04.11.2014 Views

3 The Restricted Three-Body Problem

3 The Restricted Three-Body Problem

3 The Restricted Three-Body Problem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 1<br />

3 <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong><br />

3.1 Introduction<br />

<br />

2 , <br />

, <br />

. 3 <br />

.<br />

3 <br />

, 2 <br />

, 3 <br />

, 3 (the circular, restricted, three-body<br />

problem) . ,2 <br />

, 3 , <br />

3 . <br />

3 <br />

, <br />

, , <br />

.<br />

<br />

. 3 , <br />

, <br />

. , Jacobi <br />

<br />

. 1 <br />

Hill<br />

<br />

, <br />

. <br />

3 <br />

.<br />

3.2 Equations of Motion<br />

<br />

, m 1 , m 2 2 <br />

<br />

. , 2 <br />

, <br />

.<br />

ξ, η, ζ , 2 <br />

(3.2). ξ ,<br />

t = 0 , m 1 m 2 <br />

, η ξ 2 <br />

<br />

. ζ ξ − η <br />

, 2 <br />

<br />

. (ξ 1 , η 1 , ζ 1 ), (ξ 2 , η 2 , ζ 2 ), <br />

, , <br />

. , µ = G(m 1 + m 2 ) = 1 <br />

. , m 1 > m 2 , <br />

¯µ =<br />

m 2<br />

m 1 + m 2<br />

, (3.1)<br />

<br />

, m 1 , m 2 <br />

µ 1 , µ 2 , <br />

.<br />

µ 1 = gm 1 = 1 − ¯µ and µ 2 = gm 2 = ¯µ. (3.2)<br />

2 <br />

. (inertial system) , sidereal system


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 2<br />

3.1: sidereal (ξ, η, ζ) synodic (x, y, z) . P , O 2<br />

, ζ, z <br />

. <br />

.<br />

<br />

(ξ, η, ζ) , <br />

.<br />

¨ξ = µ 1<br />

ξ 1 − ξ<br />

r 3 1<br />

¨η = µ 1<br />

η 1 − η<br />

r 3 1<br />

¨ζ = µ 1<br />

ζ 1 − ζ<br />

r 3 1<br />

+ µ 2<br />

ξ 2 − ξ<br />

r 3 2<br />

+ µ 2<br />

η 2 − η<br />

r 3 2<br />

+ µ 2<br />

ζ 2 − ζ<br />

r 3 2<br />

(3.3)<br />

(3.4)<br />

(3.5)<br />

, (3.2) <br />

r 2 1 = (ξ 1 − ξ) 2 + (η 1 − η) 2 + (ζ 1 − ζ) 2 , (3.6)<br />

r 2 2 = (ξ 2 − ξ) 2 + (η 2 − η) 2 + (ζ 2 − ζ) 2 , (3.7)<br />

. 2 <br />

, n <br />

. , <br />

2 <br />

. , <br />

, . , <br />

, t = 0 ξ, η, ζ , ζ <br />

n <br />

. x <br />

, m 1 , m 2 <br />

, (x 1 , y 1 , z 1 ) = (−µ 2 , 0, 0), (x 2 , y 2 , z 2 ) = (−µ 1 , 0, 0)<br />

. , (3.2), 3.2 <br />

r 2 1 = (x + µ 2 ) 2 + y 2 + z 2 , (3.8)<br />

r 2 2 = (x − µ 1 ) 2 + y 2 + z 2 . (3.9)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 3<br />

(x, y, z) <br />

, synodic system . <br />

<br />

.<br />

⎛ ⎞ ⎛<br />

⎞ ⎛ ⎞<br />

ξ cos nt − sin nt 0 x<br />

⎜ ⎟ ⎜<br />

⎟ ⎜ ⎟<br />

⎝ η ⎠ = ⎝ sin nt cos nt 0 ⎠ ⎝ y ⎠ . (3.10)<br />

ζ 0 0 1 z<br />

<br />

n = 1 , n <br />

. (3.16)(3.18) <br />

<br />

.<br />

(3.10) 2 <br />

2 .<br />

⎛ ⎞ ⎛<br />

⎞ ⎛ ⎞<br />

˙ξ cos nt − sin nt 0 ẋ − ny<br />

⎜ ⎟ ⎜<br />

⎟ ⎜ ⎟<br />

⎝ ˙η ⎠ = ⎝ sin nt cos nt 0 ⎠ ⎝ ẏ + nx ⎠ . (3.11)<br />

˙ζ 0 0 1 ż<br />

⎛<br />

⎜<br />

⎝<br />

¨ξ<br />

¨η<br />

¨ζ<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

⎜<br />

⎝<br />

cos nt − sin nt 0<br />

sin nt cos nt 0<br />

0 0 1<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎠ ⎝<br />

ẍ − 2nẏ − n 2 x<br />

ÿ + 2nẋ − n 2 y<br />

¨z<br />

⎞<br />

⎟<br />

⎠ . (3.12)<br />

<br />

, Corioli (the Corioli’s acceleration, nx, ny)<br />

(the centrifugal acceleration, n 2 x, n 2 y) . <br />

, (3.3)<br />

(3.5) <br />

,<br />

(ẍ−2nẏ − n 2 x) cos nt − (ÿ + 2nẋ − n 2 y) sin nt =<br />

[<br />

] [ ]<br />

x 1 − x x 2 − x<br />

µ 1<br />

µ 1 + µ<br />

r1<br />

3 2 cos nt + + µ 2<br />

y sin nt,<br />

r2<br />

3 r1<br />

3 r2<br />

3<br />

(3.13)<br />

(ẍ−2nẏ − n 2 x) sin nt + (ÿ + 2nẋ − n 2 y) cos nt =<br />

[<br />

] [ ]<br />

x 1 − x x 2 − x<br />

µ 1<br />

µ 1 + µ<br />

r1<br />

3 2 sin nt + + µ 2<br />

(3.14)<br />

y cos nt,<br />

r2<br />

3 r1<br />

3 r2<br />

3<br />

[ ]<br />

µ 1<br />

¨z = − + µ 2<br />

z. (3.15)<br />

r1<br />

3 r2<br />

3<br />

(3.13) cos nt (3.14) − sin nt <br />

, (3.13) <br />

− sin nt (3.14) cos nt <br />

, <br />

, synodic


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 4<br />

<br />

.<br />

[<br />

]<br />

ẍ − 2nẏ − n 2 x = −<br />

ÿ + 2nẋ − n 2 y = −<br />

¨z = −<br />

[<br />

[<br />

x + µ 2 x − µ 1<br />

µ 1 + µ 2<br />

µ 1<br />

r1<br />

3<br />

µ 1<br />

r 3 1<br />

r 3 1<br />

+ µ 2<br />

r 3 2<br />

+ µ 2<br />

r 3 2<br />

]<br />

]<br />

r 3 2<br />

(3.16)<br />

y, (3.17)<br />

z. (3.18)<br />

<br />

U <br />

.<br />

U = U(x, y, z) <br />

.<br />

ẍ − 2nẏ = ∂U<br />

∂x , (3.19)<br />

ÿ + 2nẋ = ∂U<br />

∂y , (3.20)<br />

¨z = ∂U<br />

∂z , (3.21)<br />

U = n2<br />

2 (x2 + y 2 ) + µ 1<br />

r 1<br />

+ µ 2<br />

r 2<br />

. (3.22)<br />

(x 2 + y 2 ) <br />

, 1/r 1 , 1/r 2 <br />

. <br />

U ∗ = −U , <br />

.<br />

ẍ − 2nẏ = − ∂U ∗<br />

∂x , (3.23)<br />

ÿ + 2nẋ = − ∂U ∗<br />

∂y , (3.24)<br />

¨z = − ∂U ∗<br />

∂z . (3.25)<br />

, U <br />

. U <br />

<br />

, . <br />

.<br />

3.3 <strong>The</strong> Jacobi Integral<br />

(3.19) ẋ, (3.20) ẏ, (3.21) ż <br />

,<br />

ẋẍ + ẏÿ + ż¨z = ∂U<br />

∂x ẋ + ∂U<br />

∂y ẏ + ∂U<br />

∂z ż = dU<br />

dt . (3.26)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 5<br />

<br />

,<br />

ẋ 2 + ẏ 2 + ż 2 = 2U − C J (3.27)<br />

C J . ẋ 2 + ẏ 2 + ż 2 = v 2 ,<br />

(3.22) ,<br />

C J = n 2 (x 2 + y 2 ) + 2<br />

v 2 = 2U − C J (3.28)<br />

(<br />

µ1<br />

r 1<br />

+ µ 2<br />

r 2<br />

)<br />

− ẋ 2 − ẏ 2 − ż 2 (3.29)<br />

<br />

, 2U − v 2 = C J , <br />

. C J Jacobi (the Jacobi integral) . <br />

. <br />

3 <br />

. Jacobi<br />

<br />

3 <br />

.<br />

C J , 3.1 (ξ, η, ζ) <br />

. (3.10) ,<br />

⎛ ⎞ ⎛<br />

⎞ ⎛ ⎞<br />

x cos nt sin nt 0 ξ<br />

⎜ ⎟ ⎜<br />

⎟ ⎜ ⎟<br />

⎝ y ⎠ = ⎝ − sin nt cos nt 0 ⎠ ⎝ η ⎠ , (3.30)<br />

z<br />

0 0 1 ζ<br />

⎛<br />

⎜<br />

⎝<br />

. ,<br />

⎛<br />

ẋ − nẏ<br />

⎜<br />

⎝ ẏ + nẋ<br />

ż<br />

ẋ − nẏ<br />

ẏ + nẋ<br />

ż<br />

⎞<br />

⎟<br />

⎠ =<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

⎜<br />

⎝<br />

ẋ<br />

ẏ<br />

ż<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

cos nt sin nt 0<br />

− sin nt cos nt 0<br />

0 0 1<br />

⎛<br />

⎟ ⎜<br />

⎠ + n ⎝<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎠ ⎝<br />

sin nt − cos nt 0<br />

cos nt sin nt 0<br />

0 0 1<br />

˙ξ<br />

˙η<br />

˙ζ<br />

⎞<br />

⎟<br />

⎠ , (3.31)<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎠ ⎝<br />

ξ<br />

η<br />

ζ<br />

⎞<br />

⎟<br />

⎠ , (3.32)<br />

, ,<br />

⎛ ⎞ ⎛<br />

ẋ cos nt sin nt 0<br />

⎜ ⎟ ⎜<br />

⎝ ẏ ⎠ = ⎝ − sin nt cos nt 0<br />

ż<br />

0 0 1<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎠ ⎝<br />

˙ξ<br />

˙η<br />

˙ζ<br />

⎞<br />

⎛<br />

⎟ ⎜<br />

⎠ − n ⎝<br />

sin nt − cos nt 0<br />

cos nt sin nt 0<br />

0 0 1<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎠ ⎝<br />

ξ<br />

η<br />

ζ<br />

⎞<br />

⎟<br />

⎠ (3.33)<br />

<br />

⎛<br />

A =<br />

⎜<br />

⎝<br />

cos nt sin nt 0<br />

− sin nt cos nt 0<br />

0 0 1<br />

⎞<br />

⎟<br />

⎠ and B =<br />

⎛<br />

⎜<br />

⎝<br />

sin nt − cos nt 0<br />

cos nt sin nt 0<br />

0 0 1<br />

⎞<br />

⎟<br />

⎠ (3.34)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 6<br />

(3.33) ,<br />

⎛<br />

ẋ 2 + ẏ 2 + ż 2 ⎜<br />

= (ẋ ẏ ż) ⎝<br />

⎛<br />

= ( ˙ξ ˙η ˙ζ)A T ⎜<br />

A ⎝<br />

ẋ<br />

ẏ<br />

ż<br />

˙ξ<br />

˙η<br />

˙ζ<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

− n(ξ η ζ)B T ⎜<br />

A ⎝<br />

⎟<br />

⎠ − n( ˙ξ ˙η ˙ζ)A T B<br />

⎛<br />

˙ξ<br />

˙η<br />

˙ζ<br />

⎞<br />

⎛<br />

⎜<br />

⎝<br />

ξ<br />

η<br />

ζ<br />

⎟<br />

⎠ + n 2 (ξ η ζ)B T B<br />

= ˙ξ 2 + ˙η 2 + ˙ζ 2 + n 2 ( ˙ξ 2 + ˙η 2 ) + 2n( ˙ξη − ˙ηξ).<br />

⎞<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

ξ<br />

η<br />

ζ<br />

⎞<br />

⎟<br />

⎠<br />

(3.35)<br />

A T , B T A, B <br />

. A, B<br />

, ,<br />

, <br />

. , <br />

,<br />

x 2 + y 2 + z 2 = ξ 2 + η 2 + ζ 2 (3.29) ,<br />

(<br />

µ1<br />

C J = 2 + µ )<br />

2<br />

+ 2n(ξ ˙η − η<br />

r 1 r ˙ξ) − ˙ξ 2 − ˙η 2 − ˙ζ 2 (3.36)<br />

2<br />

. <br />

.<br />

(<br />

1<br />

2 ( ˙ξ 2 + ˙η 2 + ˙ζ 2 µ1<br />

) − + µ )<br />

2<br />

= h · n − 1 r 1 r 2 2 C J (3.37)<br />

n = (0, 0, n) , <br />

. 2.9 , <br />

h <br />

, 3 <br />

.<br />

3.2: 2 Jacobi <br />

. k µ 2 = 0.2 . C J <br />

(a)C J = 3.9 , (b)C J = 3.7.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 7<br />

<br />

Jacobi <br />

. 2 , <br />

. , 3 , Jacobi <br />

.<br />

Jacobi <br />

, 0 <br />

. ,<br />

2U = C J (3.38)<br />

(<br />

n 2 (x 2 + y 2 µ1<br />

) + 2 + µ )<br />

2<br />

= C J (3.39)<br />

r 1 r 2<br />

<br />

, <br />

. x − y<br />

<br />

. <br />

. 3.3 µ 2 = 0.2, n = 1 . (3.27) Jacobi <br />

2U ≥ C J . (3.39)<br />

, <br />

. , 3 . (3.3) <br />

, .<br />

(3.3a) , , C J <br />

µ 1 <br />

<br />

, µ 2 , <br />

. (3.3b) , µ 1 <br />

<br />

, µ 2 <br />

. , <br />

. Hill (Hill’s stability) .<br />

3.4 Tisserand Relation<br />

a, e, I <br />

. , <br />

a ′ , e ′ , I ′ . 2 <br />

, Jacobi<br />

<br />

. Jacobi , C J = 2U −v 2 ,<br />

<br />

.3 <br />

, <br />

r = (ξ, η, ζ), r = ( ˙ξ, ˙η, ˙ζ) . <br />

(3.37) Jacobi <br />

.<br />

(<br />

1<br />

2 ( ˙ξ 2 + ˙η 2 + ˙ζ 2 µ1<br />

) − + µ )<br />

2<br />

= h · n − 1 r 1 r 2 2 C J (3.40)<br />

r 1 , r 2 , <br />

. , <br />

, <br />

. , <br />

.<br />

g(m Sun + m comet ) ≈ g(m Sun + m Jupitar ) = 1 (3.41)<br />

m Sun , m comet , m Jupitar , , , <br />

. - 2 <br />

(eq:2.34) 1 ,<br />

1 (2.34): v 2 = µ(2/r − 1/a)<br />

˙ξ 2 + ˙η 2 + ˙ζ 2 = 2 r − 1 a , (3.42)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 8<br />

µ = 1 , , <br />

r 1 ≈ r . <br />

.<br />

h = r × ṙ. (3.43)<br />

ζ <br />

ξ ˙η − η ˙ξ = h cos I. (3.44)<br />

, h 2 = a(1 − e 2 ) . (3.40) <br />

2<br />

r − 1 a − 2√ a(1 − e 2 ) cos I = 2 r − 2µ 2<br />

( 1<br />

r − 1 )<br />

− C J (3.45)<br />

r 2<br />

<br />

. , <br />

, 1/r 2 , µ 2 <br />

<br />

,<br />

1<br />

2a + √ a(1 − e 2 ) cos I ≈ constant. (3.46)<br />

, <br />

, <br />

.<br />

1<br />

2a + √ a(1 − e 2 ) cos I = 1<br />

2a + √ a ′ (1 − e ′2 ) cos I ′ (3.47)<br />

′<br />

Tisserand (Tesserand relation, Tesserand 1896) <br />

, <br />

, <br />

<br />

.<br />

3.3: <br />

. .


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 9<br />

3.4: e Jup = 0, e Jup = 0.048 Tisserand . 35 .<br />

<br />

3.4 . , <br />

, <br />

8AU <br />

. <br />

a = 4.81AU,<br />

e = 0.763, I = 7 .47, <br />

a = 10.8AU, e = 0.731, I = 21 .4 .<br />

Tisserand <br />

Jacobi <br />

, 1<br />

<br />

. , + √ a(1 − e<br />

2a 2 ) cos I , 0 <br />

. 3.4 . <br />

0( ), <br />

0.048 Tisserand<br />

<br />

. <br />

, 1 , <br />

12 <br />

.<br />

3.4 <br />

, , , <br />

<br />

. 3 <br />

,<br />

<br />

. <br />

, <br />

. <br />

, <br />

. , <br />

.<br />

, <br />

, , , <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 10<br />

3.5 Lagrangian Equilibrium Points<br />

<br />

2 m 1 , m 2 <br />

n <br />

, <br />

n <br />

, 2 <br />

. , <br />

, P <br />

(equilibrium point) .<br />

a, b, c , m 1 , 2 , m 2 <br />

. <br />

P (3.5). , F 1 , F 2 P m 1 , m 2 <br />

<br />

. P <br />

, O<br />

<br />

b . P −b <br />

, <br />

.<br />

F = F 1 + F 2 . (3.48)<br />

P <br />

Coriolis <br />

.<br />

O <br />

.<br />

b = m 1a + m 2 c<br />

m 1 + m 2<br />

(3.49)<br />

<br />

,<br />

m 1 (a − b) = m 2 (b − c). (3.50)<br />

F 1 + F 2 <br />

,<br />

m 2 (F 1 × c) + m 1 (F 2 × a) = 0. (3.51)<br />

F 1 , c F 2 , a <br />

, ,<br />

m 2 F 1 c = m 1 F 2 a. (3.52)<br />

3.5: P , m 1 , m 2 . O m 1 , m 2


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 11<br />

<br />

, F 1 = gm 1 /a 2 , F 2 = gm 2 /c 2 <br />

(3.52) a = c <br />

. , 2 3 2 3 <br />

.<br />

P <br />

,<br />

n 2 b = F 1 cos β + F 2 cos γ. (3.53)<br />

β F 1 b , γ F 2 b <br />

(3.6). <br />

,<br />

n 2 =<br />

, O, P, 2 <br />

3 ,<br />

g<br />

a 2 b 2 (m 1b cos β + m 2 b cos γ). (3.54)<br />

b cos β = a − g cos α,<br />

b cos γ = a − (d − g) cos α,<br />

(3.55)<br />

.d m 1 , m 2 , g m 1 O <br />

. ,<br />

. <br />

,<br />

cos α = d<br />

2a , (3.56)<br />

g = m 2<br />

m 1 + m 2<br />

d, d − g =<br />

m 2<br />

m 1 + m 2<br />

d. (3.57)<br />

(3.54) <br />

n 2 = g(m (<br />

1 + m 2 )<br />

a 2 − m )<br />

1m 2<br />

a 3 b 2 (m 1 + m 2 ) 2 d2 . (3.58)<br />

3.6: P <br />

. m 1 , m 2 <br />

2 <br />

. <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 12<br />

<br />

. ,<br />

(3.57) ,<br />

b 2 = a 2 + g 2 − 2ag cos α = a 2 + g 2 − gd. (3.59)<br />

, (3.58) <br />

.<br />

b 2 = a 2 − m 1m 2<br />

(m 1 + m 2 ) 2 d2 . (3.60)<br />

n 2 = g(m 1 + m 2 )/a 3 . (3.61)<br />

, <br />

, Kepler 3 ,<br />

n 2 = g(m 1 + m 2 )/d 3 , (3.62)<br />

a = d .<br />

, m 1 , m 2 <br />

, m 1 , m 2 , <br />

<br />

. , <br />

<br />

. <br />

Lagrangian equilibrium point, L 4 , L 5 . , 3 L 1 , L 2 , L 3 , m 1 , m 2 <br />

.<br />

, <br />

, <br />

. <br />

, , <br />

.<br />

3.6 Location of Equilibrium Points<br />

3 <br />

, <br />

. , <br />

. <br />

. , <br />

x − y <br />

, , 2 <br />

, n = 1 .<br />

<br />

, Brower & Clemence (1961) . U <br />

<br />

. (3.8) 2 , (3.9) 3 r 1 , r 2 , µ 1 + µ 2 = 1 ,<br />

(3.22) 4 ,<br />

µ 1 r 2 1 + µ 2 r 2 2 = x 2 + y 2 + µ 1 µ 2 , (3.63)<br />

U = µ 1<br />

( 1<br />

r 1<br />

+ r2 1<br />

2<br />

2 (3.8): r 2 1 = (x + µ 2 ) 2 + y 2 + z 2<br />

3 (3.9): r 2 2 = (x − µ 1 ) 2 + y 2 + z 2<br />

4 (3.22): U = n2<br />

2 (x2 + y 2 ) + µ 1<br />

r 1<br />

+ µ 2<br />

r 2<br />

)<br />

( ) 1<br />

+ µ 2 + r2 2<br />

− 1 r 2 2 2 µ 1µ 2 . (3.64)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 13<br />

x, y <br />

, <br />

. , x, y , r 1 , r 2 <br />

.<br />

(3.19) 5 , (3.20) 6 , ẍ = ÿ = ẋ = ẏ = 0 <br />

. <br />

.<br />

∂U<br />

∂x = ∂U ∂r 1<br />

∂r 1 ∂x + ∂U ∂r 2<br />

= 0,<br />

∂r 2 ∂x<br />

(3.65)<br />

∂U<br />

= ∂U ∂r 1<br />

∂y ∂r 1 ∂y + ∂U ∂r 2<br />

= 0.<br />

∂r 2 ∂y<br />

(3.66)<br />

U (3.64) <br />

.<br />

µ 1<br />

(<br />

− 1 r 2 1<br />

+ r 1<br />

) x + µ2<br />

r 1<br />

+ µ 2<br />

(− 1 r 2 2<br />

µ 1<br />

(<br />

− 1 r 2 1<br />

+ r 1<br />

) y<br />

r 1<br />

+ µ 2<br />

(<br />

− 1 r 2 2<br />

+ r 2<br />

) x + µ1<br />

r 2<br />

= 0, (3.67)<br />

+ r 2<br />

) y<br />

r 2<br />

= 0. (3.68)<br />

(3.65), (3.65) ,<br />

∂U<br />

∂r 1<br />

= µ 1<br />

(− 1 r 2 1<br />

+ r 1<br />

)<br />

= 0,<br />

∂U<br />

∂r 2<br />

= µ 2<br />

(− 1 r 2 2<br />

+ r 2<br />

)<br />

= 0, (3.69)<br />

, r 1 = r 2 = 1 <br />

. ,<br />

r 2 1 = (x + µ 2 ) 2 + y 2 = 1, r 2 2 = (x − µ 1 ) 2 + y 2 = 1 (3.70)<br />

, 2 <br />

.<br />

x = 1 √<br />

3<br />

2 − µ 2, y = ±<br />

2 . (3.71)<br />

r 1 = r 2 = 1 , ,µ 1 , µ 2 <br />

, <br />

. <br />

(Lagrangian equilibrium point) , <br />

,L 4 , L 5 .<br />

(3.68) , y = 0 (3.68) <br />

. x <br />

, (3.65) <br />

. , <br />

(collinear Lagrangian equilibrium point) L 1 , L 2 , L 3 . L 1 µ 1 , µ 2 ,<br />

L 2 µ 2 , L 3 x <br />

. , <br />

, <br />

.<br />

L 1 ,<br />

r 1 + r 2 = 1, r 1 = x + µ 2 , r 2 = −x + µ 1 ,<br />

5 (3.19): ẍ − 2nẏ = ∂U<br />

∂x<br />

6 (3.20): ÿ + 2nẋ = ∂U<br />

∂y<br />

∂r 1<br />

∂x = −∂r 2<br />

∂x<br />

= 1. (3.72)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 14<br />

, (3.67) ,<br />

) (<br />

1<br />

µ 1<br />

(−<br />

(1 − r 2 ) + 1 − r 2 2 − µ 2 − 1 r2<br />

2<br />

+ r 2<br />

)<br />

= 0 (3.73)<br />

,<br />

µ 2<br />

= 3r 3 (1 − r 2 + r2/3)<br />

2<br />

2<br />

µ 1 (1 + r 2 + r2)(1 2 − r 2 ) , (3.74)<br />

3<br />

. <br />

,<br />

( ) 1/3 µ2<br />

α = , (3.75)<br />

3µ 1<br />

r 2 <br />

, r 2 = α <br />

. α Hill (µ 2 <br />

) <br />

. (3.74)<br />

<br />

,<br />

α = r 2 + 1 3 r2 2 + 1 3 r3 2 + 53<br />

81 r4 2 + O(r 5 2) (3.76)<br />

. 2.5 Lagrange’s inversion method <br />

, r 2 α <br />

<br />

. (3.76) (2.89) 7 <br />

,<br />

. φ <br />

.<br />

,<br />

r 2 = α + (−1/3)φ(r 2 ), (3.77)<br />

φ(r 2 ) = r 2 2 + r 3 2 + 53<br />

27 r4 2 + O(r 5 2). (3.78)<br />

[φ(α)] 2 = α 4 + 2α 5 + O(α 6 ), (3.79)<br />

d<br />

dα [φ(α)]2 = 4α 3 + 10α 4 + O(α 5 ), (3.80)<br />

d 2<br />

[φ(α)] 3 = α 6 + O(α 7 ), (3.81)<br />

dα 2 [φ(α)]3 = 30α 4 + O(α 5 ). (3.82)<br />

(2.90) 8 <br />

, r 2 <br />

.<br />

r 2 = α +<br />

∞∑ (−1/3) j d j−1<br />

[φ(α)]j<br />

j! dαj−1 j=1<br />

= α − 1 3 α2 − 1 9 α3 − 23<br />

81 α4 + O(α 5 ). (3.83)<br />

7 (2.89): ζ = z + eφ(ζ)(e < 1)<br />

8 (2.90): ζ = z + ∑ ∞<br />

j=1 ej d j−1<br />

j! dz<br />

[φ(z)] j .<br />

j−1


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 15<br />

L 2 ,<br />

r 1 − r 2 = 1, r 1 = x + µ 2 , r 2 = x − µ 1 , ∂r 1<br />

∂x = ∂r 2<br />

= 1.<br />

∂x<br />

(3.84)<br />

, (3.67) ,<br />

) (<br />

1<br />

µ 1<br />

(−<br />

(1 + r 2 ) + 1 + r 2 2 + µ 2 − 1 r2<br />

2 )<br />

+ r 2 = 0 (3.85)<br />

<br />

. α <br />

,<br />

.L 3 ,<br />

µ 2<br />

= 3r 3 (1 + r 2 + r2/3)<br />

2<br />

2<br />

µ 1 (1 + r 2 ) 2 (1 − r2) , (3.86)<br />

3<br />

α = r 2 − 1 3 r2 2 + 1 3 r3 2 + 1<br />

81 r4 2 + O(r2) 5 (3.87)<br />

r 2 = α + 1 3 α 2 − 1 9 α3 − 31<br />

81 α4 + O(α 5 ) (3.88)<br />

r 2 − r 1 = 1, r 1 = −x − µ 2 , r 2 = −x + µ 1 , ∂r 1<br />

∂x = ∂r 2<br />

∂x<br />

= −1. (3.89)<br />

, (3.67) r 2 ,<br />

(<br />

µ 1 − 1 )<br />

)<br />

1<br />

+ r<br />

r1<br />

2 1 + µ 2<br />

(−<br />

(1 + r 1 ) + 1 + r 2 1 = 0 (3.90)<br />

,r 1 = 1 + β ,<br />

µ 2<br />

= − 12<br />

µ 1 7 β + 144<br />

49 β2 − 1567<br />

β = − 7 12<br />

µ 2<br />

µ 1<br />

= (1 − r3 1)(1 + r 1 ) 2<br />

r 3 1(r 2 1 + 3r 1 + 3) . (3.91)<br />

(<br />

µ2<br />

µ 1<br />

)<br />

+ 7 12<br />

343 β3 + O(β 4 ), (3.92)<br />

( ) 2 µ2<br />

− 13223 ( ) 3 ( ) 4 µ2 µ2<br />

+ O<br />

(3.93)<br />

µ 1 20736 µ 1 µ 1<br />

3.7 , µ 2 = 0.2, 3 Jacobi <br />

, Lagrangian<br />

points . 3.8 , <br />

C J <br />

3 .<br />

3.7, 3.8 , L 1 Jacobi <br />

(C J = 3.805, µ 2 = 0.2), <br />

<br />

. 3.2 <br />

, L 1 , 2 <br />

<br />

. L 2 (C J = 3.552, µ 2 = 0.2) <br />

. C J < C L2 <br />

, <br />

,


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 16<br />

. <br />

L 3 (C J = 3.197, µ 2 = 0.2) .L 4 , L 5 (C J = 2.84, µ 2 = 0.2) <br />

C J . , Jacobi C J < C L4,5 , <br />

. <br />

. Jacobi<br />

<br />

.<br />

Lagrangian equilibrium point <br />

. <br />

L 5 . , <br />

Jacobi ,<br />

<br />

. x, y , <br />

r 1 , r 2 (3.39) 9 <br />

<br />

, Jacobi <br />

. O(µ 2 ) .<br />

C L1 ≈ 3 + 3 4/3 µ 2/3<br />

2 − 10µ 2 /3, (3.94)<br />

C L2 ≈ 3 + 3 4/3 µ 2/3<br />

2 − 14µ 2 /3, (3.95)<br />

C L3 ≈ 3 + µ 2 , (3.96)<br />

C L4 ≈ 3 − µ 2 , (3.97)<br />

C L5 ≈ 3 − µ 2 . (3.98)<br />

(3.8) 10 , (3.9) 11 , (3.39) , y −y <br />

. <br />

x <br />

. , L 4 , L 5 Jacobi <br />

.<br />

<br />

µ 2 = m 2 /(m 1 + m 2 ) , Pluto-Charon , <br />

∼ 10 −1 . - ∼ 10 −2 . , <br />

- , -<br />

µ 2 , <br />

. Lagrangian equilibrium<br />

point <br />

, µ 2 <br />

.<br />

(3.94), (3.95) , µ 2 → 0 C L1 → C L2 . (3.83), (3.88) ,<br />

µ 2 → 0 , O(α 2 ) <br />

. L 1 , L 2 µ 2 <br />

. L 3 1 + β <br />

. β < 0 (3.93) <br />

<br />

. µ 2 → 0 , L 3 <br />

. <br />

µ 1 <br />

, r = (1 − µ 2 + µ 2 2) 1/2 <br />

. µ 2 , µ 1 <br />

, µ 2 → 0 , µ 1 <br />

<br />

.<br />

3.6 µ 2 = 0.01( -<br />

) <br />

Lagrangian equilibrium<br />

point . L 1 , L 2 µ 2 , <br />

, L 3 <br />

. 3.9 <br />

µ 1 <br />

. 1% <br />

, <br />

.<br />

9 (3.39): n 2 (x 2 + y 2 ) + 2(µ 1 /r 1 + µ 2 /r 2 ) = C J<br />

10 (3.8): r 2 1 = (x + µ 2 ) 2 + y 2 + z 2<br />

11 (3.9): r 2 2 = (x − µ 1 ) 2 + y 2 + z 2


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 17<br />

3.7: Lagrangian equilibrium point ( ) µ 2 = 0.2 <br />

. <br />

, L 1 , L 2 , L 3 <br />

3 Jacobi (3.805,<br />

3.552, 3.197) <br />

. O 2 <br />

.<br />

3.8: C J = 2U <br />

3 , Lagrangian equilibrium point <br />

. L 1 , L 2 , L 3 , <br />

. <br />

C J <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 18<br />

3.9: Lagrangian equilibrium point ( ) µ 2 = 0.01 <br />

. <br />

.<br />

3.10: 5 Lagrangian equilibrium point <br />

. µ 2 log <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 19<br />

µ 2 → 0 <br />

, µ 2 = 10 −1<br />

µ 2 = 10 −10 <br />

(3.10). , L 3 , L 4 , L 5 , L 1 ,<br />

L 2 <br />

. <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 20<br />

3.7 Stability of Equilibrium Points<br />

, <br />

. <br />

, <br />

. <br />

, <br />

.<br />

<br />

, , <br />

. <br />

. <br />

, . , 2 <br />

, , <br />

, <br />

, , . <br />

. , 2<br />

<br />

. , , <br />

.<br />

<br />

. L 4 , L 5 , C J =<br />

2U − v 2 <br />

. U <br />

U ∗ (U ∗ = −U) , L 4 , L 5 C J <br />

. , <br />

, <br />

. 3.11 µ 2 = 0.1 2 <br />

. (3.16) 12 , (3.17) 13 <br />

(ẍ, ÿ)<br />

<br />

. <br />

, , <br />

.<br />

3.11 <br />

, L 4 C J <br />

3.11: 2 <br />

(C J = 2.95, C J = 3.09, µ 2 = 0.1) <br />

<br />

.<br />

12 (3.16): ẍ − 2nẏ − n 2 x = −[µ 1 (x + µ 2 )/r 3 1 + µ 2 (x − µ 1 )/r 3 2]<br />

13 (3.16): ÿ + 2nẋ − n 2 y = −[µ 1 /r 3 1 + µ 2 /r 3 2]y


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 21<br />

<br />

, L 4 <br />

. , <br />

. , <br />

, <br />

. , <br />

(linear stability analysis) <br />

.<br />

<br />

(x 0 , y 0 ) , <br />

. (X, Y ) . <br />

(x, y) = (x 0 + X, y 0 + Y ) <br />

. (3.19) 14 , (3.20) 15 , <br />

.<br />

( ) ( ( )) ( ( ))<br />

∂U ∂ ∂U<br />

∂ ∂U<br />

Ẍ − 2nẎ ≈ + X<br />

+ Y<br />

.<br />

∂x<br />

0<br />

∂x ∂x<br />

0<br />

∂y ∂x<br />

0<br />

( ( )<br />

∂ 2 U ∂ 2 U<br />

= X + Y<br />

(3.99)<br />

∂x∂y<br />

∂x 2 )0<br />

( ) ( ( ))<br />

∂U ∂ ∂U<br />

Ÿ + 2nẊ ≈ + X<br />

∂y<br />

0<br />

∂x ∂y<br />

( ) ( ∂ 2 U ∂ 2 U<br />

= X + Y<br />

∂x∂y<br />

0<br />

0<br />

0<br />

+ Y<br />

( ∂<br />

∂y<br />

( )) ∂U<br />

,<br />

∂y<br />

0<br />

. (3.100)<br />

∂y<br />

)0<br />

2<br />

0 <br />

. , (∂U/∂x) 0 = (∂U/∂y) 0 = 0 <br />

(∂U/∂x = ∂U/∂y = 0 <br />

). <br />

, (X, Y ) <br />

. <br />

<br />

(linearise) <br />

. <br />

.<br />

n = 1, ,<br />

( ∂ 2 U<br />

U xx =<br />

Ẍ − 2Ẏ = XU xx + Y U xy , Ÿ + 2Ẋ = XU xy + Y U yy . (3.101)<br />

, U<br />

∂x<br />

)0<br />

2 xy =<br />

( ) ( ∂ 2 U<br />

∂ 2 U<br />

, U yy = . (3.102)<br />

∂x∂y<br />

0<br />

∂y<br />

)0<br />

2<br />

<br />

. <br />

, <br />

. <br />

.<br />

, <br />

.<br />

⎛ ⎞ ⎛<br />

⎞ ⎛ ⎞<br />

Ẋ 0 0 1 0 X<br />

Ẏ<br />

⎜ ⎟<br />

⎝ Ẍ ⎠ = 0 0 0 1<br />

Y<br />

⎜<br />

⎟ ⎜ ⎟<br />

(3.103)<br />

⎝ U xx U xy 0 2 ⎠ ⎝ Ẋ ⎠<br />

Ÿ U xy U yy −2 0 Ẏ<br />

14 (3.19): ẍ − 2nẏ = ∂U<br />

∂x<br />

15 (3.20): ÿ + 2nẋ = ∂U<br />

∂y


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 22<br />

, 2 2 <br />

, 4 1 <br />

. <br />

.<br />

⎛<br />

X = ⎜<br />

⎝<br />

X<br />

Y<br />

Ẋ<br />

Ẏ<br />

Ẋ = AX, (3.104)<br />

⎞<br />

⎛<br />

⎞<br />

0 0 1 0<br />

⎟<br />

⎠ and A = 0 0 0 1<br />

⎜<br />

⎟<br />

⎝ U xx U xy 0 2 ⎠ . (3.105)<br />

U xy U yy −2 0<br />

<br />

, (3.104) , A n × n , X n-<br />

, <br />

.<br />

x <br />

,<br />

Ax = λx, (3.106)<br />

λ <br />

. x A <br />

(eigenvector), λ <br />

. A <br />

, (3.106) <br />

x A <br />

, x <br />

, <br />

.<br />

(3.104) <br />

, A <br />

. (3.106) <br />

,<br />

(A − λI)x = 0, (3.107)<br />

. I n × n <br />

. n <br />

, A − λI 0<br />

, <br />

.<br />

det(A − λI) = 0. (3.108)<br />

<br />

. λ n <br />

, n <br />

.<br />

n <br />

, λ (3.106) , x <br />

.<br />

, (3.104) <br />

. X X i <br />

<br />

. , <br />

, Ẋ , X, Y , Ẏ <br />

. , <br />

<br />

, <br />

, . X , Ẏ i Y i <br />

, n Y i <br />

<br />

. <br />

<br />

. X Y .<br />

Y = BX, (3.109)<br />

B <br />

.<br />

X = B −1 Y , Ẋ = B −1 Ẏ , (3.110)<br />

, (3.104) <br />

.<br />

B −1 Ẏ = AB −1 Y . (3.111)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 23<br />

, B ,<br />

Ẏ = BB −1 Ẏ = BAB −1 Y . (3.112)<br />

(3.112) , Y <br />

. B Λ <br />

.<br />

BAB −1 = Λ. (3.113)<br />

Λ <br />

. B −1 <br />

A <br />

, Λ A <br />

.<br />

⎛<br />

⎞<br />

λ 1 0 · · · 0<br />

0 λ 2 · · · 0<br />

Λ = ⎜<br />

⎝<br />

.<br />

. . ..<br />

⎟<br />

. ⎠<br />

0 0 · · · λ n<br />

(3.114)<br />

<br />

,<br />

Ẏ = ΛY . (3.115)<br />

<br />

,<br />

Ẏ i = λ i Y i . (3.116)<br />

(3.116) <br />

Y i = c i e λ it . (3.117)<br />

c i n <br />

. Y i <br />

, X i <br />

. (3.110) ⎛<br />

X = B −1 Y = B −1 ⎜<br />

⎝<br />

⎞<br />

c 1 e λ 1t<br />

c 2 e λ 2t<br />

⎟<br />

. ⎠<br />

c n e λnt<br />

(3.118)<br />

n <br />

c i , (3.118) n <br />

<br />

.<br />

<br />

, <br />

. n = 4 , <br />

<br />

.<br />

−λ 0 1 0<br />

0 −λ 0 1<br />

det(A − λI) =<br />

= 0 (3.119)<br />

U xx U xy −λ 2<br />

∣ U xy U yy −2 −λ ∣


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 24<br />

<br />

.<br />

λ 4 + (4 − U xx − U yy )λ 2 + U xx U yy − U 2 xy = 0. (3.120)<br />

, λ 4 , λ 2 2 <br />

. , ,<br />

[<br />

1<br />

λ 1,2 = ±<br />

2 (U xx + U yy − 4)<br />

− 1 2<br />

[<br />

(4 − Uxx − U yy ) 2 − 4(U xx U yy − U 2 xy) ] 1/2<br />

[<br />

1<br />

λ 3,4 = ±<br />

2 (U xx + U yy − 4)<br />

+ 1 2<br />

[<br />

(4 − Uxx − U yy ) 2 − 4(U xx U yy − U 2 xy) ] 1/2<br />

] 1/2<br />

(3.121)<br />

] 1/2<br />

(3.122)<br />

(3.118) , 4 A <br />

, . (3.118) X, Ẋ <br />

.<br />

X =<br />

4∑<br />

ᾱ j e λjt , Ẋ =<br />

j=1<br />

4∑<br />

ᾱ j λ j e λjt . (3.123)<br />

j=1<br />

ᾱ j <br />

. X Y , Ẏ <br />

, ¯β j ,<br />

Y =<br />

4∑<br />

¯β j e λjt , Ẏ =<br />

j=1<br />

4∑<br />

¯β j λ j e λjt , (3.124)<br />

j=1<br />

<br />

. 4 <br />

, ¯β j ᾱ j . ¯βj <br />

ᾱ j (3.101) . (3.101) X, Y , Ẏ <br />

,<br />

4∑<br />

(ᾱ j λ 2 j − 2 ¯β j λ j − U xx ᾱ j − U xy ¯βj )e λjt = 0. (3.125)<br />

j=1<br />

¯β j <br />

,<br />

¯β j = λ2 j − U xx<br />

2λ j + U xy<br />

ᾱ j , (3.126)<br />

. t = 0 , <br />

X = X 0 , Y = Y 0 , Ẋ = Ẋ0, Ẏ = Ẏ0 , 4 ᾱ j 4 <br />

.<br />

4∑<br />

ᾱ j = X 0 ,<br />

j=1<br />

4∑<br />

λ j ᾱ j = Ẋ0,<br />

j=1<br />

4∑<br />

¯β j = Y 0 ,<br />

j=1<br />

4∑<br />

λ j ¯βj = Ẏ0, (3.127)<br />

j=1


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 25<br />

<br />

(3.123), (3.123) , ᾱ j , ¯β j <br />

, <br />

. , <br />

.<br />

<br />

Ā = µ 1<br />

+ µ 2<br />

(3.128)<br />

(r1) 3 0 (r<br />

[ 2) 3 0<br />

µ1<br />

¯B = 3 + µ ]<br />

2<br />

y<br />

(r1) 5 0 (r2) 5 0 2 (3.129)<br />

[<br />

0<br />

]<br />

(x 0 + µ 2 ) (x 0 − µ 1 )<br />

¯C = 3 µ 1 + µ<br />

(r1) 5 2 y<br />

0 (r2) 5 0 , (3.130)<br />

0<br />

]<br />

(x 0 + µ 2 )<br />

¯D = 3<br />

[µ 2 (x 0 − µ 1 ) 2<br />

1 + µ<br />

(r1) 5 2 . (3.131)<br />

0 (r2) 5 0<br />

U xx = 1 − Ā + ¯D, (3.132)<br />

U yy = 1 − Ā + ¯B, (3.133)<br />

U xy = ¯C. (3.134)<br />

. , λ j , ᾱ j , ¯β j <br />

, , X, Y , Ẋ, Ẏ <br />

.<br />

<br />

(3.121),(3.122) ,<br />

λ 1,2 = ±(j 1 + ik 1 ), λ 3,4 = ±(j 2 + ik 2 ). (3.135)<br />

. j 1 , k 1 , j 2 , k 2 <br />

, i = √ −1 . <br />

, <br />

e λjt <br />

, 2 e +(j+ik)t e −(j+ik)t <br />

<br />

. j = 0 , <br />

. ,<br />

e +ikt , e −ikt <br />

, <br />

. j <br />

, <br />

. <br />

<br />

. <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 26<br />

3.7.1 <strong>The</strong> Collinear Points<br />

Lagrangian Point <br />

L 1 , L 2 , L 3 <br />

. <br />

, y 0 = 0,<br />

(r1) 2 0 = (x 0 + µ 2 ) 2 , (r2) 2 0 = (x 0 − µ 1 ) 2 ,<br />

U xx = 1 + 2Ā, U yy = 1 − Ā, U xy = 0. (3.136)<br />

<br />

λ 4 + (2 − Ā)λ2 + (1 + Ā − 2Ā2 ) = 0, (3.137)<br />

.<br />

, µ 2 = 0.01 L 1 , 3.6 <br />

. 3.6 , x 0 = 0.848, y 0 = 0. X 0 = Y 0 = 10 −5 , Ẋ 0 = Ẏ0 = 0, , <br />

±2.90, ±2.31i . <br />

L 1 <br />

. ᾱ j ,<br />

¯β j <br />

, X(t), Y (t) <br />

.<br />

X(t) =6.99 × 10 −6 e −2.90t + 4.96 × 10 −6 e +2.90t<br />

+ 1.96 × 10 −6 cos 2.32t + 2.54 × 10 −6 sin 2.32t,<br />

Y (t) =3.25 × 10 −6 e −2.90t − 2.31 × 10 −6 e +2.90t<br />

+ 9.06 × 10 −6 cos 2.32t + 6.96 × 10 −6 sin 2.32t,<br />

(3.138)<br />

2 X, Y <br />

. µ 2 <br />

1/2.90 .<br />

3.12: <br />

( ) ( ) . logµ 2


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 27<br />

L 1 <br />

3.12 . µ 2 0.1 0.001 <br />

. <br />

, ±j, ±ik . j, k <br />

. L 2 , L 3 <br />

.<br />

<br />

, , <br />

.<br />

<br />

.<br />

(λ 1 λ 2 )(λ 3 λ 4 ) = 1 + Ā − 2Ā2 (3.139)<br />

(3.121), (3.122) , λ 1 = −λ 2 , λ 3 = −λ 4 . <br />

(<br />

) , λ 2 1 = λ 2 2 < 0, λ 2 3 = λ 2 4 < 0 <br />

. ,<br />

1 + Ā − 2Ā2 = (1 − Ā)(1 + 2Ā) > 0 . <br />

−1/2 < Ā < 1 <br />

<br />

. , (3.128) <br />

r 1 , r 2 <br />

, µ 2 < 1/2 , Ā > 1 . <br />

µ 2 <br />

. , (3.138) <br />

, <br />

<br />

. <br />

, x <br />

. 2 , <br />

, <br />

. , 2 <br />

2 <br />

. <br />

, 2 <br />

1 <br />

. x <br />

, <br />

.<br />

, <br />

, <br />

(Szebehely 1967). , - L 1 <br />

SOHO(Domingo et al., 1995)<br />

<br />

, <br />

.<br />

3.7.2 <strong>The</strong> Triangular Points<br />

Lagrangian Point <br />

L 4 , L 5 <br />

. , r 1 = r 2 = 1,<br />

x = 1/2 − µ 2 , y = ± √ 3/2 ,<br />

U xx = 3/4, U yy = 9/4, U xy = ±3 √ 3(1 − 2µ 2 )/4. (3.140)<br />

. <br />

λ 4 + λ 2 + 27 4 µ 2(1 − µ 2 ) = 0. (3.141)<br />

. <br />

. L 4 , µ 2 = 0.01 , x 0 = 0.49, y 0 = √ 3/2<br />

<br />

. <br />

, ±0.963i, ±0.268i ,


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 28<br />

<br />

. X(t) =3.45 × 10 −5 cos 0.268t − 2.45 × 10 −5 cos 0.963t,<br />

+ 3.07 × 10 −4 sin 0.268t − 8.55 × 10 −5 sin 0.963t,<br />

Y (t) =5.20 × 10 −5 cos 0.268t − 4.20 × 10 −5 cos 0.963t,<br />

− 1.76 × 10 −4 sin 0.268t + 4.90 × 10 −5 sin 0.963t,<br />

(3.142)<br />

. <br />

, 1/0.268, 1/0.963 2 <br />

.<br />

3.13 <br />

. , logµ 2 ≈ −1.4<br />

<br />

, logµ 2 <br />

. , ±j ± ik , <br />

. , µ 2 <br />

, , <br />

, <br />

.<br />

3.13 <br />

, <br />

. U xx , U yy ,<br />

U xy (3.121), (3.122) <br />

, <br />

.<br />

√<br />

−1 − √ 1 − 27(1 − µ 2 )µ 2<br />

λ 1,2 = ±<br />

√ (3.143)<br />

2<br />

λ 3,4 = ±<br />

√<br />

−1 + √ 1 − 27(1 − µ 2 )µ 2<br />

√<br />

2<br />

(3.144)<br />

, <br />

.<br />

1 − 27(1 − µ 2 )µ 2 ≥ 0<br />

µ 2 ≤ 27 − √ 621<br />

54<br />

≈ 0.0385 (3.145)<br />

<br />

, k 1 , k 2 , λ 1,2 = ±ik 1 , λ 3,4 = ±ik 2 <br />

. , a j , b j <br />

, α j = ā j + i¯b j , X(t) <br />

.<br />

X(t) =(ā 1 + i¯b 1 )e +ik 1t + (ā 2 + i¯b 2 )e −ik 1t<br />

+ (ā 3 + i¯b 3 )e +ik 2t + (ā 4 + i¯b 4 )e −ik 2t .<br />

(3.146)<br />

Y (t) <br />

. (3.127) X, Y , Ẋ, Ẏ <br />

, ā 1 = ā 2 =<br />

a 1 , ā 3 = ā 4 = a 2 , ¯b 1 = −¯b 2 = b 1 , ¯b 3 = −¯b 4 = b 2 <br />

, e , <br />

.<br />

X(t) =(a 1 + ib 1 )e +ik 1t + (a 1 − ib 1 )e −ik 1t<br />

+ (a 2 + ib 2 )e +ik 2t + (a 2 − ib 2 )e −ik 2t ,<br />

(3.147)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 29<br />

e iθ = cos θ + i sin θ <br />

, <br />

.<br />

X(t) = 2a 1 cos k 1 t + 2a 2 cos k 2 t − 2b 1 sin k 1 t − 2b 2 sin k 2 t. (3.148)<br />

, <br />

, <br />

. , <br />

, .<br />

(3.145) <br />

, , ±(j ± ik) (<br />

3.13 <br />

). ,<br />

X(t) =(ā 1 + i¯b 1 )e (j+ik)t + (ā 1 − i¯b 1 )e (j−ik)t<br />

+ (ā 2 + i¯b 2 )e (−j+ik)t + (ā 2 + i¯b 2 )e (−j−ik)t ,<br />

(3.149)<br />

X(t) = 2(a 1 e jt + a 2 e −jt ) cos kt − 2(b 1 e jt + b 2 e −jt ) sin kt. (3.150)<br />

<br />

. <br />

.Y , Ẋ, Ẏ . .<br />

<br />

.<br />

<br />

(µ 2 < 0.0385) <br />

. (3.143), (3.144) ,<br />

√<br />

λ 1,2 ≈ ± −1 + 27 √<br />

4 µ 2, λ 3,4 ≈ ± − 27<br />

4 µ 2. (3.151)<br />

<br />

, µ 2 <br />

, <br />

2 <br />

. L 4 , L 5 <br />

2 3.13: <br />

( ) ( ) . logµ 2 . <br />

logµ 2 ≈ −1.4 .


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 30<br />

3.14: (3.142) . ( ) epicenter ( )<br />

<br />

. epicenter <br />

, L 4 <br />

. <br />

<br />

epicenter <br />

.<br />

, <br />

. (3.145) <br />

. <br />

(resonances) <br />

, <br />

, (3.145) <br />

(Deprit & Deprit-Bartholome 1967 ).<br />

3.8 Motion near L 4 and L 5<br />

<br />

, µ 2 <br />

, 2π <br />

. 3.7 <br />

, 2π/λ 1,2 , 2π/λ 3,4 . <br />

<br />

2 <br />

.<br />

• 2π/λ 1,2 ≈ 2π ( µ 2 <br />

.),<br />

• 2π/λ 3,4 , (libration) <br />

,<br />

.<br />

2 <br />

ᾱ j , ¯β j <br />

, <br />

. , <br />

epicenter , , epicenter <br />

( ) <br />

(3.14). <br />

(3.142) <br />

<br />

3.15 <br />

2 . <br />

30 <br />

. X <br />

. (X ′ , Y ′ ) <br />

.<br />

( ) (<br />

) ( )<br />

X ′ (t) cos 30 − sin 30 X(t)<br />

=<br />

. (3.152)<br />

Y ′ (t) sin 30 cos 30 Y (t)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 31<br />

3.15: L 4 <br />

. <br />

(3.142) , t = 0 25π (µ 2 <br />

12.5 ) <br />

. 3.8 <br />

epicenter <br />

.<br />

X(t), Y (t) (3.142) ,<br />

X(t) ≈3.54 × 10 −4 sin 0.268t − 9.85 × 10 −5 sin 0.963t,<br />

Y (t) ≈6.23 × 10 −5 cos 0.268t − 4.86 × 10 −5 cos 0.963t,<br />

(3.153)<br />

<br />

, <br />

. 2 , (2.40)<br />

16 <br />

, <br />

. epicenter , <br />

<br />

. 3.10 <br />

associated zero-velocity<br />

curve <br />

, , , <br />

b/a = (3µ 2 ) 1/2 <br />

<br />

.<br />

epicenter <br />

(epicyclic) , <br />

, <br />

2:1 <br />

. , <br />

, 2.6 2 <br />

the guideing center approximation <br />

. , 2e, <br />

e <br />

<br />

. e ≈ 5 × 10 −5 . <br />

<br />

, <br />

, µ 2 ” ” (epicenter <br />

) 2:1<br />

<br />

” ” <br />

. <br />

, , , <br />

epicenter <br />

.<br />

16 (2.40) : (¯x/a) 2 + (ȳ/b) 2 = 1


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 32<br />

3.9 Tadpole and Horseshoe Orbits<br />

L 4 , L 5 <br />

, . <br />

, <br />

. , <br />

. (3.2<br />

(3.16) 17 , (3.17) 18 )<br />

3.16 L 4 µ 2 = 0.001 2 , <br />

<br />

. <br />

-<br />

. 3.16a , 3.16b<br />

<br />

L 4 . <br />

L 4 <br />

. 3.16a <br />

86 , 3.16b 115 <br />

. 2 L 4 <br />

, 2 <br />

<br />

, 3.16 , <br />

µ 1 <br />

<br />

. <br />

Tadpole . <br />

. Tadpole orbit L 5 .<br />

, <br />

L 4 , L 5 <br />

<br />

. <br />

, L 4 , L 5 <br />

. (Horseshoe orbit)<br />

. 3.17 2 <br />

. Taylor (1981) <br />

. 3.17b , <br />

.<br />

3.16, 3.17 epicenter 3.9 <br />

.<br />

3.16: µ 2 = 0.001 , L 4 <br />

Tadpole (L 4 <br />

x 0 = 1/2 − µ 2 , y 0 = √ 3/2). <br />

µ 1 , µ 2 . (a) <br />

x = x 0 + 0.0065, y = y 0 + 0.0065, ẋ = ẏ = 0 , µ 2 15 <br />

. (b) x = x 0 + 0.008, y = y 0 + 0.008, ẋ = ẏ = 0 , µ 2 15.5 <br />

<br />

.<br />

17 (3.16): ẍ − 2nẏ − n 2 x = −[µ 1 (x + µ 2 )/r 3 1 + µ 2 (x − µ 1 )/r 3 2]<br />

18 (3.17): ÿ + 2nẋ − n 2 y = −[µ 1 /r 3 1 + µ 2 /r 3 2]y


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 33<br />

3.17: µ 2 = 0.000953875 2 <br />

(Taylor 1981). (a) :<br />

x = −0.97668, ẏ = −0.06118, y = ẋ = 0 (b) : x = −1.02745, ẏ = 0.04032, y =<br />

ẋ = 0.<br />

, 3.10 <br />

, µ 2 <br />

2 <br />

, <br />

. 3.16, 3.17 <br />

<br />

, <br />

. , L 4 , L 5 <br />

, <br />

. , Jacobi L 4 , L 5 <br />

<br />

, <br />

, <br />

.<br />

<br />

Tadpole <br />

. 3.18 , µ 2 = 10 −3 , 3 (<br />

1 , Tadpole 2 ) <br />

. θ , , µ 1 µ 2 <br />

<br />

. 3 <br />

e ≈ 0 . <br />

, L 4 , L 5 <br />

, Tadpole<br />

<br />

. <br />

, L 3 <br />

,θ = 180 , <br />

. r<br />

, a <br />

, e ≈ 0 . 3.16, 3.17 <br />

.<br />

µ 2 = 10 −3 <br />

a, e 3.19 . µ 2 <br />

<br />

a . <br />

a a > 1 a < 1 , <br />

<br />

(3.19a). a = 1 + ∆a , θ = 180 ∆a <br />

, <br />

. ∆a = 0.020 . , 1 <br />

∆a = −0.0143 . , 2 <br />

∆a = 0.0198 , <br />

<br />

. , |∆a| <br />

1 <br />

. 3.15 ,


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 34<br />

3.18: µ 2 = 10 −3 3 <br />

a θ <br />

.<br />

<br />

, <br />

. <br />

µ 2 100 <br />

. <br />

.<br />

<br />

(Dermotto et al., 1980,<br />

Dermott & Marray 1981a). 3.19b µ 2 e , 1 <br />

. <br />

, phase effects <br />

(L 4 , L 5 , Tisserand <br />

3.19: 3.18 <br />

(a) a . (b) e <br />

. , µ 2 = 10 −3 .


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 35<br />

3.20: µ 2 = 10 −3 3 <br />

a θ <br />

.<br />

<br />

, <br />

. Tadpole <br />

. µ 2 100 <br />

. <br />

.<br />

, <br />

). , <br />

impulse .<br />

<br />

3.20, 3.21 . µ 2 = 10 −6<br />

. µ 2 <br />

, <br />

a = 1.002 (∆a 1 <br />

3.21: 3.20 <br />

(a) a . (b) e <br />

. , µ 2 = 10 −6 .


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 36<br />

<br />

). 3.20 θ a <br />

. a , 3.18 , L 4 , L 5 ( θ = 60 , 300 ) <br />

. , 2 <br />

<br />

. , L 3 <br />

, µ 2 <br />

, θ = 180 L 3 <br />

. , 2 Tadpole , 3.18 , 45 135 <br />

, a 3.18 <br />

. , Tadpole <br />

, µ 2 <br />

. Tadpole , <br />

, <br />

Tadpole .<br />

µ 2 , <br />

3.21 <br />

. <br />

∆a = 0.00200 , 1 <br />

∆a = −0.00199, 2 <br />

∆a = 0.00200 <br />

. <br />

<br />

, µ 2 <br />

. e <br />

, <br />

. , <br />

µ 2 <br />

.<br />

<br />

, <br />

, <br />

. <br />

L 4 , L 5 <br />

. , <br />

L 3 <br />

(Tadpole ). <br />

<br />

, L 4 , L 3 , L 5 <br />

( ). ,<br />

<br />

, epicenter , <br />

(circulate) . Jacobi <br />

µ 2 <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 37<br />

3.10 Orbits and Zero-Velocity Curves<br />

<br />

, <br />

. 3.15 <br />

, 30 <br />

. , <br />

, 30 , <br />

<br />

. L 4 <br />

x = 1/2 − µ 2 , y = √ 3/2 <br />

<br />

. (3.8) 19 , (3.9) 20 , x → (1/2 − µ 2 ) + x, y √ 3/2 + y <br />

. , 30 <br />

, x → √ 3x ′ /2 + y ′ /2,<br />

y → −x ′ /2 + √ 3y ′ /2 , <br />

(x ′ , y ′ ) . <br />

,<br />

r 2 1 = 1 + 2y ′ + x ′2 + y ′2 (3.154)<br />

r 2 2 = 1 − √ 3x ′ + y ′ + x ′2 + y ′2 (3.155)<br />

. (3.22) 21 <br />

, C J = 2U ,<br />

<br />

.<br />

C J = 1 − µ 2 − √ ( 1 −<br />

3µ 2 x ′ + (2 − µ 2 )y ′ + x ′2 + y ′2 µ2<br />

+ 2 + µ )<br />

2<br />

, (3.156)<br />

r 1 r 2<br />

, O(µ 2 2) <br />

. (3.156) <br />

, <br />

.<br />

C J ≈ 3 − µ 2 + 9 4 µ 2x ′2 + 3y ′2 (3.157)<br />

3 <br />

, , (i)µ 2 <br />

, (ii) 3.9 <br />

µ 2 , µ 2 y ′ <br />

<br />

. µ 2 x <br />

. <br />

. ,<br />

C J = 3 + γµ 2 (3.158)<br />

<br />

. γ <br />

, L 4 ,L 5 -1 ((3.97) 22 , <br />

(3.98) 23 ). (3.157) ,<br />

x ′2<br />

(4/9)(1 + γ) + y ′2<br />

(µ 2 /3)(1 + γ)<br />

= 1. (3.159)<br />

<br />

. , (2.40) 24 <br />

, <br />

, , a ′ = (2/3) √ 1 + γ, b ′ = √ µ 2 /3 √ 1 + γ , L 4 <br />

19 (3.8): r 2 1 = (x + µ 2 ) 2 + y 2 + z 2<br />

20 (3.9): r 2 2 = (x − µ 1 ) 2 + y 2 + z 2<br />

21 (3.22): U = n 2 (x 2 + y 2 )/2 + µ 1 /r 1 + µ 2 /r 2<br />

22 (3.97) : C L4 ≈ 3 − µ 2 ,<br />

23 (3.98) : C L5 ≈ 3 − µ 2<br />

24 (2.40) : ( ) ¯x 2 (<br />

a + ȳ<br />

) 2<br />

b = 1.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 38<br />

<br />

. b ′ /a ′ = (1/2) √ 3µ 2 <br />

, µ 2 → 0 <br />

, <br />

. b ′ /a ′ 3.8 guiding center <br />

2 , <br />

.<br />

µ 2 ≪ µ 1/2<br />

2 ≪ µ 1/3<br />

2 ≪ 1 <br />

. , <br />

, , <br />

.<br />

, (3.94)-(3.98) 25 <br />

, tadpole <br />

, γ <br />

.<br />

−1 ≤ γ ≤ +1. (3.160)<br />

L 4 , L 5 <br />

C J , L 3 <br />

. <br />

,<br />

C J = 3 + ζµ 2/3<br />

2 + O(µ 2 ) (3.161)<br />

where<br />

0 ≤ ζ ≤ 3 4/3 . (3.162)<br />

<br />

L 3 C J . L 1 , L 2 <br />

. ,<br />

γ ζ <br />

tadpole <br />

.<br />

U <br />

(3.64) 26 , n = 1 ,<br />

. (3.28) ,<br />

2U = 2 µ 1<br />

r 1<br />

+ µ 1 r 2 1 + 2 µ 2<br />

r 2<br />

+ µ 2 r 2 2 − µ 1 µ 2 , (3.163)<br />

v 2 = ṙ 2 + (r ˙θ) 2 = 2U − C J (3.164)<br />

µ 2 ≪ 1 <br />

, r 1 r <br />

.<br />

, <br />

, <br />

, δr ≪ 1 ,<br />

r = 1 + δr. (3.165)<br />

<br />

, ˙θ = 0, ṙ ≠ 0 µ 2 <br />

|ṙ| ≪ |r ˙θ| . ,<br />

<br />

,<br />

25<br />

(3.94) :C L1 ≈ 3 + 3 4/3 µ 2/3<br />

2 − 10µ 2 /3<br />

(3.95) :C L2 ≈ 3 + 3 4/3 µ 2/3<br />

2 − 14µ 2 /3,<br />

(3.96) :C L3 ≈ 3 ( + µ 2 , ) ( ) 26 1<br />

(3.64) : U = µ 1 r 1<br />

+ r2 1 1<br />

2<br />

+ µ 2 r 2<br />

+ r2 2<br />

2<br />

− 1 2 µ 1µ 2 .<br />

v ≈ r ˙θ = − 3 δr, (3.166)<br />

2


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 39<br />

. <br />

, (3.163) 2U <br />

. O(µ 2 )<br />

<br />

,<br />

2U = 3 + 3δr 2 + µ 2 H, (3.167)<br />

where<br />

H = 2 r 2<br />

+ r 2 2 − 4, (3.168)<br />

, v 2 = 2U − C J (3.164) <br />

.<br />

9<br />

4 δr2 = 3 + 3δr 2 + µ 2 H − C J . (3.169)<br />

<br />

v 2 = 0 , <br />

.<br />

0 = 3 + 3δr 2 zv + µ 2 H zv − C J (3.170)<br />

zv <br />

, <br />

.<br />

C J <br />

, (3.169), (3.170) <br />

δr 2 = (2δr zv ) 2 + 4 3 µ 2(H zv − H). (3.171)<br />

tadpole , <br />

, H zv −H ∼ δr, µ 2 δr ≪ δr 2 . guiding<br />

center ,<br />

δr = 2δr zv , (3.172)<br />

, guiding center <br />

2 <br />

(Dermott & Murray 1981a).<br />

<br />

(3.161), (3.162) ,<br />

3 + 3 4 δr2 + µ 2 H = 3 + ζµ 2/3<br />

2 + O(µ 2 ),<br />

3 + 3δr 2 zv + µ 2 H zv = 3 + ζµ 2/3<br />

2 + O(µ 2 ),<br />

(3.173)<br />

. <br />

, µ 2 2 ≫ µ 2 <br />

,<br />

µ 2/3<br />

δr = 2δr zv = 2(ζ/3) 1/2 µ 1/3<br />

2 . (3.174)<br />

tadpole <br />

(3.158), (3.160) ,<br />

3 + 3 4 δr2 + µ 2 H = 3 + γµ 2 , 3 + 3δr 2 zv + µ 2 H zv = 3 + γµ 2 . (3.175)<br />

<br />

δr ≈ 2δr zv = 2[(γ − H)/3] 1/2 µ 1/2<br />

2 , (3.176)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 40<br />

. , guiding center <br />

2 <br />

.<br />

L 4 , L 5 <br />

3.8 . ,δr ≈ 2δr zv ,<br />

guiding center <br />

, <br />

2 .<br />

<br />

3 , , (3.153) 27 <br />

, <br />

.<br />

X ′ (t) = a sin λ 3 (t − t 3 ) − 2e sin λ 1 (t − t 1 )<br />

Y ′ (t) = (3µ 2 ) 1/2 a cos λ 3 (t − t 3 ) − e cos λ 1 (t − t 3 )<br />

(3.177)<br />

λ 1 , λ 3 2 <br />

, 4 a, e, t 1 , t 3 , X ′ (0), Y ′ (0),<br />

Ẋ ′ (0), Ẏ ′ (0) <br />

. 2 , e guiding center <br />

e <br />

. 3 , <br />

, L 4 , L 5 <br />

guiding center <br />

, <br />

<br />

. <br />

.<br />

L 4 , L 5 <br />

, L 3 <br />

. <br />

Jacobi <br />

. (3.173), (3.175) <br />

.<br />

3<br />

4 δr2 + µ 2 H(θ) = constant, (3.178)<br />

θ µ 1 <br />

µ 2 <br />

, µ 1 <br />

2 3 <br />

<br />

r 2 = 2 sin(θ/2) <br />

,<br />

(<br />

H(θ) = sin<br />

2) θ −1<br />

− 2 cos θ − 2, (3.179)<br />

. (3.178) , tadpole γµ 2 , <br />

2 .<br />

<br />

2 (r i , θ i ), (r j , θ j ) <br />

. <br />

.<br />

ζµ 2/3<br />

δr 2 i − δr 2 j = − 4 3 µ 2[H(θ i ) − H(θ j )] (3.180)<br />

<br />

tadpole <br />

. 3.22 H(θ)<br />

θ <br />

. tadpole <br />

, δr i = δr j = 0 <br />

, H(θ i ) = H(θ j ) . <br />

2 θ min ,<br />

θ max , µ 2 <br />

, , 2 <br />

D = θ max − θ min <br />

<br />

. 3.22 H(θ) , 3.18, 3.20 tadpole <br />

<br />

.<br />

27 X(t) ≈3.54 × 10−4 sin 0.268t − 9.85 × 10 −5 sin 0.963t,<br />

Y (t) ≈6.23 × 10 −5 cos 0.268t − 4.86 × 10 −5 cos 0.963t.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 41<br />

3.22: (3.179) H(θ) , tadpole <br />

θ <br />

. L 4 θ , L 5 θ <br />

.<br />

θ i = 180 , δr i = 0 <br />

. critical tadpole <br />

. H(180<br />

) = 1 , (3.180) <br />

δr 2 j = 4 3 µ 2[1 − H(θ j )], (3.181)<br />

. H(θ) ≥ −1 tadpole <br />

.<br />

( ) 1/2 8<br />

δr ≤ δr crit = µ 1/2<br />

2 . (3.182)<br />

3<br />

, µ 2 <br />

, e <br />

, δr(<br />

µ 2 ) 1 <br />

tadpole <br />

.<br />

θ i = 180 δr i = δr 180 ≠ 0 <br />

. , ζ ≤ 3 3/4 <br />

<br />

, δr j = 0, θ j = θ min <br />

. <br />

.<br />

δr 2 180 = 4 3 µ 2[H(θ min ) − 1], (3.183)<br />

, <br />

µ 2 <br />

. ,<br />

θ min <br />

µ 2 <br />

. tadpole <br />

H(θ min ) = 1<br />

δr 180 = 0, θ min , , µ 2 θ min = 23.5<br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 42<br />

3.11 Trojan Asteroids and Satellites<br />

<br />

-<br />

(3.145) <br />

. -<br />

<br />

. Table 3.1 -<br />

<br />

Tadpole <br />

. Trojan asteroids(<br />

) <br />

.1998 <br />

Trojan asteroids<br />

450 , L 4 <br />

“Greeks”, L 5 <br />

“Trojan” .<br />

3.23 1997 12 <br />

-<br />

.(a) <br />

, (b) -<br />

, <br />

. -<br />

, , -<br />

.<br />

, <br />

-<br />

. <br />

, (coorbital satellites) .<br />

coorbital <br />

Janus Epimetheus <br />

<br />

, <br />

. <br />

-<br />

-<br />

. tadpole <br />

.<br />

3.9 <br />

. (3.174),<br />

(3.176) <br />

∼ µ 1/3<br />

2 tadpole ∼ µ 1/2<br />

2 <br />

. 2 <br />

R ∼ µ 1/6<br />

2 <br />

, R µ 2 <br />

. µ 2 ≈ 10 −3 R ≈ 0.3, µ 2 ≈ 10 −9 R ≈ 0.03 <br />

. <br />

<br />

. <br />

, 3.23: (a)1997 12 18 0:00 <br />

. <br />

. (b) <br />

, . <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 43<br />

<br />

, <br />

tadpole <br />

<br />

. Dermott & Murray(1981a) 2 µ 2 <br />

|∆a| <br />

, , Γ = T/µ 3/5<br />

2 <br />

.<br />

3.12 Janus and Epimetheus<br />

<br />

tadpole <br />

. , 3.9 <br />

, L 4 , L 5 , L 3 <br />

<br />

. <br />

, <br />

, <br />

.<br />

1980 Voyager I <br />

, Janus Epimetheus 2 <br />

. <br />

Janus, Epimetheus , a J = 151472km, a E =<br />

151422km , <br />

175km, 105km . 2 <br />

<br />

, , <br />

<br />

1 <br />

. Janus-Epimetheus µ 2 = 5 × 10 −9 ,<br />

δr = 3 × 10 −4 , (3.182) δr > δr crit ≈ 17km, (3.174) ζ = 0.02 < 3 4/3 <br />

, Epimetheus <br />

.<br />

, <br />

Epimetheus , Janus <br />

(<br />

0.25 <br />

.), , 2 <br />

<br />

. , <br />

, 2 ,<br />

<br />

. 2 , <br />

2 <br />

, Janus Epimetheus . W J , W E Janus , Epimetheus <br />

, <br />

, <br />

, .<br />

m J W J = m E W E (3.184)<br />

3.5 <br />

. m 2 < m 1 2 m 1 , m 2 . 2 , <br />

, <br />

m c <br />

(3.24). C 1 m 1 m c ,<br />

C <br />

, C 1 , C, m 2 <br />

. m 2 m c , m 1 <br />

<br />

. C R 2 <br />

T 2 .<br />

2.9 ((2.149) 28 ) <br />

. (2.145)<br />

v 29 e 2 = 0 <br />

,<br />

ȧ 2 = 2T 2 /n 2 , (3.185)<br />

28 dh<br />

(2.149) :<br />

dt = r ¯T<br />

29 da<br />

(2.145) :<br />

dt = 2 √<br />

a 3/2<br />

[ ¯Re sin f + ¯T (1 + e cos f)].<br />

µ(1−e 2 )


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 44<br />

3.24: <br />

m 1 , m 2 <br />

. m c . C 1 m 1 m c . C .<br />

a 2 , n 2 m 2 <br />

. guiding center epicyclic , <br />

guiding center <br />

. <br />

, <br />

.<br />

m 2 <br />

m c , m 1 <br />

. 3.24 ,<br />

T 2 = ( −Gm 1 /r 2 2)<br />

sin γ, +<br />

(<br />

−Gmc /r 2) sin β, (3.186)<br />

C 1 m 2 <br />

,<br />

and<br />

sin γ =<br />

sin β =<br />

m c r<br />

cos θ m c + m 1 r 0 2<br />

(3.187)<br />

m 1 r<br />

sin θ (3.188)<br />

m c + m 1 r 0<br />

r<br />

= m [<br />

c + m 1<br />

a ∗ 4 m ( )<br />

1 mc + m 1<br />

sin 2 θ ] −1/2<br />

≈ m c + m 1<br />

, (3.189)<br />

r 0 m c m c m c 2 m c<br />

. <br />

θ , m 1 ≪ m c <br />

, <br />

. T 2 = − ( gm 1 /r 2) ¯H(θ), (3.190)<br />

¯H(θ) =<br />

cos(θ/2)<br />

4 sin 2 − sin θ (3.191)<br />

(θ/2)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 45<br />

¯H(θ) = −(1/2)dH(θ)/dθ . m 1 <br />

,<br />

T 1 = + ( gm 2 /r 2) ¯H(θ), (3.192)<br />

.<br />

<br />

, 2 <br />

<br />

. <br />

, (3.185) <br />

s = a 2 − a 1 , (3.193)<br />

ṡ = ˙θds/dθ = −2(T 1 − T 2 )/n, (3.194)<br />

n <br />

. 3 ˙θ/n = −(3/2)s/a. a <br />

<br />

. ds/dθ (s i , θ i ), (s j , θ j ) ,<br />

( si<br />

) 2 ( sj<br />

) 2 8<br />

− =<br />

a a 3 g m ∫<br />

1 + m 2<br />

4<br />

θ<br />

n 2 a 3 i θ j ¯H(θ)dθ = −<br />

3 g m 1 + m 2<br />

[H(θ<br />

n 2 a 3 i ) − H(θ j )] , (3.195)<br />

. (3.191) , ¯H(θ) ±60 <br />

. n <br />

, <br />

1 r . n n 2 r 3 = g(m c + m 1 + m 2 ). (3.196)<br />

r ≈ a , <br />

, m c + m 1 + m 2 ≈ m c <br />

, (3.195) ( si<br />

) 2 ( sj<br />

) 2 4 m 1 + m 2<br />

− = − [H(θ<br />

a a 3 n 2 a 3 i ) − H(θ j )] (3.197)<br />

. (3.180) m 2 ≪ m 1 <br />

. 2 <br />

<br />

. (3.182), (3.183) ( ( ) 1/2 ( ) ( s 8 m1 + m 2<br />

=<br />

1/2) (3.198)<br />

a)<br />

crit 3 m c<br />

and<br />

( s180<br />

a<br />

) ( )<br />

2 4 m1 + m 2<br />

= [H(θ min ) − 1]. (3.199)<br />

3 m c<br />

<br />

Janus Epimetheus <br />

. <br />

, s j = ∆a 0 = 50km , θ i = 180 . (3.197) m 2 /m 1 = 0.25 <br />

, <br />

, s θ <br />

. a J = a + ∆a J , a E = a + ∆a E , (3.184) , <br />

<br />

, ∆a J ∆a E <br />

(<br />

3.25). <br />

Janus <br />

. <br />

, <br />

, <br />

. 3 <br />

, <br />

±60 <br />

(3.18, 3.20).<br />

<br />

, ±60 <br />

<br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 46<br />

3.25: Janus-Epimetehus <br />

∆a J /∆ 0 , ∆a E /∆ 0 . <br />

∆ 0 = 50km 180 <br />

2 <br />

. <br />

. Janus <br />

Epimetheus <br />

±60 <br />

.<br />

3.26: Janus-Epimetheus 2 <br />

<br />

. <br />

. , <br />

∼ 0.25 .


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 47<br />

3.27: 2 <br />

. Janus-Epimetheus<br />

<br />

.<br />

3.26 2 <br />

. <br />

. Janus Epimetheus 10 km , 40 km . , <br />

150432 km . <br />

, <br />

. , 4 <br />

, .<br />

<br />

, Dermott & Murray (1981b) Janus Epimetheus <br />

<br />

, <br />

. (3.199) <br />

. 3.27 2 guiding center <br />

<br />

. s 180 /a = 3.32 × 10 −4 . <br />

, <br />

0.001 <br />

. Nicholson et<br />

al.(1992) <br />

, <br />

. Janus Epimetheus 5.64 <br />

, , <br />

0.65 ± 0.08g cm −3 , 0.63 ± 0.11g cm −3 <br />

.Voyger <br />

<br />

, <br />

, <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 48<br />

3.13 Hill’s Equation<br />

<br />

3 , <br />

(3.9 ). <br />

2 <br />

. <br />

, <br />

, <br />

.<br />

<br />

, , <br />

<br />

. µ 1 ≈ 1 ,x − y <br />

(3.16)<br />

30 , (3.17) 31 ,<br />

ẍ − 2ẏ − x = − x r 3 1<br />

ÿ + 2ẋ − y = − y r 3 1<br />

x − 1<br />

− µ 2 , (3.200)<br />

r2<br />

3<br />

y<br />

− µ 2 , (3.201)<br />

r2<br />

3<br />

. , x x → x + 1 , ∆ = r 2 . <br />

(<br />

L 1 , L 2 ) <br />

, x, y, ∆ O(µ 1/3<br />

2 ) <br />

<br />

. µ 2 <br />

, r 1 ≈ (1 + 2x) 1/2 . <br />

(3.200), (3.201) <br />

ẍ − 2ẏ =<br />

(<br />

3 − µ 2<br />

∆ 3 )<br />

x = ∂U H<br />

∂x , (3.202)<br />

ÿ − 2ẋ = − µ 2<br />

∆ 3 y = ∂U H<br />

∂y , (3.203)<br />

where<br />

U H = 3 2 x2 + µ 2<br />

∆ , and ∆2 = x 2 + y 2 , (3.204)<br />

<br />

. Jacobi <br />

,<br />

C H = 3x 2 + 2 µ 2<br />

∆ − ẋ2 − ẏ 2 , (3.205)<br />

. Jacobi (3.29) z <br />

, n = 1 <br />

.<br />

(<br />

C J = x 2 + y 2 µ1<br />

+ 2 + µ )<br />

2<br />

− ẋ 2 − ẏ 2 , (3.206)<br />

r 1 r 2<br />

(3.202), (3.203) Hill (Hill’s euation) , Hill <br />

. (3.202) , 3∆ 3 = µ 2 , <br />

. 30 (3.16): ẍ − 2nẏ − n 2 x = −[µ 1 (x + µ 2 )/r 3 1 + µ 2 (x − µ 1 )/r 3 2]<br />

31 (3.17): ÿ + 2nẋ − n 2 y = −[µ 1 /r 3 1 + µ 2 /r 3 2]y


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 49<br />

3.28: µ 2 = 0.1 L 1 , L 2 <br />

. Hill ,<br />

<br />

µ 2 <br />

.<br />

<br />

. , Hill (Hill’s sphere) <br />

.<br />

∆ H =<br />

( µ2<br />

) 1/3<br />

. (3.207)<br />

3<br />

(3.202), (3.203) ẋ = ẏ = ẍ = ÿ = 0 (x ≠ 0) , L 1 , L 2 <br />

<br />

. (3.202) ∆ L1,2 = (µ 2 /3) 1/3 , (3.205) C H = 3 4/3 µ 2/3<br />

2<br />

. L 1 , L 2 (3.207) Hill <br />

. ,<br />

C H = ζµ 2/3<br />

2 (3.208)<br />

<br />

, ζ < 3 4/3 <br />

. L 1 , L 2 <br />

3.28 .<br />

<br />

, <br />

<br />

. <br />

ẋ = ẍ = ÿ = 0 , x, ẏ <br />

<br />

.<br />

ẏ 2 = 3x 2 − ζµ 2/3<br />

2 . (3.209)<br />

, (3.205), (3.208) , , ∆ <br />

. , x zv <br />

x <br />

, ẏ = 0 <br />

,<br />

x 2 zv = 1 3 ζµ2/3 2 , (3.210)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 50<br />

3.29: Hill <br />

( ) ( )<br />

.<br />

. n 2 a 3 = 1 , ẏ = −(3/2)x <br />

,<br />

x 2 = 4 3 ζµ2/3 2 , (3.211)<br />

, x = 2x zv <br />

2 . 3.10 <br />

. 3.29 <br />

.<br />

<br />

, guiding center<br />

<br />

(Dermott & Murray 1981a, b).<br />

<br />

, Tisserand <br />

. a 1 = 1 + ∆a 1 ,<br />

e = ∆e 1 , <br />

a 2 = 1 + ∆a 2 , e = ∆e 2 . ∆a 1 , ∆a 2 ,<br />

∆e 1 , ∆e 2 <br />

. 3.4 Tisserand <br />

32 1<br />

1 + ∆a + 2(1 + ∆a)1/2 (1 − ∆e 2 ) 1/2 ≈ constant, (3.212)<br />

. <br />

3<br />

4 ∆a2 − ∆e 2 ≈ constant, (3.213)<br />

or<br />

3<br />

4 ∆a2 1 − ∆e 2 1 ≈ 3 4 ∆a2 2 − ∆e 2 2. (3.214)<br />

32 T isserand :<br />

1<br />

2a + √ a(1 − e 2 ) cos I = 1<br />

2a ′ + √ a ′ (1 − e ′2 ) cos I ′


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 51<br />

. <br />

( ∆a 1 ≈ −∆a 2 ) , ∆e 1 ≈<br />

∆e 2 .<br />

Hill <br />

. (3.202), (3.203) ∆ <br />

,<br />

, (3.205) (3.208) ,<br />

ẍ − 2ẏ = 3x, (3.215)<br />

ÿ − 2ẋ = 0, (3.216)<br />

ẋ 2 + ẏ 2 = 3x 2 − ζµ 2/3<br />

2 , (3.217)<br />

<br />

. guiding center <br />

n = 1, <br />

, x = ∆a + e sin t, ẋ = e cos t, ẍ = −e sin t<br />

<br />

. (3.215), (3.216) ÿ = −2e cos t,<br />

ẏ = − 3 ∆a − 2e sin t, (3.218)<br />

2<br />

. <br />

guiding center <br />

, <br />

guiding center<br />

<br />

. (3.217) x, ẋ, ẏ ,<br />

e 2 cos 2 t +<br />

(<br />

− 3 2 ∆a − 2e sin t ) 2<br />

= 3(∆a + e sin t) 2 − ζµ 2/3<br />

2 , (3.219)<br />

. <br />

3<br />

4 ∆a2 − ∆e 2 = ζµ 2/3<br />

2 , (3.220)<br />

. . <br />

Tisserand <br />

.<br />

y (<br />

, guiding center ) , <br />

∆ min <br />

. 3.29 , <br />

<br />

y <br />

. 1 + ∆a 0 <br />

<br />

. Hill <br />

(x 0 , y 0 ) , (3.218) <br />

(3.205) <br />

ẏ 0 = − 3 2 x 0 = − 3 2 ∆a 0 (3.221)<br />

|∆a 0 | = 2(ζ/3) 1/2 µ 1/3<br />

2 (3.222)<br />

y <br />

, x = 0, ẏ =<br />

0, ẋ = ẋ min , y = ∆ min . ẋ min <br />

ẋ . (3.205) <br />

ẋ min = 2 µ 2<br />

∆ min<br />

− ζµ 2/3<br />

2 . (3.223)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 52<br />

3.30: <br />

Hill <br />

. , L 1 , L 2 <br />

(x ′ , y ′ ) = (±1, 0) <br />

. <br />

y ′ = ±200 ẋ ′ = 0 <br />

. <br />

.<br />

ẋ 2 min ≪ ẏ0(Dermott 2 & Murray 1981a) ,<br />

y min ≈ (2/ζ) 1/2 µ 1/3<br />

2 , (3.224)<br />

, ∆a <br />

y min ≈ 8 3 ∆2 0µ 2 (3.225)<br />

.<br />

Hill <br />

µ 1/3<br />

2 .<br />

(3.202), (3.203) m 1/3<br />

2 x → x ′ (µ 2 /3) 1/3 y → y ′ (µ 2 /3) 1/3 ∆ → ∆ ′ (µ 2 /3) 1/3 <br />

, <br />

.<br />

ẍ ′ − 2ẏ ′ = 3x ′ (<br />

1 − 1<br />

∆ ′3 )<br />

, (3.226)<br />

ÿ ′ + 2ẋ ′ = −3 y′<br />

, (3.227)<br />

∆<br />

′3<br />

<br />

. <br />

. <br />

, L 1 , L 2 µ 2 <br />

<br />

. 3.30 <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 53<br />

<br />

, <br />

y ′ . y ′<br />

<br />

(| x′ |≪ 1.7) <br />

” ” , <br />

. , |x ′ | <br />

, <br />

. |x ′ | <br />

, <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 54<br />

3.14 <strong>The</strong> Effects of Drag<br />

<br />

, <br />

, <br />

. <br />

Poyntingrobertson(PR)<br />

(<br />

) , <br />

. PR , <br />

. <br />

, , <br />

<br />

(∼ 10 −6 m). <br />

PR , <br />

.<br />

F = − βGm c<br />

a 2 r 2 (<br />

ẋ − y + x r 2 (xẋ + yẏ), ẏ + x + y r 2 (xẋ + yẏ) )<br />

(3.228)<br />

β <br />

, m c , a <br />

, . β<br />

<br />

. (3.228) r·ṙ <br />

, 2 PR (Schuerman 1980).<br />

Dermott & Gold (1977) <br />

, µ 2 < 10 −10 <br />

<br />

, .<br />

Dermott et al.(1980) <br />

. PR <br />

(Burns et al. 1979). , 3.31: <br />

. , <br />

. e ≈ 0 , <br />

r = 1, θ = 0, 360 <br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 55<br />

<br />

, <br />

, 1 <br />

. (3.31, 3.9 )<br />

L 4 , L 5 <br />

, , <br />

, <br />

, <br />

. <br />

. <br />

, <br />

<br />

.<br />

<br />

. , <br />

. <br />

, 2 <br />

. (i) <br />

, (ii) <br />

.<br />

, <br />

µ 1 , µ 2 , F = (F x , F y )<br />

. F = (F x , F y ) <br />

, k |F| = O(k) .<br />

3.14.1 Analysis of the Jacobi Constant<br />

3.2 , <br />

.<br />

ẍ − 2ẏ = ∂U<br />

∂x + F x, (3.229)<br />

ÿ + 2ẋ = ∂U<br />

∂y + F y. (3.230)<br />

(3.229) ẋ, (3.230) ẏ <br />

,<br />

(<br />

ẋẍ + ẏÿ − ẋ ∂U<br />

∂x + ẏ ∂U )<br />

= ẋF x + ẏF y . (3.231)<br />

∂y<br />

. , Jacobi C J = 2U − ẋ 2 − ẏ 2 <br />

,<br />

dC J<br />

dt<br />

= −2(ẋF x + ẏF y ) (3.232)<br />

. ẋF x + ẏF y <br />

F <br />

. <br />

k < 0 <br />

, C˙<br />

J ẋF x + ẏF y <br />

. 3.3 <br />

<br />

, C J <br />

, L 4 , L 5 <br />

.<br />

<br />

, F = kv = k(ẋ, ẏ) ,<br />

ẋF x + ẏF y = k(ẋ 2 + ẏ 2 ) < 0. (3.233)<br />

<br />

(nebular drag <br />

) , <br />

, L 4 , L 5<br />

<br />

(Jeffreys 1929).


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 56<br />

PR <br />

, F = k(ẋ − y, ẏ + x)/r 2 , (3.234)<br />

,<br />

ẋF x + ẏF y = k(ẋ 2 + ẏ 2 ) − k(ẋy − ẏx). (3.235)<br />

. , <br />

. <br />

, <br />

. <br />

Jacobi <br />

.<br />

3.14.2 Linear Stability of the L 4 and L 5 Points<br />

<br />

, . L 4 , L 5 , <br />

, <br />

. Murray (1994b)<br />

5 <br />

k , L 4 , L 5 <br />

.<br />

( ) 27<br />

λ 4 + a 3 λ 3 + (1 + a 2 )λ 2 +<br />

4 µ 2 + a 0 = 0. (3.236)<br />

a i (i = 0, 1, 2, 3) O(k) , <br />

.<br />

a 0 = 9 4 k x,x + 3 4 k y,y ∓ 3√ 3<br />

4 (k x,y + k y,x ) (3.237)<br />

a 1 = 9 4 k x,ẋ + 3 4 k y,ẏ + 2(k x,y − k y,x ) ∓ 3√ 3<br />

4 (k x,ẏ + k y,ẋ ) (3.238)<br />

a 2 = −k x,x − k y,y + (k x,ẏ − k y,ẋ ) (3.239)<br />

a 3 = −(k x,ẋ − k y,ẏ ), (3.240)<br />

(3.237), (3.238) <br />

L 4 , L 5 . ,<br />

k x,x , k y,x · · · <br />

.<br />

[ ] [ ]<br />

[ ] [ ]<br />

∂Fx<br />

∂Fy<br />

∂Fx<br />

∂Fy<br />

k x,x = , k y,x = , k x,ẋ = , k y,ẋ = ,<br />

∂x<br />

0<br />

∂x<br />

0<br />

∂ẋ<br />

0<br />

∂ẋ<br />

0<br />

[ ] [ ]<br />

[ ] [ ] (3.241)<br />

∂Fx<br />

∂Fy<br />

∂Fx<br />

∂Fy<br />

k x,y = , k y,y = , k x,ẏ = , k y,ẏ =<br />

∂y<br />

0<br />

∂y<br />

0<br />

∂ẏ<br />

0<br />

∂ẏ<br />

0<br />

0 , <br />

. , <br />

O(k) , <br />

, x 0 , y 0<br />

<br />

.


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 57<br />

3.32: L 4 , L 5 <br />

. ,<br />

<br />

. (a) (<br />

). (b)guiding center <br />

, <br />

(<br />

).(c)guiding center <br />

, <br />

(<br />

).(d) <br />

( )<br />

(3.236), (3.237) , a i O(µ 2 ) <br />

4 , <br />

((3.141) 33 ). <br />

, (3.145) 34 , <br />

. <br />

<br />

, 3.32 <br />

4 <br />

.<br />

1. <br />

, .<br />

2. guiding center <br />

, , .<br />

3. guiding center <br />

, , .<br />

4. <br />

, .<br />

Murray (1994b) , µ 2 → 0 <br />

λ <br />

, <br />

<br />

0 < a 1 < a 3 , (3.242)<br />

. a 1 , a 3 , (3.238), (3.240) <br />

. , <br />

<br />

, a 0 , a 2 <br />

, L 4 , L 5 <br />

k x,x , k y,y <br />

<br />

. L 4 , L 5 <br />

2 <br />

.<br />

F = k(ẋ, ẏ) <br />

, (3.241) <br />

,<br />

33 (3.141) : λ 4 + λ 2 + 27µ 2 /4(1 − µ 2 ) = 0<br />

34 (3.145) : µ 2 ≤ 27−√ 621<br />

54<br />

≈ 0.0385<br />

k x,ẋ = k, k y,ẏ = k, (3.243)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 58<br />

, <br />

a 1 = 3k, a 3 = −2k, (3.244)<br />

. k < 0 a 1 < 0 , (3.242) <br />

. <br />

, Jacobi <br />

, <br />

.<br />

PR , F = k(ẋ − y, ẏ + x)/r 2 , (3.241) <br />

<br />

k x,ẋ = k y,x = k y,ẏ = k, k x,y = −k (3.245)<br />

, <br />

a 1 = −5k, a 3 = −2k, (3.246)<br />

. PR <br />

.<br />

<br />

F = k(ẋ − y, ẏ + x) <br />

, (3.241) <br />

,<br />

k x,ẋ = k y,x = k y,ẏ = k, k x,y = −k, (3.247)<br />

,<br />

a 1 = −k, a 3 = −2k. (3.248)<br />

<br />

(3.242) , <br />

. , <br />

, Tadpole <br />

<br />

.<br />

3.14.3 Inertial Drag Forces<br />

Murray (1994b) <br />

.<br />

F i = kVg(x, y, ẋ, ẏ), (3.249)<br />

, k < 0 , V = (ẋ−y, ẏ+x) <br />

. g(x, y, ẋ, ẏ)<br />

<br />

. Murray (1994b) inertial<br />

drag . k <br />

r 2 r 3 1r 3 2 + µ 2 r 3 1(µ 1 x − r 2 ) − µ 1 r 3 2(µ 2 x + r 2 ) = 0, (3.250)<br />

. 5 <br />

. 3.33a , µ 2 = 0.2 <br />

.<br />

µ 2 → 0 <br />

, Murray L 3 , L 4 , L 5 <br />

, L 1 ,<br />

L 2 <br />

. g ∗ = g(x, y, 0, 0) = g ∗ (r)


3. <strong>The</strong> <strong>Restricted</strong> <strong>Three</strong>-<strong>Body</strong> <strong>Problem</strong> 59<br />

(<br />

) , µ 2 L 4 , L 5 <br />

.<br />

(<br />

)<br />

¯k<br />

1<br />

= sin θ<br />

µ 2 (2 − 2 cos θ) − 1 . (3.251)<br />

3/2<br />

, ¯k = kg ∗ (1) . <br />

3.33b <br />

. θ = 108.4,<br />

θ = 251.6 , ¯k/µ 2 = −0.7265, ¯k/µ 2 = +0.7265 <br />

. L 3 ,<br />

L 4 , 180 , 60 <br />

¯k/µ 2 = −0.7265 θ = 108.4 <br />

<br />

. g r <br />

. <br />

, g ∗ r <br />

, L 4 L 5 <br />

.<br />

inertial drag <br />

L 4 , L 5 <br />

3.14.2 <br />

. , Murray (1994b) inertial drag <br />

.<br />

F i = kVV i r i , (3.252)<br />

i, j . Murray , k < 0 <br />

<br />

.<br />

0 < 1 − i + 2j < 2 + i (3.253)<br />

, i = 0, j = n <br />

, <br />

−1/2 < n < 1/2 <br />

L 4 ,<br />

L 5 <br />

. <br />

<br />

. Murray (1994b) , , L 4 , L 5 <br />

. <br />

.<br />

3.33: (a) (3.249) µ 2 = 0.2 <br />

. (b)¯k/µ 2 (¯k <br />

, <br />

) L 3 , L 4 , L 5 <br />

θ(30¡θ¡330) . <br />

. k < 0<br />

, k > 0 <br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!