03.11.2014 Views

on a certain class of harmonic multivalent functions

on a certain class of harmonic multivalent functions

on a certain class of harmonic multivalent functions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. N<strong>on</strong>linear Sci. Appl. 4 (2011), no. 2, 170–179<br />

The Journal <strong>of</strong> N<strong>on</strong>linear Science and Applicati<strong>on</strong>s<br />

http://www.tjnsa.com<br />

ON A CERTAIN CLASS OF HARMONIC MULTIVALENT<br />

FUNCTIONS<br />

SAURABH PORWAL 1 , POONAM DIXIT 2,∗ AND VINOD KUMAR 3<br />

Dedicated to Themistocles M. Rassias <strong>on</strong> the occasi<strong>on</strong> <strong>of</strong> his sixtieth birthday<br />

Communicated by Cho<strong>on</strong>kil Park<br />

Abstract. The purpose <strong>of</strong> the present paper is to study some results involving<br />

coefficient c<strong>on</strong>diti<strong>on</strong>s, extreme points, distorti<strong>on</strong> bounds, c<strong>on</strong>voluti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s and c<strong>on</strong>vex combinati<strong>on</strong> for a new <strong>class</strong> <strong>of</strong> harm<strong>on</strong>ic <strong>multivalent</strong><br />

functi<strong>on</strong>s in the open unit disc. Relevant c<strong>on</strong>necti<strong>on</strong>s <strong>of</strong> the results presented<br />

here with various known results are briefly indicated.<br />

1. Introducti<strong>on</strong><br />

A c<strong>on</strong>tinuous complex-valued functi<strong>on</strong> f = u+iv defined in a simply c<strong>on</strong>nected<br />

domain D is said to be harm<strong>on</strong>ic in D if both u and v are real harm<strong>on</strong>ic in D. In<br />

any simply c<strong>on</strong>nected domain we can write f = h + g, where h and g are analytic<br />

in D. We call h the analytic part and g the co-analytic part <strong>of</strong> f.<br />

A necessary and sufficient c<strong>on</strong>diti<strong>on</strong> for f to be locally univalent and sensepreserving<br />

in D is that |h ′ (z)| > |g ′ (z)|, z ∈ D. See Clunie and Shiel-Small [7],<br />

(see also Ahuja [1] and Duren [11].)<br />

Let H denotes the <strong>class</strong> <strong>of</strong> functi<strong>on</strong>s f = h + g which are harm<strong>on</strong>ic univalent<br />

and sense-preserving in the open unit disk U = {z : |z| < 1} for which f (0) =<br />

f z (0) − 1 = 0. Then for f = h + g ∈ S H we may express the analytic functi<strong>on</strong>s<br />

h and g as<br />

∞∑<br />

∞∑<br />

h(z) = z + a k z k , g(z) = b k z k , |b 1 | < 1. (1.1)<br />

k=2<br />

Date: Received: August 27, 2010; Revised: November 29, 2010.<br />

∗ Corresp<strong>on</strong>ding author<br />

c○ 2011 N.A.G.<br />

2000 Mathematics Subject Classificati<strong>on</strong>. Primary 30C45, 30C50, 30C55.<br />

Key words and phrases. Harm<strong>on</strong>ic; Univalent; Multivalent functi<strong>on</strong>s; Fracti<strong>on</strong>al calculus.<br />

170<br />

k=1


HARMONIC MULTIVALENT FUNCTIONS 171<br />

Recently, Ahuja and Jahangiri [3] defined the <strong>class</strong><br />

H p (k) , (p, k ∈ N = {1, 2, 3....})<br />

c<strong>on</strong>sisting <strong>of</strong> all p-valent harm<strong>on</strong>ic functi<strong>on</strong>s f = h+g which are sense-preserving<br />

in U and h and g are <strong>of</strong> the form<br />

∞∑<br />

∞∑<br />

h(z) = z p + a k+p−1 z k+p−1 , g(z) = b k+p−1 z k+p−1 , |b p | < 1. (1.2)<br />

k=2<br />

Note that H and H p (k) reduce to the <strong>class</strong> S and S p (k) <strong>of</strong> analytic univalent<br />

and <strong>multivalent</strong> functi<strong>on</strong>s, respectively, if the co-analytic part <strong>of</strong> its members are<br />

zero. For these <strong>class</strong>es f (z) may be expressed as<br />

and<br />

f(z) = z +<br />

f(z) = z p +<br />

k=1<br />

∞∑<br />

a k z k , (1.3)<br />

k=2<br />

∞∑<br />

a k+p−1 z k+p−1 . (1.4)<br />

k=2<br />

The following definiti<strong>on</strong>s <strong>of</strong> fracti<strong>on</strong>al integrals and fracti<strong>on</strong>al derivatives are<br />

due to Owa [17] and Srivastava and Owa [23].<br />

Definiti<strong>on</strong> 1.1. The fracti<strong>on</strong>al integral <strong>of</strong> order λ is defined for a functi<strong>on</strong> f (z)<br />

by<br />

Dz −λ f(z) = 1 ∫ z<br />

f(ς)<br />

dς, (1.5)<br />

Γλ<br />

1−λ<br />

0 (z − ς)<br />

where λ > 0, f (z) is an analytic functi<strong>on</strong> in a simply c<strong>on</strong>nected regi<strong>on</strong> <strong>of</strong> the<br />

z-plane c<strong>on</strong>taining the origin and the multiplicity <strong>of</strong> (z − ς) λ−1 is removed by<br />

requiring log (z − ς) to be real when (z − ς) > 0.<br />

Definiti<strong>on</strong> 1.2. The fracti<strong>on</strong>al derivative <strong>of</strong> order λ is defined for a functi<strong>on</strong><br />

f (z) by<br />

D λ z f(z) =<br />

1 d<br />

Γ (1 − λ) dz<br />

∫ z<br />

0<br />

f(ς)<br />

dς, (1.6)<br />

λ<br />

(z − ς)<br />

where 0 ≤ λ < 1, f (z) is an analytic functi<strong>on</strong> in a simply c<strong>on</strong>nected regi<strong>on</strong> <strong>of</strong><br />

the z-plane c<strong>on</strong>taining the origin and the multiplicity <strong>of</strong> (z − ς) −λ is removed as<br />

in Definiti<strong>on</strong> 1.1 above.<br />

Definiti<strong>on</strong> 1.3. Under the hypothesis <strong>of</strong> Definiti<strong>on</strong> 1.2 the fracti<strong>on</strong>al derivative<br />

<strong>of</strong> order n + λ is defined for a functi<strong>on</strong> f (z) by<br />

where 0 ≤ λ < 1 and n ∈ N 0 = {0, 1, 2.....}.<br />

Dz<br />

n+λ f(z) = dn<br />

dz n Dλ z f(z), (1.7)


172 S. PORWAL, P. DIXIT, V. KUMAR<br />

Motivated with the definiti<strong>on</strong> <strong>of</strong> Salagean operator, we introduced an interesting<br />

operator (Dz λ,p ) n f(z) for functi<strong>on</strong> f(z) <strong>of</strong> the form (1.4)<br />

Thus we have<br />

(D λ,p<br />

z ) 0 f(z) =<br />

(Dz<br />

λ,p ) 1 f(z) = z p<br />

(D λ,p<br />

z<br />

(D λ,p<br />

z ) n f(z) = z p +<br />

= z p +<br />

Γ(p − λ + 1)<br />

z λ Dz λ f(z)<br />

Γ(p + 1)<br />

( Γ (p − λ + 1)<br />

Γ (p + 1)<br />

) n f(z) = (D λ,p )((D λ,p ) n−1 f(z)).<br />

z<br />

z<br />

) ′<br />

z λ Dz λ f (z)<br />

∞∑<br />

( ) n (k + p − 1)Γ (p − λ + 1) Γ (k + p)<br />

a k+p−1 z k+p−1<br />

pΓ (p + 1) Γ (k + p − λ)<br />

∞∑<br />

(ϕ (k, p, λ)) n a k+p−1 z k+p−1 (1.8)<br />

k=2<br />

k=2<br />

where and throughout this paper<br />

ϕ(k, p, λ) =<br />

kΓ(p − λ + 1)Γ(k + p)<br />

Γ(p + 1)Γ(k + p − λ)<br />

(k, p ∈ N). (1.9)<br />

Now, we define (Dz<br />

λ,p ) n f(z) for functi<strong>on</strong> <strong>of</strong> the form (1.2) as follows<br />

(D λ,p<br />

z<br />

) n f(z) = (D λ,p ) n h(z) + (−1) n (Dz λ,p ) n g(z). (1.10)<br />

z<br />

We note that the study <strong>of</strong> the above operator (Dz<br />

λ,p ) n is <strong>of</strong> special interest<br />

because it includes a variety <strong>of</strong> well-known operator. For example<br />

1. If we put n = 0, p = 1 then it reduces to Owa-Srivastava Operator.<br />

2. If we put λ = 0, then it reduces to well-known and widely used Salagean<br />

Operator [19].<br />

Now for<br />

m ∈ N, n ∈ N 0 , m > n, 0 ≤ γ < 1, β ≥ 0, 0 ≤ λ < 1, 0 ≤ t ≤ 1, α ∈ R<br />

and z ∈ U, suppose that H p (m, n; β; γ; t; λ) denote the family <strong>of</strong> harm<strong>on</strong>ic functi<strong>on</strong>s<br />

f <strong>of</strong> the form (1.2) such that<br />

}<br />

Re<br />

{(1 + βe iα ) (Dλ,p z ) m f(z)<br />

(Dz λ,p ) n f t (z) − βeiα ≥ γ, (1.11)<br />

where (Dz<br />

λ,p ) m f(z) is defined by (1.10) and f t (z) = (1 − t)z + t(h(z) + g(z)).<br />

Further, let the sub<strong>class</strong> H p (m, n; β; γ; t; λ) c<strong>on</strong>sisting <strong>of</strong> harm<strong>on</strong>ic functi<strong>on</strong>s<br />

f m = h + g m in H p (m, n; β; γ; t; λ) so that h and g m are <strong>of</strong> the form<br />

∞∑<br />

∑ ∞<br />

h(z) = z p − |a k+p−1 | z k+p−1 , g m (z) = (−1) m−1 |b k+p−1 | z k+p−1 , |b p | < 1.<br />

k=2<br />

(1.12)<br />

By specializing the parameters in sub<strong>class</strong> H p (m, n; β; γ; t; λ), we obtain the<br />

following known sub<strong>class</strong>es studied earlier by various authors.<br />

(1) H p (m, n; 0; γ; 1; 0) ≡ H p (m, n; γ) and H p (m, n; 0; γ; 1; 0) ≡ H p (m, n; γ)<br />

studied by Sker and Eker [20].<br />

k=1


HARMONIC MULTIVALENT FUNCTIONS 173<br />

(2) H p (n + 1, n; 1; γ; 1; 0) ≡ H p (n, γ) and H p (n + 1, n; 1; γ; 1; 0) ≡ H p (n, γ)<br />

studied by Dixit et al. [9].<br />

(3) H p (1, 0; 0; γ; 1; 0) ≡ H p (γ) and H p (1, 0; 0; γ; 1; 0) ≡ H p (γ) studied by<br />

Ahuja and Jahangiri [3].<br />

(4) H 1 (n + q, n, p, γ, 1, 0) ≡ R H (n, γ, p, q) studied by Dixit et al. [8].<br />

(5) H 1 (n+1, n, 1, γ, 1, 0) ≡ RS H (n, γ) and H 1 (n+1, n, 1, γ, 1, 0) ≡ RS H (n, γ)<br />

studied by Yalcin et al. [25].<br />

(6) H 1 (1, 0, 1, γ, 1, 0) ≡ G H (γ) and H 1 (1, 0, 1, γ, 1, 0) ≡ G H (γ) studied by<br />

Rosy et al. [18].<br />

(7) H 1 (2, 1, β, γ, 1, 0) ≡ HCV (β, γ) and H 1 (2, 1, β, γ, 1, 0) ≡ HCV (β, γ) studied<br />

by Kim et al. [15].<br />

(8) H 1 (1, 0, β, γ, t, 0) ≡ G H (β, γ, t) and H 1 (1, 0, β, γ, t, 0) ≡ G H (β, γ, t) studied<br />

by Ahuja et al. [2].<br />

(9) H 1 (m, n; 0; γ; 1; 0) ≡ S H (m, n; γ) and H 1 (m, n; 0; γ; 1; 0) ≡ S H (m, n; γ)<br />

studied by Yalcin [24].<br />

(10) H 1 (n + 1, n; 0; γ; 1; 0) ≡ H(n, γ) and H 1 (n + 1, n; 0; γ; 1; 0) ≡ H(n, γ)<br />

studied by Jahangiri et al. [13].<br />

(11) H 1 (1, 0; 0; γ; t; λ) ≡ SH ∗ (γ, t, λ) and H 1(1, 0; 0; γ; t; λ) ≡ SH ∗ (γ, t, λ) studied<br />

by Kumar et al. [16].<br />

(12) H 1 (1, 0; 0; γ; 1; λ) ≡ SH ∗ (γ, λ) and H 1(1, 0; 0; γ; 1; λ) ≡ T SH ∗ (γ, λ) studied<br />

by Dixit and Porwal [10].<br />

(13) H 1 (2, 1; 0; γ; 1; 0) ≡ HK(γ) and H 1 (1, 0; 0; γ; 1; 0) ≡ SH ∗ (γ) studied by<br />

Jahangiri [12].<br />

(14) H 1 (2, 1; 0; 0; 1; 0) ≡ HK(0) and H 1 (2, 1; 0; 0; 1; 0) ≡ SH ∗ (0) studied by Avci<br />

and Zlotkiewicz [6], Silverman [21] and Silverman and Silvia [22].<br />

(15) H 1 (1, 0, 0, γ, 0, 0) ≡ N H (γ) studied by Ahuja and Jahangiri [4].<br />

(16) S p (1, 0, k, 0, 1, 0) ≡ k − ST studied by Aouf [5], see also Kanas and Srivastava<br />

[14].<br />

In the present paper, results involving the coefficient c<strong>on</strong>diti<strong>on</strong>, extreme points,<br />

distorti<strong>on</strong> bounds, c<strong>on</strong>voluti<strong>on</strong> and c<strong>on</strong>vex combinati<strong>on</strong>s for the above <strong>class</strong>es<br />

H p (m, n, β, γ, tλ) and H p (m, n, β, γ, t, λ) <strong>of</strong> harm<strong>on</strong>ic <strong>multivalent</strong> functi<strong>on</strong>s have<br />

been investigated.<br />

2. Main results<br />

In our first theorem, we introduce a sufficient c<strong>on</strong>diti<strong>on</strong> for functi<strong>on</strong>s in H p (m, n, β, γ, t, λ).<br />

Theorem 2.1. Let f = h+g be such that h and g are given by (1.2). Furthermore,<br />

let<br />

∞∑<br />

{ψ(m, n, β, γ, t, λ)|a k+p−1 | + Θ(m, n, β, γ, t, λ)|b k+p−1 |} ≤ 2, (2.1)<br />

where<br />

k=1<br />

ψ(m, n, β, γ, t, λ) = (ϕ(k, p, λ))m (1 + β) − t(β + γ)(ϕ(k, p, λ)) n<br />

,<br />

1 − γ


174 S. PORWAL, P. DIXIT, V. KUMAR<br />

and<br />

Θ(m, n, β, γ, t, λ) = (ϕ(k, p, λ))m (1 + β) − (−1) m−n t(β + γ)(ϕ(k, p, λ)) n<br />

,<br />

1 − γ<br />

a p = 1, m ∈ N, n ∈ N 0 , m > n, 0 ≤ γ < 1, β ≥ 0, 0 ≤ λ < 1 and 0 ≤ t ≤ 1,<br />

then f is sense-preserving in U and f ∈ H p (m, n, β, γ, t, λ).<br />

Pro<strong>of</strong>. Using the fact that Re ω ≥ γ if and <strong>on</strong>ly if |1 − γ + ω| ≥ |1 + γ − ω|, it<br />

suffices to show that<br />

|(1 − γ)(D λ,p<br />

z<br />

−|(1 + γ)(D λ,p<br />

z<br />

Substituting for (D λ,p<br />

z<br />

∣ (2 − γ)zp +<br />

+(−1) n<br />

−<br />

∣ γzp +<br />

+(−1) n<br />

∞<br />

∑<br />

k=1<br />

) n f t (z) + (1 + βe iα )(D λ,p ) m f(z) − βe iα (D λ,p ) n f t (z)|<br />

z<br />

) n f t (z) − (1 + βe iα )(Dz<br />

λ,p ) m f(z) + βe iα (Dz λ,p ) n f t (z)|. (2.2)<br />

) m f(z) and (D λ,p ) n f t (z) in L.H.S. <strong>of</strong> (2.2), we have<br />

z<br />

∞∑<br />

[(1 − γ − βe iα )(ϕ(k, p, λ)) n t + (1 + βe iα )(ϕ(k, p, λ)) m ] a k+p−1 z k+p−1<br />

k=2<br />

[(1 − γ − βe iα )(ϕ(k, p, λ)) n t + (−1) m−n (1 + βe iα )(ϕ(k, p, λ)) m ]b k+p−1¯z k+p−1 ∣ ∣∣∣∣<br />

∞∑<br />

[(1 + γ + βe iα )(ϕ(k, p, λ)) n t − (1 + βe iα )(ϕ(k, p, λ)) m ] a k+p−1 z k+p−1<br />

k=2<br />

∑ ∞<br />

k=1<br />

≥ 2(1 − γ)|z| p − 2<br />

−<br />

−<br />

[(1 + γ + βe iα )(ϕ(k, p, λ)) n t − (−1) m−n (1 + βe iα )(ϕ(k, p, λ)) m ]b k+p−1¯z k+p−1 ∣ ∣∣∣∣<br />

∞∑<br />

[(ϕ(k, p, λ)) m (1 + β) − (γ + β)t(ϕ(k, p, λ)) n ]|a k+p−1 ||z| k+p−1<br />

k=2<br />

∞∑<br />

|[(1 − γ)(ϕ(k, p, λ)) n t + (−1) m−n (1 + βe iα )(ϕ(k, p, λ)) m − βe iα (ϕ(k, p, λ)) n t]||b k+p−1 ||z| k+p−1<br />

k=1<br />

∞∑<br />

|[(−1) m−n (1 + βe iα )(ϕ(k, p, λ)) m − (1 + γ + βe iα )(ϕ(k, p, λ)) n t]||b k+p−1 ||z| k+p−1<br />

k=1<br />

z<br />

⎧<br />

⎪⎨<br />

=<br />

⎪⎩<br />

∞∑<br />

2(1 − γ)|z| p − 2 [(1 + β)(ϕ(k, p, λ)) m − (γ + β)t(ϕ(k, p, λ)) n ]|a k+p−1 ||z| k+p−1<br />

−2<br />

k=2<br />

∞∑<br />

[(1 + β)(ϕ(k, p, λ)) m + (γ + β)t(ϕ(k, p, λ)) n ]|b k+p−1 ||z| k+p−1 , if m − n is odd<br />

k=2<br />

2(1 − γ)|z| p − 2<br />

−2<br />

∞∑<br />

[(1 + β)(ϕ(k, p, λ)) m − (γ + β)t(ϕ(k, p, λ)) n ]|a k+p−1 ||z| k+p−1<br />

k=2<br />

∞∑<br />

[(1 + β)(ϕ(k, p, λ)) m − (γ + β)t(ϕ(k, p, λ)) n ]|b k+p−1 ||z| k+p−1 , if m − n is odd<br />

k=1


HARMONIC MULTIVALENT FUNCTIONS 175<br />

∞∑<br />

= 2(1 − γ)|z|<br />

{1 p (ϕ(k, p, λ)) m (1 + β) − (γ + β)t(ϕ(k, p, λ)) n<br />

−<br />

|a k+p−1 ||z| k−1<br />

1 − γ<br />

k=2<br />

∞∑<br />

}<br />

(ϕ(k, p, λ)) m (1 + β) − (−1) m−n (γ + β)t(ϕ(k, p, λ)) n<br />

−<br />

|b k+p−1 ||z| k−1<br />

1 − γ<br />

k=1<br />

{ ∞∑ (ϕ(k, p, λ)) m (1 + β) − (γ + β)t(ϕ(k, p, λ)) n<br />

> 2(1 − γ) 1 −<br />

|a k+p−1 |<br />

1 − γ<br />

k=2<br />

∞∑<br />

}<br />

(ϕ(k, p, λ)) m (1 + β) − (−1) m−n (γ + β)t(ϕ(k, p, λ)) n<br />

−<br />

|b k+p−1 | .<br />

1 − γ<br />

k=1<br />

The last expressi<strong>on</strong> is n<strong>on</strong> negative by (2.1), and so the pro<strong>of</strong> is complete.<br />

In the following theorem, it is proved that the c<strong>on</strong>diti<strong>on</strong> (2.1) is also necessary<br />

for functi<strong>on</strong>s f m = h + g m , where h and g m are <strong>of</strong> the form (1.12).<br />

Theorem 2.2. Let f m = h+g m be given by (1.12). Then f m ∈ H p (m, n, β, γ, t, λ),<br />

if and <strong>on</strong>ly if<br />

∞∑<br />

{ψ (m, n, β, γ, t, λ) |a k+p−1 | + Θ (m, n, β, γ, t, λ) |b k+p−1 |} ≤ 2. (2.3)<br />

k=1<br />

Pro<strong>of</strong>. Since H p (m, n; β; γ; t; λ) ⊂ H p (m, n; β; γ; t; λ), we <strong>on</strong>ly need to prove the<br />

“<strong>on</strong>ly if” part <strong>of</strong> the theorem.<br />

To this end, for functi<strong>on</strong>s f m <strong>of</strong> the form (1.12), we notice that c<strong>on</strong>diti<strong>on</strong><br />

⎧<br />

⎨( ) ( )<br />

1 + βe<br />

iα<br />

D λ,p m<br />

f (z)<br />

is equivalent to<br />

⎧<br />

⎪⎨<br />

Re<br />

⎪⎩<br />

(1 − γ)z p −<br />

Re<br />

⎩<br />

(<br />

z<br />

D λ,p<br />

z<br />

) n<br />

ft (z)<br />

− βe iα ⎫<br />

⎬<br />

⎭ ≥ γ<br />

∞∑<br />

[(ϕ(k, p, λ)) m (1 + βe iα ) − (βe iα + γ)(ϕ(k, p, λ)) n t]<br />

k=2<br />

|a k+p−1 |z k+p−1 + (−1) 2m−1<br />

∞∑<br />

[(ϕ(k, p, λ)) m (1 + βe iα ) − (−1) m−n (βe iα + γ)(ϕ(k, p, λ)) n t]<br />

k=1<br />

z −<br />

⎫⎪<br />

|b k+p−1 |¯z k+p−1<br />

⎬<br />

≥ 0.<br />

∞∑<br />

(ϕ (k, p, λ)) n t |a k+p−1 | z k+p−1 + (−1) m+n−1<br />

∞∑<br />

(ϕ (k, p, λ)) n t |b k+p−1 | ¯z k+p−1 ⎪ ⎭<br />

k=2<br />

k=1<br />

□<br />

(2.4)


176 S. PORWAL, P. DIXIT, V. KUMAR<br />

The above required c<strong>on</strong>diti<strong>on</strong> (2.4) must hold for all values <strong>of</strong> z in U. Up<strong>on</strong><br />

choosing the values <strong>of</strong> z <strong>on</strong> the positive real axis where 0 ≤ z = r < 1, we must<br />

have<br />

⎧<br />

∞∑<br />

(1 − γ) − [(ϕ (k, p, λ)) m − γt (ϕ (k, p, λ)) n ] |a k+p−1 | r k−1<br />

⎪⎨<br />

Re<br />

⎪⎩<br />

1 −<br />

−<br />

k=2<br />

∞∑ [<br />

(ϕ (k, p, λ)) m − (−1) m−n γt (ϕ (k, p, λ)) n] |b k+p−1 | r k−1<br />

k=1<br />

∞∑<br />

∑ ∞<br />

(ϕ (k, p, λ)) n t |a k+p−1 | r k−1 − (−1) m−n (ϕ (k, p, λ)) n t |b k+p−1 | r k−1<br />

k=2<br />

k=1<br />

−e iα<br />

−<br />

∞<br />

∑<br />

k=2<br />

β ((ϕ (k, p, λ)) m − t (ϕ (k, p, λ)) n ) |a k+p−1 | r k−1<br />

∞∑<br />

β ( (ϕ (k, p, λ)) m − (−1) m−n t (ϕ (k, p, λ)) n) |b k+p−1 | r k−1<br />

k=1<br />

1 −<br />

⎫⎪ ⎬<br />

≥ 0.<br />

∞∑<br />

(ϕ (k, p, λ)) n t |a k+p−1 | r k−1 − (−1) m−n<br />

∞∑<br />

(ϕ (k, p, λ)) n t |b k+p−1 | r k−1 ⎪ ⎭<br />

k=2<br />

k=1<br />

Since Re (−e iα ) ≥ − |e iα | = −1, the above inequality reduces to<br />

(1 − γ) −<br />

−<br />

1 −<br />

∞∑<br />

[(ϕ (k, p, λ)) m (1 + β) − (β + γ) (ϕ (k, p, λ)) n t] |a k+p−1 | r k−1<br />

k=2<br />

∞∑ [<br />

(ϕ (k, p, λ)) m (1 + β) − (−1) m−n (β + γ) (ϕ (k, p, λ)) n t ] |b k+p−1 | r k−1<br />

k=1<br />

∞∑<br />

∞<br />

≥ 0.<br />

∑<br />

(ϕ (k, p, λ)) n t |a k+p−1 | r k−1 − (−1) m−n (ϕ (k, p, λ)) n t |b k+p−1 | r k−1<br />

k=2<br />

(2.5)<br />

If the c<strong>on</strong>diti<strong>on</strong> (2.3) does not hold, then the numerator in (2.5) is negative<br />

for r sufficiently close to 1. Hence there exists a z 0 = r 0 in (0,1) for which<br />

the quotient in (2.5) is negative. This c<strong>on</strong>tradicts the required c<strong>on</strong>diti<strong>on</strong> for<br />

f m ∈ H p (m, n; β; γ; t; λ) and so the pro<strong>of</strong> is complete.<br />

□<br />

We employ the techniques <strong>of</strong> Dixit et al. [9] in the pro<strong>of</strong>s <strong>of</strong> Theorems 2.3, 2.4,<br />

2.6 and 2.7.<br />

k=1


HARMONIC MULTIVALENT FUNCTIONS 177<br />

Theorem 2.3. Let f m be given by (1.12). Then f m ∈ H p (m, n; β; γ; t; λ), if and<br />

<strong>on</strong>ly if<br />

∞∑ (<br />

f m (z) = xk+p−1 h k+p−1 (z) + y k+p−1 g mk+p−1 (z) ) , where h p (z) = z p ,<br />

k=1<br />

h k+p−1 (z) = z p 1<br />

−<br />

ψ (m, n, β, γ, t, λ) zk+p−1 , (k = 2, 3, 4....) , g mk+p−1 (z) = z p + (−1) m−1<br />

1<br />

Θ (m, n, β, γ, t, λ) ¯zk+p−1 , (k = 1, 2, 3....) , x k+p−1 ≥ 0,<br />

∞∑<br />

y k+p−1 ≥ 0, (x k+p−1 + y k+p−1 ) = 1.<br />

k=1<br />

In particular, the extreme points <strong>of</strong> H p (m, n; β; γ; t; λ) are {h k+p−1 } and {g mk+p−1 }.<br />

Theorem 2.4. Let f m ∈ H p (m, n; β; γ; t; λ). Then for |z| = r < 1 we have<br />

|f m (z)| ≤ (1 + |b p |)r p 1<br />

+ ( )<br />

(p+1) 2 n<br />

⎛<br />

⎜<br />

⎝<br />

and<br />

⎛<br />

⎜<br />

⎝<br />

(<br />

(p+1) 2<br />

p(p−λ+1)<br />

(<br />

(p+1) 2<br />

p(p−λ+1)<br />

1 − γ<br />

) m−n<br />

−<br />

(1 + β) − t(γ + β)<br />

p(p−λ+1)<br />

(1 + β) − (−1) m−n t(γ + β) ⎟<br />

) m−n<br />

|b p | ⎠ r p+1<br />

(1 + β) − t(γ + β)<br />

(<br />

(p+1) 2<br />

p(p−λ+1)<br />

|f m (z)| ≥ (1 − |b p |) r p −<br />

1<br />

(<br />

(p+1) 2<br />

p(p−λ+1)<br />

1 − γ<br />

) m−n<br />

− (1 + β) − (−1)m−n t (γ + β) ⎟<br />

) m−n<br />

|b p | ⎠ r p+1 .<br />

(1 + β) − t (γ + β) (1 + β) − t(γ + β)<br />

(<br />

(p+1) 2<br />

p(p−λ+1)<br />

The following covering result follows from the left hand inequality in Theorem<br />

2.4.<br />

Corollary 2.5. Let f m <strong>of</strong> the form (1.12) be so that f m ∈ H p (m, n; β; γ; t; λ).<br />

Then<br />

{<br />

ω : |ω| < (ϕ (p, λ))m (1 + β) − (ϕ (p, λ)) n (γ + β) t − 1 + γ<br />

(ϕ (p, λ)) m (1 + β) − (ϕ (p, λ)) n (γ + β) t<br />

− ((ϕ (p, λ))m − 1) (1 + β) − t (γ + β) ( (ϕ (p, λ)) n − (−1) m−n)<br />

}<br />

(ϕ (p, λ)) m (1 + β) − (ϕ (p, λ)) n |b p | ⊂ f m (U) ,<br />

(γ + β) t<br />

{ }<br />

where φ(p, λ) = (p+1) 2<br />

.<br />

p(p−λ+1)<br />

For our next theorem, we need to define the c<strong>on</strong>voluti<strong>on</strong> <strong>of</strong> two harm<strong>on</strong>ic functi<strong>on</strong>s.<br />

For harm<strong>on</strong>ic functi<strong>on</strong>s <strong>of</strong> the form<br />

∞∑<br />

∑ ∞<br />

f m (z) = z p − |a k+p−1 | z k+p−1 + (−1) m−1 |b k+p−1 | ¯z k+p−1<br />

k=2<br />

k=1<br />

) n<br />

⎞<br />


178 S. PORWAL, P. DIXIT, V. KUMAR<br />

and<br />

F m (z) = z p −<br />

∞∑<br />

∑ ∞<br />

|A k+p−1 | z k+p−1 + (−1) m−1 |B k+p−1 | ¯z k+p−1<br />

k=2<br />

we define the c<strong>on</strong>voluti<strong>on</strong> <strong>of</strong> two harm<strong>on</strong>ic functi<strong>on</strong>s f m and F m as<br />

(f m ∗ F m ) (z) = f m (z) ∗ F m (z)<br />

∞∑<br />

= z p − |a k+p−1 A k+p−1 | z k+p−1 + (−1) m−1 (2.6)<br />

k=2<br />

k=1<br />

∞∑<br />

|b k+p−1 B k+p−1 | ¯z k+p−1 .<br />

k=1<br />

Using this definiti<strong>on</strong>, we show that the <strong>class</strong> H p (m, n; β; γ; t; λ) is closed under<br />

c<strong>on</strong>voluti<strong>on</strong>.<br />

Theorem 2.6. For 0 ≤ γ 1 ≤ γ 2 < 1 let f m ∈ H p (m, n; β; γ 1 ; t; λ) and F m ∈<br />

H p (m, n; β; γ 2 ; t; λ). Then f m ∗ F m ∈ H p (m, n; β; γ 2 ; t; λ) ⊆ H p (m, n; β; γ 1 ; t; λ).<br />

Next, we show that H p (m, n, β, γ, t, λ) is closed under c<strong>on</strong>vex combinati<strong>on</strong>s <strong>of</strong><br />

its members.<br />

Theorem 2.7. The <strong>class</strong> H p (m, n; β; γ; t; λ) is closed under c<strong>on</strong>vex combinati<strong>on</strong>.<br />

Acknowledgement<br />

The authors are thankful to referee for his valuable comments and suggesti<strong>on</strong>s.<br />

References<br />

[1] O.P. Ahuja, Planar harm<strong>on</strong>ic univalent and related mappings, J. Inequal. Pure Appl.<br />

Math., 6 (4) (2005), Art.122, 1-18.<br />

[2] O.P. Ahuja, R. Aghalary and S.B. Joshi, Harm<strong>on</strong>ic univalent functi<strong>on</strong>s associated with<br />

k-Uniformly starlike functi<strong>on</strong>s, J. Math. Res. Sci., 9 (1) (2005), 9-17.<br />

[3] O.P. Ahuja and J.M. Jahangiri, Multivalent harm<strong>on</strong>ic starlike functi<strong>on</strong>s, Ann. Univ. Marie<br />

Curie-Sklodowska Sect. A, LV1 (2001), 1-13.<br />

[4] O.P. Ahuja and J.M. Jahangiri, Noshiro-type harm<strong>on</strong>ic univalent functi<strong>on</strong>s, Sci. Math.<br />

Jap<strong>on</strong>., 6 (2) (2002), 253-259.<br />

[5] M.K. Aouf, A generalizati<strong>on</strong> <strong>of</strong> <strong>multivalent</strong> functi<strong>on</strong>s with negative coefficients II, Bull.<br />

Korean. Math. Soc., 25 (2) (1998), 221-232.<br />

[6] Y. Avci and E. Zlotkiewicz, On harm<strong>on</strong>ic univalent mappings, Ann. Univ. Mariae Curie-<br />

Sklodowska Sect. A 44 (1990), 1-7.<br />

[7] J. Clunie and T. Sheil-Small, Harm<strong>on</strong>ic univalent functi<strong>on</strong>s, Ann. Acad. Sci. Fenn. Ser.AI<br />

Math 9 (1984), 3-25.<br />

[8] K. K. Dixit, A. L. Pathak, S. Porwal and R. Agarwal, A new sub<strong>class</strong> <strong>of</strong> harm<strong>on</strong>ic<br />

univalent functi<strong>on</strong>s defined by Salagean operator, Int. J. C<strong>on</strong>temp. Math. Sci., 4 (8)<br />

(2009), 371-383.<br />

[9] K.K. Dixit, A.L. Pathak and R. Tripathi, A new sub<strong>class</strong> <strong>of</strong> Goodman-Rønning type<br />

harm<strong>on</strong>ic <strong>multivalent</strong> functi<strong>on</strong>s, Proc. Int. Sym. GFTA Malaysia, (2008), 79-94.<br />

[10] K.K. Dixit and Saurabh Porwal, An applicati<strong>on</strong> <strong>of</strong> fracti<strong>on</strong>al calculus to harm<strong>on</strong>ic univalent<br />

functi<strong>on</strong>s, Bull. Cal. Math. Soc., 102(4), (2010), 343-352.<br />

[11] P. Duren, Harm<strong>on</strong>ic Mappings in the Plane, Cambridge Tracts in Mathematics, Vol.156,<br />

Cambridge University Press, Cambridge,2004, ISBN 0-521-64121-7.


HARMONIC MULTIVALENT FUNCTIONS 179<br />

[12] J.M. Jahangiri, Harm<strong>on</strong>ic functi<strong>on</strong>s starlike in the unit disc, J. Math. Anal. Appl. 235,<br />

(1999) 470-477.<br />

[13] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harm<strong>on</strong>ic univalent<br />

functi<strong>on</strong>s, Southwest J. Pure Appl. Math., 2 (2002), 77-82.<br />

[14] S. Kanas and H.M. Srivastava, Linear operators associated with k-Uniformly c<strong>on</strong>vex functi<strong>on</strong>s,<br />

Integral Transform Spec. Funct., 9 (2) (2000), 121-132.<br />

[15] Y.C. Kim, J.M. Jahangiri and J.H. Choi, Certain c<strong>on</strong>vex harm<strong>on</strong>ic functi<strong>on</strong>s, Int. J.<br />

Math. Math. Sci., 29 (8) (2002), 459-465.<br />

[16] V. Kumar, Saurabh Porwal and Po<strong>on</strong>am Dixit, A New Sub<strong>class</strong> <strong>of</strong> Harm<strong>on</strong>ic Univalent<br />

Functi<strong>on</strong>s Defined by Fracti<strong>on</strong>al Calculus, Ind. J. Math., 52(3), (2010), (Accepted).<br />

[17] S. Owa, On the distorti<strong>on</strong> theorem I, Kyungpook Math. J., 18 (1978), 53-59.<br />

[18] T. Rosy, B.A. Stephen, K.G. Subramanian and J.M. Jahangiri, Goodman-R<strong>on</strong>ning-type<br />

harm<strong>on</strong>ic univalent functi<strong>on</strong>s, Kyungpook Math. J., 41 (1) (2001), 45-54.<br />

[19] G.S. Salagean, Sub<strong>class</strong>es <strong>of</strong> univalent functi<strong>on</strong>s, Complex Analysis-Fifth Romanian Finish<br />

Seminar, Bucharest, 1 (1983), 362-372.<br />

[20] Bilal Seker and Sevtap Sümer Eker, On Salagean-type harm<strong>on</strong>ic <strong>multivalent</strong> functi<strong>on</strong>s,<br />

General Mathematics, 15(2-3) (2007), 52-63.<br />

[21] H. Silverman, Harm<strong>on</strong>ic univalent functi<strong>on</strong>s with negative coefficients, J. Math. Anal.<br />

Appl., 220 (1998), 283-289.<br />

[22] H. Silverman and E.M. Silvia, Sub<strong>class</strong>es <strong>of</strong> Harm<strong>on</strong>ic univalent functi<strong>on</strong>s, New Zealand<br />

J. Math., 28 (1999), 275-284.<br />

[23] H.M. Srivastava and S. Owa, An applicati<strong>on</strong> <strong>of</strong> the fracti<strong>on</strong>al derivative, Math. Jap<strong>on</strong>.,<br />

29 (1984), 383-389.<br />

[24] Sibel Yalcin, A new <strong>class</strong> <strong>of</strong> Salagean-type harm<strong>on</strong>ic univalent functi<strong>on</strong>s, Appl. Math.<br />

Lett., 18 (2005), 191-198.<br />

[25] S. Yalcin, M. Öztürk and M. Yamankaradeniz, On the sub<strong>class</strong> <strong>of</strong> Salagean-type harm<strong>on</strong>ic<br />

univalent functi<strong>on</strong>s, J. Inequl. Pure Appl. Math., 8 (2)(2007), Art. 54, 1-17.<br />

1 Department <strong>of</strong> Mathematics, Janta College, Bakewar, Etawah (U.P.) India –<br />

206124<br />

2,3 Department <strong>of</strong> Mathematics, Christ Church College, Kanpur (U.P.) India –<br />

208001<br />

E-mail address: saurabhjcb@rediffmail.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!