31.10.2014 Views

Calculus(II)

Calculus(II)

Calculus(II)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Calculus</strong>(<strong>II</strong>)<br />

Department of Computer Science and Information Engineering<br />

Chaoyang University of Technology<br />

Taichung, Taiwan, Republic of China<br />

Instructor: De-Yu Wang<br />

E-mail: dywang@mail.cyut.edu.tw<br />

Phone: (04)23323000 ext. 4538<br />

Office: E738<br />

z<br />

✻<br />

4<br />

3<br />

2<br />

1<br />

O<br />

1 ✑<br />

❳❳ 1 ❳❳❳ 2<br />

✑ 3<br />

2 ❳<br />

✑ ❳❳❳ 4 5<br />

3 ✑<br />

❳3 y<br />

4 ✑<br />

✑<br />

x<br />

✑✰ ✑<br />

y<br />

3 ✻<br />

< 1,−2 ><br />

2 < 3,2 ><br />

❆❑ r(2)<br />

r(−2)<br />

❆1<br />

◆<br />

❆ ✗<br />

❆✑ ✑✑✑✑✑✸ ✲x<br />

−2 −1 ❆ 1 2 3 4<br />

−1 ❆<br />

❯ r(0)<br />

❆ ✕<br />

−2 ❆❯ <br />

< 1,−2 ><br />

♣ ✉ ✈ ✇ 1 2 3 4 5 6 7 7<br />

February 10, 2012


CALCULUS<br />

CALCULUS<br />

<strong>Calculus</strong><br />

• Instructor:<br />

1. Name: De-Yu Wang<br />

2. Email: dywang@mail.cyut.edu.tw<br />

3. Phone: (04)23323000 ext. 4538<br />

4. Office: E738<br />

• Textbook:<br />

R. T. Smith and R. B. Minton, ”<strong>Calculus</strong>: Early Transcendental Functions,”<br />

3e, 2006.<br />

• Reference:<br />

1. M. D. Weir, J. Hass and F. R. Giordano, “Thomas’ <strong>Calculus</strong>,” Eleventh<br />

Edition, Greg Tobin, 2005.<br />

2. J. Stewart, ”Early Transcendentals <strong>Calculus</strong>,” Five Edition, Thomson<br />

Learning Inc., 2003.<br />

3. R. Larson, R. Hostetler and B. H. Edwards ”Essential <strong>Calculus</strong>: Early<br />

Transcendental Functions,” 2006.<br />

• Grade:<br />

1. Performance in class<br />

2. Attendance condition<br />

3. Weekly tests<br />

4. Midterm<br />

5. Final<br />

De-Yu Wang CSIE CYUT<br />

<strong>Calculus</strong>


CONTENTS<br />

CONTENTS<br />

Contents<br />

1 LIMITS AND CONTINUITY 1<br />

1.1 The Concept of Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1.2 Computation of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.3 Continuity and its Consequences . . . . . . . . . . . . . . . . . . . . . 9<br />

1.4 Limits Involving Infinity . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

2 DIFFERENTIATION 15<br />

2.1 Tangent Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

2.2 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

2.3 Computation of Derivatives: the Power Rule . . . . . . . . . . . . . . 19<br />

2.4 The Product and Quotient Rules . . . . . . . . . . . . . . . . . . . . 21<br />

2.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.6 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

2.7 Derivatives of Trigonometric Functions . . . . . . . . . . . . . . . . . 28<br />

2.8 Derivatives of Exponential and Logarithmic Functions . . . . . . . . . 32<br />

3 APPLICATIONS OF DIFFERENTIATION 35<br />

3.1 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.2 Linearization and Newton’s Method . . . . . . . . . . . . . . . . . . . 37<br />

3.3 Indeterminate Forms and L’Hôpital’s Rule . . . . . . . . . . . . . . . 41<br />

3.4 Maximum and Minimum Values . . . . . . . . . . . . . . . . . . . . . 43<br />

3.5 Monotonic Functions and the First Derivative Test . . . . . . . . . . 45<br />

3.6 Concavity and the Second Derivative Test . . . . . . . . . . . . . . . 47<br />

3.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

4 INTEGRATION 54<br />

4.1 Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

4.2 Area Under a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

4.3 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

4.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

4.5 The Natural Logarithm as an Integral . . . . . . . . . . . . . . . . . . 72<br />

4.6 The Fundamental Theorem of <strong>Calculus</strong> . . . . . . . . . . . . . . . . . 75<br />

4.7 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

De-Yu Wang CSIE CYUT<br />

i


CONTENTS<br />

5 INTEGRATION TECHNIQUES 81<br />

5.1 Integration by Substitution . . . . . . . . . . . . . . . . . . . . . . . . 82<br />

5.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

5.3 Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

5.4 Integrals Involving Powers of Trigonometric Functions . . . . . . . . . 89<br />

5.5 Trigonometric Substitution . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

6 DIFFERENTIAL EQUATIONS 97<br />

6.1 Growth and Decay Problems . . . . . . . . . . . . . . . . . . . . . . . 98<br />

6.2 Separable Differential Equations . . . . . . . . . . . . . . . . . . . . . 99<br />

6.3 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

7 INFINITE SERIES 105<br />

7.1 Sequences of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . 106<br />

7.2 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />

7.3 The Integral Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

7.4 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

7.5 Alternating Series and Absolute Convergence . . . . . . . . . . . . . . 121<br />

7.6 The Ratio Test and The Root Test . . . . . . . . . . . . . . . . . . . 125<br />

7.7 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

7.8 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

8 PARAMETRIC EQUATIONS AND POLAR COORDINATES 136<br />

8.1 Plane Curves and Parametric Equations . . . . . . . . . . . . . . . . 137<br />

8.2 <strong>Calculus</strong> and Parametric Equations . . . . . . . . . . . . . . . . . . . 138<br />

8.3 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

8.4 <strong>Calculus</strong> and Polar Coordinates . . . . . . . . . . . . . . . . . . . . . 144<br />

9 VECTORS 149<br />

9.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

9.2 The Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

9.3 The Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

9.4 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

9.5 The <strong>Calculus</strong> of Vector-Valued Functions . . . . . . . . . . . . . . . . 163<br />

9.6 Arc Length and Curvature . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

10 PARTIAL DIFFERENTIATION 170<br />

10.1 Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . 171<br />

10.2 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . 172<br />

10.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175<br />

10.4 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176<br />

10.5 The Gradient and Directional Derivatives . . . . . . . . . . . . . . . . 180<br />

10.6 Extrema of Functions of Several Variables . . . . . . . . . . . . . . . 182<br />

De-Yu Wang CSIE CYUT<br />

ii


CONTENTS<br />

11 MULTIPLE INTEGRALS 186<br />

11.1 Double Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

11.2 Double Integrals in Polar Coordinates . . . . . . . . . . . . . . . . . . 192<br />

11.3 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194<br />

11.4 Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196<br />

11.5 Triple Integrals in Cylindrical and Spherical Coordinates . . . . . . . 199<br />

11.6 Change of Variables: Jacobians . . . . . . . . . . . . . . . . . . . . . 204<br />

De-Yu Wang CSIE CYUT<br />

iii


Chapter 7<br />

INFINITE SERIES


7.1. SEQUENCES OF REAL NUMBERS<br />

7.1 Sequences of Real Numbers<br />

Definition 7.1.1. (a) Sequence {a n } ∞ n=n 0<br />

: A function whose domain is the set of<br />

integers.<br />

(b) Sequence {a n } ∞ n=n 0<br />

converges to L:<br />

lim a n = L<br />

n→∞<br />

if for each ε > 0, there exist N > 0 such that |a n −L| < ε whenever n > N. If<br />

the limit does not exist, then {a n } ∞ n=n 0<br />

diverges.<br />

{ } ∞ 1<br />

Example 7.1.1. Write out the terms of the sequence {a n } ∞ n=1 = n 2 n=1<br />

show that {a n } ∞ n=1<br />

converges to 0.<br />

and then<br />

Solution:<br />

{ } ∞ { 1 1<br />

=<br />

n 2 n=1<br />

1 , 1 4 ,··· , 1 2,···}<br />

n<br />

Given any ε > 0, we must find N sufficiently large so that for every n > N,<br />

∣ 1 ∣∣∣<br />

∣n −0 < ε<br />

2<br />

1<br />

n < ε 2<br />

n 2 > 1 ε<br />

n ><br />

√<br />

1<br />

ε = N.<br />

Theorem 7.1.1. Suppose that {a n } ∞ n=n 0<br />

and {b n } ∞ n=n 0<br />

both converge. Then<br />

(a) lim<br />

n→∞<br />

(a n +b n ) = lim<br />

n→∞<br />

a n + lim<br />

n→∞<br />

b n ,<br />

(b) lim(a n −b n ) = lim a n − lim b n ,<br />

n→∞ n→∞ n→∞<br />

( )(<br />

(c) lim<br />

n→∞<br />

(a n b n ) =<br />

a n<br />

(d) lim =<br />

n→∞ b n<br />

lim<br />

n→∞ a n<br />

lim<br />

n→∞ b n<br />

lim<br />

n→∞ a n<br />

lim<br />

n→∞ b n<br />

)<br />

,<br />

( )<br />

assuming lim b n ≠ 0 .<br />

n→∞<br />

De-Yu Wang CSIE CYUT 106


7.1. SEQUENCES OF REAL NUMBERS<br />

Example 7.1.2. Evaluate lim<br />

n→∞<br />

5n+7<br />

3n−5 .<br />

Solution:<br />

5n+7<br />

lim<br />

n→∞ 3n−5 = lim 5+ 7 n<br />

n→∞ 3− 5 n<br />

= 5 3<br />

the sequence converges to 5 3 .<br />

Example 7.1.3. Evaluate lim<br />

n→∞<br />

n 2 +1<br />

2n−3 .<br />

Solution:<br />

n 2 +1<br />

lim<br />

n→∞ 2n−3 = lim n+ 1 n<br />

n→∞ 2− 3 n<br />

= ∞ the sequence diverges.<br />

Theorem 7.1.2. Suppose that lim f(x) = L. Then, lim f(n) = L, also.<br />

x→∞ n→∞<br />

Remark. If lim f(n) = L, it need not be true that lim f(x) = L. For exapmle,<br />

n→∞ x→∞<br />

lim cos(2πn) = 1, lim<br />

n→∞<br />

cos(2πx)<br />

x→∞<br />

does not exist.<br />

c n<br />

5 10 15<br />

2.0<br />

✻<br />

f(x)<br />

✻<br />

1<br />

1.5<br />

1.0<br />

0.5<br />

<br />

✲n<br />

0.5<br />

−0.5<br />

−1<br />

✲ x<br />

2π 4π 6π<br />

Example 7.1.4. Evaluate lim<br />

n→∞<br />

n+1<br />

e n<br />

Solution: Apply L’Hôpital’s rule for<br />

x+1<br />

lim<br />

x→∞ e x<br />

∴ lim<br />

n→∞<br />

n+1<br />

e n<br />

d<br />

= lim dx (x+1)<br />

x→∞ d<br />

dx ex<br />

= 0, also.<br />

1<br />

= lim<br />

x→∞ e = 0 x<br />

c n<br />

✻<br />

0.8 <br />

0.6<br />

0.4<br />

<br />

0.2 <br />

✲<br />

n<br />

5 10 15<br />

De-Yu Wang CSIE CYUT 107


7.1. SEQUENCES OF REAL NUMBERS<br />

Theorem 7.1.3. Squeeze theorem for sequences<br />

If lim<br />

n→∞<br />

a n = L = lim<br />

n→∞<br />

b n ,<br />

and there exists an integer N such that a n ≤ c n ≤ b n for all n > N, then<br />

lim c n = L.<br />

n→∞<br />

Proof: Given any ε 1 , ε 2 > 0, we have<br />

|a n −L| < ε 1 , |b n −L| < ε 2 , for n > N<br />

L−ε 1 < a n < L+ε 1 , L−ε 2 < b n < L+ε 2<br />

L−ε 1 < a n < c n < b n < L+ε 2<br />

|c n −L| < max{ε 1 ,ε 2 }<br />

Theorem 7.1.4. Absolute value theorem<br />

If lim<br />

n→∞<br />

|a n | = 0, then lim<br />

n→∞<br />

a n = 0 also.<br />

Proof: For all n,<br />

−|a n | ≤ a n ≤ |a n | and lim |a n | = 0 = lim(−|a n |)<br />

n→∞ n→∞<br />

∴ lim a n = 0, also.<br />

n→∞<br />

{ } ∞ sinn<br />

Example 7.1.5. Determine whether the sequence converges or diverges.<br />

n 2 n=1<br />

Solution:<br />

−1 ≤ sinn ≤ 1, for all n,<br />

−1<br />

n ≤ sinn ≤ 1 2 n 2 n2, for all n ≥ 1,<br />

lim<br />

n→∞<br />

−1<br />

n 2 = 0 = lim<br />

n→∞<br />

1<br />

n 2<br />

∴ lim<br />

n→∞<br />

sinn<br />

n 2 = 0, also.<br />

Definition 7.1.2. For any integer n ≥ 1, the factorial,<br />

n! = 1·2·3···n, and 0! = 1.<br />

De-Yu Wang CSIE CYUT 108


7.1. SEQUENCES OF REAL NUMBERS<br />

Definition 7.1.3. Monotonic sequence {a n } ∞ n=1<br />

(a) The sequence {a n } ∞ n=1 is increasing if a 1 ≤ a 2 ≤ ··· ≤ a n ≤ a n+1··· .<br />

(b) The sequence {a n } ∞ n=1 is decreasing if a 1 ≥ a 2 ≥ ··· ≥ a n ≥ a n+1··· .<br />

Definition 7.1.4. Bounded sequence {a n } ∞ n=n 0<br />

:<br />

If there is a number M > 0 for which |a n | ≤ M, for all n.<br />

Theorem 7.1.5. Every bounded, monotonic sequence converges.<br />

{ 2<br />

n<br />

Example 7.1.6. Prove that the sequence {a n } ∞ n=1 =<br />

n!} ∞<br />

n=1<br />

converges.<br />

Proof: We cannot apply L’Hôpital’s rule to n!<br />

(a) {a n } ∞ n=1 is monotonic (decreasing).<br />

a n+1<br />

a n<br />

=<br />

2 n+1<br />

(n+1)!<br />

2 n<br />

= 2<br />

n+1<br />

n!<br />

a n+1 ≤ a n , for n ≥ 1,<br />

(b) {a n } ∞ n=1 is bounded.<br />

≤ 1, for n ≥ 1<br />

0 < 2n<br />

n! = 2·2·2···2·2<br />

n·(n−1)···2·1 ≤ 2 = 2, for n ≥ 1<br />

1<br />

|a n | ≤ 2, for n ≥ 1.<br />

∴ {a n } ∞ n=1 converges.<br />

Exercise 7.1.1. Write out the terms of the squence<br />

(a) a n = 2n−1<br />

n 2<br />

(b) a n = 3 n!<br />

4<br />

(c) a n = √ n+1<br />

(d) a n = (−1) n n<br />

3n−1<br />

Exercise 7.1.2. Find the limit of the squence<br />

(a) a n = n<br />

2n+1<br />

(b) a n =<br />

4<br />

√ n+1<br />

De-Yu Wang CSIE CYUT 109


7.2. INFINITE SERIES<br />

Exercise 7.1.3. Determine whether the sequence converges or diverges of<br />

(a) a n = ne −n<br />

(b) a n = n2 +3<br />

n 3 +1<br />

(c)<br />

(d)<br />

{ n!<br />

} ∞<br />

2 n n=1<br />

{<br />

(−1)<br />

n+2} nn+3<br />

∞<br />

n=1<br />

Exercise 7.1.4. Determine whether the sequence is increasng, decreasing or neither.<br />

(a)<br />

(b)<br />

{ } e<br />

n ∞<br />

n<br />

n=1<br />

{ 2<br />

n ∞<br />

(n+1)!}<br />

n=1<br />

(c) a n = n+3<br />

n+2<br />

Exercise 7.1.5. Show that the sequence is bounded<br />

(a)<br />

{ 3n 2 −2<br />

n 2 +1<br />

} ∞<br />

n=1<br />

(b)<br />

{ 6n−1<br />

n+3<br />

} ∞<br />

n=1<br />

7.2 Infinite Series<br />

Definition 7.2.1. Infinite Series<br />

∞∑<br />

a k = lim<br />

k=1<br />

n→∞<br />

n∑<br />

k=1<br />

a k = lim<br />

n→∞<br />

S n = S,<br />

where S n = a 1 +a 2 +···+a n is the nth partial sum.<br />

De-Yu Wang CSIE CYUT 110


7.2. INFINITE SERIES<br />

Summary. Convergence tests for infinte series<br />

Page Test Series Conditions of Comment<br />

Convergence Divergence<br />

∞∑<br />

111 kth-Term a k<br />

lim k ≠ 0 Cannot be<br />

k→∞<br />

k=k 0 used to show<br />

convergence.<br />

112<br />

∞∑<br />

Geometric ar k |r| < 1 |r| ≥ 1 S = ark0<br />

1−r<br />

series k=k 0<br />

114 Integral<br />

f is continuous and decreasing<br />

a k = f(k) ≥ 0<br />

∞∑<br />

∫ ∞ ∫ ∞<br />

a k f(x)dx f(x)dx 0 ∫ < R n < ∞<br />

k=1<br />

1<br />

1<br />

converges diverges f(x)dx<br />

116 p-series<br />

118 Comparison<br />

(a k ,b k > 0)<br />

119 Limit Comparison<br />

(a k ,b k > 0)<br />

122 Alternating<br />

Series<br />

124 Absolute<br />

Convergence<br />

125 Ratio<br />

126 Root Test<br />

∞∑<br />

k=1<br />

∞∑<br />

k=1<br />

∞∑<br />

k=1<br />

1<br />

k p p > 1 p ≤ 1<br />

a k<br />

a k<br />

∞∑<br />

(−1) k+1 a k<br />

k=1<br />

∞∑<br />

k=1<br />

a k<br />

0 ≤ a k ≤ b k and<br />

∞∑<br />

b k converges<br />

k=1<br />

∞<br />

∑<br />

k=1<br />

a k and<br />

lim<br />

∞∑<br />

k→∞<br />

k=1<br />

b k<br />

lim a k = 0and0 <<br />

k→∞<br />

a k+1 ≤ a k<br />

∞<br />

∑<br />

k=1<br />

|a k |<br />

0 ≤ b k ≤ a k and<br />

∞∑<br />

b k diverges<br />

k=1<br />

a k<br />

b k<br />

= L > 0<br />

both converge or<br />

both diverge<br />

n<br />

|S − S n | ≤<br />

a n+1<br />

converges<br />

∣ lim<br />

a k+1∣∣∣<br />

k→∞∣<br />

= L<br />

a k<br />

∞∑<br />

a k (k!, b k ) L < 1 L > 1 L = 1 (no<br />

√<br />

conclusion)<br />

k<br />

lim |ak | = L<br />

k→∞<br />

∞∑<br />

a k (k k ,b k ) L < 1 L > 1 L = 1 (no<br />

conclusion)<br />

k=1<br />

k=1<br />

Theorem 7.2.1. kth-term test for divergence<br />

∞∑<br />

(a) If a k converges, then lim a k = 0.<br />

k→∞<br />

k=1<br />

(b) If lim<br />

k→∞<br />

a k ≠ 0, then<br />

∞∑<br />

a k diverges.<br />

k=1<br />

Remark. This test cannot be used to show convergence.<br />

De-Yu Wang CSIE CYUT 111


7.2. INFINITE SERIES<br />

Proof: Assume that<br />

∞∑<br />

k=1<br />

a k = lim<br />

n→∞<br />

S n = L<br />

a n =<br />

n∑ ∑n−1<br />

a k − a k = S n −S n−1<br />

k=1<br />

k=1<br />

lim a n = lim(S n −S n−1 ) = lim S n − lim S n−1 = L−L = 0<br />

n→∞ n→∞ n→∞ n→∞<br />

Example 7.2.1. Use the kth-term test to determine if the series<br />

k<br />

Solution: lim a k = lim<br />

k→∞ k→∞ k +1<br />

= 1 ≠ 0, ∴ this series diverges.<br />

Example 7.2.2. Use the kth-term test to determine if the series<br />

Solution: lim a k = lim<br />

k→∞ k = 0.<br />

Remark. This does not say that the series converges.<br />

k→∞<br />

1<br />

∞∑<br />

k=1<br />

∞∑<br />

k=1<br />

k<br />

k +1 diverges.<br />

1<br />

k diverges.<br />

Theorem 7.2.2. For a ≠ 0, the geometric seies<br />

and diverges if |r| ≥ 1.<br />

Proof:<br />

∞∑<br />

k=k 0<br />

ar k converges to ark 0<br />

1−r<br />

if |r| < 1<br />

S n = ar k 0<br />

+ ar k 0+1<br />

+ ar k 0+2<br />

+ ··· + ar n<br />

− rS n = ar k 0+1<br />

+ ar k 0+2<br />

+ ar k 0+3<br />

+ ··· + ar n+1<br />

(1−r)S n = ar k 0<br />

− ar n+1<br />

S n = ark 0<br />

−ar n+1<br />

1−r<br />

S = lim<br />

n→∞<br />

S n = lim<br />

n→∞<br />

ar k 0<br />

−ar n+1<br />

1−r<br />

⎧<br />

⎨ ar k 0<br />

if |r| < 1;<br />

= 1−r<br />

⎩<br />

does not exist if |r| ≥ 1<br />

De-Yu Wang CSIE CYUT 112


7.2. INFINITE SERIES<br />

Example 7.2.3. Determine if the geometric series<br />

Find the sum of the series if it converges.<br />

∞∑<br />

k=3<br />

( ) k<br />

1 2<br />

converges or diverges.<br />

3 3<br />

Solution:<br />

r = 2 3 , |r| = 2 3 < 1.<br />

S = ar3 1 ·(2) 3<br />

1−r = 3 3<br />

1− 2 3<br />

= 8<br />

27<br />

∴ ∞<br />

∑<br />

k=3<br />

( ) k<br />

1 2<br />

converges.<br />

3 3<br />

Example 7.2.4. Determine if the geometric series<br />

(<br />

1<br />

− 3 k<br />

converges or di-<br />

3 2)<br />

verges. Find the sum of the series if it converges.<br />

∞∑<br />

k=1<br />

Solution:<br />

r = − 3 2 , |r| = 3 2 > 1 ∴ ∞<br />

∑<br />

k=1<br />

(<br />

1<br />

− 3 k<br />

diverges.<br />

3 2)<br />

Exercise 7.2.1. Use the kth-term test to determine if the series diverges.<br />

(a)<br />

(b)<br />

∞∑<br />

k=1<br />

∞∑<br />

k=0<br />

2<br />

k<br />

4k<br />

k +2<br />

(c)<br />

(d)<br />

∞∑<br />

(−1) k+1 2k<br />

k +1<br />

∞∑<br />

( 1<br />

2 − 1 )<br />

k k +1<br />

k=0<br />

k=0<br />

Exercise 7.2.2. Determine if the geometric series converges or diverges. Find the<br />

sum of the series if it converges.<br />

(a)<br />

(b)<br />

∞∑<br />

k=2<br />

∞∑<br />

k=1<br />

(<br />

5 − 1 ) k<br />

2<br />

( 1<br />

3<br />

4<br />

) k<br />

(c)<br />

(d)<br />

∞∑<br />

k=0<br />

∞∑<br />

k=3<br />

1 ( ) 4<br />

−1 k<br />

3<br />

1<br />

5<br />

(<br />

− 7 ) k<br />

2<br />

Exercise 7.2.3. Prove Theorem 7.2.2 and Theorem 7.2.1.<br />

De-Yu Wang CSIE CYUT 113


7.3. THE INTEGRAL TEST<br />

7.3 The Integral Test<br />

Theorem 7.3.1. Integral Test<br />

(a) If f(k) = a k for all k = 1,2,··· , f is continuous and decreasing, and f(x) ≥ 0<br />

∫ ∞ ∞∑<br />

for x ≥ 1, then f(x)dx and a k either both converge or both diverge.<br />

1<br />

k=1<br />

∞∑<br />

(b) If f(k) converges. Then, the remainder R n satisfies<br />

k=1<br />

∞∑<br />

0 ≤ R n = a k ≤<br />

∫ ∞<br />

k=n+1<br />

n<br />

f(x)dx.<br />

Proof: (a) 0 ≤ a 2 +a 3 +···+a n = S n −a 1 ≤<br />

(i) If<br />

(ii) If<br />

∫ ∞<br />

1<br />

y<br />

✻<br />

y = f(x)<br />

(2,a<br />

2 )<br />

<br />

✲x<br />

1 2 3 4 5 6<br />

<br />

(5,a<br />

5 )<br />

f(x)dx converges to L<br />

S n −a 1 ≤<br />

∫ n<br />

lim (S n −a 1 ) ≤ lim<br />

n→∞<br />

∫ ∞<br />

1<br />

∫ n<br />

lim<br />

n→∞<br />

1<br />

1<br />

f(x)dx<br />

n→∞<br />

∫ n<br />

1<br />

f(x)dx =<br />

∫ ∞<br />

lim S n ≤ lim(L+a 1 ) = L+a 1 ,<br />

n→∞ n→∞<br />

f(x)dx diverges<br />

f(x)dx =<br />

∫ ∞<br />

1<br />

∫ n<br />

1<br />

1<br />

∫ n<br />

1<br />

f(x)dx ≤ S n−1<br />

f(x)dx ≤ a 1 +a 2 +···+a n−1 = S n−1<br />

f(x)dx = L<br />

f(x)dx = ∞ ≤ lim<br />

n→∞<br />

S n−1<br />

lim S n−1 > ∞,<br />

n→∞<br />

y<br />

✻<br />

y = f(x)<br />

(1,a<br />

1 )<br />

<br />

converges, too.<br />

<br />

(4,a<br />

4 )<br />

✲x<br />

1 2 3 4 5 6<br />

diverges, too.<br />

De-Yu Wang CSIE CYUT 114


7.3. THE INTEGRAL TEST<br />

(iii) If<br />

∞∑<br />

a k converges to L<br />

k=1<br />

∫ n<br />

(iv) If<br />

∫ n<br />

lim<br />

n→∞<br />

1<br />

f(x)dx =<br />

∞∑<br />

a k diverges<br />

k=1<br />

(b) R n =<br />

1<br />

∫ ∞<br />

1<br />

∫ ∞<br />

1<br />

S n −a 1 ≤<br />

f(x)dx ≤ S n−1<br />

f(x)dx ≤ lim<br />

n→∞<br />

S n−1 = L<br />

f(x)dx ≤ L,<br />

∫ n<br />

lim (S n −a 1 ) = ∞ ≤ lim<br />

n→∞<br />

∞∑<br />

∫ ∞<br />

1<br />

k=n+1<br />

1<br />

f(x)dx ≥ ∞,<br />

a k ≤<br />

∫ ∞<br />

n<br />

f(x)dx<br />

n→∞<br />

∫ n<br />

f(x)dx<br />

1<br />

f(x)dx =<br />

converges, too.<br />

∫ ∞<br />

1<br />

diverges, too.<br />

y<br />

✻<br />

y = f(x)<br />

f(x)dx<br />

<br />

(n+1,a n+1 )<br />

<br />

<br />

nn+1<br />

✲x<br />

∞∑ 3<br />

Example 7.3.1. Usetheintegraltesttodetermineiftheseries<br />

(2+k) converges 2 k=0<br />

or diverges.<br />

3<br />

Solution: f(x) = is continuous and decreasing, and f(x) ≥ 0 for x ≥ 0<br />

(2+x)<br />

2<br />

∫ ∞ ∫<br />

3<br />

R<br />

R<br />

3 −3<br />

dx = lim dx = lim<br />

(2+x)<br />

2 R→∞ (2+x)<br />

2 R→∞ (2+x) ∣<br />

0<br />

∴<br />

0<br />

= −3 lim<br />

R→∞<br />

∞∑<br />

k=0<br />

[<br />

3<br />

(2+k) 2<br />

1<br />

2+R − 1 2<br />

0<br />

]<br />

= 3 2 , converges<br />

converges, too.<br />

De-Yu Wang CSIE CYUT 115


7.3. THE INTEGRAL TEST<br />

Example 7.3.2. Estimate the error for the integral test in using the partial sum S 100<br />

∞∑ 3<br />

to approximate the sum of the series<br />

(2+k) 2.<br />

Solution:<br />

0 ≤ R 100 ≤<br />

∫ ∞<br />

100<br />

k=0<br />

∫<br />

3<br />

R<br />

dx = lim<br />

(2+x)<br />

2 R→∞<br />

100<br />

= −3 lim<br />

R→∞<br />

3<br />

dx = lim<br />

(2+x)<br />

2 R→∞<br />

[<br />

1<br />

2+R − 1 ]<br />

102<br />

= 3<br />

102 .<br />

−3<br />

(2+x) ∣<br />

R<br />

100<br />

Example 7.3.3.<br />

Determine the number of terms needed to obtain an approximation to the sum of the<br />

∞∑ 3<br />

series<br />

(2+k) correct to within 2 10−6 with error estimate for the integral test.<br />

k=0<br />

Solution:<br />

0 ≤ R n ≤<br />

∫ ∞<br />

n<br />

∫<br />

3<br />

R<br />

dx = lim<br />

(2+x)<br />

2 R→∞<br />

n<br />

= −3 lim<br />

R→∞<br />

3<br />

dx = lim<br />

(2+x)<br />

2 R→∞<br />

[<br />

1<br />

2+R − 1 ]<br />

n+2<br />

R n ≤ 3<br />

n+2 ≤ 10−6 , ∴ n ≥ 3×10 6 −2.<br />

−3<br />

(2+x) ∣<br />

R<br />

n<br />

= 3<br />

n+2 ≤ 10−6 ,<br />

Theorem 7.3.2. p series<br />

∞∑ 1<br />

If p-series converges if p > 1 and diverges if p ≤ 1.<br />

kp k=1<br />

Proof: f(x) = 1 x p = x−p is continuous and decreasing, and f(x) ≥ 0 for x ≥ 1<br />

(a) For p ≠ 1<br />

∫ ∞ ∫ R<br />

x −p dx = lim x −p x −p+1<br />

dx = lim<br />

1<br />

R→∞<br />

1<br />

R→∞ −p+1∣<br />

1<br />

=<br />

−p+1 lim<br />

[<br />

R −p+1 −1 ]<br />

R→∞<br />

⎧<br />

⎨ 1<br />

= p−1 , if p > 1<br />

⎩<br />

∞, if p < 1<br />

R<br />

1<br />

De-Yu Wang CSIE CYUT 116


7.3. THE INTEGRAL TEST<br />

(b) For p = 1<br />

∫ ∞<br />

1<br />

1<br />

dx = lim<br />

x R→∞<br />

= lim<br />

R→∞<br />

∫ R<br />

1<br />

1 x<br />

[ln|R|−1] = ∞.<br />

dx = lim<br />

R→∞ ln|x||R 1<br />

Example 7.3.4. Determine convergence or divergence of the p-series<br />

∞∑ ∞∑ ∞∑<br />

k −11/10 , k −10/11 1<br />

, and<br />

k .<br />

k=1<br />

k=1<br />

Solution: (a)<br />

(b)<br />

(c)<br />

∞∑<br />

k −11/10 =<br />

k=1<br />

k=1<br />

∞∑<br />

k=1<br />

1<br />

k 11/10<br />

∵ p = 11<br />

∞<br />

10 > 1 ∴ ∑<br />

k −11/10 converges to<br />

∞∑<br />

k −10/11 =<br />

k=1<br />

∞∑<br />

k=1<br />

1<br />

k<br />

∞∑<br />

k=1<br />

1<br />

k 10/11<br />

k=1<br />

∵ p = 10<br />

∞<br />

11 < 1 ∴ ∑<br />

k −10/11 diverges.<br />

∵ p = 1<br />

∴<br />

∞∑<br />

k=1<br />

k=1<br />

1<br />

k diverges.<br />

11<br />

10<br />

1<br />

= 10.<br />

−1<br />

Exercise 7.3.1. Use the integral test to determine if the series converges or diverges.<br />

If the series converges:<br />

(1) Estimate the error in using the partial sum S 100 to approximate the sum of the<br />

series.<br />

(2) Determine the number of terms needed to obtain an approximation to the sum<br />

of the series correct to within 10 −6 with error estimate for the integral test.<br />

(a)<br />

(b)<br />

∞∑<br />

k=3<br />

∞∑<br />

k=2<br />

k +1<br />

k 2 +2k +3<br />

2<br />

klnk<br />

(c)<br />

(d)<br />

∞∑<br />

k=3<br />

∞∑<br />

k=3<br />

1<br />

(1+2k) 2<br />

e 1/k<br />

k 2<br />

De-Yu Wang CSIE CYUT 117


7.4. COMPARISON TESTS<br />

Exercise 7.3.2. Determine convergence or divergence of the p-series<br />

(a)<br />

(b)<br />

∞∑<br />

k=1<br />

∞∑<br />

k=1<br />

4<br />

5√<br />

k<br />

k −9/10<br />

(c)<br />

(d)<br />

∞∑<br />

k=1<br />

∞∑<br />

k=6<br />

k −2/3<br />

4<br />

√<br />

k<br />

3<br />

Exercise 7.3.3. Prove Theorem 7.3.1 and Theorem 7.3.2<br />

7.4 Comparison Tests<br />

Theorem 7.4.1. Comparison test<br />

Suppose that 0 ≤ a k ≤ b k , for all k<br />

∞∑<br />

∞∑<br />

(a) If b k converges, then a k converges, too.<br />

k=1<br />

k=1<br />

∞∑<br />

∞∑<br />

(b) If a k diverges, then b k diverges, too.<br />

k=1<br />

k=1<br />

∞∑<br />

Proof for (a): If b k = B<br />

k=1<br />

0 ≤ S n = a 1 +a 2 +···+a n ≤ b 1 +b 2 +···+b n ≤<br />

{S n } ∞ n=1 is bounded, (∵ 0 ≤ S n ≤ B)<br />

∞∑<br />

b k = B<br />

k=1<br />

Proof for (b): If<br />

∴<br />

S n = a 1 +a 2 +···+a n ≤ a 1 +a 2 +···+a n +a n+1 = S n+1<br />

{S n } ∞ n=1 is increasing, (∵ S n ≤ S n+1 )<br />

∴ lim<br />

n→∞<br />

S n = S converges.<br />

∞∑<br />

k=1<br />

∞∑<br />

a k = ∞<br />

k=1<br />

b k = lim<br />

n→∞<br />

(b 1 +b 2 +···+b n ) ≥ lim<br />

n→∞<br />

(a 1 +a 2 +···+a n ) =<br />

∞∑<br />

b k =∞ diverges, too.<br />

k=1<br />

∞∑<br />

a k = ∞.<br />

k=1<br />

De-Yu Wang CSIE CYUT 118


7.4. COMPARISON TESTS<br />

Example 7.4.1. Use the comparison test to determine if the series<br />

2<br />

3k 2 +1 converges<br />

or diverges.<br />

∞∑<br />

k=1<br />

Solution:<br />

2<br />

3k 2 +1 < 2<br />

3k2, for k ≥ 1<br />

∞∑ 2<br />

∵ converges (∵ p = 2),<br />

3k 2 k=1<br />

∞∑ 2<br />

∴ converges, too.<br />

3k 2 +1<br />

k=1<br />

Example 7.4.2. Use the comparison test to determine if the series<br />

converges or diverges.<br />

∞∑ 2<br />

k=1<br />

3 3√ k 2 −1<br />

Solution:<br />

2<br />

3 3√ k 2 −1 > 2<br />

3 3√ k , for k ≥ 1<br />

2<br />

∞∑ 2<br />

∵<br />

3 3√ k = ∑ ∞ (<br />

2<br />

diverges ∵ p = 2 )<br />

,<br />

k=1<br />

2 k=1<br />

3k 2 3 3<br />

∞∑ 2<br />

∴<br />

3 3√ diverges, too.<br />

k 2 −1<br />

k=1<br />

Theorem 7.4.2. Limit Comparison test<br />

a k<br />

Suppose that a k ,b k > 0 and lim = L > 0 for k large. Then, either<br />

k→∞ b k<br />

∞∑<br />

b k both converge or both diverge.<br />

k=1<br />

a k<br />

Proof: If lim = L > 0, we can make<br />

k→∞ b k<br />

a k<br />

∣ −L<br />

b k<br />

∣ < ε = L , for all k > N<br />

2<br />

∞∑<br />

a k and<br />

k=1<br />

L<br />

2


7.4. COMPARISON TESTS<br />

(a) If<br />

∞∑<br />

b k converges to B, then<br />

k=1<br />

∞∑<br />

a k =<br />

N∑<br />

a k +<br />

∞∑<br />

a k <<br />

N∑<br />

a k + 3L 2<br />

∞∑<br />

b k <<br />

N∑<br />

a k + 3L 2<br />

B, converges,<br />

k=1<br />

too.<br />

k=1<br />

k=N+1<br />

k=1<br />

k=N+1<br />

k=1<br />

∞∑<br />

(b) If b k diverges, then<br />

k=1<br />

∞∑<br />

a k =<br />

N∑ ∞∑<br />

a k + a k ><br />

k=1 k=1 k=N+1<br />

N∑<br />

a k + L 2<br />

k=1<br />

∞∑<br />

k=N+1<br />

b k<br />

} {{ }<br />

∞<br />

, diverges, too.<br />

∞∑<br />

(c) If a k converges to A, then<br />

k=1<br />

∞∑<br />

b k =<br />

N∑ ∞∑<br />

b k + b k <<br />

k=1 k=1 k=N+1 k=1<br />

N∑<br />

b k + 2 L<br />

∞∑<br />

a k <<br />

k=N+1<br />

N∑<br />

k=1<br />

b k + 2 A, converges, too.<br />

L<br />

∞∑<br />

(d) If a k diverges, then<br />

k=1<br />

∞∑<br />

b k =<br />

N∑ ∞∑<br />

b k + b k ><br />

k=1 k=1 k=N+1<br />

N∑<br />

k=1<br />

b k + 2<br />

3L<br />

∞∑<br />

k=N+1<br />

a k<br />

} {{ }<br />

∞<br />

, diverges, too.<br />

Example 7.4.3. Use the limit comparison test to determine if the series<br />

converges or diverges.<br />

∞∑<br />

k=3<br />

1<br />

k 3 −5k<br />

Solution: Let a k =<br />

1<br />

k 3 −5k > 0, b k = 1 > 0 for k large.<br />

k3 a k<br />

lim = lim<br />

k→∞ b k<br />

k 3 −5k<br />

1<br />

k 3<br />

k→∞<br />

1<br />

1<br />

= lim<br />

k→∞ 1− 5 = 1 > 0<br />

k 2<br />

Since<br />

∞∑<br />

k=3<br />

1<br />

k is a convergent p-series (p = 3 > 1), ∑ ∞<br />

1<br />

3 k 3 −5k<br />

k=3<br />

is also convergent.<br />

De-Yu Wang CSIE CYUT 120


7.5. ALTERNATING SERIES AND ABSOLUTE CONVERGENCE<br />

Example 7.4.4. Use the limit comparison test to determine if the series<br />

∞∑ k 2 −2k +7<br />

converges or diverges.<br />

k 5 +5k 4 −3k 3 +2k −1<br />

k=1<br />

Solution: Let<br />

a k =<br />

a k<br />

lim = lim<br />

k→∞ b k<br />

k 2 −2k +7<br />

k 5 +5k 4 −3k 3 +2k −1 = 1− 2 + 7<br />

k k 2<br />

k 3 +5k 2 −3k + 2 − 1 , b k = 1 k<br />

k k 3<br />

2<br />

1− 2 + 7<br />

k k 2<br />

k→∞<br />

k 3 +5k 2 −3k + 2 k − 1<br />

k 2<br />

1<br />

k 3<br />

1− 2<br />

= lim<br />

+ 7<br />

k k 2<br />

k→∞ 1+ 5 − 3<br />

k<br />

+ 2 − 1<br />

k 2 k 3<br />

k 5 = 1 > 0<br />

∞∑ 1<br />

Since<br />

k is a convergent p-series (p = 3 > 1), ∑ ∞<br />

k 2 −2k +7<br />

3 k 5 +5k 4 −3k 3 +2k −1<br />

k=1<br />

k=1<br />

convergent.<br />

is also<br />

Exercise 7.4.1. Use the comparison test to determine if the series converges or<br />

diverges.<br />

(a)<br />

(b)<br />

∞∑<br />

k=1<br />

∞∑<br />

k=1<br />

2k<br />

k 3 +4<br />

2<br />

3k 2 +1<br />

(c)<br />

(d)<br />

∞∑<br />

k=3<br />

∞∑<br />

k=2<br />

2k<br />

k 4 +5<br />

2<br />

3k 2 +k<br />

Exercise 7.4.2. Use the limit comparison test to determine if the series converges<br />

or diverges.<br />

(a)<br />

∞∑<br />

k=1<br />

k 3 +2k +3<br />

k 4 +2k 2 +4<br />

(b)<br />

∞∑<br />

k=3<br />

k 2 +3<br />

k 5 +k 2 +4<br />

Exercise 7.4.3. Prove Theorem 7.4.1 and Theorem 7.4.2<br />

7.5 Alternating Series and Absolute Convergence<br />

Definition 7.5.1. Alternating Series<br />

Any series of the form<br />

∞∑<br />

(−1) k+1 a k = a 1 −a 2 +a 3 −a 4 +a 5 −a 6 +··· ,<br />

k=1<br />

where a k > 0, for all k.<br />

De-Yu Wang CSIE CYUT 121


7.5. ALTERNATING SERIES AND ABSOLUTE CONVERGENCE<br />

Theorem 7.5.1. Alternating Series Test<br />

Suppose that lim a k = 0 and 0 < a k+1 ≤ a k , for all k ≥ 1. Then, the alternating<br />

k→∞<br />

∞∑<br />

series (−1) k+1 a k converges.<br />

k=1<br />

Proof: (a) The even-index partial sums S 2n<br />

{S 2n } ∞ n=1 is monotonic(increasing).<br />

S 2 = a 1 −a 2 > 0<br />

S 4 = S 2 +(a 3 −a 4 ) ≥ S 2 , ∵ a 3 ≥ a 4<br />

.<br />

S 2n = S 2n−2 +(a 2n−1 −a 2n−2 ) ≥ S 2n−2<br />

S 2n ≥ S 2n−2 ≥ ··· ≥ S 4 ≥ S 2 > 0.<br />

{S 2n } ∞ n=1 is bounded.<br />

0 < S 2n = a 1 +(−a 2 +a 3 ) +(−a<br />

} {{ } 4 +a 5 ) +···+(−a<br />

} {{ } 2n−2 +a 2n−1 ) −a<br />

} {{ } }{{} 2n<br />

≤ 0 ≤ 0<br />

≤ 0 ≤ 0<br />

≤ a 1<br />

∴ lim<br />

n→∞<br />

S 2n converges.<br />

(b) The odd-index partial sums S 2n+1<br />

lim S 2n+1 = lim(S 2n +a 2n+1 ) = lim S 2n + lim a 2n+1 = lim S 2n<br />

n→∞ n→∞ n→∞ n→∞ n→∞<br />

converges, too.<br />

Example 7.5.1. Determine if the alternating series<br />

diverges.<br />

k=0<br />

∞∑<br />

k=0<br />

(−1) k+1 k 2<br />

k 2 +3<br />

k 2<br />

∞<br />

Solution: lim a k = lim<br />

k→∞ k→∞ k 2 +3 = 1 ≠ 0, ∴ ∑<br />

(−1) k+1 k 2<br />

k 2 +3 diverges.<br />

Example 7.5.2. Determine if the alternating series<br />

diverges.<br />

Solution: lim a k = lim<br />

k→∞ k 2 +3 = 0 and a k+1 =<br />

∞∑<br />

∴ (−1) k+1 1<br />

k 2 +3 converges.<br />

k=0<br />

k→∞<br />

1<br />

∞∑<br />

k=0<br />

(−1) k+1 1<br />

k 2 +3<br />

1<br />

(k +1) 2 +3 < 1<br />

k 2 +3 = a k,<br />

converges or<br />

converges or<br />

De-Yu Wang CSIE CYUT 122


7.5. ALTERNATING SERIES AND ABSOLUTE CONVERGENCE<br />

Theorem 7.5.2. If the alternating series<br />

∞∑<br />

(−1) k+1 a k converges to some number<br />

S, then the error in approximating S by the nth partial sum S n satisfies<br />

|S −S n | ≤ a n+1 .<br />

Proof: (a) n = 2m (even)<br />

S −S 2m = a 2m+1 +(−a 2m+2 +a 2m+3 ) +(−a<br />

} {{ } 2m+4 +a 2m+5 ) +···<br />

} {{ }<br />

≤ 0<br />

≤ 0<br />

(b) n = 2m+1 (odd)<br />

≤ a 2m+1 = a n+1<br />

k=1<br />

S −S 2m+1 = −a 2m+2 +(a 2m+3 −a 2m+4 ) +(a<br />

} {{ } 2m+5 −a 2m+6 ) +···<br />

} {{ }<br />

≥ 0<br />

≥ 0<br />

∴ |S −S n | ≤ a n+1<br />

≥ −a 2m+2 = −a n+1<br />

Example 7.5.3. Determine how many terms needed to estimate the sum of the<br />

∞∑<br />

alternating series (−1) k+1 4 k correct to within 2 10−8 .<br />

Solution:<br />

k=1<br />

|S −S n | ≤ a n+1 ≤ 10 −8<br />

4<br />

(n+1) 2 ≤ 10−8<br />

n+1 ≥ 2×10 4<br />

n ≥ 19999<br />

Definition 7.5.2. Absolute and conditional convergence<br />

(a)<br />

(b)<br />

∞∑<br />

∞∑<br />

a k is absolutely convergent if |a k | converges.<br />

k=1<br />

k=1<br />

∞∑<br />

∞∑<br />

a k is conditionally convergent if a k converges but<br />

k=1<br />

k=1<br />

∞∑<br />

|a k | diverges.<br />

k=1<br />

De-Yu Wang CSIE CYUT 123


7.5. ALTERNATING SERIES AND ABSOLUTE CONVERGENCE<br />

Theorem 7.5.3. Absolute Convergence<br />

∞∑<br />

∞∑<br />

If |a k | converges, then a k converges.<br />

k=1<br />

k=1<br />

∞∑<br />

Proof: If |a k | converges to L<br />

k=1<br />

∞∑<br />

a k = a 1 +a 2 +a 3 +···<br />

k=1<br />

∞∑<br />

≤ |a 1 |+|a 2 |+|a 3 |+··· = |a k | = L, converges, too.<br />

k=1<br />

Example 7.5.4. Use the absolute convergence to determine if the series<br />

is absolutely convergent, conditionally convergent or divergent.<br />

∞∑<br />

(−1) k 2 k 2<br />

k=1<br />

Solution:<br />

∞∑<br />

|a k | =<br />

∴<br />

k=1<br />

∞∑<br />

a k =<br />

k=1<br />

∞∑<br />

2 ∣ ∣∣∣<br />

∣ (−1)k =<br />

k 2<br />

k=1<br />

∞∑<br />

(−1) k 2 k 2<br />

k=1<br />

∞∑<br />

k=1<br />

2<br />

k2, is a convergent p-series (p = 2 > 1)<br />

is absolutely convergent.<br />

Example 7.5.5. Use the absolute convergence to determine if the series<br />

∞∑<br />

(−1) k 2<br />

3√ is absolutely convergent, conditionally convergent or divergent.<br />

k<br />

2<br />

k=1<br />

Solution:<br />

∴<br />

∞∑<br />

k=0<br />

∞∑<br />

|a k | =<br />

k=1<br />

∞∑<br />

2<br />

∞<br />

∣ (−1)k 3√<br />

k<br />

2∣ = ∑<br />

k=1<br />

lim a 2<br />

k = lim<br />

k→∞ k→∞<br />

and a k+1 =<br />

(−1) k 2<br />

k 2 3<br />

2<br />

k 2 3<br />

(k +1) 2 3<br />

= 0<br />

< 2<br />

k 2 3<br />

= a k ,<br />

2<br />

k=1<br />

k 2 3<br />

is conditionally convergent.<br />

, is a divergent p-series<br />

(<br />

p = 2 )<br />

3<br />

De-Yu Wang CSIE CYUT 124


7.6. THE RATIO TEST AND THE ROOT TEST<br />

Exercise 7.5.1. Determine if the alternating series is absolutely convergent, conditionally<br />

convergent or divergent. If the series converges, then determine how many<br />

terms needed to estimate the sum of the alternating series correct to within 10 −6 .<br />

(a)<br />

(b)<br />

∞∑<br />

(−1) k+1 2 k 3<br />

k=0<br />

∞∑<br />

(−1) k+1 √ 3<br />

k<br />

k=2<br />

(c)<br />

(d)<br />

∞∑<br />

(−1)<br />

k=7<br />

k+12k −1<br />

k 3<br />

∞∑<br />

(−1) k+1 k 2<br />

k +1<br />

k=1<br />

Exercise 7.5.2. Prove Theorem 7.5.1, Theorem 7.5.3 and Theorem 7.5.2.<br />

7.6 The Ratio Test and The Root Test<br />

Theorem 7.6.1. Ratio Test<br />

∞∑<br />

∣ ∣ ∣∣∣ a k+1∣∣∣<br />

Given a k with a k ≠ 0 for all k, suppose that lim = L. Then,<br />

k→∞ a k<br />

k=1<br />

(a) if L < 1, the series converges absolutely,<br />

(b) if L > 1, the series diverges and<br />

(c) if L = 1, there is no conclusion.<br />

∣ ∣ ∣∣∣ a k+1∣∣∣<br />

Proof for (a): For L < 1, pick any number r with lim = L < r < 1.<br />

k→∞ a k<br />

Then, we can make<br />

∣ a k+1∣∣∣<br />

∣ < r, for k > N<br />

a k<br />

|a k+1 | < r|a k |<br />

|a k+2 | < r|a k+1 | < r 2 |a k |<br />

.<br />

|a k+m | < r|a k+m−1 | < r m |a k |<br />

∴<br />

∞∑ N∑ ∞∑<br />

|a k | = |a k |+ |a k |<br />

k=1<br />

∞∑<br />

k=1<br />

a k<br />

<<br />

k=1<br />

N∑<br />

|a k |+<br />

k=N+1<br />

∞∑<br />

k=1 k=N+1<br />

converges absolutely.<br />

r k−N−1 |a N+1 | =<br />

N∑<br />

k=1<br />

|a k |+ |a N+1|<br />

1−r<br />

< ∞, converges.<br />

De-Yu Wang CSIE CYUT 125


7.6. THE RATIO TEST AND THE ROOT TEST<br />

Proof for (b): For L > 1, we have lim<br />

k→∞<br />

∣ ∣∣∣ a k+1<br />

a k<br />

∣ ∣∣∣<br />

= L > 1.<br />

Then, we can make<br />

∣ a k+1∣∣∣<br />

∣ > 1, for k > N<br />

a k<br />

|a k+1 | > |a k | ⇒ lim<br />

k→∞<br />

|a k | ≠ 0<br />

By the kth-term test,<br />

∞∑<br />

a k diverges.<br />

k=1<br />

Example 7.6.1. Use the ratio test to determine if the alternating series<br />

is absolutely convergent, conditionally convergent or divergent.<br />

∞∑<br />

(−1) k 2 k!<br />

k=0<br />

∣ ∣∣∣ a k+1<br />

Solution: lim<br />

k→∞<br />

∞∑<br />

∴ (−1) k 2 k!<br />

k=0<br />

a k<br />

∣ ∣∣∣<br />

= lim<br />

2<br />

(k+1)!<br />

k→∞<br />

2<br />

k!<br />

is absolutely convergent.<br />

1<br />

= lim<br />

k→∞ k +1 = 0 < 1<br />

Theorem 7.6.2. Root Test<br />

∞∑ ∣ ∣∣<br />

Given a k , suppose that lim<br />

√ k |a k | ∣ = L. Then,<br />

k→∞<br />

k=1<br />

(a) if L < 1, the series converges absolutely,<br />

(b) if L > 1, the series diverges and<br />

(c) if L = 1, there is no conclusion.<br />

Proof for (a): For L < 1, pick any number r with lim<br />

k→∞<br />

k √ |a k | = L < r < 1.<br />

Then, we can make<br />

√<br />

k<br />

|ak | < r, for k > N<br />

|a k | < r k<br />

|a k+1 | < r k+1<br />

.<br />

|a m | < r m<br />

De-Yu Wang CSIE CYUT 126


7.6. THE RATIO TEST AND THE ROOT TEST<br />

∴<br />

∞∑ N∑ ∞∑<br />

|a k | = |a k |+ |a k |<br />

k=1<br />

∞∑<br />

k=1<br />

a k<br />

<<br />

k=1<br />

N∑<br />

|a k |+<br />

k=N+1<br />

∞∑<br />

k=1 k=N+1<br />

r k =<br />

converges absolutely.<br />

N∑<br />

k=1<br />

|a k |+ rN+1<br />

1−r<br />

< ∞, converges.<br />

Proof for (b): For L > 1, we have lim<br />

√ k<br />

|a k | = L > 1.<br />

k→∞<br />

Then, we can make<br />

√<br />

k<br />

|ak | = L > 1, for k > N<br />

|a k | > L k<br />

|a k+1 | > L k+1 ⇒ lim<br />

k→∞<br />

|a k | ≠ 0<br />

By the kth-term test,<br />

∞∑<br />

a k diverges.<br />

k=1<br />

Example 7.6.2. Use the root test to determine if the series<br />

convergent, conditionally convergent or divergent.<br />

Solution:<br />

∞∑<br />

k=1<br />

(−1) k 3 is absolutely<br />

kk ∴<br />

lim<br />

k→∞<br />

∞∑<br />

k=1<br />

√ ∣∣∣∣ ∣<br />

√<br />

k<br />

k<br />

3<br />

√ ∣∣∣<br />

k<br />

3<br />

|ak | = lim = lim<br />

k→∞ k k k→∞ k = 0 < 1<br />

(−1) k 3 is absolutely convergent.<br />

kk Exercise 7.6.1. Use the ratio test to determine if the alternating series is absolutely<br />

convergent, conditionally convergent or divergent.<br />

(a)<br />

(b)<br />

(c)<br />

∞∑<br />

(−1) k 2 k<br />

k=0<br />

∞∑<br />

(−1) k+1k!<br />

4 k<br />

k=1<br />

∞∑<br />

k=1<br />

2<br />

k!<br />

(d)<br />

(e)<br />

(f)<br />

∞∑<br />

k=4<br />

∞∑<br />

k=1<br />

∞∑<br />

k=3<br />

(−1) k10k<br />

k!<br />

(−1) k k!<br />

e k<br />

(−1) kk2 3 k<br />

2 k<br />

De-Yu Wang CSIE CYUT 127


7.7. POWER SERIES<br />

Exercise 7.6.2. Use the root test to determine if the series is absolutely convergent,<br />

conditionally convergent or divergent.<br />

(a)<br />

(b)<br />

∞∑ 2<br />

(c)<br />

(k +3) k<br />

∞∑<br />

( ) k 6k<br />

(d)<br />

5k +1<br />

k=1<br />

k=1<br />

∞∑<br />

e 3k<br />

k 3k<br />

k=2<br />

∞∑<br />

k=1<br />

( 4<br />

3k +2<br />

) k<br />

Exercise 7.6.3. Prove Theorem 7.6.1 and Theorem 7.6.2.<br />

7.7 Power Series<br />

Definition 7.7.1. Power Series<br />

∞∑<br />

b k (x−c) k = b 0 +b 1 (x−c)+b 2 (x−c) 2 +b 3 (x−c) 3 +···<br />

k=0<br />

Theorem 7.7.1. Convergence of a Power Series<br />

∞∑<br />

For a power series centered at c, b k (x−c) k , precisely one of the following is ture.<br />

The series converges<br />

(a) only for x = c, r = 0;<br />

k=0<br />

(b) for x ∈ (c−r, c+r), 0 < r < ∞;<br />

(c) for all x ∈ (−∞,∞), r = ∞.<br />

where r is the radius of convergence of the power series.<br />

2<br />

Example 7.7.1. Find a power series representation of about c = 0. Also<br />

1−x<br />

determine the radius of convergence and interval of convergence.<br />

Solution:<br />

∞∑<br />

∵ ab k = a , for |b| < 1<br />

1−b<br />

∴<br />

k=0<br />

∞<br />

2<br />

1−x = ∑<br />

2·x k for |x| < 1,<br />

k=0<br />

the radius of convergence r = 1 and the interval of convergence x ∈ (−1,1).<br />

De-Yu Wang CSIE CYUT 128


7.7. POWER SERIES<br />

Example 7.7.2. Determine the radius and interval of convergence for the geometric<br />

∞∑ 10 k<br />

power series<br />

k! (x−1)k .<br />

k=0<br />

Solution: From the ratio test, we have<br />

∣ ∣∣∣∣∣∣∣ 10 ∣ k+1 ∣ ∣∣∣∣∣∣∣ lim<br />

a k+1∣∣∣<br />

(k +1)! (x−1)k+1 1<br />

∣ = lim = 10|x−1| lim<br />

a k k→∞ 10 k<br />

k→∞ k +1 = 0 < 1<br />

k! (x−1)k<br />

k→∞<br />

∴<br />

∞∑<br />

k=0<br />

10 k<br />

k! (x−1)k converges absolutly for all x ∈ (−∞,∞) and r = ∞.<br />

Example 7.7.3. Determine the radius and interval of convergence for the geometric<br />

∞∑ x k<br />

power series<br />

k4 k.<br />

k=1<br />

Solution: From the ratio test, we have<br />

lim<br />

k→∞<br />

For x = 4,<br />

∞∑<br />

k=1<br />

For x = −4,<br />

∞∑<br />

k=1<br />

∣ a k+1∣∣∣<br />

∣ = lim<br />

a k<br />

x k<br />

k4 = ∑ ∞ k<br />

k=1<br />

x k<br />

k4 = ∑ ∞ k<br />

k=1<br />

∴ r = 4, x ∈ [−4,4).<br />

∣ ∣∣∣∣∣∣∣ x k+1<br />

(k +1)4 k+1<br />

k→∞ x k<br />

k4 k<br />

4 k<br />

k4 = ∑ ∞ k<br />

(−4) k<br />

k4 k =<br />

k=1<br />

∣ ∣∣∣∣∣∣∣<br />

= |x|<br />

4 lim<br />

k→∞<br />

k<br />

k +1 = |x|<br />

4 < 1.<br />

1<br />

, is a divergent p-series (p = 1).<br />

k<br />

∞∑ (−1) k<br />

, is a convergent alternating series.<br />

k<br />

k=1<br />

Theorem 7.7.2. If the function given by<br />

f(x) =<br />

∞∑<br />

b k (x−c) k = b 0 +b 1 (x−c)+b 2 (x−c) 2 +b 3 (x−c) 3 +···<br />

k=0<br />

has a radius of convergence of r > 0, then<br />

De-Yu Wang CSIE CYUT 129


7.7. POWER SERIES<br />

(a) the derivative<br />

f ′ (x) = d<br />

dx (b 0 +b 1 (x−c)+b 2 (x−c) 2 +b 3 (x−c) 3 +···)<br />

= b 1 +2b 2 (x−c)+3b 3 (x−c) 2 +···<br />

∞∑<br />

= b k k(x−c) k−1 ,<br />

k=1<br />

(b) and the antiderivative<br />

∫ ∫<br />

∑ ∞<br />

f(x)dx = b k (x−c) k dx =<br />

=<br />

∞∑<br />

k=0<br />

k=0<br />

b k<br />

(x−c) k+1<br />

k +1<br />

+K<br />

∞∑<br />

∫<br />

k=0<br />

b k (x−c) k dx<br />

have the same radii of convergence r.<br />

Remark. The interval of convergence may differ at the endpoints.<br />

Example 7.7.4. Usethepowerseries<br />

∞∑<br />

(−1) k x k tofindpowerseriesrepresentations<br />

k=0<br />

1<br />

of<br />

(1+x) 2. Also determine the radii of convergence and intervals of convergence.<br />

∞∑ ∞∑<br />

Solution: First, (−1) k x k = (−x) k 1<br />

=<br />

1−(−x) = 1 , for | − x| = |x| < 1.<br />

1+x<br />

k=0 k=0<br />

Therefore, r = |x| = 1, and x ∈ (−1,1).<br />

d 1<br />

dx1+x = −1<br />

(1+x) 2<br />

1<br />

(1+x) = − d 1<br />

2 dx1+x = − d ∞∑<br />

(−x) k<br />

dx<br />

k=0<br />

∞∑<br />

∞∑<br />

= − k(−x) k−1 ·(−1) = (−1) k+1 kx k−1<br />

k=1<br />

For x = −1,<br />

∞∑<br />

(−1) k+1 kx k−1 =<br />

k=1<br />

For x = 1,<br />

∞∑<br />

(−1) k+1 kx k−1 =<br />

k=1<br />

∴ r = 1, and x ∈ (−1,1).<br />

∞∑<br />

(−1) 2k k =<br />

k=1<br />

k=1<br />

∞∑<br />

k, diverges (k-term)<br />

k=1<br />

∞∑<br />

(−1) k+1 k, diverges (k-term)<br />

k=1<br />

De-Yu Wang CSIE CYUT 130


7.8. TAYLOR SERIES<br />

Exercise 7.7.1. Find a power series representation of f(x) about c = 0. Also determine<br />

the radius of convergence and interval of convergence.<br />

(a) f(x) = 3<br />

(c) f(x) = 3<br />

4+x<br />

x−1<br />

(b) f(x) = 2 (d) f(x) = 3<br />

1+x 2 6−x<br />

Exercise 7.7.2. Determinetheradiusandintervalofconvergenceforthepowerseries<br />

(a)<br />

(b)<br />

∞∑<br />

(x+2) k<br />

k=0<br />

(c)<br />

∞∑ ( x<br />

) k<br />

(−1) k (d)<br />

2<br />

k=0<br />

∞∑<br />

k=0<br />

∞∑<br />

k=1<br />

2 k<br />

k! (x−2)k<br />

(−1) k+1k!<br />

4 k<br />

∞∑<br />

Exercise 7.7.3. Use the power series (−1) k x k to find power series representations<br />

k=0<br />

of f(x). Also determine the radii of convergence and intervals of convergence.<br />

(a) f(x) = ln(1+x 2 )<br />

2<br />

(b) f(x) =<br />

(x−1) 2<br />

(c) f(x) = 3tan −1 x<br />

3x<br />

(d) f(x) =<br />

(1−x 2 ) 2<br />

7.8 Taylor Series<br />

Theorem 7.8.1. (a) Taylor series expansion of f(x) about x = c is given<br />

f(x) =<br />

∞∑<br />

k=0<br />

f (k) (c)<br />

(x−c) k<br />

k!<br />

=f(c)+f ′ (c)(x−c)+ f′′ (c)<br />

2!<br />

(x−c) 2 +···+ f(k) (c)<br />

(x−c) k +···<br />

k!<br />

(b) Taylor polynomial of degree n for f expanded about x = c<br />

f(x) ≈P n (x)<br />

n∑ f (k) (c)<br />

= (x−c) k<br />

k!<br />

k=0<br />

=f(c)+f ′ (c)(x−c)+ f′′ (c)<br />

2!<br />

(x−c) 2 +···+ f(n) (c)<br />

(x−c) n<br />

n!<br />

Remark. A Taylor series expansion about x = 0 (i.e., take c = 0) is called a Maclaurin<br />

series.<br />

De-Yu Wang CSIE CYUT 131


7.8. TAYLOR SERIES<br />

Proof:<br />

f(x) =<br />

∞∑<br />

b k (x−c) k<br />

k=0<br />

= b 0 +b 1 (x−c)+b 2 (x−c) 2 +b 3 (x−c) 3 +··· f(c) = b 0 ,<br />

f ′ (x) = b 1 +2b 2 (x−c)+3b 3 (x−c) 2 +4b 4 (x−c) 3 +··· f ′ (c) = b 1 ,<br />

f ′′ (x) = 2b 2 +3·2b 3 (x−c)+4·3b 4 (x−c) 2 +··· f ′′ (c) = 2b 2 ,<br />

f ′′′ (x) = 3·2b 3 +4·3·2b 4 (x−c)+··· f ′′′ (c) = 3!b 3 ,<br />

··· f (k) (c) = k!b k ,<br />

∴ b k = f(k) (c)<br />

, for k = 0,1,2,···<br />

k!<br />

.<br />

Example 7.8.1. Find the Taylor series about c = 0 and its interval of convergence<br />

for e x<br />

Solution: (a) Taylor series expansion<br />

∞∑<br />

f(x) = e x f (k) (0)<br />

= x k , f(0) = 1<br />

k!<br />

k=0<br />

f ′ (x) = e x , f ′ (0) = 1<br />

f ′′ (x) = e x , f ′′ (0) = 1<br />

f (3) (x) = e x , f (3) (0) = 1<br />

.<br />

f (k) (x) = e x , f (k) (0) = 1<br />

∞∑<br />

∴ e x 1<br />

=<br />

k! xk = 1+x+ 1 2! x2 + 1 3! x3 +···<br />

k=0<br />

(b) To test the convergence by ratio test,<br />

∣ ∣∣∣∣∣∣∣ x ∣ k+1<br />

lim<br />

a k+1∣∣∣<br />

(k +1)!<br />

k→∞∣<br />

= lim<br />

a k k→∞ x k<br />

∣<br />

k!<br />

∞∑<br />

∴<br />

k=0<br />

1<br />

= |x| lim<br />

k→∞ k +1 = 0 < 1<br />

1<br />

k! xk converges for all x ∈ (−∞,∞) and r = ∞.<br />

.<br />

De-Yu Wang CSIE CYUT 132


7.8. TAYLOR SERIES<br />

Example 7.8.2. For f(x) = e x , find the Taylor polynomial of degree n expanded<br />

about x = 0 and use it to approximate the number e.<br />

Solution: f (k) (x) = e x , for all k. So, the nth-degree Taylor polynomial is<br />

n∑ f (k) (0)<br />

n∑<br />

f(x) ≈ P n (x) = (x−0) k 1<br />

=<br />

k! k! xk<br />

k=0<br />

k=0<br />

= 1+x+ 1 2! x2 + 1 3! x3 +···+ 1 n! xn .<br />

e = e 1 = 1+1+ 1 2! 12 + 1 3! 13 +···+ 1 n! 1n ≈ 2.718281828.<br />

Example 7.8.3. Expand f(x) = sinx in a Taylor series about x = π 2<br />

c = π ) and find its interval of convergence.<br />

2<br />

∞∑ f (k)( )<br />

π (<br />

2<br />

Solution: (a) Taylor series expansion sinx = x− π ) k<br />

k! 2<br />

k=0<br />

( π<br />

f(x) = sinx, f = 1<br />

( 2)<br />

π<br />

)<br />

f ′ (x) = cosx, f ′ = 0<br />

( 2<br />

π<br />

)<br />

f ′′ (x) = −sinx, f ′′ = −1<br />

( 2<br />

π<br />

)<br />

f (3) (x) = −cosx, f (3) = 0<br />

( 2<br />

π<br />

)<br />

f (4) (x) = sinx, f (4) = 1<br />

2<br />

(i.e., take<br />

.<br />

( π<br />

)<br />

··· f (k) = (−1) k/2 for k = 0,2,4,···<br />

2<br />

∞∑ (−1) k/2 (<br />

∴ sinx = x− π k,<br />

for k = 0,2,4,···<br />

k! 2)<br />

k=0<br />

∞∑ (−1) m (<br />

= x− π ) 2m, k where m =<br />

(2m)! 2 2<br />

m=0<br />

= 1− 1 (<br />

x− π ) 2 1<br />

(<br />

+ x− π ) 4 1<br />

(<br />

− x− π 6<br />

+···<br />

2 2 4! 2 6! 2)<br />

(b) To test the convergence by ratio test,<br />

lim<br />

k→∞<br />

∣ a k+1∣∣∣<br />

∣ = lim<br />

a k<br />

=<br />

∣ ∣∣∣∣∣∣∣ (−1) k+1 ∣<br />

( )<br />

x−<br />

π 2k+2∣∣∣∣∣∣∣<br />

2<br />

(2k +2)!<br />

k→∞ (<br />

x−<br />

π 2k<br />

2)<br />

(−1) k<br />

(2k)!<br />

(<br />

x− π 2) 2<br />

lim<br />

k→∞<br />

1<br />

(2k +2)(2k +1) = 0 < 1<br />

De-Yu Wang CSIE CYUT 133


7.8. TAYLOR SERIES<br />

∴<br />

∞∑<br />

k=0<br />

(−1) k<br />

(2k)!<br />

(<br />

x− π 2) 2k<br />

converges absolutly for all x ∈ (−∞,∞) and r = ∞.<br />

Example 7.8.4. Find Taylor series in power of x for e 2x , e x2 and e −2x .<br />

Solution:<br />

e x =<br />

e 2x =<br />

e x2 =<br />

e −2x =<br />

∞∑<br />

k=0<br />

∞∑<br />

k=0<br />

∞∑<br />

k=0<br />

∞∑<br />

k=0<br />

1<br />

k! xk = 1+x+ 1 2! x2 + 1 3! x3 +··· for x ∈ (−∞,∞)<br />

1<br />

k! (2x)k =<br />

1<br />

k! (x2 ) k =<br />

∞∑ 2 k<br />

k! xk = 1+2x+ 22<br />

2! x2 + 23<br />

3! x3 +···<br />

∞∑ 1<br />

k! x2k = 1+x 2 + 1 2! x4 + 1 3! x6 +···<br />

∞∑ (−1) k 2 k<br />

x k = 1−2x+ 22<br />

k! 2! x2 − 23<br />

3! x3 +···<br />

k=0<br />

k=0<br />

1<br />

k! (−2x)k =<br />

k=0<br />

Summary. Common Taylor series<br />

Taylor<br />

Interval of<br />

series<br />

Convergence<br />

∞∑<br />

e x 1<br />

=<br />

k! xk = 1+x+ 1 2! x2 + 1 3! x3 +··· (−∞,∞)<br />

k=0<br />

∞∑ (−1) k<br />

sinx =<br />

(2k +1)! x2k+1 = x− 1 3! x3 + 1 5! x5 − 1 7! x7 +··· (−∞,∞)<br />

k=0<br />

∞∑ (−1) k (<br />

= x− π ) 2k<br />

= 1− 1 (<br />

x− π ) 2 1<br />

(<br />

+ x− π 4<br />

−··· (−∞,∞)<br />

(2k)! 2 2 2 4! 2)<br />

k=0<br />

∞∑ (−1) k<br />

cosx =<br />

(2k)! x2k = 1− 1 2! x2 + 1 4! x4 − 1 6! x6 +··· (−∞,∞)<br />

k=0<br />

∞∑ (−1) k+1<br />

lnx = (x−1) k = (x−1)− 1 k<br />

2 (x−1)2 + 1 3 (x−1)3 −··· (0,2]<br />

k=1<br />

∞∑<br />

tan −1 (−1) k<br />

x =<br />

(2k +1) x2k+1 = x− 1 3 x3 + 1 5 x5 − 1 7 x7 +··· [−1,1]<br />

k=0<br />

Exercise 7.8.1. Find the Maclaurin series (i.e. Taylor series about c = 0) and its<br />

interval of convergence.<br />

(a) f(x) = ln(1+x) (b) f(x) = 1<br />

1−x<br />

De-Yu Wang CSIE CYUT 134


7.8. TAYLOR SERIES<br />

Exercise 7.8.2. Find the Taylor series about c and detremine the interval of convergence.<br />

(a) f(x) = e x−1 , c = 1<br />

(b) f(x) = 1 x , c = −1 (c) f(x) = cosx, c = − π 2<br />

(d) f(x) = lnx, c = e<br />

Exercise 7.8.3. Find Taylor series in the summary table and prove Theorem 7.8.1.<br />

De-Yu Wang CSIE CYUT 135


Chapter 8<br />

PARAMETRIC EQUATIONS<br />

AND POLAR COORDINATES


8.1. PLANE CURVES AND PARAMETRIC EQUATIONS<br />

8.1 Plane Curves and Parametric Equations<br />

Definition 8.1.1.<br />

Givenanypairoffunctionsx(t)andy(t)definedonthesamedomainD, theequations<br />

x = x(t), y = y(t)<br />

are called parametric equations.<br />

The collection of all points (x(t),y(t)) is a plane curve.<br />

Example 8.1.1. Sketch the plane curve defined by the parametric equations x =<br />

t, y = √ t, for 0 ≤ t ≤ 4.<br />

Solution:<br />

t = 0, (x,y) = (0,0)<br />

t = 1, (x,y) = (1,1)<br />

(<br />

t = 2, (x,y) = 2, √ )<br />

2<br />

(<br />

t = 3, (x,y) = 3, √ )<br />

3<br />

(<br />

t = 4, (x,y) = 4, √ )<br />

4<br />

y<br />

3 ✻<br />

2<br />

1<br />

t = 0<br />

(0,0)<br />

t = 4<br />

(4,2)<br />

<br />

<br />

✯ ✶ ✿<br />

t = 2<br />

✒ (2, √ 2)<br />

✲x<br />

1 2 3 4<br />

Example 8.1.2. Find the parametric equation for the line segment from (0,1) to<br />

(5,6).<br />

Solution: For a line segment, the parametric equations can be chosen<br />

{<br />

x = a+bt<br />

,t 1 ≤ t ≤ t 2 .<br />

y = c+dt<br />

For t = t 1 = 0, (x,y) = (x(0),y(0)) = (a,c) = (0,1),<br />

∴ a = 0, c = 1.<br />

For t = t 2 = 1, (x,y) = (x(1),y(1)) = (a+b,c+d) = (b,1+d) = (5,6),<br />

∴ b = 5, d = 5.<br />

{<br />

x = 5t<br />

We now have that<br />

y = 1+5t , 0 ≤ t ≤ 1.<br />

De-Yu Wang CSIE CYUT 137


8.2. CALCULUS AND PARAMETRIC EQUATIONS<br />

Example 8.1.3. Find the parametric equation for the portion of the parabola y =<br />

x 2 +1 from (1,2) to (2,5).<br />

Solution:<br />

{<br />

{<br />

x = t<br />

y = t 2 +1 , 1 ≤ t ≤ 2, or x = 3t<br />

y = 9t 2 +1 , 1<br />

3 ≤ t ≤ 2 3 .<br />

Exercise 8.1.1. Sketch the plane curve defined by the parametric equations<br />

{<br />

x = 2cost<br />

{<br />

x = −1+2t<br />

(a)<br />

y = 3t+1<br />

{<br />

x = −1+2t<br />

(b)<br />

y = t 2 −1<br />

,1 ≤ t ≤ 2<br />

,0 ≤ t ≤ 2<br />

(c)<br />

y = 3sint<br />

{<br />

x = −2t 2<br />

(d)<br />

y = 2−t<br />

,0 ≤ t ≤ 2π<br />

,−2 ≤ t ≤ 1<br />

Exercise 8.1.2. Find the parametric equation for the line segment<br />

(a) from (0,1) to (3,4)<br />

(b) from (−3,1) to (1,3)<br />

(c) from (2,−5) to (5,1)<br />

(d) from (4,1) to (2,−3)<br />

Exercise 8.1.3. Find the parametric equation for the portion of the parabola<br />

(a) y = x 2 +1 from (1,2) to (3,10)<br />

(b) y = 2x 2 −1 from (0,−1) to (2,7)<br />

(c) y = 2−x 2 from (2,−2) to (0,2)<br />

(d) y = x 2 +1 from (1,2) to (−1,2)<br />

8.2 <strong>Calculus</strong> and Parametric Equations<br />

Theorem 8.2.1. Parametric form of the derivative<br />

For the parametric equations x(t) and y(t), then<br />

( )<br />

dy d dy<br />

dy<br />

dx = dt , and d2 y<br />

dx dx = dt dx<br />

, if dx<br />

2 dx dt ≠ 0.<br />

dt dt<br />

Proof: By the chain rule<br />

dy<br />

dy<br />

dx = dy dt<br />

dt dx = dt , if dx<br />

dx dt ≠ 0<br />

dt<br />

d 2 y<br />

dx 2 = d<br />

dx<br />

( ) dy<br />

=<br />

dx<br />

d<br />

dt<br />

( ) dy<br />

dx<br />

dx<br />

dt<br />

, if dx<br />

dt ≠ 0.<br />

De-Yu Wang CSIE CYUT 138


8.2. CALCULUS AND PARAMETRIC EQUATIONS<br />

Example 8.2.1. Find the slope of the tangent lines to the curve x = 2cost +<br />

sin2t, y = 2sint+cos2t at (a) t = 0, (b) t = π and (c) the point (0,−3).<br />

4<br />

Solution:<br />

dy<br />

dy<br />

dx = dt<br />

dx<br />

dt<br />

= 2cost−2sin2t<br />

−2sint+2cos2t<br />

(a) t = 0<br />

dy<br />

dx∣ = 2cost−2sin2t<br />

t=0<br />

−2sint+2cos2t∣ = 2cos0−2sin0<br />

t=0<br />

−2sin0+2cos0 = 1.<br />

(b) t = π 4<br />

dy<br />

∣<br />

dx<br />

∣<br />

t=<br />

π<br />

4<br />

= 2cost−2sin2t<br />

∣<br />

−2sint+2cos2t<br />

∣<br />

t=<br />

π<br />

4<br />

=<br />

2cos π 4 −2sin π 2<br />

−2sin π 4 +2cos π 2<br />

=<br />

√<br />

2−2<br />

− √ 2 = √ 2−1.<br />

(c) The point (0,−3)<br />

{<br />

x = 2cost+sin2t = 0<br />

y = 2sint+cos2t = −3<br />

{<br />

sin2t = −2cost<br />

cos2t = −3−2sint<br />

sin 2 2t+cos 2 2t = 1 = (−2cost) 2 +(−2sint−3) 2<br />

1 = 4cos 2 t+9+12sint+4sin 2 t<br />

−1 = sint, ⇒ t = 3π 2 .<br />

dy<br />

∣<br />

dx<br />

∣<br />

t=<br />

3π<br />

2<br />

= 2cost−2sin2t<br />

∣<br />

−2sint+2cos2t<br />

= −2sint−4cos2t<br />

∣<br />

−2cost−4sin2t<br />

∣<br />

t=<br />

3π<br />

2<br />

∣<br />

t=<br />

3π<br />

2<br />

( 0<br />

0)<br />

, By the L’Hôpital rule<br />

=<br />

−2sin 3π 2 −4cos3π<br />

−2cos 3π 2 −2sin3π = ∞<br />

does not exist.<br />

De-Yu Wang CSIE CYUT 139


8.2. CALCULUS AND PARAMETRIC EQUATIONS<br />

Theorem 8.2.2. Arc length in parametrical equations<br />

For the curve defined parametrically by x = x(t), y = y(t), a ≤ t ≤ b, if x ′ and y ′<br />

are continuous on [a,b] and the curve does not intersect itself, then the arc length of<br />

the curve is given by<br />

s =<br />

∫ b<br />

a<br />

√<br />

[x′ (t)] 2 +[y ′ (t)] 2 dt.<br />

Proof: Divide the t-interval [a,b] into n subinterval of equal length, ∆t:<br />

y<br />

a = t 0 < t 1 < t 2 < ··· < t n = b, ✻<br />

where t i −t i−1 = ∆t = b−a<br />

n ,<br />

for each i = 1,2,3,··· ,n.<br />

The arc length of the subinterval [t i−1 ,t i ] is<br />

s i ≈ √ [x(t i )−x(t i−1 )] 2 +[y(t i )−y(t i−1 )] 2<br />

t = a = t<br />

0<br />

<br />

t = b = t n<br />

✲x<br />

√ [x(ti ] 2 [ ] 2<br />

)−x(t i−1 ) y(ti )−y(t i−1 )<br />

= + ∆t<br />

∆t ∆t<br />

By the mean value theorem,<br />

s i ≈ √ [x ′ (c i )] 2 +[y ′ (d i )] 2 ∆t, where c i ,d i ∈ (t i−1 ,t i )<br />

n∑ n∑ √<br />

s = lim s i = lim [x′ (c i )] 2 +[y ′ (d i )] 2 ∆t<br />

n→∞ n→∞<br />

i=1 i=1<br />

∫ b √<br />

= [x′ (t)] 2 +[y ′ (t)] 2 dt.<br />

a<br />

Example 8.2.2. Find the arc length of the curve x = 2cost, y = 2sint for 0 ≤ t ≤<br />

2π.<br />

Solution:<br />

s =<br />

=<br />

=<br />

∫ b<br />

a<br />

∫ 2π<br />

0<br />

∫ 2π<br />

√<br />

[x′ (t)] 2 +[y ′ (t)] 2 dt<br />

√<br />

[−2sint]2 +[2cost] 2 dt<br />

√<br />

∫ 2π<br />

4dt = 2dt = 4π.<br />

0 0<br />

y<br />

✻<br />

■<br />

<br />

t = 0<br />

✲<br />

t = 2π x<br />

De-Yu Wang CSIE CYUT 140


8.2. CALCULUS AND PARAMETRIC EQUATIONS<br />

Example 8.2.3. Findthearclengthofthecurvex = 2cost+sin2t, y = 2sint+cos2t<br />

for 0 ≤ t ≤ 2π.<br />

Solution:<br />

s =<br />

=<br />

=<br />

=<br />

=<br />

=<br />

= 3<br />

∫ b<br />

a<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

√<br />

[x′ (t)] 2 +[y ′ (t)] 2 dt<br />

√<br />

[−2sint+2cos2t]2 +[2cost−2sin2t] 2 dt<br />

√<br />

8−8sintcos2t−8costsin2tdt<br />

√<br />

∫<br />

√<br />

2π<br />

8(1−sin3t)dt = 8<br />

√<br />

0<br />

∫ 5π<br />

6<br />

π<br />

6<br />

= 3 √ 8· 2<br />

3<br />

(<br />

8 cos 3t ) 2<br />

3t<br />

−sin dt<br />

2 2<br />

∣<br />

√ ∣∣∣<br />

8 cos 3t<br />

3t<br />

−sin 2 2 ∣ dt<br />

√<br />

8<br />

(sin 3t )<br />

3t<br />

−cos dt<br />

2 2<br />

(<br />

−cos 3t )∣5π<br />

3t ∣∣∣ 6<br />

−sin<br />

2 2<br />

0<br />

π<br />

6<br />

(<br />

cos 3t<br />

)<br />

3t 3t 3t<br />

2 +sin2 −2sin cos dt<br />

2 2 2 2<br />

= 16.<br />

t = <br />

5π 6<br />

−3<br />

y<br />

✻<br />

<br />

t = 3π 2<br />

t = π<br />

<br />

6<br />

t = 0<br />

✲x<br />

Exercise 8.2.1. Sketch the graph and find the slope of the given curves at the<br />

indicated points<br />

{<br />

x = t 2 −2<br />

(a) at (i) t = −1, (ii) t = 1, (iii) (−2,0)<br />

y = t 3 −t<br />

(b)<br />

(c)<br />

(d)<br />

{<br />

x = t 3 −t<br />

y = t 4 −5t 2 +4<br />

{<br />

x = 2cost<br />

y = 3sint<br />

{<br />

x = 2cos2t<br />

y = 3sin2t<br />

at (i) t = −1, (ii) t = 1, (iii) (0,4)<br />

at (i) t = π, (ii) t = π , (iii) (0,3)<br />

4 2<br />

at (i) t = π, (ii) t = π , (iii) (−2,0)<br />

4 2<br />

De-Yu Wang CSIE CYUT 141


8.3. POLAR COORDINATES<br />

Exercise 8.2.2. Sketch the graph and find the arc length of the given curves.<br />

(a)<br />

(b)<br />

{<br />

x = t 3 −4t<br />

y = t 2 −3<br />

{<br />

x = t 3 −4t<br />

y = t 2 −3t<br />

,−2 ≤ t ≤ 2<br />

,−2 ≤ t ≤ 2<br />

(c)<br />

(d)<br />

{<br />

x = 2cost<br />

y = 3sint<br />

{<br />

x = 2cos2t<br />

y = 3sin7t<br />

,0 ≤ t ≤ 2π<br />

,0 ≤ t ≤ 2π<br />

8.3 Polar Coordinates<br />

Definition 8.3.1. Polar coordinates P = (r,θ)<br />

r = directed distance from the pole (origin) O to P<br />

θ = directed angle, counterclockwise from polar axis to segment OP<br />

P = (r,θ)<br />

r = OP<br />

✧ ✧✧✧✧✧✧✧✧✧✧✧ ❑ θ ✲<br />

O<br />

Polar axis<br />

Theorem 8.3.1. Coordinate conversion<br />

y<br />

✻<br />

<br />

(r,θ)<br />

<br />

<br />

<br />

r<br />

y = rsinθ<br />

<br />

❑θ <br />

✲<br />

O x = rcosθ<br />

x<br />

(a)<br />

{<br />

x = rcosθ<br />

y = rsinθ<br />

, (x,y) = (rcosθ,rsinθ)<br />

(b)<br />

{<br />

r 2 = x 2 +y 2 , r = ± √ x 2 +y 2<br />

tanθ = y x , θ = tan−1 y ,<br />

x<br />

θ can be any angle for which tanθ = y , while x −π < 2 tan−1 y < π , so that<br />

x 2<br />

De-Yu Wang CSIE CYUT 142


8.3. POLAR COORDINATES<br />

(r,θ) = (+ √ x 2 +y 2 , tan −1 y +2nπ), for x > 0<br />

x<br />

= (− √ x 2 +y 2 , tan −1 y +π +2nπ),<br />

x<br />

(r,θ) = (+ √ x 2 +y 2 , tan −1 y +π +2nπ), for x < 0<br />

x<br />

where n is an integer.<br />

= (− √ x 2 +y 2 , tan −1 y x +2nπ),<br />

Example 8.3.1. Find the rectangular coordinate for the polar point (2,−π/3).<br />

Solution:<br />

(<br />

(x,y) = (rcosθ,rsinθ) = 2cos −π )<br />

−π<br />

,2sin<br />

3 3<br />

( )<br />

= 2· 1<br />

2 , 2· −√ 3<br />

= (1,− √ 3).<br />

2<br />

( Example ) 8.3.2. Find ( the ) polar coordinate representations for the points (r,θ) =<br />

2,<br />

π<br />

6 and (r,θ) = 2,<br />

7π<br />

6 with r = −2.<br />

Solution:<br />

(<br />

2, π )<br />

=<br />

(−2, π )<br />

6 6 +π +2nπ =<br />

(−2, 7π )<br />

6 +2nπ (<br />

2, 7π )<br />

=<br />

(−2, 7π )<br />

6 6 +π +2nπ =<br />

(−2, π )<br />

6 +2nπ<br />

y<br />

✻<br />

θ = π 6<br />

✬✩<br />

( )<br />

2,<br />

π<br />

6<br />

❑<br />

❯ 1 2<br />

( ✫✪ )<br />

✧ ✧✧✧✧✧✧✧✧✧✧✧✧✧ 2,<br />

7π<br />

θ = 7π 6<br />

6<br />

✲x<br />

Example 8.3.3. Find all polar coordinate representations for the rectangular point<br />

(2,−2).<br />

Solution:<br />

{r 2 = x 2 +y 2 , r = ± √ 2 2 +(−2) 2 = ± √ 8<br />

tanθ = y x , −2<br />

θ = tan−1 = 2 tan−1 (−1) = − π .<br />

4<br />

(√ π<br />

)<br />

∵ x = 2 > 0 ∴ (r,θ) = 8, −<br />

4 +2nπ =<br />

(− √ 8, − π )<br />

4 +π +2nπ .<br />

De-Yu Wang CSIE CYUT 143


8.4. CALCULUS AND POLAR COORDINATES<br />

Example 8.3.4. Find all polar coordinate representations for the rectangular point<br />

(−2,2).<br />

Solution:<br />

⎧<br />

⎨r 2 = x 2 +y 2 , r = ± √ (−2) 2 +2 2 = ± √ 8<br />

⎩tanθ = y x , θ = tan−1 2 = .<br />

−2 tan−1 (−1) = − π 4<br />

(√ π<br />

)<br />

∵ x = −2 < 0 ∴ (r,θ) = 8, −<br />

4 +π +2nπ =<br />

(− √ 8, − π )<br />

4 +2nπ .<br />

Exercise 8.3.1. Find the rectangular coordinate for the polar point<br />

(a) (−2,−π/3)<br />

(b) (3,π/5)<br />

(c) (0,3)<br />

(d) (−3,1)<br />

Exercise 8.3.2. Find all polar coordinate representations for the rectangular points<br />

(a) (−2,−1)<br />

(b) (0,3)<br />

(c) (−2, √ 3)<br />

(d) (3,−4)<br />

8.4 <strong>Calculus</strong> and Polar Coordinates<br />

Theorem 8.4.1. Slope in polar form<br />

If f is a differentiable function of θ, then the slope of the tangent line to r = f(θ) at<br />

the point (r,θ) is<br />

dy<br />

dy<br />

dx = dθ<br />

dx<br />

dθ<br />

= f(θ)cosθ +f′ (θ)sinθ<br />

−f(θ)sinθ +f ′ (θ)cosθ<br />

Proof: Using the product rule<br />

provided that dx<br />

dθ<br />

≠ 0 at (r,θ).<br />

dy d(rsinθ)<br />

dy<br />

dx = dθ = dθ =<br />

dx d(rcosθ)<br />

dθ dθ<br />

= f(θ)cosθ +f′ (θ)sinθ<br />

−f(θ)sinθ +f ′ (θ)cosθ<br />

d[f(θ)sinθ]<br />

dθ<br />

d[f(θ)cosθ]<br />

dθ<br />

if dx<br />

dθ ≠ 0.<br />

De-Yu Wang CSIE CYUT 144


8.4. CALCULUS AND POLAR COORDINATES<br />

Example 8.4.1. Find the slope of the tangent line to the polar curve at the point<br />

r = cos2θ at θ = 0, θ = π and the point (−1, π). y<br />

4 2<br />

1<br />

−1<br />

1<br />

x<br />

Solution:<br />

dy<br />

dy<br />

dx = dθ<br />

dx<br />

dθ<br />

= f′ (θ)sinθ +f(θ)cosθ<br />

f ′ (θ)cosθ −f(θ)sinθ<br />

−1<br />

=<br />

−2sin(2θ)sinθ +cos(2θ)cosθ<br />

−2sin(2θ)cosθ −cos(2θ)sinθ<br />

(a) θ = 0<br />

dy<br />

dx∣ = 1<br />

θ=0<br />

0<br />

does not exist.<br />

(b) θ = π 4<br />

dy<br />

∣<br />

dx<br />

∣<br />

θ=<br />

π<br />

4<br />

= −2sin(2θ)sinθ+cos(2θ)cosθ<br />

∣<br />

−2sin(2θ)cosθ −cos(2θ)sinθ<br />

= −2sin(π 2 )sin π 4 +cos(π 2 )cos π 4<br />

−2sin( π 2 )cos π 4 −cos(π 2 )sin π 4<br />

∣<br />

θ=<br />

π<br />

4<br />

=<br />

√2 √2<br />

−2·1· +0·<br />

2<br />

−2·1· √2 √2<br />

−0·<br />

2<br />

2<br />

2<br />

= 1.<br />

(c) The point (−1, π), θ = π 2 2<br />

dy<br />

dx∣ = −2sin(2θ)sinθ+cos(2θ)cosθ<br />

∣<br />

θ=<br />

π −2sin(2θ)cosθ −cos(2θ)sinθ<br />

2<br />

= −2sin(π)sin( (<br />

π<br />

2)<br />

+cos(π)cos<br />

π<br />

)<br />

2<br />

−2sin(π)cos ( (<br />

π<br />

2)<br />

−cos(π)sin<br />

π<br />

)<br />

2<br />

= −2·0·1+(−1)·0<br />

−2·0·0−(−1)·1 = 0.<br />

∣<br />

θ=<br />

π<br />

2<br />

De-Yu Wang CSIE CYUT 145


8.4. CALCULUS AND POLAR COORDINATES<br />

Note. Rose curves sinnθ, cosnθ :<br />

{<br />

n petals if n is odd<br />

2n petals if n is even<br />

cosθ<br />

y<br />

cos2θ<br />

y<br />

cos3θ<br />

y<br />

cos4θ<br />

y<br />

cos5θ<br />

y<br />

x<br />

x<br />

x<br />

x<br />

x<br />

sinθ<br />

y<br />

sin2θ<br />

y<br />

sin3θ<br />

y<br />

sin4θ<br />

y<br />

sin5θ<br />

y<br />

x<br />

x<br />

x<br />

x<br />

x<br />

Theorem 8.4.2. Area in polar coordinates<br />

If f is continuous and nonnegative on the interval [a,b], 0 < b − a ≤ 2π, then the<br />

area of the region bounded by the graph of r = f(θ) between the radial lines θ = a<br />

and θ = b is given by<br />

A =<br />

∫ b<br />

a<br />

1<br />

2 [f(θ)]2 dθ.<br />

Proof: Divide the θ-interval [a,b] into n subinterval of equal length, ∆θ:<br />

a = θ 0 < θ 1 < θ 2 < ··· < θ n = b,<br />

where θ i − θ i−1 = ∆θ = b−a , for each i = 1,2,3,··· ,n. The area of the circular<br />

n<br />

sector of radius f(θ i ) and central angle ∆θ is<br />

y<br />

y<br />

✻<br />

θ = b<br />

✁<br />

✁<br />

✁<br />

✁<br />

A θ = a<br />

✁<br />

✁<br />

✁ r = f(θ)<br />

✁✏ ✏✏✏✏✏✏✏✏✏✏✏ ✲<br />

x<br />

A i ≈ 1 2 r ·r∆θ = 1 2 [f(θ i)] 2 ∆θ<br />

A = lim<br />

n→∞<br />

n∑<br />

i=1<br />

n∑ 1<br />

A i = lim<br />

n→∞ 2 [f(θ i)] 2 ∆θ =<br />

i=1<br />

∫ b<br />

a<br />

✻<br />

θ = b<br />

✁<br />

θ = θ i<br />

✁ θ = θ i−1<br />

✁...<br />

A<br />

✁ i<br />

θ = a<br />

✁<br />

✁<br />

✁ r = f(θ)<br />

✏✁<br />

✏✏✏✏✏✏✏✏✏✏✏ ✲<br />

x<br />

1<br />

2 [f(θ)]2 dθ.<br />

De-Yu Wang CSIE CYUT 146


8.4. CALCULUS AND POLAR COORDINATES<br />

Example 8.4.2. Find the area of one leaf of r = cos3θ.<br />

Solution: If r = cos3θ = 0 then θ = π 6 , π 2 , 5π 6 ,··· . 1<br />

y<br />

A =<br />

= 1 4<br />

∫ π<br />

2<br />

1<br />

2 (cos3θ)2 dθ = 1 4<br />

(θ + 1 )∣π<br />

∣∣∣<br />

6 sin6θ 2<br />

π<br />

6<br />

= π 12 .<br />

π<br />

6<br />

∫ π<br />

2<br />

π<br />

6<br />

(1+cos6θ) dθ<br />

−1<br />

1<br />

x<br />

−1<br />

Theorem 8.4.3. Arc length in polar coordinates<br />

Let f be a function whose derivaive is continuous on [a,b]. The length of the graph<br />

of r = f(θ) from θ = a to θ = b is<br />

s =<br />

∫ b<br />

a<br />

√<br />

[f′ (θ)] 2 +[f(θ)] 2 dθ.<br />

Proof: Divide the θ-interval [a,b] into n subinterval of equal length, ∆θ:<br />

a = θ 0 < θ 1 < θ 2 < ··· < θ n = b,<br />

whereθ i −θ i−1 = ∆θ = b−a<br />

n , for each i = 1,2,3,··· ,n. Thearc lengthfrom θ = θ i−1<br />

to θ = θ i is<br />

s i ≈ √ [x(θ i )−x(θ i−1 )] 2 +[y(θ i )−y(θ i−1 )] 2<br />

= √ [f(θ i )cosθ i −f(θ i−1 )cosθ i−1 ] 2 +[f(θ i )sinθ i −f(θ i−1 )sinθ i−1 ] 2<br />

= √ f 2 (θ i )+f 2 (θ i−1 )−2f(θ i )f(θ i−1 )[cosθ i cosθ i−1 +sinθ i sinθ i−1 ]<br />

= √ f 2 (θ i )+f 2 (θ i−1 )−2f(θ i )f(θ i−1 )cos∆θ<br />

= √ [f(θ i )−f 2 (θ i−1 )] 2 +2f(θ i )f(θ i−1 )[1−cos∆θ]<br />

[<br />

(<br />

= √ [f(θi )−f 2 (θ i−1 )] 2 +2f(θ i )f(θ i−1 ) 2 sin ∆θ ) ] 2<br />

2<br />

≈ √ [f(θ i )−f 2 (θ i−1 )] 2 +[f(θ i )] 2 (∆θ) 2<br />

≈ √ [f ′ (θ i )] 2 +f 2 (θ i )∆θ<br />

n∑ n∑ √<br />

s = lim s i = lim [f′ (θ i )] 2 +[f(θ i )] 2 ∆θ<br />

n→∞ n→∞<br />

i=1 i=1<br />

∫ b √<br />

= [f(θ)]2 +[f ′ (θ)] 2 dθ.<br />

a<br />

De-Yu Wang CSIE CYUT 147


8.4. CALCULUS AND POLAR COORDINATES<br />

Example 8.4.3. Sketch the graph and find the arc length of the curve r = 2−2cosθ.<br />

Solution:<br />

s =<br />

=<br />

=<br />

= 4<br />

∫ b<br />

a<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

√<br />

[f(θ)]2 +[f ′ (θ)] 2 dθ<br />

√<br />

(2−2cosθ)2 +(2sinθ) 2 dθ<br />

√<br />

∫ 2π<br />

√<br />

8(1−cosθ)dθ = 4 sin 2 θ<br />

0 2 dθ<br />

∣ sin θ 2∣ dθ = −8cos θ 2π<br />

2∣<br />

= 16.<br />

θ=0<br />

−4<br />

−3<br />

−2<br />

y<br />

2<br />

1<br />

−1<br />

−1<br />

−2<br />

1<br />

x<br />

Exercise 8.4.1. Sketch the graph and find the slope of the given curves at the<br />

indicated points<br />

(a) r = sin3θ at θ = π 3<br />

(b) r = cos2θ at θ = 0<br />

(c) r = 3sinθ at θ = 0<br />

(d) r = cos2θ at θ = π 4<br />

Exercise 8.4.2. Sketch the graph and find the area of the indicated region.<br />

(a) One leaf of r = sin3θ<br />

(b) One leaf of r = sin2θ<br />

(c) Bounded by r = 2−2cosθ<br />

(d) BOunded by r = 3−3sinθ<br />

Exercise 8.4.3. Sketch the graph and find the arc length of the given curve.<br />

(a) r = sin3θ<br />

(b) r = 2−2sinθ<br />

(c) r = 3−3cosθ<br />

(d) r = 1+2sin2θ<br />

De-Yu Wang CSIE CYUT 148


Chapter 9<br />

VECTORS


9.1. VECTORS<br />

9.1 Vectors<br />

Definition 9.1.1. Vectors<br />

(a) Notation<br />

Vectors in the Plane: V 2 = {〈x,y〉|x,y ∈ R}<br />

−→<br />

PQ = 〈x 1 −x 0 , y 1 −y 0 〉 = 〈a 1 ,a 2 〉 = a<br />

−→<br />

PQ<br />

Q(x 1 , y 1 )<br />

terminal point<br />

✟ ✟✟✟✟✟✟✟✟✟✟✟✯ initial point<br />

P(x 0 , y 0 )<br />

Vectors in the Space: V 3 = {〈x,y,z〉|x,y,z ∈ R} ]<br />

−→<br />

PQ = 〈x 1 −x 0 , y 1 −y 0 , z 1 −z 0 〉 = 〈a 1 ,a 2 ,a 3 〉 = a<br />

−→<br />

PQ<br />

Q(x 1 , y 1 , z 1 )<br />

terminal point<br />

(b) Magnitude:<br />

✟ ✟✟✟✟✟✟✟✟✟✟✟✯ initial point<br />

P(x 0 , y 0 , z 0 )<br />

√<br />

‖a‖ = a 2 1 +a 2 2 for a ∈ V 2<br />

√<br />

‖a‖ = a 2 1 +a 2 2 +a 2 3 for a ∈ V 3 .<br />

(c) Addition and subtraction:<br />

a±b = 〈a 1 ,a 2 〉±〈b 1 ,b 2 〉 = 〈a 1 ±b 1 ,a 2 ±b 2 〉 for a ∈ V 2<br />

a±b = 〈a 1 ,a 2 ,a 3 〉±〈b 1 ,b 2 ,b 3 〉<br />

= 〈a 1 ±b 1 ,a 2 ±b 2 , a 3 ±b 3 〉 for a ∈ V 3<br />

(d) Zero vector<br />

0 = 〈0,0〉 for a ∈ V 2<br />

0 = 〈0,0,0〉 for a ∈ V 3<br />

De-Yu Wang CSIE CYUT 150


9.1. VECTORS<br />

(e) The negative of a is<br />

−a = 〈−a 1 ,−a 2 〉 for a ∈ V 2<br />

−a = 〈−a 1 ,−a 2 ,−a 3 〉 for a ∈ V 3<br />

(f) Parallel:<br />

b = ca, for any real number c.<br />

Example 9.1.1. For vector a = 〈5,−2〉 and b = 〈2,1〉, compute ‖5a−2b‖ .<br />

Solution:<br />

5a−2b = 5〈5,−2〉−2〈2,1〉<br />

= 〈25,−10〉−〈4,2〉 = 〈21,−12〉<br />

‖5a−2b‖ = ‖〈21,−12〉‖ = √ 21 2 +(−12) 2 = √ 585.<br />

Example 9.1.2. Determine whether or not the given pair of vectors is parallel: (a)<br />

a = 〈2,3〉 and b = 〈4,5〉, (b) a = 〈2,3〉 and b = 〈−4,−6〉.<br />

Solution: (a) If b = ca, 〈4,5〉 = 〈2c,3c〉, then c = 2 and c = 5 . This is a<br />

3<br />

contradiction and so a and b are not parallel.<br />

(b) If b = ca, 〈−4,−6〉 = 〈2c,3c〉, then c = −2. This says that b = −2a and so a<br />

and b are parallel.<br />

Example 9.1.3. Find the distance between the points (1,−3,5) and (5,2,−3).<br />

Solution:<br />

d = ‖〈5−1,2−(−3),−3−5〉‖ = ‖〈4,5,−8〉‖<br />

= √ 4 2 +5 2 +(−8) 2 = √ 105.<br />

De-Yu Wang CSIE CYUT 151


9.1. VECTORS<br />

Theorem 9.1.1. Properties of vector operations<br />

Let a,b and c be vectors, and let d and e be scales.<br />

Proof:<br />

1. a+b = b+a (commutativity)<br />

2. a+(b+c) = (a+b)+c (associativity)<br />

3. a+0 = a (zero vector)<br />

4. a+(−a) = 0 (additive inverse)<br />

5. d(a+b) = da+db (distributive law)<br />

6. (d+e)a = da+ea (distributive law)<br />

7. (1)a = a (multiplication by 1) and<br />

8. (0)a = 0 (multiplication by 0).<br />

1. a+b = 〈a 1 ,a 2 〉+〈b 1 ,b 2 〉 = 〈a 1 +b 1 ,a 2 +b 2 〉<br />

= 〈b 1 +a 1 ,b 2 +a 2 〉 = b+a<br />

2. a+(b+c) = 〈a 1 ,a 2 〉+(〈b 1 ,b 2 〉+〈c 1 ,c 2 〉)<br />

= 〈a 1 ,a 2 〉+〈b 1 +c 1 ,b 2 +c 2 〉<br />

= 〈a 1 +b 1 +c 1 ,a 2 +b 2 +c 2 〉<br />

= 〈a 1 +b 1 ,a 2 +b 2 〉+〈c 1 ,c 2 〉 = (a+b)+c<br />

Theorem 9.1.2. (a) Scalar multiplication:<br />

ca = c〈a 1 ,a 2 〉 = 〈ca 1 ,ca 2 〉 for a ∈ V 2<br />

ca = c〈a 1 ,a 2 ,a 3 〉 = 〈ca 1 ,ca 2 ,ca 3 〉 for a ∈ V 3<br />

and ‖ca‖ = |c|‖a‖.<br />

(b) For any nonzero position vector a, a unit vector having the same direction as a<br />

is given by<br />

u = 1<br />

‖a‖ a.<br />

Proof: (a) ‖ca‖ = √ (ca 1 ) 2 +(ca 2 ) 2 = |c| √ a 2 1 +a 2 2 = |c|‖a‖<br />

∥ (b) ‖u‖ =<br />

1 ∥∥∥<br />

∥‖a‖ a = 1 ‖a‖ = 1.<br />

‖a‖<br />

De-Yu Wang CSIE CYUT 152


9.1. VECTORS<br />

Definition 9.1.2. The standard basis (unit) vectors<br />

i = 〈1,0〉 and j = 〈0,1〉 for a ∈ V 2<br />

i = 〈1,0,0〉, j = 〈0,1,0〉 and k = 〈0,0,1〉 for a ∈ V 3<br />

For any vector a, we can write<br />

a = 〈a 1 ,a 2 〉 = a 1 〈1,0〉+a 2 〈0,1〉<br />

= a 1 i+a 2 j for a ∈ V 2<br />

a = 〈a 1 ,a 2 ,a 3 〉 = a 1 〈1,0,0〉+a 2 〈0,1,0〉+a 3 〈0,0,1〉<br />

= a 1 i+a 2 j+a 3 k for a ∈ V 3<br />

Example 9.1.4. Find a vector a with the magnitude 3 and in the same direction as<br />

the vector v = 〈4,1,−2〉.<br />

Solution:<br />

u = 1<br />

‖v‖ v = 1 √<br />

21<br />

〈4,1,−2〉 =<br />

a = 3u = 3<br />

〈 4<br />

√<br />

21<br />

,<br />

〈 4<br />

√<br />

21<br />

,<br />

1<br />

√ , −2 〉 〈 12<br />

√ = √ , 21 21 21<br />

1<br />

√ , −2 〉<br />

√<br />

21 21<br />

3<br />

√ , −6 〉<br />

√<br />

21 21<br />

Exercise 9.1.1. For a = 〈4,−1,−3〉 and b = 〈−1,3,1〉<br />

(a) Compute 2a−3b.<br />

(b) Compute ‖2a−3b‖<br />

(c) Determine if the vectors a and b are parallel.<br />

(d) Find a unit vector in the same direction as a.<br />

Exercise 9.1.2. Repeat Exercise 9.1.1 with<br />

(a) a = 〈2,1〉, b = 〈3,4〉<br />

(b) a = 2i+j−3k, b = 6i+2j−k<br />

(c) a = 2i−3k, b = 6i+2j<br />

(d) a = 〈3,1,0〉, b = 〈−3,0,4〉<br />

Exercise 9.1.3. Find a vector with the given magnitude and in the same direction<br />

as the given vector v.<br />

(a) Magnitude 6, vector v = 〈2,2,1〉 (c) Magnitude 3, vector v = 2i−j+3k<br />

(b) Magnitude 10, vector v = 〈3,0,−4〉 (d) Magnitude 7, vector v = 3i−5j+k<br />

Exercise 9.1.4. Prove Theorem 9.1.1<br />

De-Yu Wang CSIE CYUT 153


9.2. THE DOT PRODUCT<br />

9.2 The Dot Product<br />

Definition 9.2.1. The dot product of two vectors<br />

a·b = 〈a 1 ,a 2 〉·〈b 1 ,b 2 〉 = a 1 b 1 +a 2 b 2 for a ∈ V 2<br />

a·b = 〈a 1 ,a 2 ,a 3 〉·〈b 1 ,b 2 ,b 3 〉 = a 1 b 1 +a 2 b 2 +a 3 b 3 for a ∈ V 3<br />

Note. The dot product of two vectors is a scalar (i.e., a number, not a vector). For<br />

this reason, the dot product is also called the scalar product.<br />

Example 9.2.1. For vector a = 〈5,−2,1〉 and b = 〈2,1,−3〉, compute the dot<br />

product a·b.<br />

Solution:<br />

a·b = 〈5,−2,1〉·〈2,1,−3〉 = 10−2−3 = 5.<br />

Theorem 9.2.1. Let a,b and c be vectors, and let d be scale.<br />

Proof:<br />

1. a·b = b·a (commutativity)<br />

2. a·(b+c) = a·b+a·c (distributive law)<br />

3. (da)·b = d(a·b) = a·(db)<br />

4. 0·a = 0<br />

5. a·a = ‖a‖ 2 .<br />

1. a·b = 〈a 1 ,a 2 〉·〈b 1 ,b 2 〉 = a 1 b 1 +a 2 b 2<br />

= b 1 a 1 +b 2 a 2 = b·a<br />

5. a·a = 〈a 1 ,a 2 〉·〈a 1 ,a 2 〉<br />

= a 2 1 +a 2 2 = ‖a‖ 2<br />

Theorem 9.2.2. Let θ be the angle between nonzero vectors a and b. Then<br />

a·b = ‖a‖ ‖b‖cosθ<br />

Proof: (a) If a and b are not parallel, then<br />

‖a‖<br />

<br />

‖a−b‖ 2 = (‖a‖sinθ) 2 +(‖b‖−‖a‖cosθ) 2<br />

<br />

θ ■<br />

‖a‖cosθ<br />

= ‖a‖ 2 +‖b‖ 2 −2‖a‖‖b‖cosθ<br />

✐<br />

✒ <br />

<br />

<br />

‖a‖sinθ<br />

‖a−b‖<br />

‖b‖−‖a‖cosθ<br />

✲<br />

De-Yu Wang CSIE CYUT 154


9.2. THE DOT PRODUCT<br />

(b) Using the properties of the dot product,<br />

‖a−b‖ 2 = (a−b)·(a−b)<br />

= a·a−a·b−b·a+b·b<br />

= ‖a‖ 2 −2a·b+‖b‖ 2<br />

= ‖a‖ 2 +‖b‖ 2 −2‖a‖‖b‖cosθ<br />

∴ a·b = ‖a‖ ‖b‖cosθ<br />

Definition 9.2.2. Two vector a and b are orthogonal if a·b = 0.<br />

Example 9.2.2. For a = 〈4,−1,−3〉 and b = 〈−1,3,1〉<br />

(a) Determine if the vectors a and b are orthogonal.<br />

(b) Compute the angle between the vectors a and b.<br />

Solution: (a) a·b = −4−3−3 = −10 ≠ 0, so that a and b are not orthogonal.<br />

(b) From Theorem 9.2.2<br />

cosθ = a·b<br />

‖a‖‖b‖ = −10 √<br />

26<br />

√<br />

11<br />

0 ≤ θ = cos −1 ( −10<br />

√<br />

26<br />

√<br />

11<br />

)<br />

≤ π.<br />

Exercise 9.2.1. For a = 〈3,−2,1〉 and b = 〈−1,4,2〉<br />

(a) Compute the dot product a·b.<br />

(b) Determine if the vectors a and b are orthogonal.<br />

(c) Compute the angle between the vectors a and b.<br />

Exercise 9.2.2. Repeat Exercise 9.2.1 with<br />

(a) a = 〈2,1〉, b = 〈3,4〉<br />

(b) a = 〈3,1,0〉, b = 〈−3,0,4〉<br />

(c) a = 2i−3k, b = 6i+2j<br />

(d) a = 2i+j−3k, b = 6i+2j−k<br />

Exercise 9.2.3. Prove Theorem 9.2.1 and Theorem 9.2.2<br />

De-Yu Wang CSIE CYUT 155


9.3. THE CROSS PRODUCT<br />

9.3 The Cross Product<br />

Definition 9.3.1. The determinate of<br />

(a) 2×2<br />

∣ a ∣<br />

1 a 2∣∣∣<br />

= a<br />

b 1 b 1 b 2 −a 2 b 1 .<br />

2<br />

(b) 3×3<br />

∣ a 1 a 2 a 3∣∣∣∣∣<br />

∣ ∣ ∣ ∣ ∣ ∣ ∣∣∣ b b 1 b 2 b 3 = a 2 b 3∣∣∣<br />

∣∣∣ b<br />

1 −a 1 b 3∣∣∣<br />

∣∣∣ b<br />

∣ c<br />

c 1 c 2 c 2 c 2 +a 1 b 2∣∣∣<br />

3 c 1 c 3 .<br />

3 c 1 c 2<br />

3<br />

Definition 9.3.2. For two vectors a = 〈a 1 ,a 2 ,a 3 〉 and b = 〈b 1 ,b 2 ,b 3 〉 in V 3 , the cross<br />

(vector) product of a and b is<br />

∣ i j k ∣∣∣∣∣ a×b =<br />

a 1 a 2 a 3 =<br />

∣ a ∣ 2 a 3∣∣∣<br />

i−<br />

∣ b<br />

b 1 b 2 b 2 b 3<br />

∣ a ∣ 1 a 3∣∣∣<br />

j+<br />

b 1 b 3<br />

∣ a ∣<br />

1 a 2∣∣∣<br />

k<br />

b 1 b 2<br />

3<br />

Example 9.3.1. For vectors a = 〈2,1,4〉, b = 〈−1,2,−1〉, compute the cross product<br />

a×b.<br />

Solution:<br />

i j k<br />

∣ ∣ ∣ ∣∣∣<br />

a×b =<br />

2 1 4<br />

∣−1 2 −1∣ = 1 4<br />

∣∣∣ 2 −1∣ i− 2 4<br />

∣∣∣ −1 −1∣ j+ 2 1<br />

−1 2∣ k = 〈−9,−2,5〉.<br />

Theorem 9.3.1. Let a,b and c be vectors in V 3 , and let d be scale.<br />

1. a×b = −(b×a) (anticommutativity)<br />

2. a×(b+c) = a×b+a×c (distributive law)<br />

(a+b)×c = a×c+b×c<br />

3. (da)×b = d(a×b) = a×(db)<br />

4. a·(b×c)=(a×b)·c<br />

=(b×c)·a = b·(c×a)<br />

=(c×a)·b<br />

5. a×a = 0<br />

6. a×0 = 0×a = 0<br />

(scalar triple product)<br />

De-Yu Wang CSIE CYUT 156


9.3. THE CROSS PRODUCT<br />

Proof:<br />

∣ i j k ∣∣∣∣∣ 1. a×b =<br />

a 1 a 2 a 3 =<br />

∣ a ∣ 2 a 3∣∣∣<br />

i−<br />

∣ b<br />

b 1 b 2 b 2 b 3<br />

∣ a ∣ 1 a 3∣∣∣<br />

j+<br />

b 1 b 3<br />

∣ a ∣<br />

1 a 2∣∣∣<br />

k<br />

b 1 b 2<br />

3 = −<br />

∣ b ∣ 2 b 3∣∣∣<br />

i+<br />

a 2 a 3<br />

∣ b ∣ 1 b 3∣∣∣<br />

j−<br />

a 1 a 3<br />

∣ b ∣<br />

1 b 2∣∣∣<br />

k = −(b×a)<br />

a 1 a 2 ∣ ∣ ∣ a 1 a 2 a 3∣∣∣∣∣<br />

a 1 a 2 a 3∣∣∣∣∣<br />

c 1 c 2 c 3∣∣∣∣∣<br />

4. a·(b×c) =<br />

b 1 b 2 b 3 = −<br />

c 1 c 2 c 3 =<br />

a 1 a 2 a 3<br />

∣c 1 c 2 c 3<br />

∣b 1 b 2 b 3<br />

∣b 1 b 2 b 3<br />

= c·(a×b) = (a×b)·c<br />

Theorem 9.3.2. Let θ be the angle between nonzero vectors a and b in V 3 . Then<br />

(a) a×b is orthogonal to both a and b.<br />

(b) ‖a×b‖ = ‖a‖ ‖b‖sinθ.<br />

(c) a and b are parallel if and only if a×b = 0.<br />

Proof for (a):<br />

∣ ∣ a 1 a 2 a 3∣∣∣∣∣<br />

0 0 0 ∣∣∣∣∣<br />

a·(a×b) =<br />

a 1 a 2 a 3 =<br />

a 1 a 2 a 3 = 0<br />

∣b 1 b 2 b 3<br />

∣b 1 b 2 b 3 ∣ ∣ b 1 b 2 b 3∣∣∣∣∣<br />

0 0 0 ∣∣∣∣∣<br />

b·(a×b) =<br />

a 1 a 2 a 3 =<br />

a 1 a 2 a 3 = 0<br />

∣b 1 b 2 b 3<br />

∣b 1 b 2 b 3<br />

Proof for (b):<br />

‖a×b‖ 2 = (a×b)·(a×b)<br />

= [a 2 b 3 −a 3 b 2 ] 2 +[a 1 b 3 −a 3 b 1 ] 2 +[a 1 b 2 −a 2 b 1 ] 2<br />

= (a 2 1 +a 2 2 +a 2 3)(b 2 1 +b 2 2 +b 2 3)−(a 1 b 1 +a 2 b 2 +a 3 b 3 ) 2<br />

= ‖a‖ 2 ‖b‖ 2 −(a·b) 2<br />

= ‖a‖ 2 ‖b‖ 2 −‖a‖ 2 ‖b‖ 2 cos 2 θ<br />

= ‖a‖ 2 ‖b‖ 2 (1−cos 2 θ)<br />

= ‖a‖ 2 ‖b‖ 2 sin 2 θ<br />

Since sinθ ≥ 0, for 0 ≤ θ ≤ π, so that ‖a×b‖ = ‖a‖ ‖b‖sinθ.<br />

De-Yu Wang CSIE CYUT 157


9.3. THE CROSS PRODUCT<br />

Proof for (c):<br />

• If a and b are parallel (θ = 0 or π), then<br />

‖a×b‖ = ‖a‖ ‖b‖sinθ = ‖a‖ ‖b‖·0 = 0.<br />

• If ‖a×b‖ = 0 = ‖a‖ ‖b‖sinθ then sinθ = 0<br />

⇒ θ = 0 or π, (a and b are parallel).<br />

Theorem 9.3.3. The area of the parallelogram with two adjacent edges formed by<br />

the vectors a and b.<br />

A = ‖a×b‖<br />

Proof:<br />

A = ‖b‖<br />

}{{}<br />

base<br />

‖a‖sinθ = ‖a×b‖<br />

} {{ }<br />

altitude<br />

‖a‖<br />

‖a‖sinθ<br />

✑ ✑✑✑✑✑✸<br />

■ θ<br />

‖b‖<br />

✲<br />

Example 9.3.2. Find the area of the parallelogram with two adjacent edges formed<br />

by the vectors a = 〈3,−1,1〉, and b = 〈−4,0,1〉.<br />

Solution:<br />

i j k<br />

∣ ∣ ∣ ∣∣∣<br />

a×b =<br />

3 −1 1<br />

∣−4 0 1∣ = −1 1<br />

∣∣∣ 0 1∣ i− 3 1<br />

∣∣∣ −4 1∣ j+ 3 −1<br />

−4 0 ∣ k = 〈−1,−7,−4〉<br />

A = ‖a×b‖ = ‖〈−1,−7,−4〉‖ = √ 66.<br />

Theorem 9.3.4. The distance form the point Q, to the line through the points P<br />

and R.<br />

d = ‖−→ PQ× −→ PR‖<br />

‖ −→ .<br />

PR‖<br />

Proof:<br />

d = ‖ −→ PQ‖sinθ = ‖ −→ PQ‖sinθ · ‖−→ PR‖<br />

= ‖−→ PQ× −→ PR‖<br />

‖ −→ .<br />

PR‖<br />

‖ −→ PR‖<br />

<br />

✒ Q<br />

<br />

<br />

<br />

<br />

θ ■<br />

P<br />

d = ‖ −→ PQ‖sinθ<br />

✲<br />

R<br />

De-Yu Wang CSIE CYUT 158


9.3. THE CROSS PRODUCT<br />

Example 9.3.3. Find the distance form the point Q(1,2,−1), to the line through<br />

the points P(0,1,3) and R(5,−2,1).<br />

Solution:<br />

−→<br />

PQ = 〈1,1,−4〉 and −→ PR = 〈5,−3,−2〉<br />

−→<br />

PQ× −→ PR = 〈1,1,−4〉×〈5,−3,−2〉<br />

i j k<br />

=<br />

1 1 −4<br />

∣5 −3 −2∣ = 〈−14,−18,−8〉<br />

d = ‖−→ PQ× −→ PR‖<br />

‖ −→ PR‖<br />

= ‖〈−14,−18,−8〉‖<br />

‖〈5,−3,−2〉‖<br />

=<br />

√<br />

584<br />

√<br />

38<br />

Theorem 9.3.5. The volume of the parallelepiped with three adjacent edges formed<br />

by the vectors a, b and c.<br />

V = |c·(a×b)|.<br />

Proof:<br />

V = A·h<br />

= ‖a×b‖<br />

} {{ }<br />

Area of base<br />

·|‖c‖cosθ|<br />

} {{ }<br />

altitude<br />

= ‖a×b‖· |c·(a×b)|<br />

‖a×b‖<br />

= |c·(a×b)|.<br />

a×b<br />

✻<br />

✟ ✟✟✟ ✁<br />

✁<br />

c<br />

✁ ✁<br />

✁<br />

✁ ✁✕<br />

✁<br />

✁ ✁<br />

h<br />

✁ ✁<br />

✛θ<br />

✁ b✁<br />

✁<br />

✟✁<br />

✟✟✟✯ A<br />

✟ ✟✟✟ ✁<br />

✁<br />

✁ ✁ ✁ ✁<br />

✁ ✁<br />

✁ ✁<br />

✁ ✁<br />

✁ ✁<br />

✁<br />

✲✁✟ ✟✟✟<br />

a<br />

Example 9.3.4. Find the volume of the parallelepiped with three adjacent edges<br />

formed by the vectors a = 〈−4,−1,0〉, b = 〈2,2,−1〉, and c = 〈1,4,2〉.<br />

Solution:<br />

1 4 2<br />

c·(a×b) =<br />

−4 −1 0<br />

∣ 2 2 −1∣<br />

= 1<br />

∣ −1 0<br />

∣ ∣ ∣∣∣ 2 −1∣ −4 −4 0<br />

∣∣∣ 2 −1∣ +2 −4 −1<br />

2 2 ∣ = −27<br />

V = |c·(a×b)| = |−27| = 27.<br />

De-Yu Wang CSIE CYUT 159


9.4. VECTOR-VALUED FUNCTIONS<br />

Exercise 9.3.1. For a = 〈3,−2,1〉 and b = 〈−1,4,2〉<br />

(a) Compute the cross product a×b<br />

(b) Determine if the vectors a and b are parallel.<br />

(c) Findtheareaoftheparallelogramwithtwoadjacentedgesformedbythevectors<br />

a and b.<br />

Exercise 9.3.2. Repeat Exercise 9.3.1 with<br />

(a) a = 〈2,1,−5〉, b = 〈3,4,1〉<br />

(b) a = 〈3,1,0〉, b = 〈−3,0,4〉<br />

(c) a = 2i−3k, b = 6i+2j<br />

(d) a = 2i+j−3k, b = 6i+2j−k<br />

Exercise 9.3.3. Find the distance form the point Q, to the line through the points<br />

P and R.<br />

(a) Q = (1,2,0), P = (6,−1,2) and R = (3,−4,1)<br />

(b) Q = (1,0,−3), P = (−2,1,7) and R = (−3,1,1)<br />

(c) Q = (3,2,0), P = (5,1,2) and R = (4,1,−1)<br />

(d) Q = (1,3,1), P = (−2,1,3) and R = (1,0,−2)<br />

Exercise 9.3.4. Find the volume of the parallelepiped with three adjacent edges<br />

formed by the vectors a, b and c.<br />

(a) a = 〈−4,−1,0〉, b = 〈2,2,−1〉, and c = 〈3,0,2〉.<br />

(b) a = 〈1,−1,2〉, b = 〈1,2,3〉, and c = 〈0,4,2〉.<br />

(c) a = 〈−3,2,1〉, b = 〈3,2,−5〉, and c = 〈1,5,−2〉.<br />

(d) a = 〈−2,−1,5〉, b = 〈−3,6,−1〉, and c = 〈−1,4,2〉.<br />

Exercise 9.3.5. Prove Theorem 9.3.1, Theorem 9.3.2, Theorem 9.3.3 and Theorem<br />

9.3.4<br />

9.4 Vector-Valued Functions<br />

Definition 9.4.1. A function of the form<br />

r(t) = f(t)i+g(t)j+h(t)k = 〈f(t), g(t), h(t)〉<br />

is a vector-valued function, where f, g, and h are real-valued functions of the parameter<br />

t.<br />

De-Yu Wang CSIE CYUT 160


9.4. VECTOR-VALUED FUNCTIONS<br />

Example 9.4.1. Plot the values of the two-dimensional vector-valued function<br />

r(t) = 〈t+1, t 2 −2〉 at t = −2, t = 0 and t = 2.<br />

y<br />

Solution:<br />

3 ✻<br />

〈−1,2〉<br />

r(−2) = 〈f(−2), g(−2)〉 = 〈−1,2〉 2 〈3,2〉<br />

❆❑ r(2)<br />

r(0) = 〈f(0), g(0)〉 = 〈1,−2〉<br />

r(−2)<br />

❆ 1<br />

❆<br />

r(2) = 〈f(2), g(2)〉 = 〈3,2〉<br />

❆✑ ✑✑✑✑✑✸ ✲x<br />

−2 −1 ❆ 1 2 3 4<br />

−1 ❆<br />

r(0)<br />

❆<br />

−2 ❆❯<br />

〈1,−2〉<br />

Example 9.4.2. Sketch a graph of the curve traced out by the endpoint of the<br />

vector-valued function r(t) = 〈t+1, t 2 −2〉 from t = −2 to t = 2.<br />

Solution: The endpoint of all position vector r lie on the curve<br />

y<br />

{<br />

3 ✻<br />

x = f(t) = t+1<br />

C : ,−2 ≤ t ≤ 2<br />

〈−1,2〉<br />

2 〈3,2〉 <br />

y = g(t) = t 2 −2<br />

❆❑ r(2)<br />

y = t 2 −2 = (x−1) 2 −2. r(−2)<br />

❆ 1<br />

◆<br />

❆ ✗<br />

❆✑ ✑✑✑✑✑✸ ✲x<br />

−2 −1 ❆ 1 2 3 4<br />

−1 ❆<br />

❯ r(0)<br />

❆ ✕<br />

−2 ❆❯ <br />

〈1,−2〉<br />

Note. If an object moves along the curve C traced out by the endpoint of r, then r ′<br />

and r ′′ are the velocity and acceleration vectors, respectively.<br />

Definition 9.4.2. Limit of Vector-Valued Functions<br />

For a vector-valued function r(t) = 〈f(t), g(t), h(t)〉, the limit of r(t) as t approaches<br />

a is given by<br />

limr(t) = lim〈f(t), g(t), h(t)〉 =<br />

t→a t→a<br />

〈<br />

〉<br />

limf(t), limg(t), limh(t)<br />

t→a t→a t→a<br />

provided all of the indicated limits exist. If any one of the limits fails to exist, then<br />

limr(t) does not exist.<br />

t→a<br />

〈<br />

Example 9.4.3. Find the limit lim t 2 ,e 2t , √ 〉<br />

t 2 +2t .<br />

t→1<br />

Solution:<br />

〈<br />

lim t 2 , e 2t , √ 〉<br />

t 2 +2t<br />

t→1<br />

=<br />

〈 √ 〉 〈<br />

limt 2 , lime 2t , lim t2 +2t = 1, e 2 , √ 〉<br />

3<br />

t→1 t→1 t→1<br />

De-Yu Wang CSIE CYUT 161


9.4. VECTOR-VALUED FUNCTIONS<br />

Definition 9.4.3. Continuity of Vector-Valued Functions<br />

The vector-valued function r(t) = 〈f(t), g(t), h(t)〉 is continuous at t = a whenever<br />

limr(t) = r(a)<br />

t→a<br />

Theorem 9.4.1. A vector-valued function r(t) = 〈f(t), g(t), h(t)〉 is continuous at<br />

t = a if and only if all of f, g and h are continuous at t = a.<br />

Example 〈 9.4.4. 〉 Determine all values of t at which the vector-valued function r(t) =<br />

t+1<br />

t−1 , t2 , 2t is continuous.<br />

Solution:<br />

{t|t ≠ 1}<br />

Example 9.4.5. Determine all values of t at which the vector-valued function<br />

r(t) = 〈e 5t , ln(t+1), cost〉 is continuous.<br />

Solution:<br />

{t|t > −1}<br />

Exercise 9.4.1. Sketch a graph of the curve traced out by the endpoint of the vectorvalued<br />

function<br />

(a) r(t) = 〈3t,t 2 〉, t = 0, t = 1<br />

(b) r(t) = 〈t 2 ,2t−1〉, t = 0, t = 1<br />

(c) r(t) = 〈cos2t,sint〉, t = 0, t = π 2<br />

(d) r(t) = 〈cost,sin2t〉, t = 0, t = π 2<br />

Exercise 9.4.2. Find the limit if it exists<br />

(a) lim<br />

t→0<br />

〈<br />

t 2 −1, e 2t , sint 〉<br />

〈 sint<br />

(b) lim , cost, t+1 〉<br />

t→0 t t−1<br />

Exercise 9.4.3. Determine all values of t at which the given vector-valued function<br />

is continuous.<br />

〈 〉 3<br />

(a) r(t) =<br />

t , cost, 2t (b) r(t) = 〈tant, cost 2 , 2t+3〉<br />

De-Yu Wang CSIE CYUT 162


9.5. THE CALCULUS OF VECTOR-VALUED FUNCTIONS<br />

9.5 The <strong>Calculus</strong> of Vector-Valued Functions<br />

Definition 9.5.1. The derivative r ′ (t) of the vector-valued function r(t) is defined<br />

as<br />

r ′ (t) = lim<br />

∆t→0<br />

r(t+∆t)−r(t)<br />

,<br />

∆t<br />

for any values of t for which the limit exists. When the limit exists for t = a, we say<br />

that r is differentiable at t = a.<br />

Theorem 9.5.1. Let r(t) = 〈f(t), g(t), h(t)〉 and suppose that the components f, g<br />

and h are all differentiable for some value of t. Then<br />

Proof:<br />

r ′ (t) = 〈f ′ (t), g ′ (t), h ′ (t)〉<br />

r(t+∆t)−r(t)<br />

,<br />

∆t<br />

〈f(t+∆t), g(t+∆t), h(t+∆t)〉−〈f(t), g(t), h(t)〉<br />

= lim<br />

∆t→0<br />

∆t<br />

〈f(t+∆t)−f(t), g(t+∆t)−g(t), h(t+∆t)−h(t)〉<br />

= lim<br />

∆t→0<br />

〈<br />

∆t<br />

f(t+∆t)−f(t)<br />

= lim , g(t+∆t)−g(t) , h(t+∆t)−h(t) 〉<br />

∆t→0 ∆t ∆t ∆t<br />

〈<br />

f(t+∆t)−f(t) g(t+∆t)−g(t)<br />

= lim , lim , lim<br />

∆t→0 ∆t ∆t→0 ∆t ∆t→0<br />

r ′ (t) = lim<br />

∆t→0<br />

= 〈f ′ (t), g ′ (t), h ′ (t)〉<br />

〉<br />

h(t+∆t)−h(t)<br />

∆t<br />

Example 9.5.1. Find the derivative of the vector-valued function r(t) =<br />

〈3t 3 +2t, sin(t 2 +3t), e 3 t 3 〉 and s(t) = 〈7te t , cost 3 , te 2 〉.<br />

Solution:<br />

r ′ (t) = 〈 9t 2 +2, (2t+3)cos(t 2 +3t), 3e 3 t 2〉<br />

s ′ (t) = 〈 7e t +7te t , −3t 2 sint 3 , e 2〉<br />

De-Yu Wang CSIE CYUT 163


9.5. THE CALCULUS OF VECTOR-VALUED FUNCTIONS<br />

Theorem 9.5.2. Supposethatr(t)ands(t)aredifferentiablevector-valuedfunctions,<br />

f(t) is a differentiable scalar function and c is any scalar constant. Then<br />

(a) d dt [r(t)+s(t)] = r′ (t)+s ′ (t)<br />

(b) d dt [cr(t)] = cr′ (t)<br />

(c) d dt [f(t)r(t)] = f′ (t)r(t)+f(t)r ′ (t)<br />

(d) d dt [r(t)·s(t)] = r′ (t)·s(t)+r(t)·s ′ (t)<br />

(e) d dt [r(t)×s(t)] = r′ (t)×s(t)+r(t)×s ′ (t)<br />

Proof: Let r(t) = 〈f 1 (t), g 1 (t), h 1 (t)〉 and s(t) = 〈f 2 (t), g 2 (t), h 2 (t)〉<br />

(a) d dt [r+s] = d dt [〈f 1, g 1 , h 1 〉+〈f 2 , g 2 , h 2 〉]<br />

= d dt [〈f 1 +f 2 , g 1 +g 2 , h 1 +h 2 〉]<br />

= 〈f 1 ′ +f 2, ′ g 1 ′ +g 2, ′ h ′ 1 +h ′ 2〉<br />

= 〈f 1, ′ g 1, ′ h ′ 1〉+〈f 2, ′ g 2, ′ h ′ 2〉 = r ′ +s ′<br />

(d) d dt [r·s] = d dt [〈f 1, g 1 , h 1 〉·〈f 2 , g 2 , h 2 〉]<br />

= d dt [f 1f 2 +g 1 g 2 +h 1 h 2 ]<br />

= f ′ 1f 2 +f 1 f ′ 2 +g ′ 1g 2 +g 1 g ′ 2 +h ′ 1h 2 +h 1 h ′ 2<br />

= [f ′ 1f 2 +g ′ 1g 2 +h ′ 1h 2 ]+[f 1 f ′ 2 +g 1 g ′ 2 +h 1 h ′ 2]<br />

= r ′ ·s+r·s ′<br />

Example 9.5.2. For f(t) = 3t 3 +2t, and r(t) = 〈7te t , cost 3 , te 2 〉, find d dt [f(t)r(t)].<br />

Solution:<br />

d<br />

dt [f(t)r(t)] = d dt [(3t3 +2t) 〈 7te t , cost 3 , te 2〉 ]<br />

=(9t 2 +2) 〈 7te t , cost 3 , te 2〉 +<br />

(3t 3 +2t) 〈 7e t +7te t , −3t 2 sint 3 , e 2〉<br />

De-Yu Wang CSIE CYUT 164


9.5. THE CALCULUS OF VECTOR-VALUED FUNCTIONS<br />

Example 9.5.3. For r(t) = 〈lnt, t 2 , 3t+1〉, and s(t) = 〈3 t , t 2 −1, te 2 〉, find<br />

d<br />

dt [r(t)·s(t)].<br />

Solution:<br />

d<br />

dt [r(t)·s(t)] =r′ (t)·s(t)+r(t)·s ′ (t)<br />

= d 〈<br />

lnt, t 2 , 3t+1 〉·〈3t , t 2 −1, te 2〉<br />

dt<br />

+ 〈 lnt, t 2 , 3t+1 〉· d 〈<br />

3 t , t 2 −1, te 2〉<br />

〈 〉 dt<br />

1<br />

=<br />

t , 2t, 3 ·〈3 t , t 2 −1, te 2〉 + 〈 lnt, t 2 , 3t+1 〉·〈3t ln3, 2t, e 2〉<br />

= 3t<br />

t +2t3 −2t+e 2 3t+3 t lntln3+2t 3 +e 2 (3t+1)<br />

Example 9.5.4. For r(t) =<br />

Solution:<br />

〈 〉<br />

5 t2 , 3t , and s(t) = 〈sect, sint〉, find d dt [r(t)×s(t)].<br />

d<br />

dt [r(t)×s(t)] =r′ (t)×s(t)+r(t)×s ′ (t)<br />

= d 〈 〉 〈 〉<br />

5 t2 , 3t ×〈sect, sint〉+ 5 t2 , 3t × d 〈sect, sint〉<br />

dt 〈 〉 〈 〉 dt<br />

= 5 t2 2t ln5, 3 ×〈sect, sint〉+ 5 t2 , 3t ×〈secttant, cost〉<br />

Definition 9.5.2. The vector-valued function R(t) is an antiderivative of the vectorvalued<br />

function r(t) whenever<br />

R ′ (t) = r(t)<br />

Definition 9.5.3. If R(t) is any antiderivative of r(t) = 〈f(t), g(t), h(t)〉, then<br />

(a) the indefinite integral of r(t) is defined to be<br />

∫ ∫<br />

r(t)dt = 〈f(t), g(t), h(t)〉 dt<br />

〈∫ ∫ ∫ 〉<br />

= f(t)dt, g(t)dt, h(t)dt = R(t)+c.<br />

where c is an arbitrary constant vector.<br />

De-Yu Wang CSIE CYUT 165


9.5. THE CALCULUS OF VECTOR-VALUED FUNCTIONS<br />

(b) the definite integral of r(t) is defined to be<br />

∫ b<br />

a<br />

∫ b<br />

r(t)dt = 〈f(t), g(t), h(t)〉 dt<br />

a<br />

〈∫ b ∫ b<br />

= f(t)dt, g(t)dt,<br />

a<br />

= R(t)| b t=a = R(b)−R(a)<br />

a<br />

∫ b<br />

a<br />

〉<br />

h(t)dt<br />

∫ 〈cost,<br />

Example 9.5.5. Evaluate the indefinite integral 2t 2 +3, e 4t〉 dt.<br />

Solution:<br />

∫ 〈cost,<br />

2t 2 +3, e 4t〉 〈<br />

dt = sint+c 1 ,<br />

=<br />

〈<br />

sint,<br />

2<br />

3 t3 +3t+c 2 ,<br />

〉<br />

e 4t<br />

+c<br />

4<br />

2<br />

3 t3 +3t,<br />

〉<br />

e 4t<br />

4 +c 3<br />

Example 9.5.6. Evaluate the definite integral<br />

∫ 4<br />

1<br />

〈<br />

sint,<br />

t 2 3<br />

〉<br />

dt.<br />

Solution:<br />

∫ 4<br />

1<br />

〈<br />

sint, t 2 /3 〉 dt =<br />

〈<br />

−cost,<br />

〉∣<br />

t 3 ∣∣∣<br />

4<br />

= 〈−cos4+cos1, 7〉<br />

9<br />

t=1<br />

Exercise 9.5.1. Find the derivative of the vector-valued function<br />

(a) r(t) = 〈3t 3 , sint 2 , te 3t 〉 (b) r(t) = 〈3t 3 +2t, sin(t 2 +3t), e 3 t 3 〉<br />

Exercise 9.5.2. Evaluate the indefinite or definite integral<br />

(a)<br />

(b)<br />

∫ 〈cost,<br />

2t 2 +3, e 4t〉 dt<br />

∫ 〈 〉<br />

3t<br />

te t2 , 3tsint, dt<br />

t 2 +1<br />

(c)<br />

(d)<br />

∫ 4<br />

1<br />

∫ 2<br />

0<br />

〈<br />

sint, t 2 /3 〉 dt<br />

〈 〉 4<br />

t+1 , et−2 , te t , dt<br />

De-Yu Wang CSIE CYUT 166


9.6. ARC LENGTH AND CURVATURE<br />

9.6 Arc Length and Curvature<br />

Theorem 9.6.1. Arc length in the vector-valued function<br />

The arc length of the curve traced out by the endpoint of the vector-valued function<br />

r(t) = 〈f(t), g(t), h(t)〉, a ≤ t ≤ b is given by<br />

s =<br />

∫ b<br />

a<br />

‖r ′ (t)‖dt.<br />

Proof: The curve described parametrically by<br />

C : x = f(t), y = g(t), z = h(t), a ≤ t ≤ b.<br />

The arc length (see page 140) is<br />

s =<br />

∫ b<br />

a<br />

√<br />

[f′ (t)] 2 +[g ′ (t)] 2 +[h ′ (t)] 2 dt =<br />

∫ b<br />

a<br />

‖r ′ (t)‖dt.<br />

Example 9.6.1. Find the arc length of the curve traced out by the endpoint of the<br />

vector-valued function r = 〈2t, lnt, t 2 〉, for 1 ≤ t ≤ e.<br />

Solution:<br />

s =<br />

=<br />

=<br />

=<br />

∫ b<br />

a<br />

∫ e<br />

1<br />

∫ e<br />

1<br />

∫ e<br />

1<br />

√<br />

[f′ (t)] 2 +[g ′ (t)] 2 +[h ′ (t)] 2 dt<br />

√<br />

( ) 2 1<br />

2 2 + +(2t)<br />

t<br />

2 dt<br />

√ √<br />

4+ 1 ∫ e (1 ) 2<br />

t 2 +4t2 dt =<br />

t +2t dt<br />

( ) 1<br />

t +2t dt =<br />

1<br />

(<br />

ln|t|+2 t2 2<br />

= (lne+e 2 )−(ln1+1) = e 2<br />

)∣ ∣∣∣<br />

e<br />

1<br />

z<br />

✻<br />

✍<br />

✘ ✘✘✘ ✘ ✘✘✘ ✘ ✘✿ y<br />

<br />

x<br />

Definition 9.6.1. The curvature of a curve C is<br />

κ =<br />

dT<br />

∥ ds ∥ ,<br />

where T is the unit tangent vector.<br />

Note. The curvature of a straight line is zero and<br />

the curvature for a circle of radius a > 0 is a constant 1 a .<br />

De-Yu Wang CSIE CYUT 167


9.6. ARC LENGTH AND CURVATURE<br />

z<br />

✻<br />

C<br />

y<br />

✘✘ ✘✘✘ ✘ ✘✘✘ ✁ ✁✕ T i<br />

✘✿<br />

✁<br />

✁<br />

<br />

✏<br />

✏✏✏✶ T i−1<br />

x<br />

Theorem 9.6.2. The curvature of the curve given by the vector-valued function r(t)<br />

is<br />

κ(t) = ‖T′ (t)‖<br />

‖r ′ (t)‖ = ‖r′ (t)×r ′′ (t)‖<br />

‖r ′ (t)‖ 3 .<br />

where T(t) = r′ (t)<br />

‖r ′ (t)‖ .<br />

Proof: Since ds = √ [f<br />

dt ′ (t)] 2 +[g ′ (t)] 2 +[h ′ (t)] 2 = ‖r ′ (t)‖, so that<br />

∥ κ(t) =<br />

dT<br />

∥∥∥∥ dT<br />

∥ ds ∥ = dt<br />

∥ = ‖T′ (t)‖<br />

‖r ′ (t)‖ .<br />

ds<br />

dt<br />

Example 9.6.2. Using 〈 two different 〉 methods in Theorem 9.6.2 to find the curvature<br />

of the curve r(t) = 2t,t 2 ,− t3 at the point t = 0.<br />

3<br />

Solution with Method 1: κ(t) = ‖T′ (t)‖<br />

‖r ′ (t)‖<br />

r ′ (t) = 〈 2,2t,−t 2〉<br />

‖r ′ (t)‖ = √ 4+4t 2 +t 4 = t 2 +2<br />

T(t) = r′ (t)<br />

‖r ′ (t)‖ = 〈2,2t,−t2 〉<br />

t 2 +2<br />

T ′ (t) = 〈0,2,−2t〉·(t2 +2)−〈2,2t,−t 2 〉·2t<br />

(t 2 +2) 2<br />

= 〈−4t,4−2t2 ,−4t〉<br />

(t 2 +2)<br />

√ 2<br />

‖T ′ 16t2 +16−16t<br />

(t)‖ =<br />

2 +4t 4 +16t 2<br />

= 2<br />

(t 2 +2) 2 t 2 +2<br />

κ(t) = ‖T′ (t)‖<br />

‖r ′ (t)‖ = 2<br />

(t 2 +2) 2, κ(0) = 1 2 .<br />

De-Yu Wang CSIE CYUT 168


9.6. ARC LENGTH AND CURVATURE<br />

Solution with Method 2: κ(t) = ‖r′ (t)×r ′′ (t)‖<br />

‖r ′ (t)‖ 3<br />

r ′ (t) = 〈 2,2t,−t 2〉<br />

‖r ′ (t)‖ = √ 4+4t 2 +t 4 = t 2 +2<br />

r ′′ (t) = 〈0,2,−2t〉<br />

i j k<br />

r ′ (t)×r ′′ (t) =<br />

2 2t −t 2<br />

∣0 2 −2t∣ = 〈 −4t 2 +2t 2 ,4t,4 〉 = 〈 −2t 2 ,4t,4 〉<br />

‖r ′ (t)×r ′′ (t)‖ = √ 4t 4 +16t 2 +16 = 2(t 2 +2)<br />

κ(t) = ‖r′ (t)×r ′′ (t)‖<br />

‖r ′ (t)‖ 3 = 2(t2 +2)<br />

(t 2 +2) 3 = 2<br />

(t 2 +2) 2, κ(0) = 1 2 .<br />

Exercise 9.6.1. Find the arc length of the curve traced out by the of the vectorvalued<br />

function<br />

(a) r(t) = 〈cost,sint,2t〉, 0 ≤ t ≤ 2π<br />

(b) r(t) = 〈√ 8t, t 2 , ln(t 2 ) 〉 , 1 ≤ t ≤ 2<br />

(c) r(t) = 〈t 2 +1,2t,t 2 −1〉, 0 ≤ t ≤ 2<br />

(d) r(t) = 〈t,t 2 −1,t 3 〉, 0 ≤ t ≤ 2<br />

Exercise 9.6.2. Using two different methods to find the curvature of the curve at<br />

the given point.<br />

(a) r(t) = 〈e −2t ,2t,4〉, t = 0<br />

(b) r(t) = 〈2,sinπt,lnt〉, t = 1<br />

(c) r(t) = 〈t,t,t 2 −1〉, t = 2<br />

(d) r(t) = 〈t,t 2 +t−1,t〉, t = 0<br />

De-Yu Wang CSIE CYUT 169


Chapter 10<br />

PARTIAL DIFFERENTIATION


10.1. FUNCTIONS OF SEVERAL VARIABLES<br />

10.1 Functions of Several Variables<br />

Definition 10.1.1. A function f is a rule that assign a unique real number<br />

z = f(x 1 ,x 2 ,··· ,x n ),<br />

to each n-tuples of real numbers (x 1 ,x 2 ,··· ,x n ) in D. The set D = {(x 1 ,x 2 ,··· ,x n )}<br />

is the domain of f, and the set R = {z} is the range of f.<br />

Note. x 1 ,x 2 ,··· and x n are the independent variables and z is the dependent variable.<br />

Example 10.1.1. Find the domain and range of the function z = f(x,y) =<br />

√ x+3y −2 and evaluate the value of f at the point (2,1).<br />

Solution: (a) The domain<br />

D = {(x,y)|x+3y −2 ≥ 0}.<br />

(b) The range<br />

R = {z|z ≥ 0}<br />

(c) f(2,1) = √ x+3y −2 = √ 2+3·1−2 = √ 3.<br />

Example 10.1.2. Find the domain and range of the function z = f(x,y) = cos(x 2 +<br />

y 2 ) and evaluate the value of f at the point (−2,1).<br />

Solution: (a) The domain<br />

D = {(x,y)|all x,y ∈ R}.<br />

(b) The range<br />

R = {z|−1 ≤ z ≤ 1}<br />

(c) f(−2,1) = cos(x 2 +y 2 ) = cos[(−2) 2 +1 2 ] = cos(5).<br />

Exercise 10.1.1. Find the domain and range of the function f and evaluate the<br />

value of f at the given point.<br />

(a) f(x,y) = 1<br />

x+y , (3,1)<br />

(b) f(x,y) = ln(2+x+y), (−3,7)<br />

(c) f(x,y) = sin 2 x+cos 2 y, (π,0)<br />

(d) f(x,y,z) = eyz<br />

z−x 2 −y 2 , (2,−3,1)<br />

De-Yu Wang CSIE CYUT 171


10.2. LIMITS AND CONTINUITY<br />

10.2 Limits and Continuity<br />

Definition 10.2.1. Formal definition of limit<br />

Let f be defined on an open disk centered at (a,b), except possibly at (a,b). We say<br />

that<br />

lim f(x,y) = L,<br />

(x,y)→(a,b)<br />

if for every ε > 0 there exists a δ > 0 such that<br />

|f(x,y)−L| < ε whenever 0 < √ (x−a) 2 +(y −b) 2 < δ.<br />

Remark. If f(x,y) approaches L 1 as (x,y) approaches (a,b) along a path P 1 and<br />

f(x,y) approaches L 2 ≠ L 1 as (x,y) approaches (a,b) along a path P 2 , then<br />

f(x,y) does not exist.<br />

lim<br />

(x,y)→(a,b)<br />

y<br />

✻<br />

✬✩f<br />

❈ <br />

δ❈<br />

(x,y)<br />

(a,b)<br />

✫✪<br />

✲x<br />

z<br />

✻<br />

L+ε<br />

❘<br />

f(x,y)<br />

L<br />

L−ε<br />

Example 10.2.1. Compute the limit<br />

Solution:<br />

e x+y−z<br />

lim<br />

(x,y,z)→(1,1,2) x−z = e0<br />

−1 = −1.<br />

e x+y−z<br />

lim<br />

(x,y,z)→(1,1,2) x−z .<br />

y<br />

✻ P 1<br />

P 5 ✬✩P 7<br />

❅ <br />

✲ ❅❘ ❄<br />

✠<br />

P ✛ 3 P 4<br />

✻<br />

✫✪ ✒ ❅■ P ❅<br />

8 P 6<br />

P 2<br />

✲x<br />

y<br />

Example 10.2.2. Compute the limit lim<br />

(x,y)→(1,0) x+y −1 .<br />

Solution:<br />

P 1 : x = 1<br />

P 2 : y = 0<br />

∴<br />

lim<br />

(1,y)→(1,0)<br />

lim<br />

(x,0)→(1,0)<br />

lim<br />

(x,y)→(1,0)<br />

y<br />

1+y −1 = lim1<br />

= 1<br />

y→0<br />

0<br />

x+0−1 = lim0<br />

= 0 ≠ 1<br />

x→1<br />

y<br />

does not exist.<br />

x+y −1<br />

De-Yu Wang CSIE CYUT 172


10.2. LIMITS AND CONTINUITY<br />

xy 2<br />

Example 10.2.3. Evaluate lim<br />

(x,y)→(0,0) x 2 +y 4.<br />

Solution:<br />

P 1 : x = 0<br />

P 2 : y = 0<br />

P 3 : y = x<br />

P 4 : x = y 2<br />

∴<br />

lim<br />

(x,y)→(0,0)<br />

lim<br />

(0,y)→(0,0)<br />

lim<br />

(x,0)→(0,0)<br />

lim<br />

(x,x)→(0,0)<br />

lim<br />

(y 2 ,y)→(0,0)<br />

0<br />

0+y = lim0<br />

= 0 4 y→0<br />

0<br />

x 2 +0 = lim0<br />

= 0<br />

x→0<br />

x 3<br />

x 2 +x 4 = lim<br />

x→0<br />

y 2 (y 2 )<br />

(y 2 ) 2 +y 4 = lim<br />

y→0<br />

xy 2<br />

x 2 +y 4 does not exist.<br />

x<br />

1+x 2 = 0<br />

y 4<br />

2y 4 = 1 2 ≠ 0<br />

Theorem 10.2.1. Suppose that |f(x,y)−L| ≤ g(x,y) for all (x,y) in the interior of<br />

some circle centered at (a,b), except possibly at (a,b). If lim g(x,y) = 0, then<br />

(x,y)→(a,b)<br />

lim f(x,y) = L.<br />

(x,y)→(a,b)<br />

Proof: If lim g(x,y) = 0, given any ε > 0 there exists a δ > 0 such that<br />

(x,y)→(a,b)<br />

|g(x,y)−0| = |g(x,y)| < ε whenever 0 < √ (x−a) 2 +(y −b) 2 < δ<br />

|f(x,y)−L| ≤ g(x,y) ≤ |g(x,y)| < ε<br />

|f(x,y)−L| < ε whenever 0 < √ (x−a) 2 +(y −b) 2 < δ<br />

∴ lim f(x,y) = L.<br />

(x,y)→(a,b)<br />

xy 2<br />

Example 10.2.4. Show that the limit lim<br />

(x,y)→(0,0) x 2 +y exist. 2<br />

Proof:<br />

xy 2<br />

lim<br />

(x,0)→(0,0) x 2 +y = lim 0<br />

2 (x,0)→(0,0) x = 0, 2<br />

xy 2<br />

lim<br />

(0,y)→(0,0) x 2 +y = lim 0<br />

2 (0,y)→(0,0) y = 0<br />

∣ 2 ∣ ∵ |f(x,y)−L| =<br />

xy 2 ∣∣∣<br />

∣x 2 +y −0 ≤<br />

xy 2 ∣∣∣ 2 ∣ = |x| and<br />

y 2<br />

∴<br />

lim<br />

(x,y)→(0,0)<br />

xy 2<br />

x 2 +y 2 = 0<br />

lim |x| = 0<br />

(x,y)→(0,0)<br />

De-Yu Wang CSIE CYUT 173


10.2. LIMITS AND CONTINUITY<br />

Definition 10.2.2. Suppose that f(x,y) is defined in the interior of a circle centered<br />

at (a,b). We say that f is continuous at (a,b) if lim f(x,y) = f(a,b).<br />

(x,y)→(a,b)<br />

Example 10.2.5. Determine all points at which the function f(x,y) = ln(x 2 +y 2 −5)<br />

is continuous.<br />

Solution:<br />

{(x,y)|x 2 +y 2 > 5}<br />

Exercise 10.2.1. Compute the indicated limit<br />

(a)<br />

(b)<br />

e x+y−z<br />

lim<br />

(x,y,z)→(1,1,2) x−z .<br />

lim<br />

(x,y)→(π,2)<br />

cosxy<br />

y 2 +1<br />

(c)<br />

(d)<br />

lim<br />

(x,y,z)→(1,0,2)<br />

lim<br />

(x,y)→(−3,0)<br />

4xz<br />

y 2 +z 2.<br />

e xy<br />

x 2 +y 2<br />

Exercise 10.2.2. Show that the indicated limit exist.<br />

(a)<br />

(b)<br />

lim<br />

(x,y)→(0,0)<br />

lim<br />

(x,y)→(0,0)<br />

xy 2<br />

x 2 +y 2<br />

(x,y,z)→(0,0,0)<br />

x 2 y<br />

x 2 +y 2 (d)<br />

(c) lim<br />

lim<br />

(x,y,z)→(0,0,0)<br />

3x 3<br />

x 2 +y 2 +z 2<br />

x 2 y 2 z 2<br />

x 2 +y 2 +z 2<br />

Exercise 10.2.3. Show that the indicated limit does not exist.<br />

(a)<br />

(b)<br />

lim<br />

(x,y)→(0,0)<br />

lim<br />

(x,y)→(0,0)<br />

3x 2<br />

x 2 +y 2<br />

(x,y,z)→(0,0,0)<br />

(c) lim<br />

2x 2 y<br />

x +y<br />

(d)<br />

lim<br />

(x,y,z)→(0,0,0)<br />

x 2 yz<br />

x 4 +y 4 +z 4<br />

xyz<br />

x 3 +y 3 +z 3<br />

Exercise 10.2.4. Determine all points at which the function is continuous.<br />

(a) f(x,y) = √ x 2 −y 2 −5<br />

(b) f(x,y) = ln(x 2 +y 2 −5)<br />

(c) f(x,y) = 4xy +sin3x 2 y<br />

(d) f(x,y) = ln(5−x 2 +y)<br />

(e) f(x,y) = √ 9−x 2 −y 2<br />

(f) f(x,y) = tan(x+y)<br />

De-Yu Wang CSIE CYUT 174


10.3. PARTIAL DERIVATIVES<br />

10.3 Partial Derivatives<br />

Definition 10.3.1. The partial derivative of f(x,y) with respect to x and y are<br />

defined as<br />

f x (x,y) = ∂f f(x+h,y)−f(x,y)<br />

(x,y) = lim ,<br />

∂x h→0 h<br />

f y (x,y) = ∂f f(x,y +h)−f(x,y)<br />

(x,y) = lim ,<br />

∂y h→0 h<br />

provided the limits exist.<br />

Example 10.3.1. For f(x,y) = 3x 2 +x 3 y+4y 2 , compute ∂f<br />

∂x (x,y), ∂f<br />

∂y (x,y), f x(1,0)<br />

and f y (2,−1).<br />

Solution:<br />

∂f<br />

∂x = 6x+3x2 y +0 = 6x+3x 2 y<br />

∂f<br />

∂y = 0+x3 ·1+8y = x 3 +8y<br />

f x (1,0) = 6+0 = 6<br />

f y (2,−1) = 8−8 = 0<br />

Guidelines 10.3.1. Higher order partial derivatives<br />

( )<br />

∂ ∂f<br />

= ∂2 f<br />

∂x ∂x ∂x =f 2 xx<br />

( )<br />

∂ ∂f<br />

= ∂2 f<br />

∂y ∂y ∂y =f 2 yy<br />

( )<br />

∂ ∂f<br />

= ∂2 f<br />

∂y ∂x ∂x∂y =f xy<br />

( )<br />

∂ ∂f<br />

= ∂2 f<br />

∂x ∂y ∂y∂x =f yx = f xy<br />

Example 10.3.2. Findallsecond-orderpartialderivativesoff(x,y) = x 2 y−y 3 +lnx.<br />

Solution:<br />

f x = 2xy + 1 x<br />

f xx = 2y − 1 x 2<br />

f xy = 2x<br />

f y = x 2 −3y 2<br />

f yx = 2x = f xy<br />

f yy = −6y<br />

De-Yu Wang CSIE CYUT 175


10.4. THE CHAIN RULE<br />

Example 10.3.3. Find the partial derivative f yxy of f(x,y) = 2sec −1 (x 3 )−4xy 2 +<br />

xln3y.<br />

Solution:<br />

f y = −8xy + x y<br />

f yx = −8y + 1 y<br />

f yxy = −8− 1 y 2<br />

Exercise 10.3.1. Evaluate f x and f y at the indicated point.<br />

(a) f(x,y) = cos −1 xy, (1,0)<br />

(b) f(x,y) = 6xy<br />

4x 2 +5y 2 , (1,1)<br />

(c) f(x,y) = tan −1 y x , (1,−2)<br />

(d) f(x,y) = xy<br />

x−y , (2,−2)<br />

Exercise 10.3.2. Find all second-order partial derivatives<br />

(a) f(x,y) = x 3 −4xy 2 +y 4<br />

(c) f(x,y,z) = √<br />

2<br />

(b) f(x,y) = x 3 sinxy 2 −3y 2<br />

x 2 +y 2 +z 2<br />

Exercise 10.3.3. Find the partial indicated derivative<br />

(a) f yxy ; f(x,y) = 2sec −1 (x 3 )−4xy 2 +xln3y<br />

(b) f yxy ; f(x,y) = 2cos(y 3 )−3x 3 y 2 +ln3xy<br />

(c) f xx ,f yy ,f yyzz ; f(x,y,z) = e 2xy − z2<br />

y +xzsiny<br />

(d) f xx ,f yy ,f wxyz ; f(w,x,y,z) = √ wyz −x 3 sinw<br />

10.4 The Chain Rule<br />

Definition 10.4.1. For z = f(x,y), the increment of z is given by<br />

∆z = f(x+∆x,y +∆y)−f(x,y)<br />

where ∆x and ∆y are the increments of x and y.<br />

De-Yu Wang CSIE CYUT 176


10.4. THE CHAIN RULE<br />

Theorem 10.4.1. The differential of z is<br />

Proof:<br />

dz = f x (x,y)dx+f y (x,y)dy.<br />

∆z =f(x+∆x,y +∆y)−f(x,y)<br />

=f(x+∆x,y +∆y)−f(x,y +∆y)+f(x,y +∆y)−f(x,y)<br />

f(x+∆x,y +∆y)−f(x,y +∆y)<br />

= ∆x+<br />

∆x<br />

dz = lim ∆z<br />

∆x→0<br />

∆y→0<br />

= lim<br />

∆x→0<br />

∆y→0<br />

f(x+∆x,y +∆y)−f(x,y +∆y)<br />

∆x<br />

=f x (x,y)dx+f y (x,y)dy.<br />

f(x,y +∆y)−f(x,y)<br />

∆y<br />

∆y<br />

∆x+ lim<br />

∆x→0<br />

∆y→0<br />

f(x,y +∆y)−f(x,y)<br />

∆y<br />

∆y<br />

Example 10.4.1. Find the total differential of f(x,y) = ye x +2sinx<br />

Solution:<br />

dz = f x (x,y)dx+f y (x,y)dy<br />

= (ye x +2cosx)dx+(e x )dy<br />

Theorem 10.4.2. Chain Rule<br />

Ifz = f(x(t),y(t)), wherex(t)andy(t)aredifferentiableandf(x,y)isadifferentiable<br />

function of x and y, then<br />

dz<br />

dt = ∂f dx<br />

∂x dt + ∂f dy<br />

∂y<br />

z = f(x,y)<br />

✡ <br />

❏❏<br />

✡ ❏<br />

∂f<br />

✡ ❏<br />

∂y<br />

✡ ❏<br />

✡ ❏<br />

x y<br />

∂f<br />

∂x<br />

dt . t t<br />

dx<br />

dt<br />

dy<br />

dt<br />

Proof:<br />

dz =f x (x,y)dx+f y (x,y)dy<br />

dz<br />

dt =f x(x,y) dx<br />

dt +f y(x,y) dy<br />

dt .<br />

De-Yu Wang CSIE CYUT 177


10.4. THE CHAIN RULE<br />

Example 10.4.2. Use the chain rule to find the derivative g ′ (t) where<br />

g(t) = f(x(t),y(t)), f(x,y) = x 2 y +siny, x(t) = t 3 +1, y(t) = e 2t .<br />

Solution:<br />

g ′ (t) = ∂f dx<br />

∂x dt + ∂f dy<br />

∂y dt<br />

= 2xy ·3t 2 +(x 2 +cosy)·2e 2t<br />

= 2(t 3 +1)e 2t ·3t 2 + [ (t 3 +1) 2 +cos(e 2t 2t<br />

)<br />

]·2e<br />

Theorem 10.4.3. Chain Rule<br />

If z = f(x(s,t),y(s,t)), where f(x,y) is a differentiable function of x and y and<br />

where x = x(s,t) and y = y(s,t) both have first-order partial derivatives. Then<br />

∂z<br />

∂s = ∂f ∂x<br />

∂x ∂s + ∂f ∂y<br />

∂y ∂s<br />

∂z<br />

∂t = ∂f ∂x<br />

∂x ∂t + ∂f ∂y<br />

∂y ∂t<br />

Comments:<br />

dz =f x (x,y)dx+f y (x,y)dy<br />

dz<br />

dt =f x(x,y) dx<br />

dt +f y(x,y) dy<br />

dt<br />

∂z<br />

∂t =f x(x,y) ∂x<br />

∂t +f y(x,y) ∂y<br />

∂t<br />

∂z<br />

∂s =f x(x,y) ∂x<br />

∂s +f y(x,y) ∂y<br />

∂s .<br />

z = f(x,y)<br />

✡ <br />

❏❏<br />

✡ ❏<br />

∂f ∂f<br />

✡ ❏<br />

∂x ∂y<br />

✡ ❏<br />

✡ ❏<br />

x<br />

<br />

y<br />

<br />

✁❆<br />

✁❆<br />

∂x ✁ ❆ ∂x ∂y ✁ ❆ ∂y<br />

∂s ✁ ❆ ∂t ∂s ✁ ❆ ∂t<br />

✁ ❆ ✁ ❆<br />

✁ ❆ ✁ ❆<br />

s t s t<br />

Example 10.4.3. Use the chain rule to find the derivative ∂g ∂g<br />

and where<br />

∂u ∂v<br />

g(u,v) = f(x(u,v),y(u,v)), f(x,y) = 4x 2 y 3 , x(u,v) = u 3 −vsinu, y(u,v) = 4u 2 .<br />

Solution:<br />

∂g<br />

∂u = ∂f ∂x<br />

∂x∂u + ∂f ∂y<br />

∂y ∂u<br />

= (8xy 3 )(3u 2 −vcosu)+(12x 2 y 2 )(8u)<br />

= [8(u 3 −vsinu)(4u 2 ) 3 ](3u 2 −vcosu)+[12(u 3 −vsinu) 2 (4u 2 ) 2 ](8u)<br />

∂g<br />

∂v = ∂f ∂x<br />

∂x∂v + ∂f ∂y<br />

∂y ∂v<br />

= (8xy 3 )(−sinu)+(12x 2 y 2 )(0)<br />

= −sinu[8(u 3 −vsinu)(4u 2 ) 3 ]<br />

De-Yu Wang CSIE CYUT 178


10.4. THE CHAIN RULE<br />

Theorem 10.4.4. Implicit differentiation<br />

Suppose that the equation F(x,y,z) = 0 implicitly defines a function of z = f(x,y),<br />

then<br />

∂z<br />

∂x = −F x<br />

F z<br />

,<br />

∂z<br />

∂y = −F y<br />

F z<br />

.<br />

Proof: Let w = F(x,y,z) = 0 and by the chain rule,<br />

∂w<br />

∂x = F ∂x<br />

x<br />

∂x +F ∂y<br />

y<br />

∂x +F ∂z<br />

z<br />

∂x<br />

∂z<br />

0 = F x +F z<br />

∂x<br />

∂z<br />

∂x = −F x<br />

for F z ≠ 0;<br />

F z<br />

∂w<br />

∂y = F ∂x<br />

x<br />

∂y +F ∂y<br />

y<br />

∂y +F ∂z<br />

z<br />

∂y<br />

∂z<br />

0 = F y +F z<br />

∂y<br />

∂z<br />

∂y = −F y<br />

for F z ≠ 0;<br />

F z<br />

Example 10.4.4. ForF(x,y,z) = xy 2 +z 3 +sin(xyz) = 0, useimplicitdifferentiation<br />

to find ∂z ∂z<br />

and . ∂x ∂y<br />

Solution:<br />

∂z<br />

∂x = −F x<br />

= − y2 +yzcos(xyz)<br />

F z 3z 2 +xycos(xyz) ;<br />

∂z<br />

∂y = −F y 2xy +xzcos(xyz)<br />

= −<br />

F z 3z 2 +xycos(xyz) .<br />

Exercise 10.4.1. Find the total differential of f(x,y)<br />

(a) f(x,y) = ye x +sinx<br />

(b) f(x,y) = √ x+y<br />

(c) f(x,y) = x 2 y 2 +3y −4x,<br />

(d) f(x,y) = x+3<br />

y<br />

Exercise 10.4.2. Use the chain rule to find the indicated derivative(s)<br />

(a) g ′ (t) where g(t) = f(x(t),y(t)), f(x,y) = e x2 y +siny, x(t) = t 3 +1, y(t) = e 2t<br />

(b) g ′ (t)whereg(t) = f(x(t),y(t)), f(x,y) = lnxy 2 +sin(xy), x(t) = 2t 3 +t, y(t) =<br />

e 2t<br />

(c) ∂g ∂g<br />

and where g(u,v) = f(x(u,v),y(u,v)), f(x,y) = ∂u ∂v 4x2 y 3 , x(u,v) = u 3 −<br />

vsinu, y(u,v) = 4u 2 .<br />

(d) ∂g<br />

∂u<br />

∂g<br />

and where g(u,v) = f(x(u,v),y(u,v)), f(x,y) = ∂v xy3 − 4x 2 , x(u,v) =<br />

e u2 , y(u,v) = √ v 2 +1sinu<br />

Exercise 10.4.3. Use implicit differentiation to find ∂z<br />

∂x<br />

(a) F(x,y,z) = xyz −4y 2 z 2 +cos(xy) = 0<br />

(b) F(x,y,z) = 3y 2 z −e 4x cos(3z)−3y 2 = 0.<br />

and<br />

∂z<br />

∂y .<br />

De-Yu Wang CSIE CYUT 179


10.5. THE GRADIENT AND DIRECTIONAL DERIVATIVES<br />

10.5 The Gradient and Directional Derivatives<br />

Definition 10.5.1. The directional derivative of f(x,y) at the point (a,b) and in the<br />

direction of the unit vector u = 〈u 1 ,u 2 〉 is given by<br />

f(a+hu 1 ,b+hu 2 )−f(a,b)<br />

D u f(a,b) = lim<br />

,<br />

h→0 h<br />

provided the limit exists.<br />

Theorem 10.5.1. Suppose that f is differentiable at (a,b) and u = 〈u 1 ,u 2 〉 is any<br />

unit vector. Then,<br />

D u f(a,b) = f x (a,b)u 1 +f y (a,b)u 2 .<br />

Proof: Let g(h) = f(a+hu 1 ,b+hu 2 ) = f(x,y), where x = a+hu 1 and y = b+hu 2 .<br />

Then g(0) = f(a,b) and so<br />

g ′ (h) = ∂g<br />

∂h = ∂f dx<br />

∂xdh + ∂f dy<br />

∂y dh = f x(x,y)u 1 +f y (x,y)u 2<br />

g ′ (0) = f x (a,b)u 1 +f y (a,b)u 2<br />

f(a+hu 1 ,b+hu 2 )−f(a,b) g(h)−g(0)<br />

D u f(a,b) = lim<br />

= lim<br />

h→0 h<br />

h→0 h<br />

= g ′ (0) = f x (a,b)u 1 +f y (a,b)u 2 .<br />

Example 〈 10.5.1. For f(x,y) = x 2 y −4y 3 , compute D u f(2,1) for the directions (a)<br />

1<br />

u = , √ 〉<br />

3<br />

and (b) u in the direction from (2,1) to (4,0).<br />

2 2<br />

Solution:<br />

f x (x,y) = 2xy,<br />

f y (x,y) = x 2 −12y 2<br />

〈<br />

1<br />

(a) For u = , √ 〉<br />

3<br />

2 2<br />

D u f(a,b) = f x (2,1)u 1 +f y (2,1)u 2<br />

= 4· 1<br />

2 −8· √<br />

3<br />

2 = 2−4√ 3.<br />

(b) For u in the direction from (2,1) to (4,0).<br />

u =<br />

〈4−2, 0−1〉<br />

‖〈4−2, 0−1〉‖ = 〈2,−1〉 〈 2<br />

‖〈2,−1〉‖ = √5 ,−√ 1 〉<br />

5<br />

D u f(a,b) = f x (2,1)u 1 +f y (2,1)u 2<br />

2<br />

= 4· √ −8·<br />

(− 1 )<br />

√ = √ 16 . 5 5 5<br />

De-Yu Wang CSIE CYUT 180


10.5. THE GRADIENT AND DIRECTIONAL DERIVATIVES<br />

Definition 10.5.2. The gradient of f(x,y) is the vector-valued function<br />

∇f(x,y) =<br />

〈 ∂f<br />

∂x , ∂f 〉<br />

∂y<br />

= ∂f ∂f<br />

i+<br />

∂x ∂y j<br />

provided both partial derivatives exist.<br />

Example 10.5.2. Find the gradient of f(x,y) = x 2 +4xy 2 −y 5 .<br />

Solution:<br />

▽f(x,y) = 〈 2x+4y 2 , 8xy −5y 4〉<br />

Theorem 10.5.2. If f is differentiable function of x and y and u is any unit vector,<br />

then<br />

Proof:<br />

D u f(x,y) = ∇f(x,y)·u.<br />

D u f(x,y) =f x (x,y)u 1 +f y (x,y)u 2<br />

〈 ∂f<br />

=<br />

∂x , ∂f 〉<br />

·〈u 1 ,u 2 〉<br />

∂y<br />

=∇f(x,y)·u.<br />

Example 10.5.3. Usingthegradientoff(x,y) = x 2 y−4y 2 tocomputethedirectional<br />

derivative of f(x,y) at the point (2,−1) in the direction of the vector 〈1, 2〉.<br />

Solution:<br />

∇f(x,y) = 〈 2xy, x 2 −8y 〉<br />

∇f(2,−1) = 〈−4, 12〉<br />

u =<br />

〈1, 2〉<br />

√<br />

5<br />

=<br />

〈 1√5<br />

,<br />

D u f(2,−1) = 〈−4, 12〉·〈 1√5<br />

,<br />

〉<br />

2<br />

√<br />

5<br />

〉<br />

2<br />

√ = √ 20<br />

5 5<br />

De-Yu Wang CSIE CYUT 181


10.6. EXTREMA OF FUNCTIONS OF SEVERAL VARIABLES<br />

Exercise 10.5.1. Compute the directional derivative of f at the given point in the<br />

direction of the indicated vector.<br />

〈<br />

(a) f(x,y) = x 2 y +4y 2 1<br />

, (2,1), u = , √ 〉<br />

3<br />

2 2<br />

〈 〉<br />

(b) f(x,y) = x 3 y −4y 2 1<br />

, (2,−1), u = √ 1<br />

2<br />

, √2<br />

(c) f(x,y) = √ x 2 +y 2 , (3,−4), u in the direction of 〈3,−2〉<br />

(d) f(x,y) = cos(2x−y), (π,0), u in the direction from (π,0) to (2π,π)<br />

Exercise 10.5.2. Find the gradient of the given function at the indicated point.<br />

(a) f(x,y) = x 3 e 3y −y 4 , (2,−1)<br />

(b) f(x,y) = sin3xy +y 2 , (π,1)<br />

(c) f(x,y) = e 3y/x −x 2 y 4 , (1,2)<br />

(d) f(x,y) = xe xy2 +cosy 2 , (1,−1)<br />

Exercise 10.5.3. Repeat Exercise 10.5.1 using Theorem 10.5.2.<br />

10.6 Extrema of Functions of Several Variables<br />

Definition 10.6.1. Absolute extremum (maximum or minimum)<br />

Let f be a function with domain D. Then<br />

(a) f(a,b) is an absolute maximum of f if<br />

f(x,y) ≤ f(a,b)<br />

for all (x,y) in D<br />

(b) f(a,b) is an absolute minimum of f if<br />

f(x,y) ≥ f(a,b)<br />

Definition 10.6.2. Local extremum<br />

for all (x,y) in D<br />

(a) f(a,b) is a local maximum of f if there is an open disk R centered at (a,b), for<br />

which f(a,b) ≥ f(x,y) for all (x,y) ∈ R.<br />

(b) f(c) is a local minimum of f if there is an open disk R centered at (a,b), for<br />

which f(a,b) ≤ f(x,y) for all (x,y) ∈ R.<br />

z<br />

✻ absolute maximum<br />

✘✾ local maximum<br />

✘✘<br />

<br />

O<br />

✑<br />

❳ ❳❳❳<br />

✑ absolute ❳ ❳❳❳<br />

minimum<br />

✻ ✑<br />

✑ ✘✾✘ ✘✘ ✘<br />

❳ ❳3 y<br />

✑<br />

local ✑<br />

x<br />

✑✰ ✑ minimum<br />

De-Yu Wang CSIE CYUT 182


10.6. EXTREMA OF FUNCTIONS OF SEVERAL VARIABLES<br />

Definition 10.6.3. The point (a,b) is a critical number of the function f(x,y) if<br />

(a,b) is in the domain of f and one of the following is true.<br />

(a) f x (a,b) = f y (a,b) = 0<br />

(b) f x (a,b) or f y (a,b) does not exist.<br />

Theorem 10.6.1. If f(x,y) has a local extremum at (a,b), then (a,b) must be a<br />

critical number of f.<br />

Proof: Suppose that f has a local extremum at (a,b).<br />

(a) Holding y = b, then g(x) = f(x,b) has a local extremum at x = a. By the<br />

Fermat’s theorem (page 44) either g ′ (a) = f x (a,b) = 0 or g ′ (a) does not exist.<br />

(b) Holding x = a, then h(y) = f(a,y) has a local extremum at y = b. It follows<br />

that h ′ (b) = f y (a,b) = 0 or h ′ (b) does not exist.<br />

}<br />

f x (a,b) = g ′ (a) = 0 or does not exist<br />

f y (a,b) = h ′ ⇒ (a,b) must be a critical number of f.<br />

(b) = 0 or does not exist<br />

Example 10.6.1. Find all critical numbers of f(x,y) = xe −x2 2 −y3 3 +y .<br />

Solution:<br />

f x (x,y) = e −x2 2 −y3 3 +y +x(−x)e −x2 2 −y3 3 +y = (1−x 2 )e −x2 2 −y3 3 +y = 0<br />

⇒ x = ±1<br />

f y (x,y) = x(−y 2 +1)e −x2 2 −y3 3 +y = 0<br />

⇒ x = 0 or y = ±1.<br />

The critical numbers are (1,1), (−1,1), (1,−1) and (−1,−1).<br />

Theorem 10.6.2. Second Derivatives Test<br />

Supposethatf(x,y)hascontinuoussecond-orderpartialderivativesinsomeopendisk<br />

containing the point (a,b) and that f x (a,b) = f y (a,b) = 0. Define the discriminant<br />

D(a,b) = f xx (a,b)f yy (a,b)−[f xy (a,b)] 2 f xx (a,b) f xy (a,b)<br />

=<br />

∣f yx (a,b) f yy (a,b) ∣ .<br />

(a) If D(a,b) > 0 and f xx (a,b) > 0, then f has a local minimum at (a,b).<br />

(b) If D(a,b) > 0 and f xx (a,b) < 0, then f has a local maximum at (a,b).<br />

(c) If D(a,b) < 0, then f has a saddle point at (a,b).<br />

(d) If D(a,b) = 0, then no conclusion.<br />

De-Yu Wang CSIE CYUT 183


10.6. EXTREMA OF FUNCTIONS OF SEVERAL VARIABLES<br />

Comments:<br />

{<br />

f xx (a,b) > 0 and f yy (a,b) > 0 a local minimum at (a,b)<br />

D(a,b) > 0<br />

f xx (a,b) < 0 and f yy (a,b) < 0 a local maximum at (a,b)<br />

{<br />

f xx (a,b) > 0 and f yy (a,b) < 0 a saddle point at (a,b)<br />

D(a,b) < 0<br />

f xx (a,b) < 0 and f yy (a,b) > 0 a saddle point at (a,b)<br />

z<br />

✻<br />

4<br />

saddle point<br />

3 ✡<br />

✡<br />

2 ✡<br />

✡<br />

✡✢<br />

1<br />

O<br />

1 ✑<br />

❳ ❳ 1<br />

❳<br />

✑ ❳❳❳ 2 3<br />

2✑<br />

❳ 4 ❳❳ 5<br />

3 ✑<br />

❳3 y<br />

4 ✑<br />

✑<br />

x<br />

✑✰ ✑<br />

Example 10.6.2. Locateandclassifyallcriticalnumbersforf(x,y) = 2x 2 −y 3 −2xy.<br />

Solution:<br />

(a) The critical numbers<br />

f x = 4x−2y = 0, ⇒ y = 2x<br />

f y = −3y 2 −2x = 0<br />

= −12x 2 −2x = −2x(6x+1) = 0<br />

⇒ x = 0 or x = − 1 6<br />

f have two critical numbers(0,0) and<br />

(<br />

− 1 )<br />

6 ,−1 .<br />

3<br />

De-Yu Wang CSIE CYUT 184


10.6. EXTREMA OF FUNCTIONS OF SEVERAL VARIABLES<br />

(b) Second derivatives test:<br />

(<br />

D − 1 6 ,−1 3<br />

f xx = 4, f yy = −6y, f xy = −2<br />

D(0,0) = f xx (0,0)f yy (0,0)−[f xy (0,0)] 2<br />

= 4·0−(−2) 2 = −4 < 0,<br />

∴ (0,0) is a saddle point.<br />

) (<br />

= f xx − 1 6 ,−1 3<br />

)f yy<br />

(<br />

− 1 6 ,−1 3<br />

= 4·2−(−2) 2 = 4 > 0<br />

(<br />

and f xx − 1 )<br />

6 ,−1 = 4 > 0,<br />

3<br />

(<br />

∴ − 1 )<br />

6 ,−1 is a local minimum.<br />

3<br />

)<br />

−<br />

( [f xy − 1 )] 2<br />

6 ,−1 3<br />

Exercise 10.6.1. Locateandclassify(usesecondderivativestest)allcriticalnumbers<br />

(a) f(x,y) = e −x2 −y 2<br />

(b) f(x,y) = e −x2 (y 2 +1)<br />

(c) f(x,y) = x 3 −3xy +y 3<br />

(d) f(x,y) = y 2 +x 2 y +x 2 −2y<br />

De-Yu Wang CSIE CYUT 185


Chapter 11<br />

MULTIPLE INTEGRALS


11.1. DOUBLE INTEGRALS<br />

11.1 Double Integrals<br />

Definition 11.1.1. Double integrals over rectangles<br />

For any function f(x,y) defined on a rectangle R = {(x,y)|a ≤ x ≤ b and c ≤ y ≤ d},<br />

we define the double integral of f over R by<br />

∫∫<br />

n∑<br />

f(x,y)dA = lim f(u i ,v i )∆A i ,<br />

‖∆‖→0<br />

R<br />

i=1<br />

provided the limit exists and is the same for every choice of the evaluation points<br />

(u i ,v i ) in R i , for i = 1,2,··· ,n. When this happens, we say that f is integrable over<br />

R. z<br />

✻<br />

y<br />

z = f(x,y) ✻<br />

d<br />

R i<br />

O<br />

✑<br />

❳❳ ❳❳❳ c<br />

a ✑ ❳<br />

✑ ❳❳❳ d c<br />

✑<br />

❳3<br />

b ✑ ✑ ✑❳ ❳❳❳ y<br />

✑<br />

✑ R<br />

✑<br />

✑✰<br />

✑❳❳❳❳❳ ✑ ✑✑✑❳ O a<br />

x ∫∫<br />

∫∫<br />

Note. Area of R: A = 1dA and Volume V = f(x,y)dA.<br />

R<br />

R<br />

✲x<br />

b<br />

Theorem 11.1.1. Fubini’s Theorem (First Form)<br />

Supposethatf isintegrableover therectangleR = {(x,y)|a ≤ x ≤ b and c ≤ y ≤ d}.<br />

Then,<br />

∫∫ ∫ b ∫ d ∫ d ∫ b<br />

f(x,y)dA = f(x,y)dydx = f(x,y)dxdy<br />

R<br />

a<br />

c<br />

Proof for dA = dydx: For each fixed value of x, the area of the cross section is the<br />

area under the curve z = f(x,y) for c ≤ y ≤ d, which is given by<br />

c<br />

a<br />

∫ d<br />

A(x) = f(x,y)dy<br />

c<br />

∫∫<br />

V = f(x,y)dA<br />

=<br />

=<br />

R<br />

∫ b<br />

a<br />

∫ b ∫ d<br />

a<br />

A(x)dx<br />

f(x,y)dy dx.<br />

c<br />

} {{ }<br />

A(x)<br />

z<br />

✻<br />

z = f(x,y)<br />

O<br />

✑<br />

❳❳ ❳❳❳ c<br />

a ✑ A(x)<br />

❳<br />

✑ ❳❳❳ d<br />

✑<br />

❳3<br />

b ✑ ✑ ✑❳ ❳❳❳ y<br />

✑<br />

✑ R<br />

✑<br />

✑✰<br />

✑❳❳❳❳❳ ✑ ✑✑✑❳<br />

x<br />

De-Yu Wang CSIE CYUT 187


11.1. DOUBLE INTEGRALS<br />

Proof for dA = dxdy: For each fixed value of y, the area of the cross section is the<br />

area under the curve z = f(x,y) for a ≤ x ≤ b, which is given by<br />

∫ b<br />

A(y) = f(x,y)dx<br />

a<br />

∫∫<br />

V = f(x,y)dA<br />

=<br />

=<br />

R<br />

∫ d<br />

c<br />

∫ d ∫ b<br />

c<br />

A(y)dy<br />

f(x,y)dx dy.<br />

a<br />

} {{ }<br />

A(y)<br />

z<br />

✻<br />

z = f(x,y)<br />

O<br />

✑<br />

❳❳ ❳❳❳ c<br />

a ✑ A(y) ❳<br />

✑ ❳❳ d<br />

✑<br />

❳ ❳3<br />

b ✑ ✑ ✑❳ ❳❳❳ y<br />

✑<br />

✑ R<br />

✑<br />

✑✰<br />

✑❳❳❳❳❳ ✑ ✑✑✑❳<br />

x<br />

Example 11.1.1. Evaluate<br />

y ≤ 4}.<br />

∫∫<br />

R<br />

(6x 2 +4xy 3 )dA, where R = {(x,y)|0 ≤ x ≤ 2, 1 ≤<br />

Solution:<br />

∫∫<br />

(6x 2 +4xy 3 )dA =<br />

R<br />

=<br />

=<br />

∫ 4 ∫ 2<br />

1<br />

∫ 4<br />

1<br />

∫ 4<br />

1<br />

0<br />

(6x 2 +4xy 3 )dxdy<br />

(<br />

2x 3 +2x 2 y 3)∣ ∣ 2 x=0 dy<br />

(<br />

16+8y<br />

3 ) dy<br />

= (16y +2y 4 ) ∣ ∣ 4 y=1 = 558.<br />

Definition 11.1.2. Double integrals over general regions<br />

For any function f(x,y) defined on a bounded region R ⊂ R 2 , we define the double<br />

integral of f over R by<br />

∫∫<br />

R<br />

f(x,y)dA = lim<br />

‖∆‖→0<br />

n∑<br />

f(u i ,v i )∆A i ,<br />

i=1<br />

provided the limit exists and is the same for every choice of the evaluation points<br />

(u i ,v i ) in R i , for i = 1,2,··· ,n. When this happens, we say that f is integrable over<br />

De-Yu Wang CSIE CYUT 188


11.1. DOUBLE INTEGRALS<br />

R.<br />

z<br />

✻<br />

z = f(x,y)<br />

y<br />

✻<br />

d<br />

O<br />

✑<br />

❳ ❳❳<br />

✑ ❳<br />

c<br />

a ❳❳❳<br />

✑ ❳<br />

d<br />

✑<br />

❳❳3<br />

b<br />

y<br />

✑<br />

✑ R<br />

✑<br />

✑✰<br />

x<br />

c<br />

O<br />

a<br />

R<br />

b<br />

✲x<br />

Theorem 11.1.2. Fubini’s Theorem (Stronger Form)<br />

Suppose that f(x,y) is continuous on a region R ⊂ R 2 .<br />

(a) If R is defined by R = {(x,y)|a ≤ x ≤ b and g 1 (x) ≤ y ≤ g 2 (x)}, with g 1 and<br />

g 2 continuous on [a,b], then<br />

∫∫ ∫ b ∫ g2 (x)<br />

f(x,y)dA = f(x,y)dydx.<br />

R<br />

a<br />

g 1 (x)<br />

(b) If R is defined by R = {(x,y)|c ≤ y ≤ d and h 1 (y) ≤ x ≤ h 2 (y)}, with h 1 and<br />

h 2 continuous on [c,d], then<br />

∫∫ ∫ d ∫ h2 (y)<br />

f(x,y)dA = f(x,y)dxdy.<br />

R<br />

c<br />

h 1 (y)<br />

Proof for (a): For each fixed value of x, the area of the cross section is the area under<br />

the curve z = f(x,y) for g 1 (x) ≤ y ≤ g 2 (x), which is given by<br />

A(x) =<br />

∫ g2 (x)<br />

g 1 (x)<br />

∫∫<br />

V =<br />

R<br />

f(x,y)dy<br />

f(x,y)dA =<br />

z<br />

✻<br />

∫ b<br />

a<br />

z = f(x,y)<br />

A(x)dx =<br />

∫ b ∫ g2 (x)<br />

a<br />

g 1 (x)<br />

f(x,y)dy dx.<br />

} {{ }<br />

A(x)<br />

y<br />

✻<br />

y = g 2 (x)<br />

<br />

O<br />

✑<br />

❳❳ ❳❳❳ c<br />

a ✑ A(x)<br />

❳<br />

✑ ❳❳❳ d<br />

✑<br />

❳3<br />

b<br />

y<br />

✑<br />

✑ R<br />

✑<br />

✑✰<br />

x<br />

O<br />

a<br />

<br />

y = g 1 (x)<br />

b<br />

✲x<br />

De-Yu Wang CSIE CYUT 189


11.1. DOUBLE INTEGRALS<br />

Proof for (b): For each fixed value of y, the area of the cross section is the area under<br />

the curve z = f(x,y) for h 1 (y) ≤ x ≤ h 2 (y), which is given by<br />

A(y) =<br />

∫ h2 (y)<br />

∫∫<br />

V =<br />

h 1 (y)<br />

R<br />

f(x,y)dx<br />

f(x,y)dA =<br />

z<br />

✻<br />

∫ h2 (y)<br />

h 1 (y)<br />

z = f(x,y)<br />

A(y)dy =<br />

∫ d ∫ h2 (y)<br />

c<br />

y<br />

✻<br />

d<br />

h 1 (y)<br />

f(x,y)dx dy.<br />

} {{ }<br />

A(y)<br />

O<br />

✑<br />

❳ ❳❳❳ c<br />

a ✑ A(y) ❳ ❳❳❳ d<br />

✑<br />

✑<br />

❳ ❳3<br />

b<br />

y<br />

✑ R<br />

✑<br />

✑<br />

✑✰<br />

x<br />

R<br />

x = h 1 (y) x = h 2 (y)<br />

c<br />

O<br />

✲x<br />

Example ∫∫ 11.1.2. LetRbetheregionboundedbythegraphsofx = y 2 andx = 2−y.<br />

Write f(x,y)dA as the iterated integrals with dA = dxdy and dA = dydx.<br />

Solution:<br />

∫∫<br />

R<br />

R<br />

y 2 +y −2 = 0<br />

f(x,y)dA =<br />

x = y 2 = 2−y<br />

y = 2, −1<br />

=<br />

∫ 1 ∫ 2−y<br />

−2 y<br />

∫ 2<br />

1 ∫ √ x<br />

0<br />

− √ x<br />

f(x,y)dxdy<br />

f(x,y)dydx+<br />

y<br />

3 ✻<br />

2<br />

❅<br />

1 ❅<br />

❅<br />

❅<br />

−2 −1 1 2❅<br />

3 4<br />

−1 R<br />

−2<br />

∫ 4 ∫ 2−x<br />

1<br />

− √ x<br />

❅<br />

❅<br />

❅<br />

❅<br />

f(x,y)dydx<br />

x = y 2<br />

✲x<br />

x = 2−y<br />

Example 11.1.3. Let R be the region bounded by the graphs of y = √ ∫∫<br />

x, x = 0 and<br />

y = 3. Evaluate (2xy 2 +2ysinx)dA.<br />

R<br />

De-Yu Wang CSIE CYUT 190


11.1. DOUBLE INTEGRALS<br />

Solution:<br />

y<br />

4 ✻<br />

3<br />

2<br />

1<br />

R<br />

y = 3<br />

y = √ x<br />

✲x<br />

−3 3 6 9 12 15<br />

∫∫<br />

−1<br />

∫ 3 ∫ y 2<br />

(2xy 2 +2ysinx)dA = (2xy 2 +2ysinx)dxdy<br />

R<br />

0 0<br />

∫ 3<br />

= (x 2 y 2 −2ycosx) ∣ y2<br />

dy x=0<br />

0<br />

∫ 3<br />

= [(y 6 −2ycosy 2 )−(0−2ycos0)]dy<br />

0<br />

∫ 3<br />

= (y 6 −2ycosy 2 +2y)dy<br />

0<br />

( )∣ y<br />

7 ∣∣∣<br />

3<br />

=<br />

7 −siny2 +y 2 = 37<br />

y=0<br />

7 −sin9+9<br />

∫∫<br />

∫ 9 ∫ 3<br />

(2xy 2 +2ysinx)dA = (2xy 2 +2ysinx)dydx<br />

√<br />

R<br />

0 x<br />

Exercise 11.1.1. Evaluate the double integral<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

∫ 2 ∫ 1<br />

−2 0<br />

∫ 2 ∫ 1<br />

−1<br />

∫∫<br />

∫∫<br />

R<br />

R<br />

0<br />

(6−2x−3y)dydx<br />

(6−2x 2 +y 2 )dxdy<br />

(2xy +y 2 )dA, where R = {(x,y)|0 ≤ x ≤ 2, 0 ≤ y ≤ 1}<br />

4xe 2y dA, where R = {(x,y)|1 ≤ x ≤ 4, 0 ≤ y ≤ 1}<br />

Exercise 11.1.2. Evaluate the double integral<br />

(a)<br />

(b)<br />

∫ 2 ∫ x 2<br />

0 0<br />

∫ 2 ∫ y<br />

0 0<br />

(2x+1)dydx<br />

3e y dxdy<br />

De-Yu Wang CSIE CYUT 191


11.2. DOUBLE INTEGRALS IN POLAR COORDINATES<br />

(c)<br />

(d)<br />

∫∫<br />

(2x−y)dA, where R is bound by y = −3 and y = 1−x 2<br />

∫∫<br />

R<br />

R<br />

e x2 dA, where R is bound by y = x 2 and y = 1<br />

11.2 Double Integrals in Polar Coordinates<br />

Theorem 11.2.1. Fubini’s Theorem<br />

Suppose that f(r,θ) is continuous on a region R = {(r,θ)|α ≤ θ ≤ β and g 1 (θ) ≤ r ≤<br />

g 2 (θ)}. Then<br />

Proof:<br />

∫∫<br />

R<br />

f(r,θ)dA =<br />

∫ β ∫ g2 (θ)<br />

α<br />

g 1 (θ)<br />

f(r,θ)rdrdθ.<br />

y<br />

θ = β<br />

✻<br />

✂ ✁ ✓ ✂ ✁ ✓ ✂ ✁ ✓ <br />

✂ ✁ ✓ R<br />

✟<br />

✂ ✁ ✓<br />

θ = α<br />

✂✁✓<br />

✂✁✓<br />

r = g 2 (θ)<br />

✂✁✓<br />

<br />

✚✓<br />

✟ ✁✂<br />

✏ ✚✚✚✚✚✚✚✚✚✚ ✟✟✟✟✟✟✟✟✟✟ ✏✏✏✏✏✏✏✏✏✏✏ r = g 1 (θ)<br />

✲<br />

x<br />

∆A = πr 2 2 · ∆θ<br />

2π −πr2 1 · ∆θ<br />

2π = 1 2 (r2 2 −r 2 1)∆θ<br />

= 1 2 (r 2 +r 1 )(r 2 −r 1 )∆θ<br />

= r∆r∆θ<br />

where r = 1 2 (r 2 +r 1 ), ∆r = r 2 −r 1 .<br />

V = lim<br />

n→∞<br />

n∑<br />

= lim<br />

=<br />

i=1<br />

n∑<br />

n→∞<br />

i=1<br />

∫ β ∫ g2 (θ)<br />

α<br />

g 1 (θ)<br />

V i = lim<br />

n→∞<br />

n∑<br />

i=1<br />

f(r i ,θ i )r i ∆r i ∆θ i<br />

f(r,θ)rdrdθ<br />

f(r i ,θ i )<br />

} {{ }<br />

height<br />

y<br />

✻<br />

∆r<br />

θ = θ 2<br />

r = r 2<br />

∆A<br />

θ = θ 1<br />

r = r 1<br />

∆θ<br />

❦<br />

✧✔ ✔✔✔✔✔✔✔✔✔✔✔ ✧✧✧✧✧✧✧✧✧✧✧<br />

∆A i }{{}<br />

area of base<br />

✲<br />

x<br />

De-Yu Wang CSIE CYUT 192


11.2. DOUBLE INTEGRALS IN POLAR COORDINATES<br />

Example 11.2.1. Find the area of the region bounded by the curves r = 2−2sinθ.<br />

Solution:<br />

∫∫<br />

A = dA =<br />

=<br />

R<br />

∫ 2π<br />

r 2<br />

= 1 2<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

2 ∣<br />

∫ 2π ∫ 2−2sinθ<br />

0<br />

2−2sinθ<br />

r=0<br />

0<br />

dθ<br />

[(2−2sinθ) 2 −0]dθ<br />

rdrdθ<br />

= (2−4sinθ +2sin 2 θ)dθ<br />

0<br />

∫ 2π<br />

= [2−4sinθ+(1−cos2θ)]dθ<br />

0<br />

=<br />

(3θ +4cosθ− 1 )∣ ∣∣∣<br />

2π<br />

2 sin2θ = 6π<br />

0<br />

−3<br />

−2<br />

y<br />

1<br />

−1<br />

−1<br />

−2<br />

−3<br />

−4<br />

1 2 3<br />

R<br />

x<br />

Example 11.2.2. Evaluate the iterated integral by converting to polar coordinates<br />

∫ 2 ∫ √ 4−x 2<br />

−2<br />

− √ 4−x 2 √<br />

x2 +y 2 dydx.<br />

Solution: R = {(x,y)| − 2 ≤ x ≤ 2 and − √ 4−x 2 ≤ y ≤ √ 4−x 2 } is a circle of<br />

radius centered at the origin.<br />

∫ 2 ∫ √ 4−x 2<br />

−2<br />

− √ 4−x 2 √<br />

x2 +y 2 dydx =<br />

=<br />

=<br />

∫ 2π ∫ 2<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

0<br />

r 3<br />

3<br />

∣<br />

√<br />

r2 rdrdθ<br />

2<br />

r=0<br />

dθ<br />

8 16π<br />

dθ =<br />

3 3<br />

R<br />

y<br />

✻<br />

r = 2<br />

✟ ✟✟✟ ▼θ<br />

✲<br />

2 x<br />

Exercise 11.2.1. Find the area of the region bounded by the curves<br />

(a) r = 3+2sinθ<br />

(b) r = 2−2cosθ<br />

(c) r = 2sinθ<br />

(d) r = 3cosθ<br />

De-Yu Wang CSIE CYUT 193


11.3. SURFACE AREA<br />

Exercise 11.2.2. Evaluate the iterated integral by converting to polar coordinates<br />

(a)<br />

(b)<br />

∫ 2 ∫ √ 4−x 2<br />

−2 0<br />

∫ 2 ∫ √ 4−x 2<br />

−2<br />

√<br />

x2 +y 2 dydx<br />

− √ 4−x 2 e −x2 −y 2 dydx<br />

(c)<br />

(d)<br />

∫ 2 ∫ 0<br />

− √ 4−x 2 ydydx<br />

0<br />

∫ 2 ∫ √ 4−x 2<br />

0<br />

− √ 4−x 2 e −x2 −y 2 dydx<br />

11.3 Surface Area<br />

Theorem 11.3.1. Surface Area<br />

If f and its first partial derivatives are continuous on the closed region R in the<br />

xy-plane, then the area of the surface S given by z = f(x,y) over R is given by<br />

∫∫ √<br />

S = [f x (x,y)] 2 +[f y (x,y)] 2 +1dA.<br />

Note.<br />

R<br />

Length on x-axis:<br />

Arc length in xy-plane:<br />

Area in xy-plane:<br />

Surface area in space:<br />

∫ b<br />

a<br />

∫ b<br />

∫∫<br />

a<br />

∫∫<br />

R<br />

R<br />

dx = b−a<br />

ds =<br />

∫ b<br />

a<br />

dA = A<br />

∫∫<br />

dS =<br />

√<br />

1+[f′ (x)] 2 dx<br />

R<br />

√<br />

[f x (x,y)] 2 +[f y (x,y)] 2 +1dA<br />

Proof: Let T i be the portion of the tangent plane lying above R i . To find the area of<br />

the parallelogram ∆T i note that its sides are given by the vectors<br />

a i =< ∆x i ,0,f x (x i ,y i )∆x i >,<br />

b i =< 0,∆y i ,f y (x i ,y i )∆y i >,<br />

∣ i j k ∣∣∣∣∣<br />

a i ×b i =<br />

∆x i 0 f x (x i ,y i )∆x i<br />

∣ 0 ∆y i f y (x i ,y i )∆y i<br />

=< −f x (x i ,y i )∆x i ∆y i ,−f y (x i ,y i )∆x i ∆y i ,∆x i ∆y i >,<br />

√<br />

[f x (x i ,y i )] 2 +[f y (x i ,y i )] 2 +1 ∆x i ∆y } {{ } i<br />

∆A i<br />

n∑<br />

∆T i = ‖a i ×b i ‖ =<br />

S = lim<br />

‖∆|→0<br />

∫∫<br />

=<br />

R<br />

n∑<br />

i=1<br />

∆T i = lim<br />

‖∆‖→0<br />

i=1<br />

√<br />

[f x (x,y)] 2 +[f y (x,y)] 2 +1dA.<br />

√<br />

[f x (x i ,y i )] 2 +[f y (x i ,y i )] 2 +1∆A i<br />

De-Yu Wang CSIE CYUT 194


11.3. SURFACE AREA<br />

Example 11.3.1. Find the surface area of that portion of the surface z = y 2 + 4x<br />

lying above the triangular region R in the xy-plane with vertices at (0,0), (0,2) and<br />

(2,2).<br />

y<br />

z<br />

✻<br />

✻ 3<br />

4 ❤❤❤❤❤❤❤<br />

3<br />

z = y 2 +4x 2 (0,2)<br />

<br />

<br />

(2,2)<br />

2<br />

<br />

✭✭✭✭✭✭✭<br />

R <br />

1<br />

1 <br />

<br />

y = x<br />

O<br />

✑<br />

❳ <br />

1 ❳❳❳ 1<br />

2<br />

✑ ❳ 3 <br />

2 ❳❳❳ 4<br />

✑ R<br />

✑<br />

❳ 5<br />

3 ✑ ❳3<br />

✑<br />

✑✑✑<br />

<br />

y <br />

✲x<br />

4✑<br />

(0,0)<br />

✑✰<br />

x<br />

✑<br />

1 2 3<br />

Solution:<br />

∫∫<br />

S =<br />

∫∫<br />

=<br />

R<br />

R<br />

∫ 2<br />

√<br />

[f x (x,y)] 2 +[f y (x,y)] 2 +1 2 dA<br />

√<br />

42 +4y 2 +1dA =<br />

√ ∣<br />

= 4y2 +17x<br />

0<br />

= 1 8 (4y2 +17) 3 2<br />

2 · 3∣<br />

∣ y x=0<br />

2<br />

y=0<br />

dy =<br />

= 1<br />

12<br />

∫ 2 ∫ y<br />

0 0<br />

∫ 2<br />

(<br />

0<br />

√<br />

4y2 +17dxdy<br />

√<br />

4y2 +17ydy<br />

)<br />

33 3 3<br />

2 −17 2<br />

Example 11.3.2. Find the surface area of that portion of the paraboloid z = 1 +<br />

x 2 +y 2 that lies below the plane z = 5.<br />

✘✘✘✘✘<br />

z<br />

✻<br />

8<br />

6<br />

4<br />

z = 1+x 2 +y 2<br />

✘✘✘✘✘✘✘<br />

z = 5<br />

2<br />

O<br />

1 ✑<br />

❳❳ 1 ❳❳❳ 2<br />

✑ 3<br />

2 ❳<br />

✑ ❳❳❳ 4 5<br />

3 ✑<br />

❳3 y<br />

4 ✑<br />

✑<br />

x<br />

✑✰ ✑<br />

R<br />

y<br />

✻<br />

r = 2<br />

✟ ✟✟✟ ▼ θ<br />

✲<br />

2 x<br />

De-Yu Wang CSIE CYUT 195


11.4. TRIPLE INTEGRALS<br />

Solution:<br />

z = 5 = 1+x 2 +y 2 , ⇒ x 2 +y 2 = 4<br />

∫∫ √<br />

S = [f x (x,y)] 2 +[f y (x,y)] 2 +1dA<br />

R<br />

∫∫<br />

√<br />

= 4x2 +4y 2 +1dA<br />

=<br />

= 1 8<br />

R<br />

∫ 2π ∫ 2<br />

= 1<br />

12<br />

0 0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

= π 6 (173 2 −1)<br />

√<br />

4r2 +1rdrdθ<br />

2<br />

3 (4r2 +1) 3 2<br />

∣<br />

(17 3 2 −1<br />

3<br />

2 )dθ<br />

r=2<br />

r=0<br />

dθ<br />

Exercise 11.3.1. Evaluate or estimate the surface area.<br />

(a) The portion of z = √ x 2 +y 2 between y = x 2 and y = 4.<br />

(b) The portion of x+3y +z = 6 in the first octant.<br />

(c) The portion of z = 2y +3x between y = 2x, y = 0 and x = 3.<br />

(d) The portion of the surface z = 3x + y lying above the triangular region R in<br />

the xy-plane with vertices at (0,0), (2,2) and (2,0).<br />

11.4 Triple Integrals<br />

Definition 11.4.1. Triple integrals over rectangles<br />

For any function f(x,y,z) defined on a rectangle box Q = {(x,y,z)|a ≤ x ≤ b, c ≤<br />

y ≤ d and r ≤ z ≤ s}, we define the triple integral of f over Q by<br />

∫∫∫<br />

Q<br />

f(x,y,z)dV = lim<br />

‖∆‖→0<br />

n∑<br />

f(u i ,v i ,w i )∆V i ,<br />

i=1<br />

provided the limit exists and is the same for every choice of the evaluation points<br />

(u i ,v i ,w i ) in Q i , for i = 1,2,··· ,n. When this happens, we say that f is integrable<br />

De-Yu Wang CSIE CYUT 196


11.4. TRIPLE INTEGRALS<br />

over Q.<br />

z<br />

✻<br />

4 Q<br />

3<br />

❳❳❳❳❳❳❳❳<br />

❳❳❳❳❳❳❳❳<br />

❳❳❳❳❳❳❳❳<br />

2<br />

✑ ✑✑✑✑✑<br />

✑<br />

❳❳❳❳❳❳❳❳<br />

❳❳❳❳❳❳❳❳<br />

✑✑✑✑✑<br />

✑<br />

❳❳❳❳❳❳❳❳<br />

✑✑✑✑✑<br />

✑ ❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

✑<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

✑ ✑✑✑✑✑<br />

1<br />

✑✑✑✑✑<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

❳❳❳❳❳❳❳❳✑ O<br />

1 ✑<br />

❳ 1 ✑✑✑✑✑<br />

2 ❳❳❳❳❳❳❳❳✑<br />

✑ ❳ 3<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

2 ❳❳❳ 4<br />

✑<br />

✑✑✑✑✑<br />

✑<br />

❳ 5<br />

3<br />

❳3 y<br />

4 ✑<br />

✑<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

✑✑✑✑✑<br />

✑✰<br />

x<br />

✑<br />

x<br />

∫∫∫<br />

Note. The volume of box Q: V = 1dV.<br />

Q<br />

z<br />

✻<br />

4 Q<br />

✑<br />

✑<br />

✑3<br />

❳❳❳❳❳❳❳ ❳<br />

✑<br />

✑<br />

2 ✑❳❳❳❳❳❳❳❳✑<br />

1<br />

✑✑✑✑✑<br />

O<br />

1 ✑<br />

❳❳❳ 1<br />

❳ 2<br />

✑ ❳ 3<br />

2 ❳ ❳❳❳ 4<br />

✑<br />

✑<br />

❳ 5<br />

3 ❳ ❳3 y<br />

4 ✑<br />

✑<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

✑✑✰ ∆V i = ∆z i ∆y i ∆x i<br />

Theorem 11.4.1. Fubini’s Theorem (First Form)<br />

Suppose that f(x,y,z) is continuous on the box Q = {(x,y,z)|a ≤ x ≤ b, c ≤ y ≤<br />

d and r ≤ z ≤ s}. Then,<br />

∫∫∫<br />

Q<br />

f(x,y,z)dV =<br />

∫ s ∫ d ∫ b<br />

or in any of the four remaining orders.<br />

∫∫∫<br />

Example 11.4.1. Evaluate<br />

y ≤ 1 and 0 ≤ z ≤ π}.<br />

Solution:<br />

∫∫∫<br />

Q<br />

2xe y sinzdV =<br />

r<br />

=<br />

=<br />

= 3<br />

c<br />

a<br />

Q<br />

∫ π ∫ 1 ∫ 2<br />

0 0<br />

∫ π ∫ 1<br />

0 0<br />

∫ π ∫ 1<br />

0 0<br />

∫ π<br />

0<br />

f(x,y,z)dxdydz =<br />

∫ b ∫ d ∫ s<br />

a<br />

c<br />

r<br />

f(x,y,z)dzdydx,<br />

2xe y sinzdV, where Q = {(x,y,z)|1 ≤ x ≤ 2, 0 ≤<br />

1<br />

2xe y sinzdxdydz<br />

e y sinz 2x2<br />

2<br />

∣<br />

2<br />

x=1<br />

3e y sinzdydz<br />

e y sinz| 1 y=0 dz<br />

dydz<br />

= 3(e 1 −1)(−cosz) ∣ ∣ π z=0 = 6(e−1).<br />

De-Yu Wang CSIE CYUT 197


11.4. TRIPLE INTEGRALS<br />

Definition 11.4.2. Triple integrals over general regions<br />

For any function f(x,y,z) defined on a bounded solid Q, we define the triple integral<br />

of f over Q by<br />

∫∫∫<br />

Q<br />

f(x,y,z)dV = lim<br />

‖∆‖→0<br />

n∑<br />

f(u i ,v i ,w i )∆V i ,<br />

i=1<br />

provided the limit exists and is the same for every choice of the evaluation points<br />

(u i ,v i ,w i ) in Q i , for i = 1,2,··· ,n. When this happens, we say that f is integrable<br />

over Q.<br />

z<br />

z<br />

✻<br />

✻<br />

4<br />

4<br />

3<br />

❳❳❳❳❳❳❳❳<br />

❳❳❳❳❳❳❳❳<br />

3<br />

❳❳❳❳❳❳❳❳<br />

2<br />

✑ ✑✑✑✑✑<br />

✑<br />

❳❳❳❳❳❳❳❳<br />

❳❳❳❳❳❳❳❳<br />

✑✑✑✑✑<br />

✑ ✑✑✑✑✑<br />

✑ ❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

✑ ✑✑✑✑✑<br />

✑ ✑✑✑✑✑<br />

2<br />

❳❳❳❳❳❳❳❳<br />

❳❳❳❳❳❳❳❳✑<br />

1<br />

✑✑✑✑✑<br />

Q<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑ 1<br />

❳❳❳❳❳❳❳❳✑ O<br />

1 ✑<br />

❳ ❳ 1 ✑✑✑✑✑<br />

Q<br />

❳<br />

✑ ❳❳❳ 2 ❳❳❳❳❳❳❳❳✑ 3<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑ O<br />

2✑<br />

✑✑✑✑✑ ❳ 4<br />

1 ✑<br />

❳ 1<br />

❳ ❳<br />

❳❳ 5<br />

3 ✑<br />

❳3 y<br />

4 ✑<br />

✑<br />

❳❳❳❳❳❳❳❳✑ ✑✑✑✑✑<br />

✑ ❳❳❳ 2 3<br />

2 ❳<br />

✑ ❳ 4 ❳❳ 5<br />

✑✑✑✑✑ 3 ✑ ❳ ❳3 y<br />

4 ✑<br />

x<br />

✑✰ ✑<br />

✑<br />

x<br />

✑✑✰ ∆V i = ∆z i ∆y i ∆x i<br />

Theorem 11.4.2. Fubini’s Theorem (Stronger Form)<br />

Suppose that f(x,y,z) is continuous on a region Q = {(x,y,z)|(x,y) ∈<br />

R and g 1 (x,y) ≤ z ≤ g 2 (x,y)}, with R is some region in the xy-plane, then<br />

∫∫∫<br />

Q<br />

∫∫<br />

f(x,y,z)dV =<br />

∫∫∫<br />

Example 11.4.2. Evaluate<br />

0 and 2x+y +z = 4.<br />

R<br />

z<br />

✻<br />

4 <br />

✂❏<br />

✂<br />

3✂<br />

✂<br />

✂2<br />

∫ g2 (x,y)<br />

g 1 (x,y)<br />

Q<br />

❏<br />

❏<br />

❏<br />

f(x,y,z)dzdA.<br />

✂ ❏<br />

✂ ❏<br />

✂ 1 ❏<br />

✂<br />

✑<br />

❏<br />

✂ O ❳ ❳<br />

✑<br />

❏<br />

✂<br />

1 ❳ 1 2<br />

✑<br />

✂✑<br />

❳❳❳❳❳❳<br />

3<br />

2 ✑✑✑❳ R ❏❳ 4 ❳❳❳3 5<br />

3 ✑<br />

y<br />

4 ✑<br />

✑<br />

✑✰<br />

x<br />

✑<br />

6xydV, where Q is bounded by x = 0, y = 0, z =<br />

2x+y +z = 4<br />

y<br />

✻<br />

4 <br />

❆<br />

❆<br />

❆<br />

2 ❆<br />

R<br />

❆<br />

2x+y = 4<br />

❆<br />

❆<br />

❆<br />

2 4<br />

✲x<br />

De-Yu Wang CSIE CYUT 198


11.5. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL<br />

COORDINATES<br />

Solution:<br />

∫∫∫<br />

Q<br />

∫∫<br />

f(x,y,z)dV =<br />

∫∫<br />

=<br />

=<br />

=<br />

=<br />

=<br />

∫ g2 (x,y)<br />

R g 1 (x,y)<br />

∫ 4−2x−y<br />

R 0<br />

∫ 2 ∫ 4−2x<br />

0<br />

∫ 2<br />

0<br />

∫ 2<br />

0<br />

∫ 2<br />

0<br />

= 64<br />

5 .<br />

6<br />

0<br />

f(x,y,z)dzdA<br />

6xydzdA<br />

6xy(4−2x−y)dydx<br />

)∣ ∣∣∣<br />

(4x y2<br />

y=4−2x<br />

2 −2x2y2 2 −xy3 3<br />

8x(2−x) 3 dx = −<br />

∫ 0<br />

8(2−u)u 3 du = 4u 4 − 8u5<br />

5<br />

2<br />

y=0<br />

dx<br />

8(2−u)u 3 du<br />

2<br />

∣<br />

u=0<br />

(u = 2−x)<br />

Exercise 11.4.1. Evaluate the triple integrals<br />

∫∫∫<br />

(a) (2x+y 2 )dV, where Q = {(x,y,z)|0 ≤ x ≤ 3,−2 ≤ y ≤ 1,1 ≤ z ≤ 2}.<br />

Q<br />

∫∫∫<br />

(b) (2x−y)dV, where Q = {(x,y,z)|1 ≤ x ≤ 3,0 ≤ y ≤ 1,1 ≤ z ≤ 2}.<br />

Q<br />

∫∫∫<br />

(c) (2x + 3y + z)dV, where Q is bounded by x = 0, y = 0, z = 0 and<br />

Q<br />

3x−y −z = 4<br />

∫∫∫<br />

(d) (x − 3y + z)dV, where Q is bounded by x = 0, y = 0, z = 0 and<br />

Q<br />

−3x+y −z = 3<br />

11.5 Triple Integrals in Cylindrical and Spherical<br />

Coordinates<br />

Definition 11.5.1. Cylindrical Coordinates<br />

Cylindrical coordinates represent a point P in space by (r,θ,z) in which<br />

(a) (r,θ) is the polar coordinate for the vertical projection of P on the xy-plane.<br />

(b) z is the rectangular vertical coordinate.<br />

De-Yu Wang CSIE CYUT 199


11.5. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL<br />

COORDINATES<br />

The rectangular conversion equations for cylindrical coordinates:<br />

x = rcosθ<br />

y = rsinθ<br />

z = z<br />

z<br />

✻<br />

P(r,θ,z)<br />

<br />

z<br />

O<br />

✑<br />

❳ ❳❳❳<br />

✑ ✿ ❳ ❳❳❳3<br />

✑❳ ✑<br />

✑ ✑ θ r ❳<br />

✑✰ ❙<br />

x y<br />

x<br />

y<br />

Example 11.5.1. Write the equations (a) x 2 + y 2 = 16 and (b) z 2 = x 2 + y 2 in<br />

cylindrical coordinates.<br />

z<br />

✻<br />

z<br />

✻<br />

8<br />

8<br />

6<br />

6<br />

4 x 2 +y 2 = 16 4 z 2 = x 2 +y 2<br />

2<br />

❅2<br />

O<br />

1 ✑<br />

❳ ❳❳ 1 ❅❅❅❅❅<br />

✑ ❳ 2<br />

O<br />

❳❳ 3 1 ✑<br />

❳ ❳❳ 1<br />

2✑<br />

❳ 4 ❳❳❳3 5 ✑ ❳ 2 ❳❳ 3<br />

2✑<br />

❳ 4 ❳❳❳3 5<br />

3 ✑<br />

y 3 ✑<br />

y<br />

4 ✑<br />

✑ <br />

✑<br />

4<br />

✑✰<br />

x<br />

✑<br />

✑<br />

✑✰<br />

x<br />

✑<br />

Solution: (a) x 2 +y 2 = 16, r 2 = 16, r = ±4.<br />

(b) z 2 = x 2 +y 2 = r 2 ,<br />

z = ±r.<br />

Theorem 11.5.1. Triple integrals in cylindrical coordinates<br />

Suppose that the solid Q as<br />

Q = {(r,θ,z)|(r,θ) ∈ R and k 1 (r,θ) ≤ z ≤ k 2 (r,θ)},<br />

where k 1 (r,θ) ≤ k 2 (r,θ), for all (r,θ) in the region R of the xy-plane defined by<br />

R = {(r,θ)|α ≤ β and g 1 (θ) ≤ r ≤ g 2 (θ)}.<br />

The triple integrals in cylindrical coordinates:<br />

∫∫∫<br />

Q<br />

f(r,θ,z)dV =<br />

∫ β ∫ g2 (θ) ∫ k2 (r,θ)<br />

α<br />

g 1 (θ)<br />

k 1 (r,θ)<br />

f(r,θ,z) dzrdrdθ } {{ }.<br />

dV<br />

De-Yu Wang CSIE CYUT 200


11.5. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL<br />

COORDINATES<br />

z<br />

✻<br />

O<br />

✑<br />

❳❳ ❍<br />

✑ ❡ ❍❍❍❍❍❍ ❳❳❳<br />

❳<br />

✑ ❡❡❡❡❡ ✣ ❳❳3<br />

✑ ∆θ y<br />

✑✰<br />

x<br />

r<br />

r∆θ<br />

Example 11.5.2. Evaluate the triple integral<br />

y 2 ) 3 2 dzdydx in cylindrical coordinates.<br />

∫ 1 ∫ √ 1−x 2<br />

−1<br />

− √ 1−x 2 ∫ 2−x 2 −y 2<br />

x 2 +y 2 (x 2 +<br />

Solution:<br />

∫ 1 ∫ √ 1−x 2<br />

−1<br />

− √ 1−x 2 ∫ 2−x 2 −y 2<br />

x 2 +y 2<br />

(x 2 +y 2 ) 3 2 dzdydx =<br />

∫ 2π<br />

=<br />

=<br />

= 2<br />

∫ 1 ∫ 2−r 2<br />

0 0 r<br />

∫ 2<br />

2π ∫ 1 ∫ 2−r 2<br />

0 0<br />

∫ 2π ∫ 1<br />

0 0<br />

∫ 2π<br />

0<br />

= 8π<br />

35 .<br />

r 2<br />

(r 2 ) 3 2 dzrdrdθ<br />

r 4 dzdrdθ<br />

r 4 (2−r 2 −r 2 )drdθ<br />

( r<br />

5<br />

5 − r7<br />

7<br />

)∣ ∣∣∣<br />

1<br />

r=0<br />

dθ<br />

Definition 11.5.2. Spherical Coordinates<br />

Spherical coordinates represent a point P in space by (ρ,φ,θ) in which<br />

(a) ρ = √ x 2 +y 2 +z 2 ≥ 0 is the distance from the origin O;<br />

(b) 0 ≤ φ ≤ π is angle from the positive z-axis to the vector −→ OP;<br />

(c) 0 ≤ θ ≤ 2π the same as the θ in the polar coordinates.<br />

The rectangular conversion equations for spherical coordinates:<br />

De-Yu Wang CSIE CYUT 201


11.5. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL<br />

COORDINATES<br />

z<br />

✻<br />

x = ρsinφcosθ<br />

y = ρsinφsinθ<br />

z = ρcosφ<br />

P(ρ,φ,θ)<br />

<br />

φ<br />

✓ ✓✼<br />

❥<br />

✓<br />

ρ<br />

z<br />

O✓<br />

✑<br />

❳ ❳❳<br />

✑ ❳ ❳❳❳<br />

✑❳ ✑ ❳3<br />

✑ ✑ θ ✿ r ❳<br />

✑✰ ❙<br />

x y<br />

x<br />

y<br />

Example 11.5.3. Write the equations (a) x 2 +y 2 +z 2 = 4 and (b) z 2 = x 2 +y 2 in<br />

spherical coordinates.<br />

Solution: (a) x 2 +y 2 +z 2 = ρ 2 = 4, ρ = 2.<br />

(b) z 2 = (ρcosφ) 2 = x 2 +y 2 = (ρsinφcosθ) 2 +(ρsinφsinθ) 2<br />

ρ 2 cos 2 φ = ρ 2 sin 2 φ(cos 2 θ +sin 2 θ)<br />

ρ 2 cos 2 φ = ρ 2 sin 2 φ,<br />

∴ ρ = 0 or cos 2 φ = sin 2 φ, φ = π 4 , 3π 4 .<br />

Theorem 11.5.2. Triple integrals in spherical coordinates<br />

Suppose that the solid Q as<br />

Q = {(ρ,φ,θ)|α ≤ θ ≤ β,c ≤ φ ≤ d and g 1 (θ,φ) ≤ ρ ≤ g 2 (θ,φ)}.<br />

The triple integrals in cylindrical coordinates:<br />

∫∫∫ ∫ β ∫ d ∫ g2 (θ,φ)<br />

f(ρ,φ,θ)dV = f(ρ,φ,θ) ρ 2 sinφdρdφdθ.<br />

Q<br />

α c g 1<br />

} {{ }<br />

(θ,φ)<br />

dV<br />

z<br />

✻<br />

ρ∆φ<br />

Proof:<br />

ρ<br />

∆φ<br />

❫<br />

O<br />

✑<br />

❳ ✑✡ ✡✡✡✡✡✡ ✑✑✑✑✑✑<br />

❍ ❳❳❳<br />

✑ ❡ ❍❍❍❍❍❍ ❳<br />

✑ ❡❡❡❡❡ ✣ ❳❳<br />

❳3<br />

✑ ∆θ y<br />

✑✰<br />

x<br />

r<br />

r∆θ<br />

∆V k ≈ ∆ρ k (ρ k ∆φ k )(ρ k sinφ k ∆θ k ) = ρ 2 ksinφ k ∆ρ k ∆φ k ∆θ k<br />

dV = ρ 2 sinφdρdφdθ<br />

De-Yu Wang CSIE CYUT 202


11.5. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL<br />

COORDINATES<br />

Example 11.5.4. Evaluate the triple integral<br />

z 2 )dzdydx in spherical coordinates.<br />

∫ 2 ∫ √ 4−x 2<br />

−2 0 0<br />

∫ √ 4−x 2 −y 2<br />

(x 2 + y 2 +<br />

Solution:<br />

∫ 2 ∫ √ 4−x 2<br />

−2<br />

0<br />

∫ √ 4−x 2 −y 2<br />

(x 2 +y 2 +z 2 )dzdydx =<br />

0<br />

=<br />

=<br />

=<br />

∫ π<br />

0<br />

∫ π<br />

0<br />

∫ π<br />

0<br />

∫ π<br />

0<br />

= 32π<br />

5 .<br />

∫ π<br />

2<br />

0<br />

∫ π<br />

2<br />

0<br />

∫ π<br />

2<br />

0<br />

∫ 2<br />

0<br />

ρ 2 ρ 2 sinφdρdφdθ<br />

ρ 5<br />

5 sinφ ∣ ∣∣∣<br />

2<br />

ρ=0<br />

32<br />

5 sinφdφdθ<br />

− 32 ∣π<br />

∣∣∣<br />

5 cosφ 2<br />

φ=0<br />

dθ<br />

dφdθ<br />

Exercise 11.5.1. Write the given equation in cylindrical coordinates.<br />

(a) (x−2) 2 +y 2 = 9<br />

(b) z = √ (c) z = e −x2 −y 2<br />

x 2 +y 2 (d) y = 2x<br />

Exercise 11.5.2. Evaluate the triple integral in cylindrical coordinates.<br />

(a)<br />

(b)<br />

(c)<br />

∫ 1 ∫ √ 1−x 2<br />

−1<br />

− √ 1−x 2 ∫ 2−x 2 −y 2<br />

∫ 1 ∫ √ 1−x 2<br />

−1<br />

∫ 2<br />

0<br />

0<br />

∫ √ x 2 +y 2<br />

− √ 1−x 2 0<br />

√<br />

x2 +y 2 dzdydx<br />

3zdzdydx<br />

∫ √ 4−y ∫ √ 2 8−x 2 −y 2<br />

√ 2dzdxdy<br />

− 4−y<br />

√x 2 2 +y 2<br />

Exercise 11.5.3. Convert the equation into spherical coordinates.<br />

(a) x 2 +y 2 +z 2 = 6 (c) z = 2<br />

(b) y = x 2 (d) z = − √ x 2 +y 2<br />

De-Yu Wang CSIE CYUT 203


11.6. CHANGE OF VARIABLES: JACOBIANS<br />

Exercise 11.5.4. Evaluate the triple integral in the spherical coordinate system.<br />

(a)<br />

(b)<br />

(c)<br />

∫ 2 ∫ √ 4−x 2<br />

−2<br />

0<br />

∫ 1 ∫ √ 1−x 2<br />

0<br />

∫ √ 4−x 2 −y 2<br />

√<br />

x2 +y<br />

−<br />

√4−x 2 +z 2 dzdydx<br />

2 −y 2<br />

∫ √ 1−x 2 −y 2<br />

(x<br />

− √ 1−x 2 −<br />

√1−x 2 +y 2 +z 2 ) 3 2 dzdydx<br />

2 −y 2<br />

∫ 4 ∫ √ 16−x ∫ 2 0<br />

0<br />

0<br />

√<br />

x2 +y<br />

−<br />

√16−x 2 +z 2 dzdydx<br />

2 −y 2<br />

11.6 Change of Variables: Jacobians<br />

Definition 11.6.1. Jacobian<br />

(a) For x = g(u,v) and y = h(u,v), the Jacobian is<br />

∣ ∣∣∣∣∣∣ ∂x<br />

∂(x,y)<br />

∂(u,v) = ∂u<br />

∂y<br />

∂u<br />

∂x<br />

∂v<br />

.<br />

∂y<br />

∣<br />

∂v<br />

(b) For x = g(u,v,w), y = (u,v,w) and z = k(u,v,w), the Jacobian is<br />

∣ ∣∣∣∣∣∣∣∣∣∣∣ ∂x<br />

∂u<br />

∂(x,y,z)<br />

∂(u,v,w) = ∂y<br />

∂u<br />

∂z<br />

∂u<br />

∂x<br />

∂v<br />

∂y<br />

∂v<br />

∂z<br />

∂v<br />

∂x<br />

∂w<br />

∂y<br />

∂w<br />

.<br />

∂z<br />

∣<br />

∂w<br />

Example 11.6.1. Find the Jacobian of the transformation x = 2u v , y = 3uv +v2 .<br />

Solution:<br />

∣ ∣∣∣∣∣∣ ∂x<br />

∂(x,y)<br />

∂(u,v) = ∂u<br />

∂y<br />

∂u<br />

∂x<br />

2<br />

∂v<br />

− 2u<br />

=<br />

∂y<br />

v v 2<br />

∣ ∣3v 3u+2v∣ = 12u<br />

v +4.<br />

∂v<br />

De-Yu Wang CSIE CYUT 204


11.6. CHANGE OF VARIABLES: JACOBIANS<br />

Example 11.6.2. Compute the Jacobian for the spherical-like transformation x =<br />

ρsinφcosθ, y = ρsinφsinθ and z = ρcosφ.<br />

Solution:<br />

∣ ∣∣∣∣∣∣∣∣∣∣∣∣ ∂x ∂x ∂x<br />

∂ρ ∂φ ∂θ<br />

∂(x,y,z)<br />

∂(ρ,φ,θ) = ∂y ∂y ∂y<br />

sinφcosθ ρcosφcosθ −ρsinφsinθ<br />

=<br />

∂ρ ∂φ ∂θ<br />

sinφsinθ ρcosφsinθ ρsinφcosθ<br />

∣ cosφ −ρsinφ 0 ∣<br />

∂z ∂z ∂z<br />

∂ρ ∂φ ∂θ∣<br />

=cosφ<br />

ρcosφcosθ −ρsinφsinθ<br />

∣ρcosφsinθ ρsinφcosθ ∣<br />

+ρsinφ<br />

sinφcosθ −ρsinφsinθ<br />

∣sinφsinθ ρsinφcosθ ∣<br />

=cosφ(ρ 2 sinφcosφcos 2 θ +ρ 2 sinφcosφsin 2 θ)<br />

+ρsinφ(ρsin 2 φcos 2 θ +ρsin 2 φsin 2 θ)<br />

=ρ 2 sinφ(cos 2 φ+sin 2 φ) = ρ 2 sinφ.<br />

Theorem 11.6.1. Change of Variables<br />

(a) For x = g(u,v) and y = h(u,v),<br />

∫∫ ∫∫<br />

f(x,y)dA =<br />

R<br />

S<br />

f(g(u,v),h(u,v))<br />

∂(x,y)<br />

∣∂(u,v)<br />

∣ dudv.<br />

(b) For x = g(u,v,w), y = (u,v,w) and z = k(u,v,w),<br />

∫∫∫ ∫∫∫<br />

f(x,y,z)dV =<br />

Q<br />

S<br />

f(g(u,v,w),h(u,v,w),k(u,v,w))<br />

∂(x,y,z)<br />

∣∂(u,v,w)<br />

∣ dudvdw.<br />

Proof: Consider the region ∆A with vertices M(g(u,v),h(u,v)), N(g(u +<br />

∆u,v),h(u + ∆u,v)), P(g(u + ∆u,v + ∆v),h(u + ∆u,v + ∆v)), and Q(g(u,v +<br />

∆v),h(u,v +∆v)),<br />

De-Yu Wang CSIE CYUT 205


11.6. CHANGE OF VARIABLES: JACOBIANS<br />

Q<br />

P<br />

✑ ✑✑✑✑✑<br />

M<br />

✑ ✑✑✑✑✑<br />

N<br />

∆x∆y = ∆A ≈ ∥ −−→ MN × −−→<br />

MQ∥<br />

−−→<br />

MN × −−→<br />

i j k<br />

MQ =<br />

g(u+∆u,v)−g(u,v) h(u+∆u,v)−h(u,v) 0<br />

∣g(u,v +∆v)−g(u,v) h(u,v +∆v)−h(u,v) 0∣<br />

∣ i j k ∣∣∣∣∣∣∣∣∣ ∂x ∂y<br />

∂x ∂y<br />

≈<br />

∆u ∂u ∂u ∆u 0<br />

=<br />

∂u ∂u<br />

∆u∆vk<br />

∂x ∂y<br />

∂x<br />

∣<br />

∂v ∆v ∂y<br />

∂v ∆v 0 ∣ ∣<br />

∂v ∂v<br />

= ∂(x,y)<br />

∂(u,v) ∆u∆vk<br />

∆A ≈ ∥ −−→ MN × −−→<br />

MQ∥ ≈<br />

∂(x,y)<br />

∣∂(u,v)<br />

∣ ∆u∆v<br />

Example 11.6.3. Use Theorem 11.6.1 to derive the evaluation formula for polar<br />

coordinates:<br />

∫∫ ∫∫<br />

f(x,y)dA = f(rcosθ,rsinθ)rdrdθ.<br />

R<br />

S<br />

Proof:<br />

∣ ∣∣∣∣∣∣ ∂x ∂x<br />

∂(x,y)<br />

∂(r,θ) = ∂r ∂θ<br />

cosθ −rsinθ<br />

=<br />

∂y ∂y<br />

∣<br />

∣<br />

sinθ rcosθ ∣ = rcos2 θ+rsin 2 θ = r<br />

∫∫ ∫∫<br />

∂r ∂θ<br />

f(x,y)dA = f(rcosθ,rsinθ)<br />

∂(x,y)<br />

∣<br />

R<br />

S ∂(r,θ) ∣ drdθ<br />

∫∫<br />

= f(rcosθ,rsinθ)rdrdθ.<br />

S<br />

∫∫<br />

Example 11.6.4. Evaluate the integral (x + 2y)dA, where R is the region<br />

bounded by the lines y = −1−2x, y = 3−2x, y = x−1 and y = x−3.<br />

De-Yu Wang CSIE CYUT 206<br />

R


11.6. CHANGE OF VARIABLES: JACOBIANS<br />

Solution: Let u = y +2x and v = x−y, then x = u+v and y = u−2v<br />

3 3<br />

∣ ∂(x,y) ∣∣∣∣ 1 1<br />

∂(u,v) = 3 3<br />

1 −2∣ = −1 3<br />

3 3<br />

∫∫ ∫ 3 ∫ 3<br />

( u+v<br />

(x+2y)dA = + 2(u−2v) )∣ ∣∣∣ ∂(x,y)<br />

R<br />

1 −1 3 3 ∂(u,v) ∣ dudv<br />

∫ 3 ∫ 3<br />

= (u−v)<br />

∣ −1 1 −1 3∣ dudv y<br />

✻ y = x−1<br />

= 1 ∫ 3<br />

( )∣ u<br />

2 ∣∣∣<br />

3<br />

❅<br />

3<br />

1 ❅<br />

v = 1<br />

1 2 −uv dv<br />

y = x−3<br />

u=−1<br />

❅ v = 3<br />

❅ ✲<br />

= 1 ∫ 3<br />

(4−4v) dv<br />

x<br />

❅ 1 ❅<br />

3<br />

2 3<br />

1<br />

−1❅<br />

✟ ✟✟✟✟✟✟✟ R ❅<br />

❅<br />

❅<br />

= 1 ( )∣ 4v −2v<br />

2 ∣ 3 y = 3−2x<br />

❅<br />

❅<br />

3<br />

v=1<br />

❅<br />

−3 ✟ ✟✟✟✟✟✟✟✟✟✟✟✟ u = 3<br />

= − 8 ❅ y = −1−2x<br />

3 .<br />

❅ u = −1<br />

Exercise 11.6.1. Find the Jacobian of the transformation.<br />

(a) x = ue v , y = ue −v<br />

x = 2uv, y = 3u−v<br />

(b) x = 2u v<br />

, y = 3uv +v2<br />

(c)<br />

(d) x = u v , y = v2<br />

Exercise 11.6.2. Evaluate the integral<br />

∫∫<br />

(a) (x−2y)dA,whereRistheregionboundedbyy = 3x, y = 3x−4, y = 1−2x<br />

R<br />

and y = 2−2x.<br />

∫∫<br />

(b) (x+2y)dA, whereRis theregion boundedby y = e x , y = e x +2, y = 3−e x<br />

R<br />

and y = 5−e x .<br />

∫∫<br />

(c) (x+2y)dA, where R is the region bounded by y = 1−2x, y = 3−2x, y =<br />

R<br />

x−1 and y = x−3.<br />

Exercise 11.6.3. Prove that<br />

∫∫ ∫∫<br />

(a) f(x,y)dA = f(rcosθ,rsinθ)rdrdθ.<br />

R<br />

∫∫∫ ∫∫∫<br />

(b) f(x,y,z)dV =<br />

Q<br />

S<br />

S<br />

f(ρsinφcosθ,ρsinφsinθ,ρcosφ)ρ 2 sinφdρdφdθ.<br />

De-Yu Wang CSIE CYUT 207

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!