31.10.2014 Views

Velocity-dependent Potential of a Rigid Body in a Rotating ... - CNEA

Velocity-dependent Potential of a Rigid Body in a Rotating ... - CNEA

Velocity-dependent Potential of a Rigid Body in a Rotating ... - CNEA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Velocity</strong>-<strong>dependent</strong> <strong>Potential</strong><br />

<strong>of</strong> a <strong>Rigid</strong> <strong>Body</strong> <strong>in</strong> a Rotat<strong>in</strong>g Frame<br />

G. A. Moreno and R. O. Barrach<strong>in</strong>a ∗<br />

Centro Atómico Bariloche and Instituto Balseiro,<br />

Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo,<br />

8400 S. C. de Bariloche, Río Negro, Argent<strong>in</strong>a †<br />

(Dated: March 14, 2008)<br />

We derive a velocity-<strong>dependent</strong> potential for describ<strong>in</strong>g the dynamics <strong>of</strong> a rigid body <strong>in</strong> a rotat<strong>in</strong>g<br />

frame. We show that, as for one-particle systems, the different components <strong>of</strong> this potential can be<br />

associated to electromagnetic analogs. F<strong>in</strong>ally, we provide some simple examples to demonstrate<br />

the feasibility <strong>of</strong> us<strong>in</strong>g it as an alternative description <strong>of</strong> rigid body problems.<br />

I. INTRODUCTION<br />

In basic and advanced courses <strong>of</strong> Classical Dynamics,<br />

students are taught how to deal with a rotational frame<br />

<strong>of</strong> angular velocity ⃗ω by <strong>in</strong>clud<strong>in</strong>g, besides the act<strong>in</strong>g<br />

force F, three <strong>in</strong>ertial forces [1] onto Newton’s equation,<br />

m¨r = F. For a particle <strong>of</strong> mass m and position r = r(t),<br />

these are the Coriolis force,<br />

F Coriolis = −2 m ⃗ω × ṙ , (1)<br />

named after Gaspard-Gustave Coriolis (1792–1843) [2, 3]<br />

who described it <strong>in</strong> 1832–1835 (even though it was first<br />

<strong>in</strong>troduced by Pierre-Simon Laplace (1749–1827) half a<br />

century before [4] <strong>in</strong> relation with tidal forces), the centrifugal<br />

force<br />

and the Euler force [5]<br />

F Centrifugal = − m ⃗ω × (⃗ω × r) , (2)<br />

F Euler = −m ˙⃗ω × r . (3)<br />

These <strong>in</strong>ertial forces do not represent an <strong>in</strong>dispensable<br />

concept and it has even been suggested that they should<br />

not be <strong>in</strong>troduced, at least <strong>in</strong> first courses (see, for <strong>in</strong>stance,<br />

[6]). However, after deal<strong>in</strong>g with a few examples<br />

and practical problems (Foucault pendulum, projectile<br />

deflection, hurricanes,...) students come to appreciate<br />

that, far from gett<strong>in</strong>g <strong>in</strong>to a muddle, the use <strong>of</strong> <strong>in</strong>ertial<br />

forces can lead to a much simpler and more <strong>in</strong>tuitive description<br />

<strong>of</strong> rotat<strong>in</strong>g systems [7].<br />

In spite <strong>of</strong> its obvious advantages, most authors, with<br />

a few exceptions (more notoriously [8]), have avoided to<br />

extrapolate this idea <strong>in</strong>to Lagrange’s Mechanics through<br />

the <strong>in</strong>troduction <strong>of</strong> velocity-<strong>dependent</strong> potentials. Nevertheless,<br />

such a generalization is simple enough [9] and<br />

can be used to ease the description <strong>of</strong> rotat<strong>in</strong>g systems<br />

that are rather tricky to analyze when studied from an<br />

∗ ROB is also member <strong>of</strong> the Consejo Nacional de Investigaciones<br />

Científicas y Técnicas, Argent<strong>in</strong>a<br />

† Electronic address: gustavoarielmoreno@gmail.com,barra@cab.<br />

cnea.gov.ar<br />

<strong>in</strong>ertial frame <strong>of</strong> reference. Furthermore, students f<strong>in</strong>d<br />

that its understand<strong>in</strong>g can be greatly eased by a oneto-one<br />

analogy with a particular electromagnetic field <strong>of</strong><br />

symmetric gauge [9].<br />

In what follows, after a concise review <strong>of</strong> the concept <strong>of</strong><br />

velocity-<strong>dependent</strong> and non-<strong>in</strong>ertial potentials, we derive<br />

a velocity-<strong>dependent</strong> potential for a rigid body <strong>in</strong> a rotat<strong>in</strong>g<br />

frame. Its relation to the electromagnetic case is also<br />

addressed, identify<strong>in</strong>g the mechanical analogs <strong>of</strong> known<br />

electromagnetic objects. F<strong>in</strong>ally, we describe a few examples<br />

<strong>of</strong> how this non-<strong>in</strong>ertial potential can be used as<br />

an alternative description <strong>of</strong> rigid body problems.<br />

II.<br />

VELOCITY-DEPENDENT POTENTIAL<br />

Let us consider the Lagrange equations<br />

( )<br />

d ∂T<br />

− ∂T =<br />

dt ∂q˙<br />

j ∂q ˜Q j j = 1, 3N − k<br />

j<br />

for a system <strong>of</strong> N particles <strong>of</strong> mass m i and k holonomous<br />

constra<strong>in</strong>ts. The position r i = r i (t) <strong>of</strong> each particle can<br />

be written <strong>in</strong> terms <strong>of</strong> the 3N −k generalized coord<strong>in</strong>ates<br />

q j as r i = r i (q 1 , · · · , q 3N−k , t). Here we have def<strong>in</strong>ed the<br />

K<strong>in</strong>etic Energy<br />

T = 1 2<br />

and the Generalized Forces<br />

Q j =<br />

N∑<br />

m i ṙ 2 i ,<br />

i=1<br />

N∑<br />

i=1<br />

F i . ∂r i<br />

∂q j<br />

. (4)<br />

Whenever part <strong>of</strong> these forces can be derived from a potential<br />

function V depend<strong>in</strong>g only on the coord<strong>in</strong>ates q j ,<br />

the velocities ˙q j and, eventually, the time t, as<br />

Q j = ˜Q j + d ( ) ∂V<br />

− ∂V , (5)<br />

dt ∂ ˙q j ∂q j<br />

the Lagrange equations can be rewritten as<br />

( )<br />

d ∂L<br />

− ∂L =<br />

dt ∂q˙<br />

j ∂q ˜Q j ,<br />

j


where L = T − V is the Lagrangian function. <strong>Velocity</strong><strong>dependent</strong><br />

potentials were <strong>in</strong>troduced <strong>in</strong> Lagrangian me-<br />

potential [9]<br />

Replac<strong>in</strong>g <strong>in</strong> Eq. (7) we obta<strong>in</strong> the follow<strong>in</strong>g <strong>in</strong>ertial<br />

chanics by the German mathematician Ernst Christian<br />

Julius Scher<strong>in</strong>g (1833–1897) <strong>in</strong> 1873 [10] as a way <strong>of</strong><br />

V I = − m 2 (⃗ω × r)2 − m ṙ · (⃗ω × r) .<br />

deal<strong>in</strong>g with the pre-Maxwellian Electrodynamical Theory<br />

<strong>of</strong> Wilhelm Eduard Weber (1804–1891) [11]. It was<br />

Thus, the Lagrangian for a system <strong>of</strong> N particles <strong>of</strong><br />

co<strong>in</strong>ed as Scher<strong>in</strong>g potential by Edmund Taylor Whittaker<br />

(1873–1956) <strong>in</strong> the first edition <strong>of</strong> his Analytical<br />

masses m i and positions r i = r i (t) reads [8]<br />

Dynamics [12], but he dropped this attribution <strong>in</strong> later<br />

L = 1 N∑<br />

m i ṙ 2 i + 1 N∑<br />

m i (⃗ω × r i ) 2<br />

editions (see [13]).<br />

2<br />

2<br />

i=1<br />

i=1<br />

N∑<br />

+ m i ṙ i · (⃗ω × r i ) − V<br />

III. VELOCITY-DEPENDENT POTENTIAL OF<br />

i=1<br />

AN ELECTROMAGNETIC FIELD<br />

= 1 N∑<br />

m i (ṙ i + ⃗ω × r i ) 2 − V ,<br />

Far from be<strong>in</strong>g academic, the idea <strong>of</strong> a velocity<strong>dependent</strong><br />

potential can serve as a path for solv<strong>in</strong>g <strong>in</strong>-<br />

2<br />

i=1<br />

where ⃗ω×r<br />

verse problems [14] and comprises the case <strong>of</strong> a particle<br />

i is the drift velocity <strong>of</strong> each particle <strong>in</strong> the rotat<strong>in</strong>g<br />

reference frame [9]. These equations can be written<br />

<strong>in</strong> terms <strong>of</strong> general coord<strong>in</strong>ates {q k } 3N−k<br />

j=1 once the<br />

<strong>of</strong> charge q <strong>in</strong> the presence <strong>of</strong> an electromagnetic field<br />

[E(r, t), B(r, t)]. The Lorentz Force F = q (E + ṙ × B)<br />

can be written <strong>in</strong> terms <strong>of</strong> the scalar (φ) and vectorial (A) relations r i = r i (q 1 , · · · , q 3N−k , t) are established.<br />

potentials (such that B = ∇×A and E = −∇φ−∂A/∂t)<br />

as<br />

(<br />

F = q −∇φ − ∂A<br />

)<br />

V. INERTIAL POTENTIAL FOR A RIGID<br />

∂t + ṙ × ∇ × A BODY<br />

. (6)<br />

Let us now apply these ideas to a rigid body consist<strong>in</strong>g<br />

<strong>of</strong> N po<strong>in</strong>t masses m<br />

By replac<strong>in</strong>g <strong>in</strong> Eq. (4) the correspond<strong>in</strong>g generalized<br />

forces can be written as <strong>in</strong> Eq.(5) when the follow<strong>in</strong>g<br />

i located at r i = r ′ i + R <strong>in</strong> a<br />

reference frame rotat<strong>in</strong>g with velocity ⃗ω = ⃗ω(t). R is<br />

velocity-<strong>dependent</strong> potential is def<strong>in</strong>ed<br />

the position <strong>of</strong> the center <strong>of</strong> mass. The correspond<strong>in</strong>g<br />

V = q φ − q ṙ × A . (7) <strong>in</strong>ertial potential<br />

V I = − 1 N∑<br />

N∑<br />

m i (⃗ω × r i ) 2 − m i ṙ i · (⃗ω × r i ) ,<br />

IV. NON-INERTIAL POTENTIAL<br />

2<br />

i=1<br />

i=1<br />

can be written as<br />

Let us now consider a particle <strong>of</strong> mass m located at<br />

a position r <strong>in</strong> a reference frame rotat<strong>in</strong>g with velocity<br />

V I = − 1 ⃗ω = ⃗ω(t). Some simple algebra shows that the three<br />

2 M (⃗ω × R)2 − MṘ · (⃗ω × R)<br />

fictitious forces Eqs. (1–3) can be rewritten as<br />

− 1 2 ⃗ω · I · ⃗ω − ⃗ω · I · ⃗Ω . (8)<br />

F I = F centrifugal + F Euler + F coriolis<br />

= m 2 ∇ (⃗ω × r)2 − m ∂ Here M = ∑ m i is the total mass, I is the <strong>in</strong>ertia tensor<br />

(⃗ω × r)<br />

with respect to the center <strong>of</strong> mass <strong>of</strong> elements<br />

∂t<br />

+mṙ × (∇ × (⃗ω × r)) .<br />

N∑<br />

I jk = m i (r i2 ′ δjk − r ij ′ r′ ik ) ,<br />

This expression is identical to that <strong>of</strong> the Lorentz force<br />

i=1<br />

(6), whenever the mass is identified with the charge, q ↔<br />

m, and the follow<strong>in</strong>g scalar and vectorial potentials are<br />

and Ω ⃗ is the angular velocity <strong>of</strong> the rigid body <strong>in</strong> the<br />

def<strong>in</strong>ed [1, 9, 15]<br />

rotat<strong>in</strong>g reference frame. Even though the third term <strong>in</strong><br />

Eq. 8 does not depends explicitly on the angular velocity<br />

φ = − 1 2 (⃗ω × <strong>of</strong> the rigid body, it does depend on the orientation <strong>of</strong> its<br />

r)2 , A = ⃗ω × r ,<br />

<strong>in</strong>ertia tensor, except when it is a scalar (spherical top)<br />

Note, <strong>in</strong> particular, that this analogy is valid whenever B<br />

. The correspond<strong>in</strong>g Lagrangian reads<br />

is uniform (B = 2⃗ω) and satisfies the Symmetric Gauge<br />

L = 1 Ω<br />

A = −r × B/2 [16]. The correspond<strong>in</strong>g Electric field has<br />

2 ⃗ · I · ⃗Ω + 1 2 MṘ2 − V I − V<br />

a very particular l<strong>in</strong>ear dependence on the position r,<br />

= 1 ( ) ( )<br />

⃗Ω + ⃗ω · I · ⃗Ω + ⃗ω<br />

E = −4 B × (B × r) − 2 Ḃ × r<br />

2<br />

= 4 B 2 r − 4 (B · r) B − 2 Ḃ × r . + 1 ) 2 (Ṙ<br />

2 M + ⃗ω × R − V .<br />

2


3<br />

Note that for a rotat<strong>in</strong>g reference frame with its orig<strong>in</strong><br />

located at the center <strong>of</strong> mass <strong>of</strong> the rigid body, the <strong>in</strong>ertial<br />

potential is a l<strong>in</strong>ear function <strong>of</strong> the angular velocity,<br />

V I = − 1 2 ⃗ω · I · ⃗ω − ⃗ω · I · ⃗Ω .<br />

These simple results do not only provide an advantageous<br />

alternative for the Lagrangian description <strong>of</strong> rigid bodies<br />

<strong>in</strong> rotat<strong>in</strong>g frames, but also lead to an <strong>in</strong>terest<strong>in</strong>g analogy<br />

between the correspond<strong>in</strong>g <strong>in</strong>ertial and electromagnetic<br />

forces. For <strong>in</strong>stance, the first two terms <strong>in</strong> Eq. 8 can<br />

be identified with an electromagnetic field <strong>of</strong> symmetric<br />

gauge (with B = 2⃗ω) act<strong>in</strong>g on a s<strong>in</strong>gle particle <strong>of</strong> charge<br />

Q = M located at the center <strong>of</strong> mass. The other two<br />

terms <strong>in</strong> Eq. 8 can be related to electric quadrupole and<br />

magnetic dipole moments. Actually, the analogy q i ↔ m i<br />

can be extended to the identification <strong>of</strong> the moment <strong>of</strong><br />

<strong>in</strong>ertia with an electric quadrupole moment and <strong>of</strong> the<br />

angular momentum, L = I · ⃗Ω, with a magnetic dipole<br />

moment, µ ↔ L/2, <strong>in</strong> such a way that ⃗ω · I · ⃗Ω = µ · B.<br />

Note that there is no electric dipolar moment s<strong>in</strong>ce the<br />

expansion is around the center <strong>of</strong> mass.<br />

VI.<br />

EXAMPLES<br />

A. The Gyrocompass<br />

As a first application <strong>of</strong> the previous results, let us<br />

analyze the motion a gyrocompass, i.e. an electrically<br />

powered sp<strong>in</strong>n<strong>in</strong>g wheel mounted on gimbals, that f<strong>in</strong>ds<br />

true north while not be<strong>in</strong>g affected by surround<strong>in</strong>g metals.<br />

An early version <strong>of</strong> this gyroscope, was patented <strong>in</strong><br />

1885 by the Dutch <strong>in</strong>ventor Mar<strong>in</strong>us van den Bos, but<br />

it was not until almost two decades later that a work<strong>in</strong>g<br />

model was constructed by the German scientist Hermann<br />

Franz Joseph Hubertus Maria Anschütz-Kaempfe (1872<br />

1931). The successful tests run by the German Navy<br />

attracted the attention <strong>of</strong> the American Elmer Ambrose<br />

Sperry (1860 1930), whose patent<strong>in</strong>g <strong>of</strong> an improved version<br />

lead to a legal battle by Anschütz-Kaempfe. Albert<br />

E<strong>in</strong>ste<strong>in</strong>, who was appo<strong>in</strong>ted as expert by the Royal District<br />

Court <strong>in</strong> Berl<strong>in</strong>, f<strong>in</strong>ally presented a report favorable<br />

to Anschütz-Kampe’s claims <strong>of</strong> primacy [17].<br />

Let us consider that the Gyrocompass rotates around<br />

its symmetry axis <strong>of</strong> moment <strong>of</strong> <strong>in</strong>ertia I 3 <strong>in</strong> a reference<br />

frame fixed to the surface <strong>of</strong> the Earth. S<strong>in</strong>ce its angular<br />

velocity, ˙ψ, is much larger than that <strong>of</strong> the Earth, |ω|, we<br />

can approximate <strong>in</strong> Eq. 8<br />

V I ≈ −I 3 ω ˙ψ cos θ ,<br />

where θ is the orientation <strong>of</strong> the gyrocompass about the<br />

“true north”. This <strong>in</strong>ertial potential provides a restitutive<br />

force that, through friction forces, will eventually<br />

orient the compass’s axis towards the north celestial pole.<br />

Appeal<strong>in</strong>g to the electromagnetic analogy, the situation<br />

is similar to that <strong>of</strong> a magnetic moment align<strong>in</strong>g with a<br />

constant magnetic field [18].<br />

B. K<strong>in</strong>etic Energy <strong>in</strong> an Inertial Frame: the Top<br />

The <strong>in</strong>ertial potential also provides a simple technique<br />

for evaluat<strong>in</strong>g the Lagrangian <strong>of</strong> a rotat<strong>in</strong>g body with<br />

much ease, even as seen from an <strong>in</strong>ertial reference frame.<br />

Let us consider, for <strong>in</strong>stance, the motion <strong>of</strong> a symmetrical<br />

top (I 1 = I 2 ≠ I 3 ) balanc<strong>in</strong>g on one <strong>of</strong> its extremes<br />

[13]. When seen from a reference frame revolv<strong>in</strong>g with<br />

the precession velocity, ⃗ω = ˙φẑ (not known a priori), we<br />

can trace back to equation (8) and compute the <strong>in</strong>ertial<br />

potential<br />

V I = − 1 2 ω2 [ I 3 cos 2 θ + (I 1 + ml 2 ) s<strong>in</strong> 2 θ ] − I 3 ω ˙ψ cos θ.<br />

Here θ, φ and ψ are the three Euler angles [13] and l<br />

is the distance from the center <strong>of</strong> mass to the balanc<strong>in</strong>g<br />

po<strong>in</strong>t. This potential corrects the k<strong>in</strong>etic energy<br />

T I = 1 2 I 3 ˙ψ 2 + 1 2 (I 1 + ml 2 ) ˙θ 2 ,<br />

evaluated <strong>in</strong> the rotat<strong>in</strong>g frame, to yield the usual expression<br />

[13] <strong>in</strong> the <strong>in</strong>ertial frame<br />

T = T I − V I<br />

= 1 2 I 3( ˙ψ + ω cos θ) 2 + 1 2 (I 1 + ml 2 )( ˙θ 2 + ω 2 s<strong>in</strong> 2 θ) .<br />

C. General Case: A First Integral for Roll<strong>in</strong>g<br />

Bodies<br />

As a third and f<strong>in</strong>al example, let us derive a first <strong>in</strong>tegral<br />

for the motion <strong>of</strong> an “arbitrary” (strictly) convex<br />

rigid body onto an horizontal plane that rotates with<br />

angular velocity ⃗ω = ωẑ. We describe its dynamics by<br />

means <strong>of</strong> the position R <strong>of</strong> its center <strong>of</strong> mass and the<br />

three Euler angles (φ, θ, ψ) as seen from a reference frame<br />

rotat<strong>in</strong>g with the plane. In general, and except for bodies<br />

with particularly strong symmetries such as disks or<br />

spheres [19–21], the distance r from the center <strong>of</strong> mass<br />

to the contact po<strong>in</strong>t with the surface is not fixed <strong>in</strong> magnitude<br />

or direction, but a function <strong>of</strong> Euler angles. This<br />

holonomous constra<strong>in</strong>t leaves us with five degrees <strong>of</strong> freedom.<br />

Now let us assume that the body does not slide, but<br />

is free to roll on the surface and to rotate about its vertical<br />

axis ẑ. Thus, the motion <strong>of</strong> the body is constra<strong>in</strong>ed<br />

by<br />

0 = Ṙ + ⃗ Ω × r , (9)<br />

where Ω ⃗ is the angular velocity <strong>of</strong> the body. Be<strong>in</strong>g non<strong>in</strong>tegrable,<br />

this constra<strong>in</strong>t does not lead to any further<br />

reduction <strong>in</strong> the number <strong>of</strong> degrees <strong>of</strong> freedom. On the<br />

contrary, the relevant feature about it is its l<strong>in</strong>earity <strong>in</strong><br />

the generalized velocities. This is clear with respect to<br />

its dependence on Ṙ and the same is valid with respect<br />

to Ω, ⃗ whose dependence on ˙φ, ˙θ and ˙ψ is also l<strong>in</strong>ear, even<br />

though the coefficients <strong>of</strong> these l<strong>in</strong>ear relations might <strong>in</strong>


4<br />

general be non l<strong>in</strong>ear functions <strong>of</strong> the coord<strong>in</strong>ates. Thus,<br />

<strong>in</strong>clud<strong>in</strong>g the two Lagrange multipliers terms <strong>of</strong> the form<br />

∑<br />

λi f i (q) ˙q i that implement the constra<strong>in</strong>t (9), the Lagrangian<br />

rema<strong>in</strong>s time <strong>in</strong><strong>dependent</strong> and has the form:<br />

energy, the third is an effective centrifugal potential and<br />

the last is an effective potential which depends on the<br />

orientation <strong>of</strong> the body. This last term becomes trivial<br />

only when the body has spherical symmetry.<br />

L = ∑ A i (q) ˙q i + ∑ B ij (q) ˙q i ˙q j − D(q) .<br />

So, accord<strong>in</strong>g to the Noether theorem [22], we have the<br />

follow<strong>in</strong>g first <strong>in</strong>tegral [23],<br />

VII.<br />

CONCLUSIONS<br />

c = ∑ k<br />

˙q k<br />

∂L<br />

∂ ˙q k<br />

− L = ∑ B ij (q) ˙q i ˙q j + D(q) .<br />

This means that we only have to remove the l<strong>in</strong>ear terms<br />

<strong>in</strong> ˙q from the Lagrangian and change the sign <strong>of</strong> the velocity<br />

<strong>in</strong><strong>dependent</strong> term. So, writ<strong>in</strong>g the potential (8)<br />

as<br />

V I<br />

we f<strong>in</strong>ally obta<strong>in</strong><br />

= − 1 2 M (⃗ω × R)2 − 1 ⃗ω · I · ⃗ω<br />

} {{<br />

2<br />

}<br />

velocity <strong>in</strong><strong>dependent</strong><br />

− ⃗ω · I · ⃗Ω − MṘ · (⃗ω × R) .<br />

} {{ }<br />

l<strong>in</strong>ear <strong>in</strong> velocities<br />

c = 1 Ω<br />

2 ⃗ · I · ⃗Ω + 1 2 MṘ2 − 1 2 M (⃗ω × R)2 − 1 ⃗ω · I · ⃗ω .<br />

2<br />

Clearly, this is the non <strong>in</strong>ertial version <strong>of</strong> energy conservation.<br />

The first two terms are the standard k<strong>in</strong>etic<br />

In this article we have discussed the use <strong>of</strong> <strong>in</strong>ertial potentials<br />

<strong>in</strong> the Lagrangian analysis <strong>of</strong> rigid bodies <strong>in</strong> rotat<strong>in</strong>g<br />

frames. Besides describ<strong>in</strong>g the analogy <strong>of</strong> these<br />

potentials with a particular electromagnetic field <strong>of</strong> symmetric<br />

gauge, we presented three examples. They were<br />

chosen as diverse as possible so as to span a variety <strong>of</strong><br />

different situations, <strong>in</strong> order to demonstrate the feasibility<br />

and advantages <strong>of</strong> this description. We conclude that<br />

this is a valid alternative to the standard Lagrangian description<br />

<strong>of</strong> rigid bodies from <strong>in</strong>ertial frames <strong>of</strong> reference.<br />

Acknowledgments<br />

This work was partially supported by the Agencia Nacional<br />

de Promoción Científica y Tecnológica (Grants<br />

03-12567 and 03-20548), Consejo Nacional de Investigaciones<br />

Científicas y Técnicas (Grant PIP 5595) and Universidad<br />

Nacional de Cuyo (Grant 06/C229), Argent<strong>in</strong>a.<br />

[1] M. D. Semon and G. M. Schmieg, “Note on the analogy<br />

between <strong>in</strong>ertial and electromagnetic forces,” Am. J.<br />

Phys. 49, 689–690 (1981).<br />

[2] G. G. Coriolis, “Mémoire sur le pr<strong>in</strong>cipe des forces vives<br />

dans les mouvements relatifs des mach<strong>in</strong>es,” Journal de<br />

l’École Polytechnique 13, 268–302 (1832).<br />

[3] G. G. Coriolis, “Mémoire sur les équations du mouvement<br />

relatif des systèmes de corps.” Journal de l’École<br />

Polytechnique 15, 142–154 (1835).<br />

[4] P. S. Laplace, “Recherches sur plusieurs po<strong>in</strong>ts du systeme<br />

du monde,” Memoires de l’Academie Royale des<br />

Sciences de Paris 88, 75–182 (1776).<br />

[5] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics<br />

and Symmetry (Spr<strong>in</strong>ger Verlag, 2nd. edition, 1999), p.<br />

251.<br />

[6] C. F. Hagenow, “Is There a Centrifugal Force?,” Am.<br />

Phys. Teacher 3, 190 (1935).<br />

[7] G. D. Scott, “Centrifugal Forces and Newton’s Laws <strong>of</strong><br />

Motion,” Am. J. Phys. 25, 325 (1957).<br />

[8] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon<br />

Press Ltd., Oxford, 1976) 3rd. edition, pp. 126–129.<br />

[9] J. Sivardiere, “On the analogy between <strong>in</strong>ertial and electromagnetic<br />

forces,” Eur. J. Phys. 4, 162–164 (1983).<br />

[10] E. Scher<strong>in</strong>g, “Gött. Abh.”, 18, 3 (1873).<br />

[11] W. Weber, “Annalen d. Phys”, LXXIII, 193 (1848).<br />

[12] E. T. Whittaker, A Treatise on the Analytical Dynamics<br />

<strong>of</strong> Particles and <strong>Rigid</strong> Bodies (Cambridge University<br />

Press, Cambridge, 1904) 1st. edition.<br />

[13] H. Goldste<strong>in</strong>, Classical Mechanics (Addison-Wesley,<br />

Read<strong>in</strong>g, MA, 1981), p. 21.<br />

[14] M. L. C<strong>of</strong>fman, “<strong>Velocity</strong>-Dependent <strong>Potential</strong>s for Particles<br />

Mov<strong>in</strong>g <strong>in</strong> Given Orbits,” Am. J. Phys. 20, 195–199<br />

(1952).<br />

[15] R. Coisson, “On the Vector <strong>Potential</strong> <strong>of</strong> Coriolis Forces,”<br />

Am. J. Phys. 41, 585 (1973).<br />

[16] G. Rousseaux, “The gauge non-<strong>in</strong>variance <strong>of</strong> Classical<br />

Electromagnetism,” Annales de la Fondation Louis de<br />

Broglie 30, 387–396 (2005).<br />

[17] M. B. May, “Elmer A. Sperry and the Gyrocompass,”<br />

The Institute <strong>of</strong> Navigation Newsletter 17 (2), 8–9<br />

(2007).<br />

[18] G. I. Opat, “Coriolis and magnetic forces: The gyrocompass<br />

and magnetic compass as analogs,” Am. J. Phys.<br />

58, 1173–1176 (1990).<br />

[19] J. Barcelos-Neto and M. B. Dias da Silva, “An example<br />

<strong>of</strong> motion <strong>in</strong> a rotat<strong>in</strong>g frame,” Eur. J. Phys. 10, 305–308<br />

(1989).<br />

[20] K. Weltner, “Stable circular orbits <strong>of</strong> freely mov<strong>in</strong>g balls<br />

on rotat<strong>in</strong>g discs,” Am. J. Phys. 47, 984–986 (1979).<br />

[21] A. Bloch, P. Krishnaprasad, J. Marsden and R. Murray,<br />

“Nonholonomic Mechanical Systems with Symetry”,<br />

Technical Report. California Institute <strong>of</strong> Technology.


5<br />

http://resolver.caltech.edu<br />

/CaltechCDSTR:1995.CIT-CDS-94-013 (1995).<br />

[22] E. Noether, “Invariante Variationsprobleme”, Nachr. d.<br />

König. Gesellsch. d. Wiss. zu Gött<strong>in</strong>gen, Math-phys.<br />

Klasse, 235-257 (1918).<br />

[23] E. A. Desloge and R. I. Karch, “Noether’s theorem <strong>in</strong><br />

classical mechanics,” Am. J. Phys. 45, 336–339 (1976).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!