05.11.2014 Views

Handout - STERIS University

Handout - STERIS University

Handout - STERIS University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CORNEA-ANTERIOR SEGMENT<br />

the MOST COMPREHENSIVE OCT<br />

Anterior Segment<br />

Imaging….<br />

AM Option and RTVue FD-OCT<br />

Tear Film<br />

Bag and Lens<br />

Cornea Transplant<br />

Soft contact lens<br />

CK scar<br />

sule<br />

IOL<br />

Vitreous margin<br />

3D Crystalline Lens w/ SUM of C-scan display<br />

What Would We<br />

Like to See?<br />

Disclosures<br />

Financial interest:<br />

Alcon Laboratories, Inc.<br />

Abbot Medical Optics, Inc.<br />

Zeimer, Inc.<br />

MP Weikert, MD ✦ ASORN Regional Meeting ✦ San Antonio, TX ✦ August 24, 2012<br />

Part No. 43721 Rev. A<br />

Advances in<br />

Corneal Imaging<br />

Anatomy<br />

- Macroscopic Optical Coherence<br />

Tomography<br />

Scanning<br />

Reference<br />

Mirror<br />

Beam<br />

Splitter<br />

Scanning<br />

Mirror<br />

Low<br />

Coherence<br />

Source<br />

Interfering<br />

Beams<br />

“Partial Coherence”<br />

(multiple wavelengths)<br />

maintains interference<br />

over short distances<br />

Detector<br />

Target<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Interferometry<br />

Optical Coherence<br />

Tomography<br />

Scanning<br />

Reference<br />

Mirror<br />

Beam<br />

Splitter<br />

Scanning<br />

Mirror<br />

Optical Coherence<br />

Tomography<br />

Time vs. Frequency Domain:<br />

Scanning vs. Fixed<br />

Reference Mirror<br />

Beam<br />

Splitter<br />

Scanning<br />

Mirror<br />

Low<br />

Coherence<br />

Source<br />

Interfering<br />

Beams<br />

Low<br />

Coherence<br />

Source<br />

Interfering<br />

Beams<br />

Relative difference in pathlengths of<br />

reference and measurement arms<br />

determines interference pattern<br />

Detector<br />

Target<br />

“Partial Coherence”<br />

(multiple wavelengths)<br />

maintains interference<br />

over short distances<br />

Detector<br />

Target<br />

ASI - What Would<br />

We Like to See?<br />

Interferometry<br />

ASI - What Would<br />

We Like to See?<br />

Time Domain vs. Frequency Domain


Optical Coherence<br />

Tomography<br />

ASI - What Would<br />

We Like to See?<br />

“Optical B-Scan” Multiple optical A-scans<br />

combined to produce<br />

cross-sectional image @<br />

different meridians<br />

Optical Coherence Tomography (OCT)<br />

ASI - What Would<br />

We Like to See?<br />

Parameter<br />

Wavelength<br />

Penetration Depth<br />

Axial Resolution<br />

Transverse Resolution<br />

A-Scans/Line<br />

A-Scans/Second<br />

Acquisition Time<br />

Scan Diameter<br />

Scan Alignment<br />

System Design<br />

Zeiss Visante ® (Time)<br />

1310 nm<br />

3 - 6 mm<br />

18 µm<br />

60 µm<br />

128 - 512<br />

2048<br />

0.25 - 0.5 sec<br />

Approx. 12-14 mm<br />

V-Trac system aligns images on<br />

corneal vertex<br />

Dedicated Anterior Segment<br />

Zeiss Visante<br />

Zeiss Visante<br />

LASIK Flap - Mechanical µKeratome<br />

LASIK Flap - Femtosecond Laser<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Zeiss Visante<br />

Optical Coherence Tomography (OCT)<br />

Parameter<br />

Wavelength<br />

Penetration Depth<br />

Axial Resolution<br />

Transverse Resolution<br />

A-Scans/Line<br />

A-Scans/Second<br />

Acquisition Time<br />

Scan Diameter<br />

Scan Alignment<br />

System Design<br />

Zeiss Visante ® (Time)<br />

1310 nm<br />

3 - 6 mm<br />

18 µm<br />

60 µm<br />

128 - 512<br />

2048<br />

0.25 - 0.5 sec (1 scan per merid)<br />

Approx. 12-14 mm<br />

V-Trac system aligns images on<br />

corneal vertex<br />

Dedicated Anterior Segment<br />

Optovue RTVue ® (Frequency)<br />

830 nm<br />

2.3 mm<br />

5 µm<br />

5 - 10 µm<br />

1024<br />

26,000<br />

0.31 sec (5 scans per meridian)<br />

4 - 6 mm<br />

Corneal vertex<br />

Hybrid Anterior/Posterior Segment<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


the MOST COMPREHENSIVE OCT<br />

Only with the CAM Option and RTVue FD-OCT<br />

Tear Film<br />

Soft contact lens<br />

Optovue RTVue ®<br />

CK scar<br />

Cataract Wound Changes<br />

Bag and Lens<br />

Cornea Transplant<br />

Early Descemet’s<br />

Detachment<br />

Early Posterior<br />

Wound Gape<br />

Late Posterior<br />

Wound Retracton<br />

Iris<br />

LASIK Flap<br />

Corneal Transplant<br />

IOL<br />

3D Crystalline Lens w/ SUM of C-scan display<br />

Posterior capsule<br />

Vitreous margin<br />

AC Angle<br />

LASIK Interface Fluid<br />

ASI - What Would<br />

We Like to See?<br />

Pterygium<br />

ASI - What Would<br />

We Like to See?<br />

Part No. 43721 Rev. A<br />

Cataract Wound Changes<br />

% Eyes<br />

Descemet’s Membrane Detachment<br />

Posterior Wound Gape<br />

40<br />

100<br />

30<br />

75<br />

20<br />

50<br />

10<br />

25<br />

0<br />

0<br />

1 Day 1 Wk 2-3 Wk 1-3 Mo 3-12 Mo 1-2 Yr 3-15 Yr<br />

1 Day 1 Wk 2-3 Wk 1-3 Mo 3-12 Mo 1-2 Yr 3-15 Yr<br />

Time After Surgery<br />

Time After Surgery<br />

Posterior Wound Retraction<br />

% Eyes<br />

% Eyes<br />

100<br />

75<br />

50<br />

25<br />

0<br />

1 Day 1 Wk 2-3 Wk 1-3 Mo 3-12 Mo 1-2 Yr 3-15 Yr<br />

Time After Surgery<br />

VHF Ultrasound<br />

U/S<br />

Emitter/<br />

Detector<br />

Saline Bath/Coupling Medium<br />

Reflection of the incident<br />

U/S wave occurs at<br />

acoustical interfaces<br />

ASI - What Would<br />

We Like to See?<br />

Huang D, et al. (Unpublished Data)<br />

ASI - What Would<br />

We Like to See?<br />

Very High Frequency Ultrasound<br />

ArcScan Artemis ®<br />

Parameter ArcScan Artemis ®<br />

Frequency<br />

Penetration Depth<br />

Axial Resolution<br />

Transverse Resolution<br />

Meridians Scanned<br />

Acquisition Time<br />

Scan Diameter<br />

Other<br />

50 MHz<br />

3 - 6 mm<br />

1 µm<br />

200 µm<br />

4-12<br />

2-3 min<br />

Up to 15 mm<br />

ONLY system that can penetrate<br />

iris to image ciliary sulcus<br />

Off-axis imaging possible<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


ArcScan Artemis ®<br />

ArcScan Artemis ®<br />

Pre-Op Post-Op Change Layers<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Anatomy - Microscopic<br />

Confocal Microscopy<br />

Illumination<br />

Pinhole<br />

Detection<br />

↑Axial Resolution<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Confocal Microscopy<br />

Superficial<br />

Epithelium<br />

Anterior<br />

Stroma<br />

Confocal Microscopy<br />

Fuch’s Diffuse Dystrophy Lamellar LASIK Keratoconus Interface<br />

Polymegathism<br />

Acanthamoeba<br />

Keratitis<br />

Keratitis<br />

Basal<br />

Epithelium<br />

Superficial Nerve<br />

Plexus<br />

Posterior<br />

Stroma<br />

Endothelial<br />

Mosaic<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


Corneal Power/Curvature<br />

How Do We Measure Curvature?<br />

Directly - reflection principle:<br />

Keratometer<br />

Placido disc<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

How Do We Measure Curvature?<br />

Directly - reflection principle:<br />

Keratometer<br />

Placido disc<br />

Indirectly - elevation measured:<br />

Scanning slit<br />

Scheimpflug<br />

Optical coherence tomography<br />

Very high frequency ultrasound<br />

Proven expertise<br />

for anterior segment care.<br />

Placido Imaging<br />

Illuminated rings<br />

(mires) projected<br />

onto corneal<br />

surface<br />

Reflected rings<br />

imaged by<br />

digital camera<br />

With revolutionary instruments such as the Stratus OCT<br />

Anterior segment imaging<br />

system, the unique technological expertise of Carl Zeiss<br />

The anterior segment can be evaluated and measured pre-<br />

Meditec has long proved invaluable in the diagnosis and<br />

and postoperatively after image acquisition using the ana-<br />

monitoring of retinal disease. Now, with the introduction of<br />

lysis mode of the Visante OCT system’s software. Practical<br />

ASI - What Would<br />

We Like to See?<br />

Narrow Angle<br />

the Visante OCT system, this same expertise is being<br />

applied to high-resolution, non-contact optical coherence<br />

tomography customized for the anterior segment.<br />

Exceptional design, greater confidence<br />

The Visante OCT system is the first to provide clear, highly<br />

tools enable planning and measurement of anterior segment<br />

ocular structures, including anterior chamber depth<br />

(ACD), anterior chamber angles and anterior chamber diameter<br />

(commonly referred to as angle-to-angle distance).<br />

Anterior chamber angle measurement results provide you<br />

with quick and reliable data for narrow-angle evaluation.<br />

ASI - What Would<br />

We Like to See?<br />

detailed, in-depth images of the anterior chamber - includ-<br />

Anterior segment images can be printed with or without<br />

ing the angle - without the need for ocular anesthesia or a<br />

measurement tools and results.<br />

Analysis Results<br />

messy, time-consuming water bath. As a result, the Visante<br />

OCT system will provide unique images and measure-ments<br />

that will dramatically expand the potential for diagnostic<br />

confidence and therapeutic precision. And, just as importantly,<br />

Visante OCT is so easy to use and efficient to operate<br />

that it will seamlessly take its place in your daily workflow,<br />

offering new clinical insights and practice opportunities<br />

from day one.<br />

Corneal imaging and pachymetry<br />

Visante OCT provides high-resolution corneal images and<br />

documentation for the anterior segment specialist to support<br />

the evaluation of ocular health. Rapid acquisition<br />

during the pachymetry scan ensures an accurate and repeatable<br />

pachymetry map result for application in refractive<br />

and glaucoma care.<br />

Versatile in application<br />

The unique, versatile Visante OCT system provides superb,<br />

highly detailed results, consistently supporting surgical<br />

Corneal Ring Segments<br />

planning and postoperative care across a range of anterior<br />

segment applications.<br />

Placido Imaging<br />

Placido Curvature Measurement<br />

Reflected rings<br />

imaged by<br />

Image processing analyzes ring digital camera<br />

spacing to determine curvature<br />

Advantages:<br />

Lots of data points<br />

Accurate curvature measurement<br />

Information on surface quality<br />

Disadvantages:<br />

Mires reflected off of tear film<br />

No true measurement of central<br />

cornea<br />

Anterior surface only<br />

(adjusted η = 1.3375)<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


Irregular Mires<br />

Decentered<br />

Placido Rings<br />

Pupil Center<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Axial Maps<br />

Measurement tied to optical<br />

axis<br />

Spherical bias (all radii share<br />

the same axis/origin)<br />

Better for central/paracentral<br />

cornea<br />

Accuracy decreased in the<br />

periphery<br />

r<br />

Optical<br />

Axis<br />

r<br />

Tangential/Instantaneous Map<br />

Optical<br />

Axis<br />

Not tied to optical axis<br />

Calculate curvature from<br />

neighboring points<br />

More accurate shape<br />

(especially in periphery)<br />

More detail to detect<br />

irregular astigmatism<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Axial vs Tangential/Instantaneous<br />

=<br />

Scheimpflug &<br />

Placido Combo<br />

Note: Sim K’s calculated from Axial Map<br />

ASI - What Would<br />

We Like to See?<br />

Axial vs. Tangential


Map Comparison<br />

Comparing corneal<br />

topographic maps can be<br />

challenging when subtle<br />

differences are present<br />

Make sure maps have the<br />

same scale when comparing<br />

them<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Elevation Data<br />

Obtained with Scheimpflug<br />

imaging, OCT, or scanning slit<br />

systems,<br />

Raw elevation data:<br />

Difficult to interpret<br />

Must be compared to a<br />

reference surface<br />

Best-fit sphere, ellipse, toroidal<br />

ellipse<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Image Plane<br />

Camera Film<br />

Lens & Image<br />

Plane are<br />

Typically Parallel<br />

Image Plane<br />

Camera Film<br />

Lens Plane<br />

Lens Plane<br />

Plane of Focus<br />

Parallel to Both<br />

Lens & Image Planes<br />

Scheimpflug<br />

Subject<br />

Plane of Focus<br />

“Coronal Image”<br />

If planar subject is<br />

parallel to Image<br />

Plane, it can<br />

coincide with the<br />

Plane of Focus &<br />

the entire subject<br />

will be in focus<br />

Plane of Focus<br />

=<br />

Subject Plane<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


Scheimpflug Intersection<br />

Image Plane<br />

Camera Film<br />

Image Plane<br />

Camera Film<br />

Lens Plane<br />

If the Subject Plane is<br />

not parallel to the<br />

Image Plane, it will be<br />

in focus only along a<br />

line that intersects the<br />

Plane of Focus<br />

Subject Plane<br />

Plane of Focus<br />

Lens Plane<br />

Subject Plane<br />

If the lens is<br />

positioned such that<br />

the Image Plane,<br />

Lens Plane, &<br />

Subject Plane all<br />

intersect, the subject<br />

(not parallel to the<br />

Image Plane) can be<br />

completely in focus<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Image Plane<br />

CCD Camera<br />

Sagital Cross-Section<br />

Lens Plane<br />

Subject<br />

Plane of Focus<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Scheimpflug Imaging<br />

Advantages:<br />

Lots of elevation data<br />

Data from central cornea<br />

Images anterior & posterior<br />

corneal surface<br />

Disadvantages:<br />

Unable to image ciliary sulcus<br />

Must compare to reference<br />

Need extremely high resolution<br />

to detect curvature differences<br />

Reference Surface<br />

Shape? - Best-fit sphere, ellipse, toric ellipsoid<br />

Different days → different reference spheres<br />

r = 8.21 mm<br />

r = 8.41 mm<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Difference = 1 D


Elevation Data &<br />

Curvature Measurement*<br />

h<br />

d<br />

45D vs. 45.25D Curvatures:<br />

7.5 mm (R2) vs. 7.99 mm (R1)<br />

R1<br />

R2<br />

Diameter (D) Height Diff. (H)<br />

1 mm 0.1 µm<br />

2 mm 0.4 µm<br />

3 mm 0.9 µm<br />

4 mm 1.6 µm<br />

5 mm 2.5 µm<br />

ASI - What Would<br />

We Like to See?<br />

*Roberts C. Corneal Topography in Refractive Surgery, 2nd edition.<br />

Dimitri Azar (ed.). Stanford, CT: Appleton & Lange.<br />

ASI - What Would<br />

We Like to See?<br />

Galilei Dual<br />

Scheimpflug Analyzer<br />

2 Scheimpflug cameras (instead of 1):<br />

Elevation data averaged from each camera<br />

Eliminates measurement errors due to<br />

angle of orientation & ocular decentration<br />

Placido Rings (20):<br />

Scheimpflug cameras occupy gaps in<br />

Placido rings<br />

2 Placido images recorded w/ cameras<br />

oriented vertically & horizontally (fills in gaps)<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


Study Results:<br />

SimK repeatability (20 eyes) = 0.19 D<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

Study Results:<br />

SimK repeatability (20 eyes) = 0.19 D<br />

SimK accuracy compared w/ Humphrey Atlas, IOL Master &<br />

Manual Keratometry (20 eyes):<br />

Mean astigmatism ranged from 0.50 D to 0.60 D<br />

Mean difference b/w Galilei & IOL Master = 0.10 ± 0.07D<br />

Mean difference b/w Galilei & Atlas = 0.11 ± 0.12D<br />

Study Results:<br />

SimK repeatability (20 eyes) = 0.19 D<br />

SimK accuracy compared w/ Humphrey Atlas, IOL Master &<br />

Manual Keratometry (20 eyes):<br />

Mean astigmatism ranged from 0.50 D to 0.60 D<br />

Mean difference b/w Galilei & IOL Master = 0.10 ± 0.07D<br />

Mean difference b/w Galilei & Atlas = 0.11 ± 0.12D<br />

Corneal thickness compared w/ ultrasonic pachymetry (USP-GP):<br />

Virgin corneas (77 eyes) - mean difference = -0.7 ± 7.1 µm<br />

Post-LASIK/PRK (39 eyes) - mean difference = -6.2 ± 9.9 µm<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

IOL Calculations & Corneal Power<br />

Corneal power serves 2 functions in IOL calculations:<br />

IOL power estimation<br />

Effective lens position (ELP)<br />

Rx<br />

Obj @ -∞<br />

ηair<br />

ACD AL-ACD<br />

K<br />

ηeye<br />

PIOL<br />

Vtx AL<br />

R<br />

Holladay 1 (Based on Vergence Formula)<br />

PIOL =<br />

1336<br />

AL - - 1336<br />

ELP<br />

1336<br />

1000<br />

]-<br />

1000<br />

- Vtx (mm)<br />

Rx<br />

ELP = SF + (T + 0.3375 -<br />

K<br />

[ ] ( )<br />

√<br />

( ) 2<br />

0.3375<br />

K<br />

+ K<br />

ELP<br />

- 0.071 * AL 2<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


IOL Calculations in Normal Eyes<br />

MAE (D)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

IOL MAE vs Corneal Power Method<br />

Auto K SimKp SimKp+ds TCPm TCPc<br />

Auto K - IOLMaster<br />

SimKp - Atlas<br />

SimKp+ds - Galilei<br />

TCPm - Galilei<br />

TCPc - Galilei<br />

% Eyes<br />

% Eyes<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

% Eyes within ± 0.5D<br />

Auto K SimKp SimKp+ds TCPm TCPc<br />

% Eyes within ± 1.0D<br />

Auto K SimKp SimKp+ds TCPm TCPc<br />

*IOL calculations optimized (SF) for each method of corneal power measurement<br />

ASCRS IOL Calculator<br />

“Double-K”<br />

ASI - What Would<br />

We Like to See?<br />

*Shirayama M, et al. Cornea 2010; 29:1136-1138<br />

ASI - What Would<br />

We Like to See?<br />

http://www.ascrs.org<br />

IOL Calculation after LASIK/PRK<br />

Refractive Mean Absolute Error (MAE)<br />

MAE (D)<br />

n=17<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0<br />

1.00<br />

Clin History<br />

1.05<br />

Feiz-Mannis<br />

1.00<br />

K Bypass<br />

0.63<br />

Adj EffRP<br />

0.48<br />

Adj Atlas 0-3<br />

0.42<br />

Masket<br />

0.44<br />

Mod Masket<br />

0.59<br />

W-K-M<br />

0.60<br />

Shammas<br />

0.54<br />

Haigis-L<br />

0.65<br />

TCP-2mm<br />

0.62<br />

TCP-3mm<br />

0.60<br />

TCP-4mm<br />

0.59<br />

TCP-5mm<br />

Sample Case - Post-RK<br />

59-y/o woman:<br />

AL = 23.91 mm<br />

IOLMaster K = 38.16 D<br />

EyeSys EffRP = 38.19 D<br />

Atlas Zone 0-3 = 38.79 D<br />

Galilei TCP Zone 0-4 = 36.53 D<br />

Galilei TCP Annuli 1-4 = 36.79 D<br />

ASI - What Would<br />

We Like to See?<br />

Significantly greater MAE in methods w/ pre-LASIK K’s & ΔMR (all P


OCT Net Corneal Power<br />

Parabolic fit to central 3-mm zone<br />

Average 3 sets per meridian<br />

1.5mm<br />

R p<br />

D<br />

1.5mm<br />

R a<br />

n 0 = 1<br />

n 1 = 1.376<br />

n 2 = 1.336<br />

Net Corneal Power - combines anterior<br />

& posterior curvature measurements<br />

from 8 meridional scans<br />

IOL Calculations in Post-LASIK Eyes<br />

MAE (D)<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0<br />

MAE - OCT vs Other K Methods<br />

n = 14<br />

IOLM CL OR Clin Hx Haigis Orbscan OCT<br />

SD of PE (D)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0<br />

SD of PE - OCT vs Other K Methods<br />

n = 14<br />

IOLM CL OR Clin Hx Haigis Orbscan OCT<br />

OCT Net Corneal Power:<br />

Converted to keratometry equivalent<br />

prior to use in IOL formulas (+1.21 D)<br />

IOLM<br />

CL OR<br />

Clin Hx<br />

Haigis<br />

Orbscan<br />

OCT<br />

ASI - What Would<br />

We Like to See?<br />

Huang D, et al. (Unpublished Data)<br />

ASI - What Would<br />

We Like to See?<br />

Huang D, et al. (Unpublished Data)<br />

Posterior Corneal Astigmatism<br />

Spherical Aberration<br />

Traditional measurement of<br />

corneal astigmatism:<br />

Based on anterior surface<br />

Assumes fixed anterior-posterior<br />

curvature ratio<br />

Ignores contribution of posterior<br />

surface<br />

Retrospective study of<br />

posterior corneal astigmatism:<br />

Galilei DSA measurements<br />

Cornea exhibits (+) spherical<br />

aberration (SA):<br />

Mean +0.28 µm*<br />

Balanced by lens in youth<br />

Additive with lens in cataracts<br />

Cataract surgery:<br />

SA of crystalline lens removed<br />

SA of cornea remains<br />

Spherical IOLs have (+) SA<br />

(typically +0.18 µm)<br />

⊕<br />

⊕<br />

ASI - What Would<br />

We Like to See?<br />

*Wang L, et al. ARVO 2011<br />

ASI - What Would<br />

We Like to See?<br />

Spherical Aberration<br />

Corneal Ectasia & Ectasia Risk<br />

SA = 0.01 0.58 0.24 µm<br />

Reduction in SA:<br />

Improved contrast sensitivity<br />

Improved visual performance<br />

(e.g. night driving)<br />

Measurement of corneal SA may<br />

influence choice of IOL:<br />

Alcon AcrySof IQ (SA = -0.20 µm)<br />

AMO Tecnis (SA = -0.27 µm)<br />

B&L SofPort AO (SA = 0 µm)<br />

Standard Spherical (SA = +18 µm)<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?


Abnormal Corneal Shape<br />

Determining ectasia risk is a<br />

very important part of refractive<br />

surgery screening<br />

Several criteria developed from<br />

the anterior surface<br />

Rabinowitz-McDonnell:<br />

Central K > 47.2 D<br />

Astigmatism > 1.5 D<br />

I - S > 1.4 D<br />

SRAX > 21°<br />

KISA% > 100 (Suspect 60 to 100)<br />

SRAX<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

CCT: 539 µm<br />

Thinnest: 516 µm<br />

KPI: 43.4%<br />

Posterior Elevation: 35 µm<br />

ASI - What Would<br />

We Like to See?<br />

ASI - What Would<br />

We Like to See?<br />

OCT KCN Pachymetry Index (KPI)<br />

Parameter<br />

Min<br />

Min - Med<br />

Y Min<br />

S - I<br />

SN - IT<br />

KPI<br />

Definition<br />

KCN Cutoff<br />

(1 percentile)<br />

KCN<br />

Accuracy*<br />

FF KCN<br />

Accuracy*<br />

Minimum corneal thickness < 464 µm 0.94 µm 0.61 µm<br />

Minimum corneal thickness minus<br />

median corneal thickness<br />

Y coordinate of minimum corneal<br />

thickness<br />

Avg thickness of superior octant<br />

minus inferior octant<br />

Avg thickness of superonasal<br />

octant minus inferotemporal octant<br />

KPI = 0.41Min + 0.23(Min-Med) -<br />

0.14[(S-I) + (SN-IT)] + 0.22Ymin<br />

< -33 µm 0.93 µm 0.62 µm<br />

< -1.1 mm 0.82 mm 0.67 mm<br />

> 54 µm 0.84 µm 0.68 µm<br />

> 52 µm 0.90 µm 0.60 µm<br />

0.97 0.69<br />

OCT KCN Pachymetric Score (Example)<br />

23-y/o Male:<br />

-0.25 + 1.75 x 165 (20/15)<br />

SimK - 40.8/4.9 @ 16<br />

Topography<br />

OCT<br />

KISA % 96 Min (µm) 518 0<br />

K (D) 40.8 Min - Med (µm) -38 3<br />

I-S (µm) 5.7 Y Min (mm) -1.23 1<br />

AST (D) 1.1 S - I (µm) 62 2<br />

SRAX (deg) 46 SN - IT (µm) 50 1<br />

Total Pachy Score 7<br />

*Area under receiver operating curve<br />

ASI - What Would<br />

We Like to See?<br />

Huang D, et al. (Unpublished Data)<br />

ASI - What Would<br />

We Like to See?<br />

Huang D, et al. (Unpublished Data)


Conclusions<br />

Still need multiple devices to see all that we want to see<br />

Ability to image posterior cornea (accurately) is only<br />

increasing in importance<br />

“Go-to” topographer - Still Placido-based<br />

Can’t do without other devices, now that I’ve got them<br />

Probably use “imaging” features the least in current<br />

practice (lower priority)<br />

It sure is nice that we have all of this technology!<br />

Acknowledgements<br />

Douglas D. Koch, M.D.<br />

Li Wang, M.D./Ph.D.<br />

Mariko Shirayama, M.D.<br />

Shazia Ali, B.S<br />

Richard Jenkins, M.D.<br />

Zaina Al-Mohtaseb, M.D.<br />

David Huang, M.D./Ph.D.<br />

Advances in<br />

Corneal Imaging<br />

CORNEA-ANTERIOR SEGMENT<br />

the MOST COMPREHENSIVE OCT<br />

AM Option and RTVue FD-OCT<br />

Tear Film<br />

Anterior Segment<br />

Imaging….<br />

Bag and Lens<br />

Cornea Transplant<br />

Soft contact lens<br />

CK scar<br />

sule<br />

IOL<br />

Vitreous margin<br />

3D Crystalline Lens w/ SUM of C-scan display<br />

What Would We<br />

Like to See?<br />

MP Weikert, MD ✦ ASORN Regional Meeting ✦ San Antonio, TX ✦ August 24, 2012<br />

Part No. 43721 Rev. A

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!