31.10.2014 Views

T.S 550 Sub-Atmospheric Module - Turbo & Jet Engine Research ...

T.S 550 Sub-Atmospheric Module - Turbo & Jet Engine Research ...

T.S 550 Sub-Atmospheric Module - Turbo & Jet Engine Research ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM<br />

SUB ATMOSPHERIC MODULE<br />

Prof. David Lior – R-<strong>Jet</strong> <strong>Engine</strong>ering Ltd.<br />

1


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM - Objective<br />

• Increasing the Electricity Generation Efficiency<br />

of the OCN TS-450 <strong>Turbo</strong>generator in view of<br />

the rising Natural Gas prices.<br />

• Attaining the goal of 36+ % HHV Electric<br />

Generation Efficiency set by the US DOE by<br />

2010.<br />

2


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM - Description<br />

Two packaging solutions result in the same total<br />

system performance:<br />

• A separate unit added to the OCN TG-450<br />

turbogenerator connected to its exhaust duct,<br />

driving an high speed 100 kW alternator (Fig. 1)<br />

• An integral stage to the basic OCN TG-450 gas<br />

turbine driving a common alternator. (Fig. 4)<br />

3


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Fig. 1 – Separate SAM Unit<br />

To Ambient<br />

Gas Turbine Exhaust<br />

Cold Water In<br />

Heat Exchanger<br />

2<br />

Hot Water Out<br />

Heat Exchanger 1<br />

100 kW<br />

Generator<br />

Turbine<br />

Compressor<br />

Hot Water Out<br />

4


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Technical Concept<br />

Fig. 2 – TS Diagram<br />

1<br />

P Turbine<br />

Temperature - T<br />

4<br />

2<br />

Heat extraction<br />

P Compressor<br />

Heat Extraction<br />

5<br />

3<br />

Entropy - S<br />

5


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

OPTIMUM CYCLE PRESSURE RATIO<br />

(see Fig 3)<br />

• A parametric analysis has been done to find the<br />

expansion pressure ratio which results in<br />

maximum power gain.<br />

• For each pressure ratio the compressor and<br />

turbine efficiencies have been re-calculated.<br />

• Following analysis for two (2) values of heat<br />

exchanger relative pressure drop (∆P/P), the<br />

optimum cycle pressure ratio of three (3) was<br />

6


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Fig. 3 - Turbine Pressure Ratio Optimization<br />

Specific Net Power<br />

Kg/Kg/Sec<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

214<br />

143<br />

160<br />

155.7<br />

91.8<br />

105.2<br />

152<br />

102<br />

88<br />

63<br />

55<br />

58<br />

58<br />

55<br />

52<br />

2 3<br />

236<br />

185.6<br />

181<br />

54<br />

50<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Specific Power<br />

Kg/Kg/sec<br />

Turbine Pressure Ratio<br />

Specific Net Power DP/P=5%<br />

Specific Power DP/P=5%<br />

Specific Power DP/P=2.5%<br />

Specifc Net Power DP/P=2.5%<br />

Specific Power Turbine<br />

7


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

(Fig. 2)<br />

Point 1- Point 2<br />

• The exhaust gas (mass flow of 1.534 Kg/sec and<br />

a temperature of 874 o K) expands through a<br />

turbine from ambient pressure to 0.344 kg/cm 2<br />

cooled to a temperature of 680 o K.<br />

• Turbine efficiency - 89.5%<br />

Expansion energy - 330 kW<br />

Temperature - T<br />

Heat extraction<br />

Fig 2<br />

4<br />

P Compressor<br />

P Turbine<br />

1<br />

2<br />

Heat Extraction<br />

5<br />

3<br />

Entropy - S<br />

8


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

Point 2 - Point 3<br />

• The gas is cooled in a heat-exchanger with<br />

water at 290 o K to a temperature of 330 o K at a<br />

pressure of 0.331 kg/cm 2 1<br />

.<br />

Fig 2<br />

P Turbine<br />

• Heat Exchanger Efficiency<br />

- 90%.<br />

Heat energy - 576 kW<br />

Temperature - T<br />

Heat extraction<br />

5<br />

4<br />

P Compressor<br />

3<br />

Entropy - S<br />

2<br />

Heat Extraction<br />

9


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

Point 3 - Point 4<br />

• The gas is compressed to a pressure of 1.054<br />

kg/cm2 and a temperature of 469 oK.<br />

Fig 2<br />

• Compressor efficiency - 84%<br />

Compression energy - 223 kW<br />

4<br />

Heat extraction<br />

P Compressor<br />

• Net mechanical energy –<br />

5<br />

3<br />

(326 kW – 223 kW) = 103 kW<br />

Entropy - S<br />

• Net electric energy -103 kW x 0.97 = 100 kW.<br />

Temperature - T<br />

P Turbine<br />

10<br />

1<br />

2<br />

Heat Extraction


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Thermodynamic Cycle<br />

Point 4 - Point 5<br />

• The gas is cooled through a secondary heat<br />

exchanger by water at 290 o K to 326 o K .<br />

• Heat exchanger efficiency<br />

- 80%.<br />

Heat energy 153 kW.<br />

Temperature - T<br />

Fig 2<br />

4<br />

Heat extraction<br />

P Compressor<br />

5<br />

3<br />

1<br />

P Turbine<br />

2<br />

Heat Extraction<br />

Entropy - S<br />

• Total heat energy - 573 kW + 153 kW = 726 kW.<br />

11


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Fig. 4 – Integrated SAM Unit<br />

540 kW OCN <strong>Turbo</strong> Shaft <strong>Engine</strong><br />

(Including SAM <strong>Module</strong>)<br />

p ,<br />

3%<br />

SAM<br />

(<strong>Sub</strong> <strong>Atmospheric</strong><br />

<strong>Module</strong>)<br />

475<br />

1700<br />

Gas<br />

Turbine<br />

Exhaust<br />

Cold<br />

Water<br />

in<br />

To Ambient<br />

Turbine<br />

Heat Exchanger<br />

Compressor<br />

Hot<br />

Water<br />

Out<br />

12


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Main components<br />

An axial stainless steel (AISI 304) turbine; 500 mm<br />

max. diameter.<br />

A water/gas finned tube heat exchanger.<br />

A centrifugal compressor made of stainless steel<br />

(AISI 304) with radial diffuser - 630 mm max.<br />

diameter, driven at 26000 rpm.<br />

A secondary water/gas finned tube heat<br />

exchanger.<br />

Total weight - (water weight excluded) - 350 kg.<br />

13


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Performance<br />

The OCN TG 450 + SAM performance:<br />

• The fuel energy input is 1513 kW<br />

• TG 450 engine electric output is 450 kW and<br />

92 kW are added by the SAM<br />

• The electrical efficiency (HHV) is thus –<br />

(450 + 92)/1513 = 36%<br />

• Total thermal efficiency 39.4%<br />

14


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Performance<br />

The OCN TG 450 + SAM performance (continued):<br />

…<br />

• The combined energy output is 1271 kW:<br />

542 kW electrical (OCN -450 kW + SAM -92 kW)<br />

and 726 kW of heat energy.<br />

• The total cogeneration efficiency is -<br />

1271 / 1513 = 84 %<br />

15


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Performance Summary<br />

• 542 kW electrical energy at 39.4% thermal<br />

efficiency or 36 % electric efficiency.<br />

• 726 kW hot water energy assignable at different<br />

proportions to heating and cooling to suit the<br />

specific client requirements.<br />

16


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

Growth Potential<br />

The SAM contribution to the combined power<br />

increases with increase of the turbine inlet<br />

temperature.<br />

Fig.5 presents this improvement potential<br />

17


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

SAM - Growth Potential<br />

Fig. 5a<br />

900<br />

1050<br />

Power - kW<br />

800<br />

700<br />

600<br />

500<br />

400<br />

596<br />

500<br />

874<br />

692<br />

574<br />

933<br />

755<br />

620<br />

979<br />

825<br />

660<br />

1026<br />

1030<br />

1010<br />

990<br />

970<br />

950<br />

930<br />

910<br />

890<br />

870<br />

Exhaust Temperature<br />

Deg. Kelvin<br />

300<br />

1500 1600 1700 1800<br />

850<br />

Turbine Inlet Temperature - Deg. Kelvin<br />

Thermal Power- no SAM Thermal power with SAM Exhaust Temperature<br />

18


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

42.0%<br />

SAM - Growth Potential<br />

Fig. 5b<br />

160<br />

153<br />

150<br />

Thermal Efficiency-%<br />

41.0%<br />

40.0%<br />

39.4%<br />

96<br />

118<br />

40.1%<br />

136<br />

40.8%<br />

41.5%<br />

140<br />

130<br />

120<br />

110<br />

100<br />

Power Boost - kW<br />

39.0%<br />

90<br />

1500 1600 1700 1800<br />

Turbine Inlet Temperature - Deg. Kelvin<br />

Power Boost-kW<br />

Thermal Efficiency-%<br />

19


R-<strong>Jet</strong> <strong>Engine</strong>ering<br />

Proprietary & Confidential<br />

conclusions<br />

The SAM add on is a cost effective method to<br />

achieve high performance superior to future<br />

advanced IC engines.<br />

The OCN SAM CCHP configuration provides<br />

high electric efficiency combined with high heat<br />

energy utilization.<br />

The above features present a system superior<br />

to any IC or Gas Turbine performance for CCHP<br />

systems.<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!