br />

→ collapsing<br />

Time<br />

Extinction<br />

<strong>of</strong> microbubble<br />

Cloud <strong>of</strong> ions<br />

→ Condensation<br />

Free-radicals<br />

34


Fundamental <strong>properties</strong> <strong>of</strong> microbubble<br />

for practical application<br />

1. Increase in interior gas pressure<br />

2. Increase in ion concentration<br />

around the gas-water interface<br />

・Generation <strong>of</strong> free-radicals<br />

・Generation <strong>of</strong> Nano-bubble 35


・OH<br />

Measurement <strong>of</strong> free-radicals by ESR<br />

Spin-trap reagent<br />

DMPO<br />

(5,5-dimethyl-1-pyrroline-N-oxide)<br />

・OH<br />

transient<br />

・OH<br />

DMPO-OH<br />

DMPO<br />

DMPO-OH<br />

stabile<br />

Sampling<br />

DMPO-OH<br />

ESR<br />

(Electron Spin Resonance)<br />

ESR spectrum<br />

36


Free-radical generation during collapsing process <strong>of</strong> microbubble<br />

A B<br />

C D<br />

37


Experimental setup <strong>of</strong> radical generation<br />

Water pump<br />

Dissolution<br />

tank<br />

Air<br />

Water<br />

Water tank<br />

Water + microbubbles<br />

Glass<br />

container<br />

DMPO<br />

( spin-trap<br />

reagent )<br />

38<br />

ESR<br />

(Electron Spin Resonance)


ESR spectrum<br />

DMPO-R<br />

1mT<br />

Indicating the generation <strong>of</strong> alkyl radical<br />

39


Experimental setup <strong>of</strong> radical generation<br />

Water pump<br />

Dissolution<br />

tank<br />

Air<br />

Water<br />

Water tank<br />

Water + microbubbles<br />

Glass<br />

container<br />

DMPO<br />

+ Acid<br />

(HCl)<br />

40<br />

ESR<br />

(Electron Spin Resonance)


ESR spectrum<br />

1mT<br />

DMPO-OH<br />

Indicating the generation <strong>of</strong> ·OH (Hydroxyl radical)<br />

41


Experimental setup <strong>of</strong> phenol degradation<br />

Water pump<br />

Dissolution<br />

tank<br />

Air<br />

Water<br />

Continuous operation<br />

Cooling unit<br />

Phenol<br />

with / without Acid<br />

HPLC<br />

42


Degradation <strong>of</strong> phenol by collapsing air microbubble<br />

Concentration (mM)<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

without acids<br />

with nitric acid<br />

0 30 60 90 120 150 180<br />

Time (min)<br />

43


Ozone<br />

Ozone<br />

The results <strong>of</strong> ESR test <strong>of</strong> ozone microbubble<br />

Macrobubble<br />

Microbubble<br />

microbubbles<br />

ESR/<br />

DMPO<br />

ESR/<br />

DMPO<br />

・OH (hydroxyl radicals)<br />

44


Experimental setup <strong>of</strong> PVA degradation<br />

Water pump<br />

Dissolution<br />

tank<br />

Water<br />

Ozone<br />

Continuous operation<br />

Cooling unit<br />

PVA (Polyvinyl alcohol)<br />

with Acid<br />

TOC<br />

45


Degradation <strong>of</strong> PVA by ozone microbubble<br />

TOC (mg/L)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

Ozone macrobubbles<br />

Ozone microbubbles<br />

Time (min)<br />

+H2O2<br />

0 20 40 60 80 100 120<br />

46


Practical application <strong>of</strong> collapsing microbubble<br />

Food industry (fishery product) :<br />

(200~300t/day)<br />

COD : 2500~2800mg/L ・OH COD : 800mg/L HEM : tr.<br />

sludge : < 10 t / year<br />

N-Hexane Extractable Material<br />

waste water treatment<br />

Microbubble<br />

Collapsing<br />

( ozone )<br />

Collapse <strong>of</strong> ozone microbubble<br />

・OH<br />

・OH<br />

47


A phenol factory<br />

To treat waste water from chemical factory<br />

Content Waste water<br />

Phenol 0.32 %<br />

Formalin 0.56 %<br />

Methanol 1.90 %<br />

Acetone 0.08 %<br />

n-butanol 0.03 %<br />

nonvolatile 1.70 %<br />

Not easy to treat by conventional methods<br />

Collapse <strong>of</strong> ozone microbubble<br />

48


Treatment <strong>of</strong> waste water from phenol factory<br />

Froth<br />

49


Development <strong>of</strong> new system to collapse microbubbles<br />

Previous system<br />

water<br />

Gas / ozone<br />

Microbubble<br />

generator<br />

New system<br />

Collapsing microbubble<br />

intentionally<br />

Microbubble<br />

generator<br />

50


Introduction <strong>of</strong> new collapsing system<br />

51


COD(mg/L)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Result <strong>of</strong> the test <strong>of</strong> microbubble treatment<br />

0 4 8<br />

Time (hour)<br />

12 16<br />

52


Summary<br />

Microbubble<br />

-- Increase in the interior gas pressure<br />

-- Increase in the ion concentration<br />

around the gas-water interface<br />

→ Gas hydrate formation<br />

→ Environmental remediation<br />

Collapse <strong>of</strong> microbubble<br />

-- Free-radical generation<br />

-- Generation <strong>of</strong> Nano-bubble<br />

→ Waist water treatment<br />

53


References<br />

1) Takahashi, M. et al. Effect <strong>of</strong> shrinking microbubble on gas<br />

hydrate formation. J. Phys. Chem. B 107, 2171-2173(2003)<br />

2) Takahashi, M. ζ potential <strong>of</strong> microbubbles in aqueous<br />

solutions: electrical <strong>properties</strong> <strong>of</strong> the gas–water interface. J. Phys.<br />

Chem. B 109, 21858-21864(2005)<br />

3) Takahashi, M. Chiba, K. and Li, P. Free-radical generation<br />

from collapsing microbubbles in the absence <strong>of</strong> a dynamic<br />

stimulus. J. Phys. Chem. B 111, 1343-1347(2007)<br />

4) Takahashi, M. Chiba, K. and Li, P. Formation <strong>of</strong> Hydroxyl<br />

Radicals by Collapsing Ozone <strong>Microbubbles</strong> under Strong Acid<br />

Conditions. J. Phys. Chem. B 111, 11443-11446(2007)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!