04.11.2014 Views

Nucleon Form Factors from Lattice QCD

Nucleon Form Factors from Lattice QCD

Nucleon Form Factors from Lattice QCD

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nucleon</strong> <strong>Form</strong> <strong>Factors</strong> <strong>from</strong> <strong>Lattice</strong> <strong>QCD</strong><br />

NUCLAT April 22, 2008<br />

James Zanotti<br />

University of Edinburgh<br />

<strong>QCD</strong>SF & UK<strong>QCD</strong> Collaborations


Acknowledgements<br />

<strong>QCD</strong>SF:<br />

M. Goeckeler<br />

Ph. Haegler<br />

R. Horsley<br />

Y. Nakamura<br />

D. Pleiter<br />

RBC/UK<strong>QCD</strong>:<br />

Y.Aoki<br />

T. Blum<br />

H.W. Lin<br />

M. Lin<br />

P. Rakow<br />

A. Schaefer<br />

G. Schierholz<br />

W. Schroers<br />

H. Stueben<br />

S. Ohta<br />

S. Sasaki<br />

R. Tweedie<br />

T. Yamazaki


Outline<br />

Electromagnetic <strong>Form</strong> <strong>Factors</strong><br />

Introduction & Motivation<br />

Experimental Status<br />

<strong>Lattice</strong> Techniques<br />

q 2 Scaling<br />

Static Quantities (Magnetic Moment, Charge Radii)<br />

Accessing Small q 2<br />

Twisted Boundary Conditions<br />

Conclusions and Outlook


Introduction to <strong>Form</strong> <strong>Factors</strong><br />

F(q 2 )<br />

q 2<br />

If a nucleon was a point-like object with no internal structure,<br />

a probe would simply measure its e.g. charge for all q 2


Introduction to <strong>Form</strong> <strong>Factors</strong><br />

F(q 2 )<br />

q1<br />

q 2<br />

If a nucleon was a point-like object with no internal structure,<br />

a probe would simply measure its e.g. charge for all q 2


Introduction to <strong>Form</strong> <strong>Factors</strong><br />

F(q 2 )<br />

q2<br />

q 2<br />

If a nucleon was a point-like object with no internal structure,<br />

a probe would simply measure its e.g. charge for all q 2


Introduction to <strong>Form</strong> <strong>Factors</strong><br />

F(q 2 )<br />

q3<br />

q 2<br />

If a nucleon was a point-like object with no internal structure,<br />

a probe would simply measure its e.g. charge for all q 2


Introduction to <strong>Form</strong> <strong>Factors</strong><br />

F(q 2 )<br />

q3<br />

q 2<br />

But it’s not


Introduction to <strong>Form</strong> <strong>Factors</strong><br />

Quark (charge) distribution in transverse plane<br />

∫<br />

q(b 2 ⊥)= d 2 q ⊥ e −i⃗ b ⊥·q ⊥<br />

F 1 (q 2 )<br />

Distance of (active) quark to the centre of<br />

momentum in a fast moving nucleon<br />

R ⊥<br />

b ⊥<br />

P z


Introduction to <strong>Form</strong> <strong>Factors</strong><br />

Quark (charge) distribution in transverse plane<br />

∫<br />

q(b 2 ⊥)= d 2 q ⊥ e −i⃗ b ⊥·q ⊥<br />

F 1 (q 2 )<br />

Distance of (active) quark to the centre of<br />

momentum in a fast moving nucleon<br />

Provide information on the size and<br />

internal charge densities<br />

R ⊥<br />

b ⊥<br />

P z


Electromagnetic <strong>Form</strong> <strong>Factors</strong><br />

〈p ′ , s ′ |J µ (⃗q)|p, s〉 = ū(p ′ , s ′ )<br />

( )<br />

dσ dσ<br />

dΩ = dΩ<br />

point<br />

Sachs <strong>Form</strong>s:<br />

G E (q 2 ) = F 1 (q 2 ) − q2<br />

(2m) 2 F 2(q 2 )<br />

G M (q 2 ) = F 1 (q 2 ) + F 2 (q 2 )<br />

Study<br />

q 2<br />

dependence<br />

|F (q 2 )| 2<br />

}<br />

NP<br />

Extract magnetic moments and charge radii<br />

[<br />

γ µ F 1 (q 2 ) + iσ µν q ]<br />

ν<br />

2m F 2(q 2 ) u(p, s)<br />

k<br />

q<br />

k’<br />

p<br />

p’


Scaling of <strong>Form</strong> <strong>Factors</strong><br />

Naive expectation <strong>from</strong> dimensional counting<br />

[Brodsky & Farrar, 1973]<br />

F 1 ∝ 1 Q 4 (dipole?)<br />

F (0)<br />

(1 + Q 2 /M 2 ) p<br />

F 2 ∝ 1 Q 6 (tripole?)<br />

for<br />

Q 2 > ζ p<strong>QCD</strong><br />

Q 2 F 2<br />

F 1<br />

∝ const<br />

G E<br />

G M<br />

∝ const


Scaling of <strong>Form</strong> <strong>Factors</strong><br />

Experimental (Rosenbluth) data is found to satisfy:<br />

G p E (Q2 ) =<br />

G p,n<br />

M (Q2 ) =<br />

with<br />

1<br />

(1 + Q 2 /M 2 D )2<br />

µ p,n<br />

(1 + Q 2 /M 2 D )2<br />

M D ≈ 0.71 GeV<br />

µ p = 2.79 µ N<br />

µ n = −1.91 µ N


Scaling of <strong>Form</strong> <strong>Factors</strong><br />

Reviews:<br />

Gao [nucl-ex/0301002]<br />

Arrington et al. [nucl-th/0611050]<br />

JLab results suggest<br />

QF 2<br />

Q 2 F 2p<br />

/F 1p<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

(a)<br />

SU(6) + CQ ff<br />

SU(6)<br />

CQM<br />

Soliton<br />

PFSA<br />

VMD<br />

F 1<br />

0.75<br />

(b)<br />

scaling<br />

QF 2p<br />

/F 1p<br />

0.5<br />

0.25<br />

Jones et al.<br />

Gayou et al.<br />

0<br />

0 1 2 3 4 5 6<br />

Q 2 (GeV 2 )


Scaling of <strong>Form</strong> <strong>Factors</strong><br />

JLab results show deviation <strong>from</strong> µ p G E /G M ∼ 1<br />

1<br />

µ p<br />

G Ep<br />

/ G Mp<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Jones et al.<br />

Gayou et al.<br />

Rosenbluth (Arrington)<br />

0 2 4 6<br />

Q 2 (GeV 2 )


G n E<br />

Arrington et al. [nucl-th/0611050]<br />

Galster: G<br />

n<br />

E (Q 2 )=<br />

a G τ<br />

(1 + b G τ) ·<br />

1<br />

(1 + Q 2 /M 2 ) 2 τ = Q 2 /4M 2 n


Baryon Three Point Functions<br />

〈<br />

Ω<br />

∣ ∣T (χ(⃗x2 , t) O(⃗x 1 , τ) χ(0)) ∣ ∣ Ω<br />

〉<br />

Three-point function at the baryon level<br />

G B OB(t, τ) = ∑ s,s ′ e −E p ′ (t−τ) e −E pτ 〈 Ω ∣ ∣ χ<br />

∣ ∣p ′ , s ′〉〈 p ′ , s ′∣ ∣ O<br />

∣ ∣p, s<br />

〉〈<br />

p, s<br />

∣ ∣χ<br />

∣ ∣Ω<br />

〉<br />

Eg. the matrix element of the electromagnetic current can be extracted<br />

<strong>from</strong> a ratio of 3pt/2pt and has the general form<br />

〈<br />

p ′ , s ′∣ ∣ j<br />

µ ∣ ∣ p, s<br />

〉<br />

= u(p ′ , s ′ )<br />

(F 1 (q 2 )γ µ + iF 2 (q 2 µν qν<br />

)σ<br />

2M<br />

)<br />

u(p, s)


<strong>Lattice</strong> Techniques<br />

¯N(0)<br />

N(t, ⃗p ′ )


<strong>Lattice</strong> Techniques<br />

τ<br />

¯N(0)<br />

N(t, ⃗p ′ )


<strong>Lattice</strong> Techniques<br />

O(τ, ⃗q)<br />

¯N(0)<br />

N(t, ⃗p ′ )


<strong>Lattice</strong> Techniques<br />

O(τ, ⃗q)<br />

¯N(0,⃗p)<br />

N(t, ⃗p ′ )


<strong>Lattice</strong> Techniques<br />

Advantages: Free choice of<br />

Momentum transfer<br />

Operator (vector/axial/tensor)<br />

Ideal for <strong>Form</strong> <strong>Factors</strong>, Structure Functions, GPDs<br />

Disadvantages: Separate 3-pt inversion for each<br />

Quark flavour<br />

Hadron eg. p, Σ, ∆, π, N → γ∆<br />

Polarisation<br />

Sink momentum


Ignore Disconnected Terms<br />

O(τ, ⃗q)<br />

¯N(0,⃗p)<br />

N(t, ⃗p ′ )


<strong>Form</strong> <strong>Factors</strong>:<br />

F (v)<br />

1<br />

β = 5.25, κ sea = 0.13575, V = 24 3 × 48<br />

Nf=2, Clover<br />

(m π ≈ 550 MeV)<br />

1.5<br />

1<br />

F 1<br />

(v)<br />

0.5<br />

0<br />

0 1 2 3 4<br />

Q 2 [GeV 2 ]


Recall: Scaling of <strong>Form</strong> <strong>Factors</strong><br />

Naive expectation <strong>from</strong> dimensional counting<br />

[Brodsky & Farrar, 1973] F (0)<br />

(1 + Q 2 /M 2 ) p<br />

F 1 ∝ 1 Q 4 (dipole?)<br />

F 2 ∝ 1 Q 6 (tripole?)


Scaling of<br />

F (v)<br />

2<br />

β = 5.25, κ sea = 0.13575, V = 24 3 × 48<br />

(m π ≈ 550 MeV)<br />

3<br />

dipole<br />

tripole<br />

2<br />

F 2<br />

(v)<br />

1<br />

0<br />

0 2 4<br />

Q 2 [GeV 2 ]


Recall: Scaling of <strong>Form</strong> <strong>Factors</strong><br />

Naive expectation <strong>from</strong> dimensional counting<br />

[Brodsky & Farrar, 1973]<br />

F 1 ∝ 1 Q 4 (dipole?)<br />

F 2 ∝ 1 Q 6 (tripole?)<br />

for<br />

Q 2 > ζ p<strong>QCD</strong><br />

Q 2 F 2<br />

F 1<br />

∝ const<br />

G E<br />

G M<br />

∝ const


Scaling of F (v)<br />

2 /F (v)<br />

1<br />

m π ≈ 550 MeV, a = 0.90, . . . , 0.75 fm<br />

4<br />

3<br />

!=5.25, " sea<br />

=0.13575<br />

!=5.29, " sea<br />

=0.13590<br />

!=5.40, " sea<br />

=0.13610<br />

F 2<br />

(v)<br />

/ F 1<br />

(v)<br />

2<br />

1<br />

0 1 2 3 4<br />

Q 2 [GeV 2 ]


Scaling of F (v)<br />

2 /F (v)<br />

1<br />

Experimental data suggests<br />

1/ √ Q 2<br />

scaling<br />

1.5<br />

[GeV]<br />

1<br />

/ F 1<br />

(p)<br />

(Q 2 ) (1/2) F 2<br />

(p)<br />

0.5<br />

!=5.25, " sea<br />

=0.13575<br />

!=5.29, " sea<br />

=0.13590<br />

!=5.40, " sea<br />

=0.13610<br />

0<br />

0 1 2 3 4<br />

Q 2 [GeV 2 ]


Scaling of<br />

F (d)<br />

1 /F (u)<br />

1<br />

Flavour dependence also observed in experimental data [Diehl,05]<br />

0.6<br />

!=5.25, " sea<br />

=0.13575<br />

!=5.29, " sea<br />

=0.13590<br />

!=5.40, " sea<br />

=0.13610<br />

0.4<br />

F 1<br />

(d)<br />

/ F 1<br />

(u)<br />

0.2<br />

0<br />

0 1 2 3 4<br />

Q 2 [GeV 2 ]


<strong>Form</strong> <strong>Factors</strong>:<br />

F (p)<br />

1<br />

Comparison with experiment<br />

1<br />

0.8<br />

0.6<br />

experiment<br />

400 MeV<br />

550 MeV<br />

700 MeV<br />

F 1<br />

p<br />

0.4<br />

0.2<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

Q 2 [GeV] 2


<strong>Form</strong> Factor Radii<br />

r 2 i = −6 dF i(q 2 )<br />

dq 2 ∣ ∣∣q 2 =0<br />

[<br />

F i (q 2 ) = F i (0) 1 + 1 ]<br />

6 r2 i q 2 + O(q 4 )


<strong>Form</strong> Factor Radii & Magnetic Moments<br />

<strong>QCD</strong>SF, preliminary (2007)<br />

1<br />

6<br />

0.8<br />

4<br />

(r 2<br />

(v)<br />

)<br />

2<br />

[fm<br />

2<br />

]<br />

0.6<br />

0.4<br />

! (v)norm<br />

2<br />

0.2<br />

0<br />

0 0.5 1 1.5<br />

m 2 PS [GeV]<br />

0<br />

0 0.5 1 1.5<br />

m 2 PS [GeV]<br />

[hep-lat/0303019]


Results RBC/UK<strong>QCD</strong><br />

Nf=2+1 Domain Wall Fermions<br />

[Takeshi Yamazaki]<br />

F V<br />

(q 2 )/F V<br />

(0)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

m f<br />

=0.005<br />

m f<br />

=0.01<br />

m f<br />

=0.02<br />

m f<br />

=0.03<br />

experiment<br />

1<br />

0.4<br />

0.3<br />

0.2<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

0.7<br />

q 2 [GeV 2 ]<br />

0.9<br />

0.8<br />

(〈r 1<br />

2<br />

〉)<br />

1/2<br />

[fm]<br />

experiment<br />

N f<br />

=2+1 DWF (2.7fm)<br />

N f<br />

=2 DWF (1.9fm)<br />

N f<br />

=0 DWF (3.6fm)<br />

N f<br />

=2 Wilson (1.9fm)<br />

N f<br />

=0 Wilson (3.0fm)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0 0.1 0.2 0.3 0.4<br />

2 2<br />

m π[GeV ]


Results RBC/UK<strong>QCD</strong><br />

Nf=2+1 Domain Wall Fermions<br />

[Takeshi Yamazaki]<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

(〈r 2<br />

2<br />

〉)<br />

1/2<br />

[fm]<br />

experiment<br />

N f<br />

=2+1 DWF (2.7fm)<br />

N f<br />

=2 DWF (1.9fm)<br />

N f<br />

=0 DWF (3.6fm)<br />

N f<br />

=2 Wilson (1.9fm)<br />

N f<br />

=0 Wilson (3.0fm)<br />

0.7<br />

6<br />

0.6<br />

0.5<br />

0.4<br />

5<br />

4<br />

experiment<br />

F 2<br />

(0)<br />

0.3<br />

0 0.1 0.2 0.3 0.4<br />

2 2<br />

m π[GeV ]<br />

3<br />

2<br />

1<br />

N f<br />

=2+1 DWF (2.7fm)<br />

N f<br />

=2 DWF (1.9fm)<br />

N f<br />

=0 DWF (3.6fm)<br />

N f<br />

=2 Wilson (1.9fm)<br />

N f<br />

=0 Wilson (3.0fm)<br />

0<br />

0 0.1 0.2 0.3 0.4<br />

2 2<br />

m π[GeV ]


Magnetic Moment<br />

µ v (µ N )<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

N f =2 [210]<br />

N f =0 [196]<br />

N f =0 [207]<br />

N f =2 [207]<br />

N f =0 [206]<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

2<br />

m ! [GeV<br />

2 ]<br />

[210,196]: Clover, [207]: Wilson, PRD74:034508, 2006, [206]: FLIC, PRD74:093005, 2006


G n E<br />

β = 5.25, κ sea = 0.13575, V = 24 3 × 48<br />

(m π ≈ 550 MeV)


Twisted<br />

Boundary<br />

Conditions<br />

θ i<br />

O(τ, ⃗q)<br />

θ f<br />

hep-lat/0411033, hep-lat/0703005<br />

¯N(0,⃗p)<br />

N(t, ⃗p ′ )<br />

On a periodic lattice with spatial volume L 3 , momenta<br />

are discretised in units of 2π/L<br />

Modify boundary conditions on the valence quarks<br />

ψ(x k + L) = e iθ k<br />

ψ(x k ), (k = 1, 2, 3)<br />

allows to tune the momenta continuously<br />

q 2 = (p f − p i ) 2 =<br />

{<br />

[E f (⃗p f ) − E i (⃗p i )] 2 −<br />

⃗p FT + ⃗ θ/L<br />

[<br />

(⃗p FT,f + θ ⃗ f /L) − (⃗p FT,i + θ ⃗ ] } 2<br />

i /L)


Pion<br />

Dispersion Relation


Twisted Boundary<br />

Conditions<br />

β =5.29, κ sea =0.13500, V= 16 3 × 32<br />

(m π ≈ 850 MeV)


Twisted Boundary<br />

Conditions<br />

β =5.29, κ sea =0.13500, V= 16 3 × 32<br />

(m π ≈ 850 MeV)


Twisted Boundary<br />

Conditions<br />

Recall: We need to extrapolate F2(q 2 ) to q 2 =0<br />

Model dependence


Twisted Boundary<br />

Conditions<br />

Recall: We need to extrapolate F2(q 2 ) to q 2 =0<br />

Model dependence


Pion Charge Radius<br />

[Broemmel et al. (<strong>QCD</strong>SF), hep-lat/0608021]<br />

F π (Q 2 )<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

F π (Q 2 )<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0 0.2 0.4 0.6 0.8 1<br />

Q 2 [GeV 2 ]<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

(r 0 M lat ) 2<br />

m 2 π [GeV2 ]<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

0 1 2 3 4 5 6 7 8<br />

(r 0 m π ) 2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

M 2 lat [GeV2 ]<br />

Q 2 [GeV 2 ]<br />

r 2 π = 6<br />

M 2<br />

[0.441(19)]<br />

[0.452(11)]exp


Pion Charge Radius<br />

[Boyle, Juettner, Flynn, Kelly, de Lima, Maynard, Sachradja, JZ.<br />

DWF N f =2+1 (UK<strong>QCD</strong>), This week]<br />

1<br />

0.95<br />

0.9<br />

set A<br />

set B<br />

set C<br />

pole fit<br />

<strong>QCD</strong>SF/UK<strong>QCD</strong><br />

m π ≈ 330MeV<br />

24 3 × 64<br />

ylabel<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0 0.05 0.1 0.15 0.2 0.25 0.3<br />

xlabel<br />

〈r 2 π〉 (2),NLO = − 12lr 6<br />

f 2 − 1<br />

8π 2 f 2 (<br />

log m2 π<br />

µ 2 +1 )<br />

[0.418(28)]<br />

[0.452(11)]exp


Conclusions<br />

<strong>Lattice</strong> provides a useful tool for investigating FFs<br />

Parameterisation of FFs<br />

<strong>Lattice</strong> data not yet precise enough to fix q 2 dependence<br />

Twisted boundary conditions may help<br />

Qualitative agreement with experimental data<br />

Search for chiral nonanalytic behaviour in charge radii/mag. mom.<br />

Hint of strong effects at light quark masses<br />

<strong>Lattice</strong> data much closer to the chiral limit is crucial<br />

(and is starting to become available)<br />

Reveal internal charge distribution of e.g. neutron

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!