01.11.2014 Views

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

A comprehensive tool-wear/tool-life performance model in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE IN PRESS<br />

International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886<br />

www.elsevier.com/locate/ijmac<strong>tool</strong><br />

A <strong>comprehensive</strong> <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> <strong>performance</strong> <strong>model</strong> <strong>in</strong> <strong>the</strong><br />

evaluation of NDM (near dry mach<strong>in</strong><strong>in</strong>g) for susta<strong>in</strong>able manufactur<strong>in</strong>g<br />

P.W. Marksberry a, , I.S. Jawahir b,1<br />

a Center for Manufactur<strong>in</strong>g, College of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kentucky, UK Center for Manufactur<strong>in</strong>g, 414G Robotics Build<strong>in</strong>g (Office 414L),<br />

Lex<strong>in</strong>gton, KY 40506-0108, USA<br />

b Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, College of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kentucky, 414C Center for Robotics and Manufactur<strong>in</strong>g Systems 0108,<br />

414C Robotics Build<strong>in</strong>g (Office 414C), Lex<strong>in</strong>gton, KY 40506-0108, USA<br />

Received 23 January 2007; received <strong>in</strong> revised form 14 November 2007; accepted 19 November 2007<br />

Available onl<strong>in</strong>e 31 January 2008<br />

Abstract<br />

Traditionally, metal work<strong>in</strong>g fluids (MWF) are known to improve mach<strong>in</strong><strong>in</strong>g <strong>performance</strong> despite poor ecological and health side<br />

effects. A new susta<strong>in</strong>able process that has m<strong>in</strong>imized <strong>the</strong> use and application of MWFs is NDM (near dry mach<strong>in</strong><strong>in</strong>g). Although <strong>the</strong>re is<br />

much controversy on <strong>the</strong> effectiveness of NDM, it is agreed that a lack of science-based <strong>model</strong><strong>in</strong>g prevents its widespread use. This paper<br />

presents a new method to predict <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> <strong>performance</strong> <strong>in</strong> NDM by extend<strong>in</strong>g a Taylor speed-based dry mach<strong>in</strong><strong>in</strong>g equation.<br />

Experimental work and validation of <strong>the</strong> <strong>model</strong> was performed <strong>in</strong> an automotive production environment <strong>in</strong> <strong>the</strong> mach<strong>in</strong><strong>in</strong>g of steel wheel<br />

rims. Mach<strong>in</strong><strong>in</strong>g experiments and validation of <strong>the</strong> new equation reveal that <strong>tool</strong>-<strong>wear</strong> can be predicted with<strong>in</strong> 10% when <strong>the</strong> effect of<br />

NDM is statistically different than dry mach<strong>in</strong><strong>in</strong>g. Tool-<strong>wear</strong> measurements obta<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> validation of <strong>the</strong> <strong>model</strong> showed that<br />

NDM can improve <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> over four times compared to dry mach<strong>in</strong><strong>in</strong>g which underl<strong>in</strong>es <strong>the</strong> need to develop susta<strong>in</strong>able<br />

<strong>model</strong>s to match current practices.<br />

r 2007 Elsevier Ltd. All rights reserved.<br />

Keywords: NDM (near dry mach<strong>in</strong><strong>in</strong>g); Automotive; Susta<strong>in</strong>able manufactur<strong>in</strong>g; Tool-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong>; Predictive <strong>model</strong><strong>in</strong>g<br />

1. Industry background and relevance<br />

The US utilization of metal work<strong>in</strong>g fluids (MWFs) is<br />

estimated at 100 million gallons annually and <strong>the</strong> current<br />

worldwide consumption is 640 million gallons. It is estimated<br />

that 52% is used for mach<strong>in</strong><strong>in</strong>g purposes and 31% is applied<br />

to stamp<strong>in</strong>g processes [1]. In mach<strong>in</strong><strong>in</strong>g operations, MWFs<br />

reduce friction between <strong>the</strong> cutt<strong>in</strong>g <strong>tool</strong> and <strong>the</strong> workpiece,<br />

prevent gall<strong>in</strong>g, protect surface characteristics, reduce surface<br />

adhesion or weld<strong>in</strong>g, balance heat generation effects and<br />

flush away swarfs, chips, f<strong>in</strong>es and residue [2].<br />

However, <strong>the</strong>re are serious drawbacks with <strong>the</strong> use of<br />

MWFs: cost and negative health effects. The costs for<br />

Correspond<strong>in</strong>g author. Tel.: +1 859 257 6262x409.<br />

E-mail addresses: marksberry@mfg.uky.edu (P.W. Marksberry),<br />

jawahir@engr.uky.edu (I.S. Jawahir).<br />

URL: http://www.engr.uky.edu (P.W. Marksberry).<br />

1 Tel.: +1 859 257 6262x207<br />

purchase, care and disposal of MWF are two times higher<br />

than mach<strong>in</strong><strong>in</strong>g cost and can represent up to 17% per part<br />

<strong>in</strong> <strong>the</strong> manufactur<strong>in</strong>g of automotive components [1]. Itis<br />

estimated that 1.2 million workers are potentially exposed<br />

to <strong>the</strong> hazardous/chronic toxicology affects of MWFs [3].<br />

MWF impact on health is significant <strong>in</strong> five ma<strong>in</strong> areas:<br />

known occupational health effects, suspect occupational<br />

health effects, occupational health trend, global environmental<br />

<strong>performance</strong> and mach<strong>in</strong><strong>in</strong>g economics [4–9]. Thus,<br />

operations concerned with susta<strong>in</strong>ability need to look for<br />

alternatives.<br />

Near dry mach<strong>in</strong><strong>in</strong>g (NDM) is a susta<strong>in</strong>able manufactur<strong>in</strong>g<br />

technique that is safe for <strong>the</strong> environment [10–12],<br />

<strong>the</strong> worker [13] and is cost effective [14]. The m<strong>in</strong>imization<br />

of MWFs is a direct <strong>in</strong>dicator of susta<strong>in</strong>able manufactur<strong>in</strong>g.<br />

The goal of NDM is to mach<strong>in</strong>e parts us<strong>in</strong>g a m<strong>in</strong>imal<br />

amount of MWF so that <strong>the</strong> workpiece, chips and<br />

environment rema<strong>in</strong> dry after cutt<strong>in</strong>g. In NDM, new<br />

MWF is applied to <strong>the</strong> cutt<strong>in</strong>g zone <strong>in</strong> a precise and<br />

0890-6955/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.ijmach<strong>tool</strong>s.2007.11.006


ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886 879<br />

controlled manner <strong>in</strong> a flow of compressed air that<br />

is completely vaporized by <strong>the</strong> heat generated <strong>in</strong> <strong>the</strong><br />

cutt<strong>in</strong>g process. MWF can be reduced up to 10,000 times<br />

compared to traditional flood cool<strong>in</strong>g provid<strong>in</strong>g a<br />

significant environmental and occupationally impact.<br />

Unfortunately, <strong>the</strong> application of NDM is very difficult<br />

due to several factors. First, NDM can be applied<br />

<strong>in</strong> a variety of applications and offers a broad operat<strong>in</strong>g<br />

range. Users of NDM have <strong>the</strong> option to select a<br />

wide range of pressures, volumetric flow rates, nozzle<br />

configurations and MWF types. Depend<strong>in</strong>g on <strong>the</strong><br />

parameter selection, various results (positive and negative)<br />

have been reported which is summarized <strong>in</strong><br />

Table 1. In all cases, <strong>the</strong> range of operation <strong>in</strong> NDM<br />

has a tremendous effect on <strong>the</strong> application and offers<br />

a much smaller process w<strong>in</strong>dow than traditional flood<br />

cool<strong>in</strong>g.<br />

Second, <strong>model</strong>s to predict mach<strong>in</strong><strong>in</strong>g <strong>performance</strong><br />

through parameter selection do not exist for NDM. The<br />

wide spread use and application of NDM has been slowed<br />

ma<strong>in</strong>ly due to three unanswered delivery parameter<br />

questions:<br />

1. How much MWF should be applied?<br />

2. Where and how do I apply <strong>the</strong> MWF?<br />

3. What type of MWF should I apply?<br />

Thus, <strong>the</strong>re is a need to develop a scientific approach <strong>in</strong><br />

select<strong>in</strong>g <strong>the</strong> optimal delivery parameters and cutt<strong>in</strong>g<br />

conditions for mach<strong>in</strong><strong>in</strong>g <strong>performance</strong> that considers both<br />

<strong>the</strong> cutt<strong>in</strong>g mechanics and <strong>the</strong> mist spray delivery. It is <strong>the</strong><br />

goal of this work to develop, validate and apply a<br />

<strong>performance</strong>-based <strong>model</strong> <strong>in</strong> NDM that answers those<br />

delivery questions. The use of a <strong>model</strong> will also serve to<br />

Table 1<br />

Literature review <strong>in</strong> NDM detail<strong>in</strong>g vary<strong>in</strong>g results associated with operat<strong>in</strong>g range<br />

Area Description of previous work Process range Comment<br />

Health and<br />

safety<br />

Br<strong>in</strong>ksmeier and Brockhoff [10] observed <strong>in</strong> oscillat<strong>in</strong>g<br />

gr<strong>in</strong>d<strong>in</strong>g that NDM should only be used with an air suction<br />

due to aerosol concentration levels.<br />

The work of Gressel [15] re<strong>in</strong>forced earlier f<strong>in</strong>d<strong>in</strong>gs<br />

quantitatively by complet<strong>in</strong>g experiments while turn<strong>in</strong>g and<br />

drill<strong>in</strong>g steel. His work demonstrated that concentrations<br />

exceeded NOISH REL (recommended exposure limits)<br />

limits.<br />

Marksberry [13] <strong>in</strong>dicated that air pressure, MWF<br />

volumetric flow rates and MWF type have a profound<br />

effect on concentrations. MWF volumetric flow rates<br />

should stay below 200 ml/h with pressures below 0.034 MPa<br />

(5 psi) to prevent total mass particulate from reach<strong>in</strong>g <strong>the</strong><br />

5 mg/m 3 REL when us<strong>in</strong>g oil-based MWFs. Water soluble<br />

MWFs can employ a larger process w<strong>in</strong>dow at double to<br />

triple <strong>the</strong> MWF rates and pressures.<br />

Pressure: 0.6 MPa (87 psi),<br />

MWF rate: 30 ml/h<br />

Pressure: not cited, MWF<br />

rate: 660 ml/h<br />

Pressure: 0.034 MPa (5 psi),<br />

MWF rate: 200 ml/h<br />

Need air suction due to aerosol<br />

concentration levels when us<strong>in</strong>g NDM.<br />

NDM exceeded NOISH REL limits.<br />

NDM is safe if pressures are low and<br />

MWF rates are low.<br />

Process<br />

Heisel et al. [11] stated that nozzle location <strong>in</strong> NDM has less<br />

importance on <strong>tool</strong>-<strong>life</strong>/<strong>tool</strong>-<strong>wear</strong> when mach<strong>in</strong><strong>in</strong>g steel.<br />

Wakabayashi et al. [12] concluded that NDM provided<br />

almost equivalent advantages compared to flood cool<strong>in</strong>g<br />

when mach<strong>in</strong><strong>in</strong>g steel us<strong>in</strong>g dual nozzles at <strong>the</strong> rank face<br />

and flank face.<br />

Marksberry [14] <strong>in</strong>dicated that nozzle position has a direct<br />

effect on <strong>the</strong> process and greatly depends on <strong>the</strong> chip flow<br />

path and <strong>the</strong> nozzle to cutt<strong>in</strong>g <strong>tool</strong> to workpiece<br />

relationship.<br />

Nozzle position: flank, rank,<br />

chip<br />

Nozzle position: flank, rank<br />

Nozzle position: flank, rank,<br />

chip<br />

Nozzle position is not a sensitive control<br />

variable.<br />

Multiple nozzle positions aimed at <strong>the</strong><br />

rank and flank face provide benefit.<br />

Obstructions from <strong>the</strong> workpiece, chip<br />

flow path and cutt<strong>in</strong>g geometry greatly<br />

affect NDM effectiveness.<br />

Mach<strong>in</strong><strong>in</strong>g<br />

<strong>performance</strong><br />

Scandiffio [16] observed that NDM did not offer any<br />

improvement over conventional flood cool<strong>in</strong>g when turn<strong>in</strong>g<br />

steel at high cutt<strong>in</strong>g speeds.<br />

Rahman et al. [17] demonstrated that NDM could provide<br />

comparable results to flood when mill<strong>in</strong>g at low feed rates,<br />

low speeds and depths of cut.<br />

Chen et al. [18] observed that <strong>tool</strong>-<strong>wear</strong> could be reduced<br />

over dry mach<strong>in</strong><strong>in</strong>g <strong>in</strong> turn<strong>in</strong>g sta<strong>in</strong>less.<br />

Marksberry [14] completed work that shows that <strong>tool</strong>-<strong>wear</strong>/<br />

<strong>tool</strong>-<strong>life</strong> can be greatly improved by <strong>the</strong> use of NDM up to<br />

four times compared to dry mach<strong>in</strong><strong>in</strong>g when mach<strong>in</strong><strong>in</strong>g<br />

steel when directed at <strong>the</strong> dom<strong>in</strong>ate <strong>tool</strong>-<strong>wear</strong> pattern.<br />

Process: turn<strong>in</strong>g steel<br />

Process: mill<strong>in</strong>g steel<br />

Process: turn<strong>in</strong>g sta<strong>in</strong>less<br />

Process: turn<strong>in</strong>g steel<br />

Tool-<strong>wear</strong> did not improved compared<br />

to flood cool<strong>in</strong>g us<strong>in</strong>g NDM.<br />

Tool-<strong>wear</strong> did not improved compared<br />

to flood cool<strong>in</strong>g us<strong>in</strong>g NDM.<br />

Tool-<strong>wear</strong> improved over dry mach<strong>in</strong><strong>in</strong>g<br />

us<strong>in</strong>g NDM.<br />

Tool-<strong>wear</strong> improvement greatly depends<br />

on <strong>the</strong> cutt<strong>in</strong>g geometry and mach<strong>in</strong><strong>in</strong>g<br />

application.


880<br />

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886<br />

reduce mach<strong>in</strong><strong>in</strong>g cost associated <strong>in</strong> NDM and lesson <strong>the</strong><br />

environmental impact of manufactur<strong>in</strong>g operations.<br />

2. Mach<strong>in</strong><strong>in</strong>g <strong>model</strong><strong>in</strong>g background<br />

Several attempts have been made to develop methods<br />

[19–23] for accurately predict<strong>in</strong>g <strong>the</strong> effects of mach<strong>in</strong><strong>in</strong>g<br />

operations over <strong>the</strong> past several decades. A common<br />

approach for assess<strong>in</strong>g mach<strong>in</strong><strong>in</strong>g <strong>performance</strong> is <strong>tool</strong><strong>wear</strong>/<strong>tool</strong>-<strong>life</strong>.<br />

Tool-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> is one of <strong>the</strong> most<br />

significant and necessary parameters required for process<br />

plann<strong>in</strong>g and total mach<strong>in</strong><strong>in</strong>g economics. A review of<br />

numerous <strong>the</strong>oretical and experimental techniques for<br />

predictive assessment of <strong>tool</strong>-<strong>wear</strong> and <strong>tool</strong>-<strong>life</strong> reveals<br />

that eight different types of <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> relationships<br />

are commonly be<strong>in</strong>g used for dry mach<strong>in</strong><strong>in</strong>g, as<br />

shown <strong>in</strong> Table 2.<br />

The trend <strong>in</strong> <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-wife <strong>model</strong><strong>in</strong>g has been to<br />

extend Taylor’s basic equation. This is ma<strong>in</strong>ly due to <strong>the</strong><br />

direct relationship between cutt<strong>in</strong>g speed and <strong>tool</strong>-<strong>wear</strong>/<br />

<strong>tool</strong>-<strong>life</strong>. This relationship holds true for all mach<strong>in</strong><strong>in</strong>g<br />

operations and is considered as a basis for more advanced<br />

<strong>model</strong>s. Currently, a <strong>model</strong> does not exist for NDM and no<br />

attempts have been made to extend dry mach<strong>in</strong><strong>in</strong>g <strong>tool</strong><strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

<strong>model</strong>s. It is <strong>the</strong> author’s goal <strong>in</strong> this work to<br />

select <strong>the</strong> most appropriate dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong> and<br />

extend it for NDM.<br />

The appropriate selection of a dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong> for<br />

extension to NDM depends on various factors. First, it is<br />

important that <strong>the</strong> <strong>model</strong> be robust to accommodate a wide<br />

range of mach<strong>in</strong><strong>in</strong>g parameters and applications. The<br />

<strong>model</strong> should be easily modified and practical for <strong>in</strong>dustry<br />

applications where complete mach<strong>in</strong><strong>in</strong>g data is not available.<br />

Lastly, <strong>the</strong> <strong>model</strong> should be accurate, repeatable and<br />

suited for <strong>in</strong>dustrial use where experimental constants can<br />

be generated without us<strong>in</strong>g sophisticated equipment; such<br />

as <strong>tool</strong> dynameters to calculate forces, high-speed film to<br />

understand complicated chip flow paths and electron<br />

microscopes to determ<strong>in</strong>e residual stress patterns and<br />

material structure.<br />

Table 2<br />

Summary of <strong>tool</strong>-<strong>wear</strong> and <strong>tool</strong>-<strong>life</strong> <strong>model</strong>s for dry mach<strong>in</strong><strong>in</strong>g<br />

No. Tool-<strong>life</strong>/<strong>tool</strong>-<strong>wear</strong> equation Determ<strong>in</strong>ation of<br />

constants<br />

1 Taylor’s basic equation: VT n ¼ C C and n are<br />

experimentally determ<strong>in</strong>ed<br />

and currently available<br />

from many reference<br />

sources<br />

2 Taylor’s reference-speed based equation: V=V R ¼ðT R =TÞ n n is experimentally<br />

determ<strong>in</strong>ed and currently<br />

available from many<br />

reference sources<br />

3 Taylor’s extended equation: T ¼ C 2 =ðV P f q d r Þ All constants (C 2 , p, q and<br />

r) are experimentally<br />

determ<strong>in</strong>ed<br />

4 Temperature-based <strong>tool</strong>-<strong>life</strong> equation: yT n ¼ C 3 n is found between 0.01<br />

and 0.1 and C 3 is<br />

experimentally determ<strong>in</strong>ed<br />

5 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g cutt<strong>in</strong>g conditions and<br />

<strong>tool</strong> geometry: C /½ðcot b tan aÞ n Fða; bÞ 1= 1<br />

Š<br />

6 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g cutt<strong>in</strong>g conditions and<br />

workpiece hardness: T ¼ C 4 V n f m d P r q s t i u j x<br />

7 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g cutt<strong>in</strong>g conditions and<br />

workpiece hardness: V ¼ C 5 =ðT m f y d x ðBHN=200Þ n Þ<br />

8 Taylor’s extended equation <strong>in</strong>clud<strong>in</strong>g chip groove effect factor<br />

and a <strong>tool</strong> coat<strong>in</strong>g effect factor:<br />

The <strong>in</strong>fluence of a and b<br />

can be <strong>the</strong>oretically<br />

determ<strong>in</strong>ed as partial<br />

contribution to Taylor’s<br />

constant C<br />

Requires excessive <strong>tool</strong><strong>life</strong><br />

test<strong>in</strong>g to determ<strong>in</strong>e all<br />

constants (C 4 , n, m, p, q, t,<br />

u and x)<br />

All constants (C 5 , m, y, x<br />

and n) are experimentally<br />

determ<strong>in</strong>ed<br />

Comment<br />

Most widely used<br />

equation; however, C and<br />

n apply to a particular<br />

<strong>tool</strong>–workpiece<br />

comb<strong>in</strong>ations<br />

n applies only to<br />

particular <strong>tool</strong>–workpiece<br />

comb<strong>in</strong>ations<br />

Gives better accuracy<br />

than Taylor’s basic<br />

equation, but more <strong>tool</strong><strong>life</strong><br />

tests are required<br />

Although <strong>the</strong> equation is<br />

set only on an empirical<br />

basis, it is not convenient<br />

for practical use <strong>in</strong> <strong>the</strong><br />

shop floor environment<br />

A complicated<br />

relationship between <strong>tool</strong><strong>life</strong><br />

and rake/clearance<br />

angles<br />

It is claimed that <strong>the</strong> data<br />

for sett<strong>in</strong>g up <strong>the</strong><br />

equation are generated<br />

from both laboratory and<br />

<strong>in</strong>dustrial sources<br />

It is claimed to be a good<br />

approximation for <strong>tool</strong><strong>life</strong><br />

ranges of 10–60 m<strong>in</strong><br />

Ref.<br />

Mills and Redford<br />

[24], Schey [25]<br />

Mills and Redford<br />

[24]<br />

Niebel et al. [26],<br />

Hoffman [27]<br />

Qu<strong>in</strong>to [28], Oxley<br />

[29]<br />

Lau et al. [22]<br />

Venkatesh [21]<br />

Wang and Wysk<br />

[30], Hoffman [27]<br />

T ¼ T R W g ðV R =VÞ W cð1=nÞ ; where W c ¼ n=n c and W g ¼ km=f n 1<br />

d n 2<br />

Constants (k, n 1 , n 2 and n c ) are experimentally determ<strong>in</strong>ed; m is <strong>the</strong> mach<strong>in</strong><strong>in</strong>g<br />

operation effect factor (with m ¼ 1 considered for turn<strong>in</strong>g)Extends <strong>the</strong> Taylor-type equation to <strong>in</strong>clude two new factors: <strong>tool</strong> coat<strong>in</strong>g effect factor and<br />

chip-groove effect factor. Equation also <strong>in</strong>cludes <strong>the</strong> effects of feed, depth of cut and cutt<strong>in</strong>g speed.Jawahir et al. [31], Li et al. [32]


ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886 881<br />

3. The new <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> relationship for NDM<br />

A recent advance <strong>in</strong> <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> <strong>model</strong><strong>in</strong>g for<br />

dry mach<strong>in</strong><strong>in</strong>g is <strong>the</strong> work of Jawahir et al. [31] and Li<br />

et al. [32]:<br />

<br />

km V ð1=nc Þ<br />

R<br />

T ¼ T R<br />

f n 1<br />

d n , (1)<br />

2<br />

V<br />

where T is <strong>tool</strong>-<strong>life</strong> or <strong>tool</strong>-<strong>wear</strong>, T R is <strong>the</strong> reference<br />

<strong>tool</strong>-<strong>life</strong> or <strong>tool</strong>-<strong>wear</strong> for 1 m<strong>in</strong>, V is <strong>the</strong> cutt<strong>in</strong>g speed,<br />

V R is <strong>the</strong> reference cutt<strong>in</strong>g speed for 1 m<strong>in</strong> of <strong>tool</strong>-<strong>life</strong><br />

or <strong>tool</strong>-<strong>wear</strong>, n c is <strong>the</strong> coat<strong>in</strong>g effect factor and W g is<br />

<strong>the</strong> chip-groove effect factor, represented as km=f n 1<br />

d n 2<br />

. W g<br />

is a function of feed (f), depth of cut (d), <strong>tool</strong> nose radius,<br />

chip breaker configurations and <strong>the</strong> type of mach<strong>in</strong><strong>in</strong>g<br />

operation (m) with m ¼ 1 for turn<strong>in</strong>g. n 1 , n 2 and k are<br />

empirical constants. Outputs and constants of this <strong>model</strong><br />

can be easily generated us<strong>in</strong>g a series of mach<strong>in</strong><strong>in</strong>g trials<br />

(o10) while vary<strong>in</strong>g depth of cut, feed, and cutt<strong>in</strong>g speed<br />

while achiev<strong>in</strong>g accuracies on <strong>the</strong> order of 90%.<br />

Modifications to <strong>the</strong> <strong>tool</strong>-coat<strong>in</strong>g effect factor, n c , is<br />

possible by <strong>in</strong>clud<strong>in</strong>g NDM parameters to <strong>the</strong> series of<br />

trial experiments.<br />

Extension to <strong>the</strong> dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong> is shown<br />

below:<br />

<br />

km V ð1=nc Þð1=N NDM Þ<br />

R<br />

T ¼ T R<br />

f n 1<br />

d n , (2)<br />

2<br />

V<br />

where N NDM is <strong>the</strong> NDM effect factor and is expressed as<br />

N NDM ¼ n mist<br />

n c<br />

, (3)<br />

where n mist is <strong>the</strong> modified coat<strong>in</strong>g factor for NDM mist<br />

spray. n mist can be def<strong>in</strong>ed as <strong>the</strong> follow<strong>in</strong>g:<br />

log V 1 log V 2<br />

n mist ¼<br />

, (4)<br />

logðG F;W;N;MZX ;M ZY<br />

Þ log T 1<br />

where G F;W;N;MZX ;N ZY<br />

is <strong>the</strong> new modified <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

value <strong>in</strong> NDM, empirically derived while vary<strong>in</strong>g MWF type,<br />

MWF volumetric flow rate and nozzle(s) position. Subscripts<br />

of <strong>the</strong> G function: F, W, N, M ZX and M ZY each represent a<br />

modified <strong>tool</strong>-<strong>wear</strong> value that is empirically derived. Table 3<br />

expla<strong>in</strong>s each mapp<strong>in</strong>g function and how it is derived.<br />

3.1. Derivations of <strong>the</strong> M ZX and M ZY effect factors<br />

M ZX and M ZY effect factors can be solved by l<strong>in</strong>earization<br />

of actual <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> results as shown <strong>in</strong> Fig. 1.<br />

MWF rate (denoted X rate <strong>in</strong> units ml/h along <strong>the</strong> X-axis)<br />

represents <strong>the</strong> actual volumetric flow rate of <strong>the</strong> MWF. The<br />

<strong>performance</strong> and l<strong>in</strong>kage of MWF type can be accomplished<br />

by us<strong>in</strong>g a standard MWF evaluation method. In<br />

this work, a standard tapp<strong>in</strong>g torque test method was used<br />

(denoted as Y typ <strong>in</strong> units N cm along <strong>the</strong> Y-axis). Variations<br />

of <strong>the</strong> standard method were also developed to characterize<br />

cool<strong>in</strong>g and lubrication behaviors of MWFs.<br />

Hav<strong>in</strong>g obta<strong>in</strong>ed M ZX and M ZY , G F;W;N;MZX ;M ZY<br />

can be<br />

solved us<strong>in</strong>g Eq. (5):<br />

G F;W;N;MZX ;M ZY<br />

¼ T NDM ½ðM ZX ÞðX rate b m<strong>in</strong> Þ<br />

þðY type a m<strong>in</strong> ÞðM ZY ÞþZ 1 Š, ð5Þ<br />

where G F;W;N;MZX ;M ZY<br />

40, T NDM is <strong>the</strong> predom<strong>in</strong>ate <strong>tool</strong><strong>life</strong><br />

of <strong>the</strong> cutt<strong>in</strong>g <strong>tool</strong>, Z 1 is <strong>the</strong> <strong>in</strong>tercept of <strong>the</strong> effect<br />

Table 3<br />

G function explanation<br />

Mapp<strong>in</strong>g<br />

function<br />

(subscript)<br />

Def<strong>in</strong>ition Comment Categories Method to calculate<br />

F Ideal MWF function MWFs are often classified as<br />

‘‘coolants’’ or ‘‘lubricants’’<br />

W<br />

Dom<strong>in</strong>ant <strong>tool</strong>-<strong>wear</strong><br />

pattern<br />

Tool-<strong>wear</strong> pattern responsible for<br />

catastrophic failure or end of <strong>life</strong><br />

N Nozzle(s) position MWF source direction and<br />

distance to cutt<strong>in</strong>g zone<br />

M ZX MWF rate effect factor L<strong>in</strong>earization of <strong>tool</strong>-<strong>wear</strong> and<br />

MWF vol. flow rate data<br />

M ZY MWF type effect factor L<strong>in</strong>earization of <strong>tool</strong>-<strong>wear</strong> and<br />

tapp<strong>in</strong>g torque data from MWF<br />

G C , cool<strong>in</strong>g (water<br />

miscible); G L , lubrication<br />

(non-water miscible)<br />

W BL , length of groove<br />

backwall <strong>wear</strong><br />

S<strong>in</strong>gle nozzle: R, rake<br />

face; F, flank face; C, chip<br />

M ZX<br />

M ZY<br />

Collect torque test data (N m) for<br />

each MWF us<strong>in</strong>g <strong>the</strong> ASTM D 5619<br />

tapp<strong>in</strong>g torque test standard with<br />

reamed holes at 5.48 and 5.55 mm.<br />

Measurements us<strong>in</strong>g new method for<br />

assess<strong>in</strong>g <strong>tool</strong>-<strong>wear</strong>.<br />

Vector representation of nozzle to<br />

cutt<strong>in</strong>g zone (<strong>in</strong>clude three<br />

dimensional angle and distance to<br />

cutt<strong>in</strong>g zone from nozzle tip)<br />

Calculate slope of axis:<br />

1. Tool-<strong>wear</strong><br />

2. MWF volume flow rate<br />

Calculate slope of axis:<br />

1. Tool-<strong>wear</strong><br />

2. Tapp<strong>in</strong>g torque results from<br />

MWF


882<br />

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886<br />

factors, b m<strong>in</strong> is <strong>the</strong> m<strong>in</strong>imum MWF volumetric flow rate<br />

used <strong>in</strong> <strong>the</strong> construction of <strong>the</strong> data set, and a m<strong>in</strong> is<br />

<strong>the</strong> m<strong>in</strong>imum MWF tapp<strong>in</strong>g test torque value used <strong>in</strong> <strong>the</strong><br />

construction of <strong>the</strong> data set.<br />

MWF Type<br />

Effect Factor<br />

(Slope) M ZY<br />

Y-Axis<br />

MWF<br />

Type (N-cm)<br />

Y type<br />

X-Axis<br />

MWF<br />

Rate (ml/hr)<br />

X rate<br />

4. Experiment set-up<br />

Experimental work was carried out on a CNC turn<strong>in</strong>g<br />

center <strong>in</strong> a high volume automated environment for <strong>the</strong><br />

mach<strong>in</strong><strong>in</strong>g of steel wheel rims. The approach for assess<strong>in</strong>g<br />

<strong>tool</strong>-<strong>wear</strong> is shown <strong>in</strong> Fig. 2 [31] and is a <strong>comprehensive</strong><br />

method for evaluat<strong>in</strong>g grooved <strong>tool</strong>s that goes beyond <strong>the</strong><br />

outdated ANSI/ASME B 94.55 M and ISO 3685 standard.<br />

The predom<strong>in</strong>ant <strong>tool</strong>-<strong>wear</strong> pattern was determ<strong>in</strong>ed to<br />

be W BL (length of groove backwall <strong>wear</strong>). An example of<br />

experimental set-up can be seen <strong>in</strong> Fig. 3, detail<strong>in</strong>g <strong>the</strong><br />

nozzle to workpiece to cutt<strong>in</strong>g <strong>tool</strong> orientation.<br />

A standard CNMG 432 ESA AC2000 <strong>tool</strong> holder was<br />

used <strong>in</strong> <strong>the</strong> experimental work. The workpiece material was<br />

HSLA (high strength low alloy) steel; SAE 070 Y<br />

equivalent. Fixed mach<strong>in</strong><strong>in</strong>g and mist spray delivery<br />

parameters can be seen <strong>in</strong> Table 4.<br />

4.1. Experimental procedure<br />

Z 1<br />

Z-Axis<br />

Tool-Wear<br />

W BL or W BW<br />

MWF Rate<br />

Effect Factor<br />

(Slope) M ZX<br />

Fig. 1. L<strong>in</strong>earization of MWF rate and type effect factors.<br />

Over 400 experiments have been conducted to establish<br />

<strong>the</strong> mach<strong>in</strong><strong>in</strong>g constants and to validate <strong>the</strong> new <strong>tool</strong>-<strong>wear</strong>/<br />

<strong>tool</strong>-<strong>life</strong> predictive <strong>model</strong> for NDM. The factors under<br />

study can be seen <strong>in</strong> Table 5 and were deliberately changed<br />

<strong>in</strong> a controlled manner. Because <strong>the</strong>re is skepticism about<br />

<strong>the</strong> delivery of NDM for optimal <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

<strong>performance</strong>, a complete balance factorial experimental<br />

pattern was performed.<br />

NW2<br />

N<br />

A<br />

NL2<br />

BL<br />

BW<br />

A- A<br />

5W<br />

A<br />

NW1<br />

SD<br />

KT<br />

VB<br />

NL1<br />

[1] VB = Flank Wear Land<br />

[2] BW = Width of Groove Backwall Wear<br />

[3] BL = Length of Groove Backwall Wear<br />

[4] KT = Crater Depth Wear<br />

[5] SW = Width of Secondary Face Wear<br />

[6] SD = Depth of Secondary Face Wear<br />

[7] n = Nose Wear<br />

[8] NL1 = Notch Wear Width on Ma<strong>in</strong> Cutt<strong>in</strong>g Edge<br />

[9] NW1 = Notch Wear Width on Ma<strong>in</strong> Cutt<strong>in</strong>g Edge<br />

[10] NL2 = Notch Wear Length on Secondary Cutt<strong>in</strong>g Edge<br />

[11] NW2 = Notch Wear Width on Secondary Cutt<strong>in</strong>g Edge<br />

Fig. 2. New approach to measur<strong>in</strong>g comb<strong>in</strong>ed <strong>tool</strong>-<strong>wear</strong> patterns for grooved <strong>tool</strong>s [31].


ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886 883<br />

-Y (j)<br />

4<br />

80˚<br />

+Y (j)<br />

1<br />

2<br />

3<br />

~50-mm<br />

5<br />

16°<br />

+X (i)<br />

+X (i)<br />

4<br />

1<br />

2<br />

5<br />

3<br />

-Z (k)<br />

[1] Removable Hardened Steel Nozzle Holder<br />

[2] Sta<strong>in</strong>less Steel Adjustable Nozzle<br />

[3] Tool Holder<br />

[4] Indexable Cutt<strong>in</strong>g Tool Insert<br />

[5] Tool Holder Carousel (4 qty)<br />

Nozzle to Cutt<strong>in</strong>g Tool Relationship (vector notation)<br />

i, j, k (+X, +Y, +Z) Vectors (+/- 2-mm)<br />

i. = -48-mm j. = -8-mm k. = -14-mm<br />

Fig. 3. Nozzle to cutt<strong>in</strong>g <strong>tool</strong> to workpiece orientation.<br />

Table 4<br />

Fixed mach<strong>in</strong><strong>in</strong>g and mist spray delivery parameters<br />

Table 5<br />

Design of experiments<br />

Parameter<br />

Description<br />

Control factors Levels Description of levels<br />

Cutt<strong>in</strong>g <strong>tool</strong><br />

material<br />

Cutt<strong>in</strong>g <strong>tool</strong><br />

geometry<br />

Cutt<strong>in</strong>g<br />

parameters<br />

Al 2 O 3 , alum<strong>in</strong>um oxide (supplier: Kennametal CNMG<br />

432 ESA AC2000)<br />

Type: grooved chip breaker<br />

Relief angle: 01 (side), 01 (end)<br />

Cutt<strong>in</strong>g edge angle: 51 (side), 51 (end)<br />

Tool nose radius: 0.8 mm<br />

Depth of cut: 3.2 mm<br />

Cutt<strong>in</strong>g speed: 4 m/s<br />

Feed: 0.3 mm/rev<br />

Metal removal rate: 11,520 mm 3 /s<br />

MWF type Straight oil, Cooluble 2210<br />

Soluble—water miscible, Cimperial 1011<br />

Semi-syn<strong>the</strong>tic—water miscible, TRIM SC235<br />

Syn<strong>the</strong>tic—water miscible, Hocut 763<br />

Atomization<br />

system<br />

Atomization type: co-axial air blast atomization<br />

Mach<strong>in</strong>e: MSK-G 100—MicroJet<br />

Air pressure: 5 psi<br />

Nozzle: sta<strong>in</strong>less steel<br />

The 95% confidence <strong>in</strong>terval was determ<strong>in</strong>ed at 0.85 and<br />

1.00-mm for <strong>the</strong> dom<strong>in</strong>ant <strong>tool</strong>-<strong>wear</strong> pattern (W BL ) for dry<br />

cutt<strong>in</strong>g us<strong>in</strong>g a sample size of 20.<br />

Modifications to <strong>the</strong> ASTM tapp<strong>in</strong>g torque procedure<br />

were carried out to dist<strong>in</strong>guish <strong>the</strong> primary MWF functions<br />

us<strong>in</strong>g two different reamed hole diameters 5.55 and<br />

5.48 mm to characterize cool<strong>in</strong>g and lubricity, respectively.<br />

Fig. 4 shows <strong>the</strong> ASTM tapp<strong>in</strong>g torque results for each of<br />

MWF volumetric flow rate (ml/h) 4 (1) 20<br />

(2) 40<br />

(3) 80<br />

(4) 160<br />

MWF type 4 (1) Straight oil<br />

(2) Soluble oil<br />

(3) Semi-syn<strong>the</strong>tic<br />

(4) Syn<strong>the</strong>tic oil<br />

Nozzle position 3 (1) Rake face<br />

(2) Flank face<br />

(3) Chip<br />

<strong>the</strong> MWFs used <strong>in</strong> this work while vary<strong>in</strong>g <strong>the</strong> reamed hole<br />

diameter. Test results were collected from a Microtap<br />

Megatap 2, Labtop II G8 mach<strong>in</strong>e us<strong>in</strong>g standard 1018<br />

steel test bar. A form<strong>in</strong>g tap type was used <strong>in</strong> <strong>the</strong> test at a<br />

size of M6 1 pitch. Tapp<strong>in</strong>g speed was held constant at<br />

1000 rpm or 18.8 m/m<strong>in</strong>.<br />

5. Results<br />

A <strong>comprehensive</strong> study has been conducted to<br />

validate <strong>the</strong> new <strong>tool</strong>-<strong>life</strong>/<strong>tool</strong>-<strong>wear</strong> relationship for<br />

NDM. A summary of <strong>the</strong> study is presented <strong>in</strong><br />

Tables 6–8 and Fig. 5.


884<br />

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886<br />

ASTMD 5619 Tapp<strong>in</strong>g Torque (N-cm)<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

Straight Oil<br />

5.55-mm Reamed Hole<br />

(Lubricity)<br />

5.48-mm Reamed Hole<br />

(Cool<strong>in</strong>g)<br />

Soluble Oil Semisyn<strong>the</strong>tic<br />

Oil<br />

Syn<strong>the</strong>tic Oil<br />

MWF Type<br />

Fig. 4. ASTM tapp<strong>in</strong>g torque results vary<strong>in</strong>g MWF type and reamed<br />

holes.<br />

6. Discussion<br />

Tool-<strong>life</strong>/<strong>tool</strong>-<strong>wear</strong> <strong>model</strong><strong>in</strong>g us<strong>in</strong>g mist spray applications<br />

can be successfully and more accurately predicted<br />

than us<strong>in</strong>g dry mach<strong>in</strong><strong>in</strong>g equations for NDM. Fig. 5<br />

shows that predicted <strong>tool</strong>-<strong>wear</strong> values mostly fall with<strong>in</strong><br />

actual 95% mach<strong>in</strong><strong>in</strong>g confidence <strong>in</strong>tervals for actual<br />

results while vary<strong>in</strong>g MWF type and rate. Table 6 <strong>in</strong>dicates<br />

that significant improvements <strong>in</strong> <strong>tool</strong>-<strong>wear</strong> (over 400%)<br />

can be achieved us<strong>in</strong>g NDM compared to dry mach<strong>in</strong><strong>in</strong>g.<br />

This study emphasis that <strong>model</strong>s developed for dry<br />

mach<strong>in</strong><strong>in</strong>g conditions cannot accurately predict NDM<br />

<strong>performance</strong>. Equation accuracy over a broad range of<br />

MWFs, nozzle position(s) and MWF volumetric flow rates<br />

was observed to be less than 10% on <strong>the</strong> average.<br />

L<strong>in</strong>earization of MWF rate and type effect factors<br />

simplified <strong>model</strong> calculations, yet provided to be fairly<br />

accurate for shop-floor use. Modification of <strong>the</strong> <strong>tool</strong><br />

coat<strong>in</strong>g effect factor allowed <strong>the</strong> Taylor equation to be<br />

extended without deteriorat<strong>in</strong>g chip groove or <strong>tool</strong> coat<strong>in</strong>g<br />

factor accuracy.<br />

Table 6<br />

MWF rate and type effect factors for MWFs primary used for lubrication<br />

Dom<strong>in</strong>ant <strong>tool</strong><br />

<strong>wear</strong> pattern<br />

Nozzle position<br />

MWF type<br />

MWF rate<br />

( 10 4 ) M ZX ( 10 4 ) M ZY<br />

effect factor effect factor<br />

W BL R (rake face) 25.6 2.7<br />

F (flank face) 1.3 6.2<br />

C (chip) 5.1 18.9<br />

Table 7<br />

MWF rate and type effect factors for MWFs primary used for cool<strong>in</strong>g<br />

Dom<strong>in</strong>ant <strong>tool</strong><br />

<strong>wear</strong> pattern<br />

Nozzle position<br />

MWF type<br />

MWF rate<br />

( 10 4 ), M ZX ( 10 4 ), M ZY<br />

effect factor effect factor<br />

W BL R (rake face) 23.4 10.4<br />

F (flank face) 6.6 7.5<br />

C (chip) 5.7 8.3<br />

7. Conclusion<br />

It has been observed that <strong>the</strong> selection of ‘‘mist spray’’<br />

delivery parameters represents an essential element <strong>in</strong><br />

m<strong>in</strong>imiz<strong>in</strong>g <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong>. The follow<strong>in</strong>g is a summary<br />

of f<strong>in</strong>d<strong>in</strong>gs from <strong>the</strong> present work:<br />

A new <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong> relationship has been developed<br />

for NDM with coated grooved <strong>tool</strong>s by extend<strong>in</strong>g<br />

<strong>the</strong> Taylor-type equation to <strong>in</strong>clude mist spray<br />

delivery parameters by modify<strong>in</strong>g <strong>the</strong> <strong>tool</strong> coat<strong>in</strong>g effect<br />

factor.<br />

More accurate and consistent estimates of <strong>tool</strong>-<strong>wear</strong> are<br />

made by us<strong>in</strong>g <strong>the</strong> new predictive <strong>model</strong> for NDM<br />

compared to dry mach<strong>in</strong><strong>in</strong>g <strong>model</strong>s.<br />

The G mapp<strong>in</strong>g function allows users of <strong>the</strong> empiricalbased<br />

<strong>model</strong> to customize <strong>the</strong> equation to consider a<br />

wide variety of mist-spray delivery parameters, <strong>in</strong>clud<strong>in</strong>g<br />

nozzle position, MWF volumetric flow rate and<br />

MWF type.<br />

Table 8<br />

MWF rate and type effect factors for MWFs primary used for cool<strong>in</strong>g<br />

MWF<br />

type<br />

New <strong>tool</strong> coat<strong>in</strong>g for mist<br />

factor (n mist )<br />

NDM total effect factor<br />

(NDM)<br />

Predicted <strong>tool</strong>-<strong>wear</strong><br />

W BL (mm)<br />

Actual test <strong>tool</strong>-<strong>wear</strong><br />

W BL (mm)<br />

Error<br />

%<br />

Improvement % over dry<br />

mach<strong>in</strong><strong>in</strong>g<br />

Straight 0.078 0.140 0.88 0.91 3.30 102<br />

Soluble 0.060 0.135 0.77 0.74 4.05 125<br />

Semisyn<strong>the</strong>tic<br />

0.055 0.126 0.55 0.59 6.78 157<br />

Syn<strong>the</strong>tic 0.065 0.138 0.22 0.23 4.35 402<br />

Dom<strong>in</strong>ant <strong>tool</strong>-<strong>wear</strong> pattern: W BL ; nozzle position: rake face; MWF volumetric flow rate: 180 ml/h; chip-groove effect factor (W g ): 0.89; <strong>tool</strong> coat<strong>in</strong>g effect<br />

factor (n c ): 0.56; empirical constants: k ¼ 0.32, m ¼ 1 for turn<strong>in</strong>g, n 1 ¼ 0.230, n 2 ¼ 0.642.


ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886 885<br />

1.00<br />

Predicted Tool-<strong>wear</strong><br />

Value us<strong>in</strong>g Dry Equation<br />

0.90<br />

Straight MWF<br />

Width of Groove Backwall Wear (mm)<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

Predicted Tool-<strong>wear</strong><br />

Value us<strong>in</strong>g<br />

New NDM Equation<br />

Tool-<strong>wear</strong> Repeatability<br />

Results Shown with<br />

95% confidence <strong>in</strong>terval<br />

Soluble MWF<br />

Semi-Syn. MWF<br />

Syn<strong>the</strong>tic MWF<br />

0.20<br />

0 50 100 150<br />

200<br />

MWF Volumetric Flow Rate (ml/hr)<br />

Fig. 5. Tool-<strong>wear</strong> vary<strong>in</strong>g MWF type for rake face nozzle position.<br />

Modification of <strong>the</strong> ASTM Tapp<strong>in</strong>g Torque Test can be<br />

used as a technique to characterize cool<strong>in</strong>g and lubricity<br />

behaviors <strong>in</strong> MWFs while alter<strong>in</strong>g <strong>the</strong> reamed hole size.<br />

The new approach <strong>in</strong> assess<strong>in</strong>g <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

rema<strong>in</strong>s useful for characteriz<strong>in</strong>g <strong>tool</strong>-<strong>wear</strong> patterns <strong>in</strong><br />

NDM that cannot be described by traditional standards.<br />

It is proposed to validate <strong>the</strong> new <strong>tool</strong>-<strong>wear</strong>/<strong>tool</strong>-<strong>life</strong><br />

equation for a wider range of conditions <strong>in</strong>clud<strong>in</strong>g<br />

atomization type, chip form/flow <strong>in</strong>terference with spray<br />

mist field, cutt<strong>in</strong>g geometry and work materials.<br />

Acknowledgments<br />

The author would like to thank <strong>the</strong> two anonymous<br />

reviewers for <strong>the</strong>ir comments. Very special thanks to Bob<br />

Gregory for suggestions for improv<strong>in</strong>g <strong>the</strong> draft. I would<br />

also like to thank <strong>the</strong> participants of <strong>the</strong> spr<strong>in</strong>g 2006,<br />

Susta<strong>in</strong>ability Sem<strong>in</strong>ar Series (coord<strong>in</strong>ated by Dr. I.S.<br />

Jawahir at <strong>the</strong> University of Kentucky, College of<br />

Mechanical Eng<strong>in</strong>eer<strong>in</strong>g) for <strong>the</strong>ir comments.<br />

References<br />

[1] T. Brockhoff, A. Walter, Fluid m<strong>in</strong>imization <strong>in</strong> cutt<strong>in</strong>g and gr<strong>in</strong>d<strong>in</strong>g,<br />

abrasives, Journal for <strong>the</strong> Abrasive Eng<strong>in</strong>eer<strong>in</strong>g Society, Butler, PA,<br />

October–November 1998.<br />

[2] E.S. Nachtman, S. Kalpakjian, Lubricants and Lubrication <strong>in</strong><br />

Metalwork<strong>in</strong>g Operations, Marcel Dekker, Inc., New York, NY,<br />

1985.<br />

[3] NIOSH, National Occupational Exposure Survey (NOES), 1981 B83,<br />

US Department of Health and Human Services, C<strong>in</strong>c<strong>in</strong>nati, OH,<br />

1983.<br />

[4] I.A. Greaves, E.A. Eisen, T.J. Smith, L.J. Pothier, D. Kriebel, S.R.<br />

Woskie, et al., Respiratory health of automobile workers exposed to<br />

metal-work<strong>in</strong>g fluid aerosols. II. Respiratory symptoms, F<strong>in</strong>al Draft,<br />

Harvard School of Public Health, Occupational Health Program,<br />

Boston, MA, 1995.<br />

[5] K. Kreiss, J. Cox-Ganser, Metalwork<strong>in</strong>g fluid-associated hypersensitivity<br />

pneumonitis: a workshop summary, American Journal of<br />

Industrial Medic<strong>in</strong>e 32 (4) (1997) 423–432.<br />

[6] N. Spr<strong>in</strong>ce, P. Thome, W. Popendorf, C. Zwerl<strong>in</strong>g, E. Miller,<br />

J. DeKoster, Respiratory symptoms and lung function abnormalities<br />

among mach<strong>in</strong>e operators <strong>in</strong> automobile production, American<br />

Journal of Industrial Medic<strong>in</strong>e 31 (4) (1997) 403–404.<br />

[7] J. Fuchs, B. Burg, J. Hengsder, U. Bolm-Audorff, F. Oesch, DNA<br />

damage <strong>in</strong> mononuclear blood cells of metal workers exposed to<br />

N-nitrosodiethanolam<strong>in</strong>e <strong>in</strong> syn<strong>the</strong>tic cutt<strong>in</strong>g fluids, Mutation<br />

Research 342 (2) (1995) 95–102.<br />

[8] M. Chan-Yeung, J.-L. Malo, Compendium I: table of <strong>the</strong> major<br />

<strong>in</strong>ducers of occupational asthma, <strong>in</strong>: I.L. Bernste<strong>in</strong>, M. Chan-Yeung,<br />

J.-L. Malo, D.I. Bernste<strong>in</strong> (Eds.), Asthma <strong>in</strong> <strong>the</strong> Workplace, Marcel<br />

Dekker, Inc., New York, NY, 1993, pp. 595–623.<br />

[9] C. Zugerman, Cutt<strong>in</strong>g fluids. Their use and effects on <strong>the</strong> sk<strong>in</strong>,<br />

Occupational Medic<strong>in</strong>e: State of <strong>the</strong> Art Review 1 (2) (1986) 245–258.<br />

[10] E. Br<strong>in</strong>ksmeier, T. Brockhoff, M<strong>in</strong>imum quantity lubrication <strong>in</strong><br />

gr<strong>in</strong>d<strong>in</strong>g, Society of Manufactur<strong>in</strong>g Eng<strong>in</strong>eers, Dearborn, MI,<br />

Technical Paper, 1997.<br />

[11] U. Heisel, M. Lutz, D. Spath, D. Wassmer, U. Walter, Application of<br />

m<strong>in</strong>imum quantity cool<strong>in</strong>g lubrication technology <strong>in</strong> cutt<strong>in</strong>g processes,<br />

Production Eng<strong>in</strong>eer<strong>in</strong>g, vol. II/1, Annals of <strong>the</strong> German<br />

Academic Society for Production Eng<strong>in</strong>eer<strong>in</strong>g, 1994.<br />

[12] T. Wakabayashi, H. Sato, I. Inasaki, Turn<strong>in</strong>g us<strong>in</strong>g extremely small<br />

amounts of cutt<strong>in</strong>g fluids, JSME International Journal, Series C 41<br />

(1) (1998) 43–148.


886<br />

ARTICLE IN PRESS<br />

P.W. Marksberry, I.S. Jawahir / International Journal of Mach<strong>in</strong>e Tools & Manufacture 48 (2008) 878–886<br />

[13] P.W. Marksberry, Micro-flood (MF) technology for susta<strong>in</strong>able<br />

manufactur<strong>in</strong>g operations that are coolant less and occupationally<br />

friendly, Journal of Cleaner Production 15 (10) (2007) 958–971<br />

Center for Manufactur<strong>in</strong>g, College of Eng<strong>in</strong>eer<strong>in</strong>g, University of<br />

Kentucky, Lex<strong>in</strong>gton.<br />

[14] P.W. Marksberry, An assessment of <strong>tool</strong>-<strong>life</strong> <strong>performance</strong> <strong>in</strong><br />

NDM (near dry mach<strong>in</strong><strong>in</strong>g) for susta<strong>in</strong>able manufactur<strong>in</strong>g of<br />

automotive steel components, Dissertation, Department of Mechanical<br />

Eng<strong>in</strong>eer<strong>in</strong>g, College of Eng<strong>in</strong>eer<strong>in</strong>g, University of Kentucky,<br />

2004.<br />

[15] M.G. Gressel, Comparison of mist generation of flood and mist<br />

application of metal work<strong>in</strong>g fluids dur<strong>in</strong>g metal cutt<strong>in</strong>g, Dissertation,<br />

Department of Mechanical, Industrial, and Nuclear Eng<strong>in</strong>eer<strong>in</strong>g,<br />

College of Eng<strong>in</strong>eer<strong>in</strong>g, University of C<strong>in</strong>c<strong>in</strong>nati, 2001.<br />

[16] I. Scandiffio, A contribution to dry cutt<strong>in</strong>g and to m<strong>in</strong>imum quantity<br />

of fluid <strong>in</strong> steel cutt<strong>in</strong>g, M.Sc. Dissertation <strong>in</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Camp<strong>in</strong>as, SP, Brazil, 2000 (<strong>in</strong> Portuguese).<br />

[17] A. Rahman, S. Kumar, M. Salam, Evaluation of m<strong>in</strong>imal quantities<br />

of lubrication <strong>in</strong> end mill<strong>in</strong>g, International Journal of Advance<br />

Manufactur<strong>in</strong>g Technologies, Department of Mechanical and Production<br />

Eng<strong>in</strong>eer<strong>in</strong>g, National University of S<strong>in</strong>gapore, S<strong>in</strong>gapore,<br />

Spr<strong>in</strong>ger, 2001.<br />

[18] D. Chen, Y. Suzuki, K. Sakai, A study of turn<strong>in</strong>g operation by<br />

oil–water comb<strong>in</strong>ed mist lubrication mach<strong>in</strong><strong>in</strong>g method, Key<br />

Eng<strong>in</strong>eer<strong>in</strong>g Materials 202-2 (03) (2001) 47–52.<br />

[19] B. Kramer, An analytical approach to <strong>tool</strong> <strong>wear</strong> prediction, Ph.D.<br />

Thesis, Department of Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, MIT, USA, 1979.<br />

[20] E. Usui, T. Shirakashi, T. Kitagawa, Analytical Prediction of Cutt<strong>in</strong>g<br />

Tool Wear, 1984, pp. 129–151.<br />

[21] V. Venkatesh, Computerized mach<strong>in</strong>ability data, <strong>in</strong>: Proceed<strong>in</strong>gs of<br />

Automach, 27–29 May 1986, Australia, Sydney, SME, Dearborn,<br />

MI, p. 159.<br />

[22] W. Lau, P. Venuv<strong>in</strong>od, C. Rubenste<strong>in</strong>, The relation between <strong>tool</strong><br />

geometry and <strong>the</strong> Taylor <strong>tool</strong>-<strong>life</strong> constant, International Journal of<br />

Mach<strong>in</strong>e Tool Design<strong>in</strong>g and Research 20 (1989) 29–44.<br />

[23] P. Dearnley, E. Trent, Wear mechanisms of coated carbide <strong>tool</strong>s,<br />

Metals Technology (1982) 60–75.<br />

[24] B. Mills, A. Redford, Manufactur<strong>in</strong>g of Eng<strong>in</strong>eer<strong>in</strong>g Materials,<br />

Applied Science, London, 1983, p. 20.<br />

[25] J. Schey, Introduction to Manufactur<strong>in</strong>g Processes, second ed.,<br />

McGraw-Hill, New York, 1987, p. 464.<br />

[26] B. Niebel, A. Draper, R. Wysk, Modern Manufactur<strong>in</strong>g Process<br />

Eng<strong>in</strong>eer<strong>in</strong>g, McGraw-Hill, New York, 1989, p. 487.<br />

[27] E. Hoffman, Fundamentals of Tool Design, second ed., SME,<br />

Dearborn, MI, 1984, p. 83.<br />

[28] D.T. Qu<strong>in</strong>to, Mechanical property and structure relationships <strong>in</strong> hard<br />

coated carbide <strong>tool</strong>s, Metals Technology 9 (1988) 60–75.<br />

[29] P. Oxley, The Mechanics of Mach<strong>in</strong><strong>in</strong>g—An Analytical Approach to<br />

Assess<strong>in</strong>g Mach<strong>in</strong>ability, Ellis Horwood, Chichester, 1989, p. 185.<br />

[30] H. Wang, R. Wysk, An expert system for mach<strong>in</strong><strong>in</strong>g data selection,<br />

Computers and Industrial Eng<strong>in</strong>eer<strong>in</strong>g 10 (2) (1986) 99.<br />

[31] I. Jawahir, P. Li, R. Gosh, E. Exner, A new parametric approach for<br />

<strong>the</strong> assessment of <strong>comprehensive</strong> <strong>tool</strong> <strong>wear</strong> <strong>in</strong> coated grooved <strong>tool</strong>s,<br />

Annals of <strong>the</strong> CIRP 44 (1995) 49–54.<br />

[32] P. Li, D. Ste<strong>in</strong>, R. Gosh, I. Jawahir, Engaged cutt<strong>in</strong>g edge effects on<br />

<strong>tool</strong>-<strong>wear</strong> and <strong>tool</strong>-<strong>life</strong> <strong>in</strong> turn<strong>in</strong>g operations us<strong>in</strong>g grooved cutt<strong>in</strong>g<br />

<strong>tool</strong>s, Manufactur<strong>in</strong>g Science and Technology, vol. 2, ASME 1997,<br />

pp. 277–284.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!