31.10.2014 Views

Ernst Scholtz - E2RG

Ernst Scholtz - E2RG

Ernst Scholtz - E2RG

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Drs. <strong>Ernst</strong> <strong>Scholtz</strong>, Britta Buchholz, Alex Oudalov, US DOE Microgrid WS, 7/30/2012, Chicago<br />

European Microgrids<br />

Experiences and Outlook<br />

© ABB Group<br />

July 30, 2012 | Slide 1


Agenda<br />

• Drivers<br />

• Select Pilots<br />

• Settlement „Am Steinweg“ in Stutensee, Germany<br />

• „Mannheim-Wallstadt“ Pilot, Germany<br />

• „InovGrid“ Pilot in Evora, Portugal<br />

• „Azores“ Islands<br />

• Finland’s SGEM “Hailuoto” Microgrid<br />

• Outlook<br />

© ABB Group<br />

July 30, 2012 | Slide 2


Microgrids in Europe<br />

Drivers<br />

• Environment: Reducing environmental footprint by<br />

integrating variable output renewable energy sources<br />

• Economics: Reduction of running cost especially for the<br />

remote island diesel-based systems.<br />

• Security of Supply: Increased reliability and resilience,<br />

capability to survive natural disasters<br />

• Technology: increased uptake of modern ICT, contrallable<br />

hardware (e.g. power-electronic enabled devices) all of<br />

which enables advanced protection and management<br />

Some of the drivers also mentioned for Smart Grids<br />

•© ABB Group<br />

•July 30, 2012 | Slide 3


German „Energiewende“<br />

Renewables needed to match political goals<br />

Power (GW)<br />

colors:<br />

reference<br />

scenario<br />

white:<br />

estimated<br />

Additional<br />

capacity if<br />

Difference is<br />

covered with<br />

local<br />

renewables<br />

Leistung (GW)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2010 2020 2030 2040 2050<br />

Jahr Year<br />

Additional renewables<br />

Erhöhung for energy auf concept Energiekonzept<br />

andere Other Brennstoffe fuels<br />

Geothermie Geothermal energy<br />

Photovoltaik Photovoltaic<br />

Biomasse<br />

Wind Wind offshore<br />

Wind Wind onshore<br />

Lauf- Hydropower und Speicherwasser<br />

Peak load 2010<br />

Minimum load 2010<br />

No nuclear<br />

Source: VDE-ETG<br />

© ABB Group<br />

July 30, 2012 | Slide 4


Microgrid landscaping<br />

Market segments<br />

Military<br />

Commercial &<br />

Industrial<br />

Institutional &<br />

Campus<br />

Alternative classification<br />

(size):<br />

• Facility/building (e.g.<br />

hospitals, schools, lack of<br />

a cost advantage over DG<br />

limits market penetration)<br />

20<br />

MW<br />

Type of<br />

pilots that<br />

will be<br />

discussed<br />

© ABB Group<br />

July 30, 2012 | Slide 5<br />

Community &<br />

Utility<br />

Remote off-grid<br />

Alternative classification<br />

(ownership):<br />

• Customer-generator<br />

model: Single owner<br />

selling to other co-locators<br />

• Landlord model: Landlord<br />

providing power to tenants<br />

under contractual<br />

agreement<br />

• Co-op model: Multiple<br />

owners serving their own<br />

needs<br />

• Utility model


Settlement „Am Steinweg“ in Stutensee, Germany<br />

Pilot installation with 400 residential customers<br />

Start: 2002<br />

Pilot profile<br />

DG capacity el. 69kWp<br />

Technology:<br />

Photovoltaic<br />

CHP<br />

Battery<br />

Tasks:<br />

Energy management for economic<br />

operation of DG components with<br />

“PoMS”<br />

Capability of zero electricity flow at<br />

transformer connecting ~100<br />

apartments to grid<br />

© ABB Group<br />

July 30, 2012 | Slide 6


Settlement „Am Steinweg“ in Stutensee, Germany<br />

Virtual islanding demonstration<br />

150 kW<br />

Upstream<br />

power taken<br />

Growing load<br />

100 kW<br />

Local<br />

resources<br />

limited<br />

50 kW<br />

0 kW<br />

CHP<br />

-50 kW<br />

Battery<br />

-100 kW<br />

PV-Anlage Last Trafo BHKW Batterie<br />

© ABB Group<br />

July 30, 2012 | Slide 7


„More MicroGrids“ (2006-2009)<br />

Demonstration sites<br />

OESTKRAFT<br />

© ABB Group<br />

July 30, 2012 | Slide 8<br />

Source: ARMINES


„Mannheim-Wallstadt“ Pilot, Germany<br />

Residential area with 1,200 customers<br />

Source:<br />

MVV Energie<br />

Start: 2006<br />

Pilot profile<br />

DG capacity el. 35 kWp<br />

Technology:<br />

PV, CHP, Batteries<br />

DR on water pumps, air conditioner<br />

Tasks:<br />

Prepare for microgrid operation<br />

Test communication between loads<br />

and generators<br />

Demo transition from grid<br />

connection to islanding mode<br />

Illustrated the functioning of a multiagent<br />

control system from NTUA<br />

© ABB Group<br />

July 30, 2012 | Slide 9


Mannheim-Wallstadt Pilot, Germany<br />

Low voltage grid segment<br />

Source:<br />

MVV Energie<br />

© ABB Group<br />

July 30, 2012 | Slide 10


Mannheim-Wallstadt Pilot, Germany<br />

Communication set-up<br />

Source:<br />

MVV Energie<br />

© ABB Group<br />

July 30, 2012 | Slide 11


Mannheim-Wallstadt Pilot, Germany<br />

Proof of functionality of multi agent system<br />

Source:<br />

NTUA<br />

© ABB Group<br />

July 30, 2012 | Slide 12


„Mannheim-Wallstadt“ Pilot, Germany<br />

Transition between grid connected and islanding mode<br />

Islanded<br />

~4pm<br />

~11am<br />

Source:<br />

MVV Energie<br />

© ABB Group<br />

July 30, 2012 | Slide 13


„Mannheim-Wallstadt“ Pilot, Germany<br />

Transition between grid connected and islanding mode<br />

Islanded<br />

~4pm<br />

~11am<br />

Source:<br />

MVV Energie<br />

© ABB Group<br />

July 30, 2012 | Slide 14


„Mannheim-Wallstadt“ Pilot, Germany<br />

Lessons learned<br />

• Consider formal procedure to move from<br />

laboratory to going life<br />

• Regulatory framework in Germany<br />

creates additional challenges for the<br />

integration of distributed generation<br />

• Social acceptance by real prosumers<br />

requires more efforts than expected<br />

• Kinderhaus is a very good starting point<br />

for awareness building!<br />

Follow-up: „Model city Mannheim“<br />

The MoreMicrogrids project created major<br />

know-how for the development and road<br />

map of an active distribution network in<br />

Mannheim<br />

Source:<br />

MVV Energie<br />

Visualization of electricity generation from PV<br />

at the Kinderhaus<br />

© ABB Group<br />

July 30, 2012 | Slide 15


„InovGrid“ Pilot in Evora, Portugal<br />

City with 33,000 customers<br />

Start: 2007<br />

Technology:<br />

• 700 x 1 kW microgen units,<br />

• Loads include EVs<br />

Task and results:<br />

• Conceive SmartGrid<br />

infrastructure „ready for<br />

microgrid“<br />

http://ww<br />

w.inovcity.<br />

pt/en/Pag<br />

es/homep<br />

age.aspx<br />

© ABB Group<br />

July 30, 2012 | Slide 16<br />

• Smart metering for<br />

consumers/prosumers and<br />

microgeneration<br />

• Establish advanced<br />

microgrid at INESC Porto<br />

laboratory for testing<br />

synchronization of two<br />

microgrids


„InovGrid“ Pilot in Evora, Portugal<br />

System architecture<br />

© ABB Group<br />

July 30, 2012 | Slide 17


„InovGrid“ Pilot in Evora, Portugal<br />

Current activities<br />

© ABB Group<br />

July 30, 2012 | Slide 18


„Azores“ Islands<br />

PowerCorp* installation<br />

• 9 Islands with own power systems<br />

• Generation Sources:<br />

• Diesel (9); Small Hydro (12); Wind (8);<br />

Geothermal (2)<br />

• MicroGrid Pilots:<br />

• Flores, 2005, 2MWp<br />

• Graciosa, 2006, 2.2MWp<br />

• Objectives:<br />

• Allow increase on wind energy<br />

production driven by installed excess<br />

wind capacity<br />

• Improve the use of the Diesel engines<br />

(smaller spinning reserve)<br />

• Increase grid stability<br />

© ABB Group<br />

July 30, 2012 | Slide 19<br />

* PowerCorp acquired by ABB in 2012 Source: EDA Presentation to EU, April 2012


„Azores“ Islands<br />

Solution and results<br />

•© ABB Group<br />

•July 30, 2012 | Slide 20<br />

Source: EDA Presentation to EU, April 2012<br />

• Monitoring and Control system<br />

incorporating sources, loads and flywheel<br />

• Droop control to manage frequency<br />

• Coordinated control and remote access<br />

to diesel gens allowed for reduction of<br />

spinning reserves


PowerCorp Microgrids<br />

Other experience and references<br />

1990 1998 2001 2007 2010<br />

Napperby<br />

Northern Territory<br />

Denham<br />

Western Australia<br />

Mawson<br />

Antarctica<br />

Coral Bay<br />

Western Australia<br />

Marble Bar &<br />

Nullagine Western<br />

Australia<br />

Automation of<br />

Diesel Power<br />

Station<br />

(Battery System)<br />

Wind/Diesel<br />

Wind/Grid<br />

Stabilising<br />

Wind/Diesel/<br />

Flywheel<br />

Solar/Diesel/<br />

Flywheel<br />

0%<br />

Renewables<br />

Power Penetration<br />

15%<br />

Renewables<br />

Power Penetration<br />

85%<br />

Renewables<br />

Power Penetration<br />

95%<br />

Renewables<br />

Power Penetration<br />

100%<br />

Renewables<br />

Power Penetration<br />

Renewables Power Penetration is the peak power penetration from<br />

renewables as percentage of total power generated at certain stages


Finland’s SGEM “Hailuoto” Microgrid<br />

Introduction<br />

Utility grid<br />

Hailuoto Island<br />

Viinikantie<br />

Potti<br />

Load<br />

• Start 2010<br />

• SGEM – Consoritum of Finnish<br />

companies (ABB, Nokia, ...)<br />

SCADA<br />

COM 600<br />

Load<br />

Huikku<br />

Gen<br />

• Develop and demonstrate for<br />

evolving distribution grids:<br />

• active grid management<br />

• adaptive protection<br />

by instantiating needed modules<br />

on a substation computer<br />

• Area to be Islanded<br />

• One diesel generator 1.4 MW<br />

(directly connected<br />

synchronous generator)<br />

• One wind turbine 500 kW<br />

•© ABB Group<br />

•July 30, 2012 | Slide 22


Finland’s SGEM “Hailuoto” Microgrid<br />

Active protection concept to be demonstrated<br />

1 2 1 2 3<br />

Load<br />

Load<br />

1 2<br />

SG<br />

Given topology, trusted setting groups are used.<br />

If topology is to change we should switch to more appropriate settings groups


Finland’s SGEM “Hailuoto” Microgrid<br />

Active protection concept to be demonstrated<br />

ActSG=2 ActSG=1<br />

ActSG=2 ActSG=1<br />

ActSG=1<br />

1 2<br />

Load<br />

1 2 3<br />

Load<br />

1 2<br />

SG<br />

1. Data (CB status) are transmitted from the end devices using unsolicited messages as conditions change.<br />

The central controller also polls each end device periodically to ensure that the end device is still healthy.<br />

2. The central controller analyzes the network state and if necessary adapts protection settings to fit the<br />

new network configuration<br />

3. The central controller sends control messages (to switch settings) to the field devices


Microgrids in Europe<br />

Take away points<br />

• Not all EU Microgrid pilots were mentioned here (e.g. Bornholm, DK)<br />

• Some classes (e.g. remote islands) of Microgrids already a business,<br />

for others (e.g. utility) business cases and technology still evolving<br />

• Continuing experiments with Microgrids and SmartGrids in EU,<br />

focusing on renewables, active demand and electrical vehicles<br />

• Demonstrations are increasing in size after first round of successful<br />

demonstrations such as „Mannheim-Wallstadt“ Pilot<br />

• How should larger demonstrations be treated? All as one Microgrid<br />

or as interconnected Microgrids?<br />

• For more complex Microgrids, approaches from T&D grids needed?<br />

•© ABB Group<br />

•July 30, 2012 | Slide 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!