01.11.2014 Views

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886 881<br />

3. The new <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> relationship for NDM<br />

A recent advance <strong>in</strong> <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> <strong>model</strong><strong>in</strong>g for<br />

dry mach<strong>in</strong><strong>in</strong>g is <strong>the</strong> work of Jawahir et al. [31] and Li<br />

et al. [32]:<br />

<br />

km V ð1=nc Þ<br />

R<br />

T ¼ T R<br />

f n 1<br />

d n , (1)<br />

2<br />

V<br />

where T is <strong>tool</strong>-<strong>life</strong> or <strong>tool</strong>-<strong>wear</strong>, T R is <strong>the</strong> reference<br />

<strong>tool</strong>-<strong>life</strong> or <strong>tool</strong>-<strong>wear</strong> for 1 m<strong>in</strong>, V is <strong>the</strong> cutt<strong>in</strong>g speed,<br />

V R is <strong>the</strong> reference cutt<strong>in</strong>g speed for 1 m<strong>in</strong> of <strong>tool</strong>-<strong>life</strong><br />

or <strong>tool</strong>-<strong>wear</strong>, n c is <strong>the</strong> coat<strong>in</strong>g effect factor and W g is<br />

<strong>the</strong> chip-groove effect factor, represented as km=f n 1<br />

d n 2<br />

. W g<br />

is a function of feed (f), depth of cut (d), <strong>tool</strong> nose radius,<br />

chip breaker configurations and <strong>the</strong> type of mach<strong>in</strong><strong>in</strong>g<br />

operation (m) with m ¼ 1 for turn<strong>in</strong>g. n 1 , n 2 and k are<br />

empirical constants. Outputs and constants of this <strong>model</strong><br />

can be easily generated us<strong>in</strong>g a series of mach<strong>in</strong><strong>in</strong>g trials<br />

(o10) while vary<strong>in</strong>g depth of cut, feed, and cutt<strong>in</strong>g speed<br />

while achiev<strong>in</strong>g accuracies on <strong>the</strong> order of 90%.<br />

Modifications to <strong>the</strong> <strong>tool</strong>-coat<strong>in</strong>g effect factor, n c , is<br />

possible by <strong>in</strong>clud<strong>in</strong>g NDM parameters to <strong>the</strong> series of<br />

trial experiments.<br />

Extension to <strong>the</strong> dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong> is shown<br />

below:<br />

<br />

km V ð1=nc Þð1=N NDM Þ<br />

R<br />

T ¼ T R<br />

f n 1<br />

d n , (2)<br />

2<br />

V<br />

where N NDM is <strong>the</strong> NDM effect factor and is expressed as<br />

N NDM ¼ n mist<br />

n c<br />

, (3)<br />

where n mist is <strong>the</strong> modified coat<strong>in</strong>g factor for NDM mist<br />

spray. n mist can be def<strong>in</strong>ed as <strong>the</strong> follow<strong>in</strong>g:<br />

log V 1 log V 2<br />

n mist ¼<br />

, (4)<br />

logðG F;W;N;MZX ;M ZY<br />

Þ log T 1<br />

where G F;W;N;MZX ;N ZY<br />

is <strong>the</strong> new modified <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

value <strong>in</strong> NDM, empirically derived while vary<strong>in</strong>g MWF type,<br />

MWF volumetric flow rate and nozzle(s) position. Subscripts<br />

of <strong>the</strong> G function: F, W, N, M ZX and M ZY each represent a<br />

modified <strong>tool</strong>-<strong>wear</strong> value that is empirically derived. Table 3<br />

expla<strong>in</strong>s each mapp<strong>in</strong>g function and how it is derived.<br />

3.1. Derivations of <strong>the</strong> M ZX and M ZY effect factors<br />

M ZX and M ZY effect factors can be solved by l<strong>in</strong>earization<br />

of actual <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> results as shown <strong>in</strong> Fig. 1.<br />

MWF rate (denoted X rate <strong>in</strong> units ml/h along <strong>the</strong> X-axis)<br />

represents <strong>the</strong> actual volumetric flow rate of <strong>the</strong> MWF. The<br />

<strong>performance</strong> and l<strong>in</strong>kage of MWF type can be accomplished<br />

by us<strong>in</strong>g a standard MWF evaluation method. In<br />

this work, a standard tapp<strong>in</strong>g torque test method was used<br />

(denoted as Y typ <strong>in</strong> units N cm along <strong>the</strong> Y-axis). Variations<br />

of <strong>the</strong> standard method were also developed to characterize<br />

cool<strong>in</strong>g and lubrication behaviors of MWFs.<br />

Hav<strong>in</strong>g obta<strong>in</strong>ed M ZX and M ZY , G F;W;N;MZX ;M ZY<br />

can be<br />

solved us<strong>in</strong>g Eq. (5):<br />

G F;W;N;MZX ;M ZY<br />

¼ T NDM ½ðM ZX ÞðX rate b m<strong>in</strong> Þ<br />

þðY type a m<strong>in</strong> ÞðM ZY ÞþZ 1 Š, ð5Þ<br />

where G F;W;N;MZX ;M ZY<br />

40, T NDM is <strong>the</strong> predom<strong>in</strong>ate <strong>tool</strong><strong>life</strong><br />

of <strong>the</strong> cutt<strong>in</strong>g <strong>tool</strong>, Z 1 is <strong>the</strong> <strong>in</strong>tercept of <strong>the</strong> effect<br />

Table 3<br />

G function explanation<br />

Mapp<strong>in</strong>g<br />

function<br />

(subscript)<br />

Def<strong>in</strong>ition Comment Categories Method to calculate<br />

F Ideal MWF function MWFs are often classified as<br />

‘‘coolants’’ or ‘‘lubricants’’<br />

W<br />

Dom<strong>in</strong>ant <strong>tool</strong>-<strong>wear</strong><br />

pattern<br />

Tool-<strong>wear</strong> pattern responsible for<br />

catastrophic failure or end of <strong>life</strong><br />

N Nozzle(s) position MWF source direction and<br />

distance to cutt<strong>in</strong>g zone<br />

M ZX MWF rate effect factor L<strong>in</strong>earization of <strong>tool</strong>-<strong>wear</strong> and<br />

MWF vol. flow rate data<br />

M ZY MWF type effect factor L<strong>in</strong>earization of <strong>tool</strong>-<strong>wear</strong> and<br />

tapp<strong>in</strong>g torque data from MWF<br />

G C , cool<strong>in</strong>g (water<br />

miscible); G L , lubrication<br />

(non-water miscible)<br />

W BL , length of groove<br />

backwall <strong>wear</strong><br />

S<strong>in</strong>gle nozzle: R, rake<br />

face; F, flank face; C, chip<br />

M ZX<br />

M ZY<br />

Collect torque test data (N m) for<br />

each MWF us<strong>in</strong>g <strong>the</strong> ASTM D 5619<br />

tapp<strong>in</strong>g torque test standard with<br />

reamed holes at 5.48 and 5.55 mm.<br />

Measurements us<strong>in</strong>g new method for<br />

assess<strong>in</strong>g <strong>tool</strong>-<strong>wear</strong>.<br />

Vector representation of nozzle to<br />

cutt<strong>in</strong>g zone (<strong>in</strong>clude three<br />

dimensional angle and distance to<br />

cutt<strong>in</strong>g zone from nozzle tip)<br />

Calculate slope of axis:<br />

1. Tool-<strong>wear</strong><br />

2. MWF volume flow rate<br />

Calculate slope of axis:<br />

1. Tool-<strong>wear</strong><br />

2. Tapp<strong>in</strong>g torque results from<br />

MWF

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!