07.11.2014 Views

Certain coefficient inequalities for sakaguchi type functions ... - EMIS

Certain coefficient inequalities for sakaguchi type functions ... - EMIS

Certain coefficient inequalities for sakaguchi type functions ... - EMIS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ACTA UNIVERSITATIS APULENSIS No 19/2009<br />

CERTAIN COEFFICIENT INEQUALITIES FOR SAKAGUCHI<br />

TYPE FUNCTIONS AND APPLICATIONS TO FRACTIONAL<br />

DERIVATIVE OPERATOR<br />

S. P. Goyal, Pranay Goswami<br />

Abstract. In the present paper, sharp upper bounds of |a 3 − µa 2 2 | <strong>for</strong> the<br />

<strong>functions</strong> f(z) = z + a 2 z 2 + a 3 z 3 + ... belonging to a new subclass of Sakaguchi <strong>type</strong><br />

<strong>functions</strong> are obtained. Also, application of our results <strong>for</strong> subclass of <strong>functions</strong><br />

defined by convolution with a normalized analytic function are given. In particular,<br />

Fekete-Szegö <strong>inequalities</strong> <strong>for</strong> certain classes of <strong>functions</strong> defined through fractional<br />

derivatives are obtained.<br />

2000 Mathematics Subject Classification: 30C50; 30C45; 30C80.<br />

Keywords: Sakaguchi <strong>functions</strong>, Analytic <strong>functions</strong>, Subordination, Fekete-Szegö<br />

inequality.<br />

1. Introduction<br />

Let A be the class of analytic <strong>functions</strong> of the <strong>for</strong>m<br />

∞∑<br />

f(z) = z + a n z n (z ∈ ∆ := {z ∈ C| |z| < 1}) (1.1)<br />

n=2<br />

and S be the subclass of A consisting of univalent<strong>functions</strong>. For two <strong>functions</strong><br />

f, g ∈ A, we say that the function f(z) is subordinate to g(z) in ∆ and write<br />

f ≺ g or f(z) ≺ g(z), if there exists an analytic function w(z) with w(0) = 0<br />

and |w(z)| < 1 (z ∈ ∆), such that f(z) = g(w(z)), (z ∈ ∆). In particular, if the<br />

function g is univalent in ∆, the above subordination is equivalent to f(0) = g(0)<br />

and f(∆) ⊂ g(∆).<br />

Recently Owa et al. [7,8] introduced and studied a Sakaguchi <strong>type</strong> class S ∗ (α, t). A<br />

function f(z) ∈ A is said to be in the class S ∗ (α, t) if it satisfies<br />

{ (1 − t)zf ′ }<br />

(z)<br />

Re<br />

> α, |t| ≤ 1, t ≠ 1 (1.2)<br />

f(z) − f(zt)<br />

159


S. P. Goyal, P. Goswami - <strong>Certain</strong> Coefficient Inequalities <strong>for</strong> Sakaguchi ...<br />

<strong>for</strong> some α ∈ [0, 1) and <strong>for</strong> all z ∈ ∆. For α = 0 and t = −1, we get the class<br />

the class S ∗ (0, −1) studied be Sakaguchi [9]. A function f(z) ∈ S ∗ (α, −1) is called<br />

Sakaguchi function of order α.<br />

In this paper, we define the following class S ∗ (φ, t), which is generalization of<br />

the class S ∗ (α, t).<br />

Definition 1.1. Let φ(z) = 1 + B 1 z + B 2 z 2 + ... be univalent starlike function with<br />

respect to ’1’ which maps the unit disk ∆ onto a region in the right half plane which<br />

is symmetric with respect to the real axis, and let B 1 > 0. Then function f ∈ A is<br />

in the class S ∗ (φ, t) if<br />

(1 − t)zf ′ (z)<br />

f(z) − f(zt)<br />

≺ φ(z), |t| ≤ 1, t ≠ 1 (1.5)<br />

Again T (φ, t) denote the subclass of A consisting <strong>functions</strong> f(z) such that zf ′ (z) ∈<br />

S ∗ (φ, t).<br />

When φ(z) = (1 + Az)/(1 + Bz), (−1 ≤ B < A ≤ 1), we denote the subclasses<br />

S ∗ (φ, t) and T (φ, t) by S ∗ [A, B, t] and T [A, B, t] respectively.<br />

Obviously S ∗ (φ, 0) ≡ S ∗ (φ). When t = −1, then S ∗ (φ, −1) ≡ Ss ∗ (φ), which is a<br />

known class studied by Shanmugam et al. [10]. For t = 0 and φ(z) = (1 + Az)/(1 +<br />

Bz), (−1 ≤ B < A ≤ 1), the subclass S ∗ (φ, t) reduces to the class S ∗ [A, B]<br />

studied by Janowski [3]. For 0 ≤ α < 1 let S ∗ (α, t) := S ∗ [1 − 2α, −1; t], which is a<br />

known class studied by Owa et al. [8]. Also, <strong>for</strong> t = −1 and φ(z) = 1+(1−2α)z<br />

1−z<br />

, our<br />

class reduces to a known class S(α, −1) studied by Cho et al. ([1], see also [8]).<br />

In the present paper, we obtain the Fekete-Szegö inequality <strong>for</strong> the <strong>functions</strong> in<br />

the subclass S ∗ (φ, t). We also give application of our results to certain <strong>functions</strong><br />

defined through convolution (or Hadamard product) and in particular, we consider<br />

the class S λ (φ, t) defined by fractional derivatives.<br />

To prove our main results, we need the following lemma:<br />

Lemma 1.2. ([4]) If p(z) = 1 + c 1 z + c 2 z 2 ... is an analytic function with positive<br />

real part in ∆, then<br />

⎧<br />

⎪⎨ −4v + 2 if v ≤ 0,<br />

|c 2 − vc 2 1| ≤ 2 if 0 ≤ v ≤ 1,<br />

⎪⎩ 4v − 2 if v ≥ 1.<br />

When v < 0 or v > 1, the equality holds if and only if p(z) is (1 + z)/(1 − z) or<br />

one of its rotations. If 0 < v < 1, then the equality holds if and only if p(z) is<br />

(1 + z 2 )/(1 − z 2 ) or one of its rotations. If v = 0, the equality holds if and only if<br />

p(z) =<br />

( 1<br />

2 + 1 2 λ ) 1 + z<br />

1 − z + ( 1<br />

2 − 1 2 λ ) 1 − z<br />

1 + z<br />

(0 ≤ λ ≤ 1)<br />

160


S. P. Goyal, P. Goswami - <strong>Certain</strong> Coefficient Inequalities <strong>for</strong> Sakaguchi ...<br />

or one of its rotations. If v = 1, the equality holds if and only if p(z) is the reciprocal<br />

of one of the <strong>functions</strong> such that the equality holds in the case of v = 0.<br />

Also the above upper bound is sharp, and it can be improved as follows when<br />

0 < v < 1:<br />

|c 2 − vc 2 1| + v|c 1 | 2 ≤ 2 (0 < v ≤ 1/2)<br />

and<br />

|c 2 − vc 2 1| + (1 − v)|c 1 | 2 ≤ 2 (1/2 < v ≤ 1).<br />

2. Main Results<br />

Our main result is contained in the following Theorem :<br />

Theorem 2.1. If f(z) given by (1.1) belongs to S ∗ (φ, t), then<br />

where<br />

and<br />

⎧<br />

[ ( ) ( )]<br />

1<br />

⎪⎨ (t+2)(1−t)<br />

B 2 + B 2 1+t<br />

1 1−t<br />

− µB 2 2+t<br />

1 1−t<br />

if µ ≤ σ 1 ,<br />

|a 3 − µa 2 B<br />

2| ≤<br />

1<br />

(t+2)(1−t)<br />

if σ 1 ≤ µ ≤ σ 2 ,<br />

[<br />

)<br />

)]<br />

⎪⎩<br />

B 2 + B1<br />

2 − µB1<br />

2 if µ ≥ σ 2 ,<br />

−<br />

1<br />

(t+2)(1−t)<br />

σ 1 :=<br />

σ 2 :=<br />

( 1+t<br />

1−t<br />

( 2+t<br />

1−t<br />

[<br />

(1 − t)<br />

−1 + B ( )]<br />

2 1 + t<br />

+ B 1 ,<br />

B 1 (2 + t) B 1 1 − t<br />

[<br />

(1 − t)<br />

1 + B ( )]<br />

2 1 + t<br />

+ B 1 .<br />

B 1 (2 + t) B 1 1 − t<br />

The result is sharp.<br />

Proof. Let f ∈ S ∗ (φ, t). Then there exists a Schwarz function w(z) ∈ A such that<br />

(1 − t)zf ′ (z)<br />

f(z) − f(zt)<br />

= φ(w(z)) (z ∈ ∆; |t| ≤ 1, t ≠ 1) (2.1)<br />

If p 1 (z) is analytic and has positive real part in ∆ and p 1 (0) = 1, then<br />

p 1 (z) = 1 + w(z)<br />

1 − w(z) = 1 + c 1z + c 2 z 2 + ..... (z ∈ ∆). (2.2)<br />

From (2.2), we obtain<br />

w(z) = c 1<br />

2 z + 1 ( )<br />

c 2 − c2 1<br />

z 2 + ... (2.3)<br />

2 2<br />

Let<br />

p(z) = (1 − t)zf ′ (z)<br />

f(z) − f(tz) = 1 + b 1z + b 2 z 2 + ... (z ∈ ∆), (2.4)<br />

161


S. P. Goyal, P. Goswami - <strong>Certain</strong> Coefficient Inequalities <strong>for</strong> Sakaguchi ...<br />

which gives<br />

b 1 = (1 − t)a 2 and b 2 = (t 2 − 1)a 2 2 + (2 − t − t 2 )a 3 . (2.5)<br />

Since φ(z) is univalent and p ≺ φ, there<strong>for</strong>e using (2.3), we obtain<br />

p(z) = φ(w(z)) = 1 + B { ( )<br />

1c 1 1<br />

2 z + c 2 − c2 1<br />

B 1 + 1 }<br />

2 2 4 c2 1B 2 z 2 + ... (z ∈ ∆), (2.6)<br />

Now from (2.4), (2.5) and (2.6), we have<br />

(1−t)a 2 = B ( )<br />

1c 1<br />

2 , 1<br />

c 2 − c2 1<br />

B 1 + 1 2 2 4 c2 1B 2 = (t 2 −1)a 2 2+(2−t−t 2 )a 3 , |t| ≤ 1, t ≠ 1.<br />

There<strong>for</strong>e we have<br />

where<br />

v := 1 2<br />

a 3 − µa 2 2 =<br />

B [ ]<br />

1<br />

c 2 − vc 2 1 , (2.7)<br />

2(1 − t)(t + 2)<br />

[<br />

1 − B ( )<br />

2 1 + t<br />

− B 1<br />

B 1 1 − t<br />

( )] 2 + t<br />

+ µB 1<br />

1 − t<br />

Our result now follows by an application of Lemma 1.2. To shows that these bounds<br />

are sharp, we define the <strong>functions</strong> K φn (n = 2, 3...) by<br />

(1 − t)zK ′ φ n<br />

(z)<br />

K φn (z) − K ′ φ n<br />

(tz) = φ(zn−1 ), K φn<br />

(0) = 0 = [K φn ] ′ (0) − 1<br />

and the function F λ and G λ (0 ≤ λ ≤ 1) by<br />

and<br />

(1 − t)zF ′ λ (z) ( ) z(z + λ)<br />

F λ (z) − F λ (tz) = φ , F λ (0) = 0 = [F λ ] ′ (0) − 1<br />

1 + λz<br />

(1 − t)zG ′ λ (z) ( )<br />

−z(z + λ)<br />

G λ (z) − G λ (tz) = φ , G λ (0) = 0 = [G λ ] ′ (0) − 1.<br />

1 + λz<br />

Obviously the <strong>functions</strong> K φn , F λ , G λ ∈ S ∗ (φ, t). Also we write K φ := K φ2 . If µ < σ 1<br />

or µ > σ 2 , then equality holds if and only if f is K φ or one of its rotations. When<br />

σ 1 < µ < σ 2 , the equality hods if and only if f is K φ3 or one of its rotations. µ = σ 1<br />

then equality holds if and only if f is F λ or one of its rotations. µ = σ 2 then equality<br />

holds if and only if f is G λ or one of its rotations.<br />

If σ 1 ≤ µ ≤ σ 2 , in view of Lemma 1.2, Theorem 2.1 can be improved.<br />

Theorem 2.2. Let f(z) given by (1.1) belongs to S ∗ (φ, t). and σ 3 be given by<br />

σ 3 := 1 B 1<br />

( 1 − t<br />

2 + t<br />

) [ B2<br />

B 1<br />

− B 1<br />

( 1 + t<br />

1 − t<br />

162<br />

)]<br />

.


S. P. Goyal, P. Goswami - <strong>Certain</strong> Coefficient Inequalities <strong>for</strong> Sakaguchi ...<br />

If σ 1 < µ ≤ σ 3 , then<br />

∣<br />

∣a 3 − µa 2 2∣ + 1 B1<br />

2<br />

If σ 3 < µ ≤ σ 2 , then<br />

∣<br />

∣a 3 − µa 2 2∣ + 1 B1<br />

2<br />

[<br />

(B 1 − B 2 )<br />

[<br />

(B 1 + B 2 )<br />

( ) 1 − t<br />

− B1<br />

2 2 + t<br />

( ) 1 − t<br />

+ B1<br />

2 2 + t<br />

( ) ]<br />

1 + t<br />

+ µB1<br />

2 |a 2 | 2 ≤<br />

2 + t<br />

( ) ]<br />

1 + t<br />

+ µB1<br />

2 |a 2 | 2 ≤<br />

2 + t<br />

B 1<br />

(1 − t)(t + 2) .<br />

B 1<br />

(1 − t)(t + 2)<br />

Example 2.3. Let −1 ≤ B < A ≤ 1. If f(z) ∈ A belongs to S ∗ [A, B; t], then<br />

⎧<br />

⎪⎨<br />

|a 3 − µa 2 2| ≤<br />

⎪⎩<br />

where<br />

and<br />

[<br />

( )<br />

( )]<br />

B−A<br />

(2+t)(1−t)<br />

B − (A − B) 1+t<br />

1−t<br />

+ µ(A − B) 2+t<br />

1−t<br />

if µ ≤ σ1 ∗,<br />

A−B<br />

(2+t)(1−t)<br />

if σ1 ∗ [<br />

)<br />

)]<br />

≤ µ ≤ σ∗ 2 ,<br />

A−B<br />

(t+2)(1−t)<br />

σ ∗ 1 =<br />

σ ∗ 2 =<br />

In particular, if f ∈ S(α, t), then<br />

⎧<br />

⎪⎨<br />

|a 3 − µa 2 2| ≤<br />

⎪⎩<br />

B − (A − B)<br />

( 1+t<br />

1−t<br />

+ µ(A − B)<br />

( 2+t<br />

1−t<br />

[<br />

(1 − t)<br />

− 1 + B ( )] 1 + t<br />

(2 + t) (A − B) + ,<br />

1 − t<br />

[ ( )]<br />

(1 − t) 1 − B 1 + t<br />

(2 + t) (A − B) + .<br />

1 − t<br />

[<br />

( )<br />

( )]<br />

2(1−α)<br />

(2+t)(1−t)<br />

1 + 2(1 − α) 1+t<br />

1−t<br />

− 2µ(1 − α) 2+t<br />

1−t<br />

2(1−α)<br />

(2+t)(1−t)<br />

if σ ∗∗<br />

[<br />

)<br />

)]<br />

2<br />

1−α<br />

(t+2)(1−t)<br />

(1 − 2α) − α<br />

( 1+t<br />

1−t<br />

− µα<br />

( 2+t<br />

1−t<br />

if µ ≤ σ ∗ 2 ,<br />

if<br />

µ ≤ σ ∗∗<br />

1 ,<br />

1 ≤ µ ≤ σ ∗∗<br />

if µ ≥ σ2 ∗∗,<br />

2 ,<br />

where<br />

and<br />

The results are sharp.<br />

( ) 1 + t<br />

σ1 ∗∗ = −<br />

2 + t<br />

[<br />

( )]<br />

σ2 ∗∗ (1 − t) 1 1 + t<br />

=<br />

(2 + t) (1 − α) − 1 − t<br />

163


S. P. Goyal, P. Goswami - <strong>Certain</strong> Coefficient Inequalities <strong>for</strong> Sakaguchi ...<br />

3. Applications to <strong>functions</strong> defined by fractional derivatives<br />

For two analytic <strong>functions</strong> f(z) = z + ∞ ∑<br />

n=0<br />

a n z n and g(z) = z + ∞ ∑<br />

n=0<br />

g n z n , their<br />

convolution (or Hadamard product) is defined to be the function (f ∗ g)(z) = z +<br />

∞∑<br />

a n g n z n . For a fixed g ∈ A, let S g (φ, t) be the class of <strong>functions</strong> f ∈ A <strong>for</strong> which<br />

n=0<br />

(f ∗ g) ∈ S ∗ (φ, t).<br />

Definition 3.1. Let f(z) be analytic in a simply connected region of the z-plane<br />

containing origin. The fractional derivative of f of order λ is defined by<br />

0D λ z f(z) :=<br />

1 d<br />

Γ(1 − λ) dz<br />

∫ z<br />

0<br />

(z − ζ) −λ f(ζ)dζ (0 ≤ λ < 1), (3.1)<br />

where the multiplicity of (z − ζ) −λ is removed by requiring that log(z − ζ) is real <strong>for</strong><br />

(z − ζ) > 0<br />

Using definition 3.1, Owa and Srivastava (see [5],[6]; see also [11], [12]) introduced<br />

a fractional derivative operator Ω λ : A −→ A defined by<br />

(Ω λ f)(z) = Γ(2 − λ)z λ 0D λ z f(z), (λ ≠ 2, 3, 4, ...)<br />

The class S λ (φ, t) consists of the <strong>functions</strong> f ∈ A <strong>for</strong> which Ω λ f ∈ S ∗ (φ, t). The<br />

class S λ (φ, t) is a special case of the class S g (φ, t) when<br />

g(z) = z +<br />

∞∑<br />

n=2<br />

Γ(n + 1)Γ(2 − λ)<br />

z n<br />

Γ(n + 1 − λ)<br />

(z ∈ ∆).<br />

Now applying Theorem 2.1 <strong>for</strong> the function (f ∗ g)(z) = z + g 2 a 2 z 2 + g 3 a 3 z 3 + ...,<br />

we get following theorem after an obvious change of the parameter µ:<br />

∑<br />

Theorem 3.2 Let g(z) = z + ∞ g n z n (g n > 0). If f(z) is given by (1.1) belongs to<br />

S g (φ, t), then<br />

n=2<br />

⎧<br />

[ ( ) ( )]<br />

1<br />

⎪⎨ g 3 (2+t)(1−t)<br />

B 2 + B 2 1+t<br />

1 1−t<br />

− µ g 3<br />

B 2 2+t<br />

g 2 1 1−t<br />

if µ ≤ η 1 ,<br />

|a 3 − µa 2 2<br />

B<br />

2| ≤<br />

1<br />

g 3 (2+t)(1−t)<br />

if η 1 ≤ µ ≤ η 2 ,<br />

[ ( ) ( )]<br />

⎪⎩ 1<br />

−<br />

g 3 (2+t)(1−t)<br />

B 2 + B1<br />

2 1+t<br />

1−t<br />

− µ g 3<br />

B 2 2+t<br />

g2 2 1 1−t<br />

if µ ≥ η 2 ,<br />

where<br />

η 1 := g2 2<br />

( ) [ 1−t<br />

g 3 B 1 2+t<br />

(<br />

η 2 := g2 2 1−t<br />

g 3 B 1 2+t<br />

( )]<br />

−1 + B 2<br />

B 1<br />

+ B 1+t 1<br />

) [<br />

( 1−t )]<br />

1 + B 2<br />

B 1<br />

+ B 1+t 1 1−t<br />

164


S. P. Goyal, P. Goswami - <strong>Certain</strong> Coefficient Inequalities <strong>for</strong> Sakaguchi ...<br />

The result is sharp.<br />

Since<br />

We have<br />

and<br />

Ω λ f(z) = z +<br />

g 3 :=<br />

g 2 :=<br />

∞∑<br />

n=2<br />

Γ(3)Γ(2 − λ)<br />

Γ(3 − λ)<br />

Γ(4)Γ(2 − λ)<br />

Γ(4 − λ)<br />

Γ(n + 1)Γ(2 − λ)<br />

z n ,<br />

Γ(n + 1 − λ)<br />

=<br />

= 2<br />

2 − λ<br />

(3.2)<br />

6<br />

(2 − λ)(3 − λ) . (3.3)<br />

For g 2 , g 3 given by (3.2) and (3.3) respectively, Theorem 3.2 reduces to the following<br />

:<br />

Theorem 3.3. Let λ < 2. If f(z) given by (1.1) belongs to S λ (φ, t). Then<br />

⎧<br />

[ ( ) ( ) ( )]<br />

(2−λ)(3−λ)<br />

⎪⎨ 6(2+t)(1−t)<br />

B 2 + B 2 1+t<br />

1 1−t<br />

− 3 2 µ 3−λ<br />

2−λ<br />

B 2 2+t<br />

1 1−t<br />

if µ ≤ η1 ∗,<br />

|a 3 − µa 2 (2−λ)(3−λ)<br />

2| ≤<br />

6(2+t)(1−t) B 1 if η ∗ [ ( ) ( ) ( )] 1 ≤ µ ≤ η∗ 2 ,<br />

⎪⎩<br />

B 2 + B1<br />

2 1+t<br />

1−t<br />

− 3 2 µ 3−λ<br />

2−λ<br />

B1<br />

2 2+t<br />

1−t<br />

if µ ≥ η1 ∗,<br />

where<br />

− (2−λ)(3−λ)<br />

6(2+t)(1−t)<br />

η 1 :=<br />

η 2 :=<br />

( ) [<br />

(3−λ) 1−t<br />

(2−λ)B 1 ( 2+t) [<br />

(3−λ) 1−t<br />

(2−λ)B 1 2+t<br />

( )]<br />

−1 + B 2<br />

B 1<br />

+ B 1+t 1<br />

( 1−t )]<br />

1 + B 2<br />

B 1<br />

+ B 1+t 1 1−t<br />

.<br />

The result is sharp.<br />

Remark. For t = −1 in a<strong>for</strong>ementioned Theorems 2.1, 2.2, 3.2, 3.3 and example<br />

2.3, we arrive at the results obtained recently by Shanmugham et al. [10].<br />

References<br />

[1] N. E. Cho, O. S. Kwon and S. Owa, <strong>Certain</strong> subclasses of Sakaguchi <strong>functions</strong>,<br />

SEA Bull. Math.,17 (1993), 121-126.<br />

[2] A. W. Goodman, Uni<strong>for</strong>maly convex <strong>functions</strong>, Ann. Polon. Math., 56<br />

(1991), 87-92.<br />

[3] W. Janowski, Some extremal problems <strong>for</strong> certain families of analytic <strong>functions</strong>,<br />

Bull. Acad. Plolon. Sci. Ser. Sci. Math. Astronomy , 21 (1973), 17-25.<br />

[4] W. Ma and D. Minda, A unified treatment of some special classes of univalent<br />

<strong>functions</strong>, in : Proceedings of Conference of Complex Analysis, Z. Li., F. Ren, L<br />

Yang, and S. Zhang (Eds.), Intenational Press (1994), 157-169.<br />

[5] S. Owa, On distortion theorems I, Kyunpook Math. J., 18 (1) (1978), 53-59.<br />

165


S. P. Goyal, P. Goswami - <strong>Certain</strong> Coefficient Inequalities <strong>for</strong> Sakaguchi ...<br />

[6] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypegeometric<br />

<strong>functions</strong>, Canad. J. Math., 39 (5) (1987), 1057-1077.<br />

[7] S. Owa, T. Sekine, and R. Yamakawa, Notes on Sakaguchi <strong>type</strong> <strong>functions</strong>,<br />

RIMS Kokyuroku, 1414 (2005), 76 - 82.<br />

[8] S. Owa, T. Sekine, and R. Yamakawa, On Sakaguchi <strong>type</strong> <strong>functions</strong>, Appl.<br />

Math. Comput., 187 (2007), 356-361.<br />

[9] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11<br />

(1959), 72-75.<br />

[10] T. N. Shanmugham, C. Ramachandran, and V. Ravichandran, Fekete - Szegö<br />

problem <strong>for</strong> a subclasses of starlike <strong>functions</strong> with respect to symmetric points, Bull.<br />

Korean Math. Soc. 43 (3) (2006), 589-598.<br />

[11] H. M. Srivastava and S. Owa, An application of fractional derivative, Math.<br />

Japon., 29 (3) (1984), 383-389.<br />

[12] H. M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus and<br />

Their Applications, Halsted Press/ John Wiley and Sons, Chichester / New York,<br />

1989.<br />

S. P. Goyal<br />

Department of Mathematics<br />

University of Rajasthan<br />

Jaipur (INDIA) - 302055<br />

email:somprg@gmail.com<br />

Pranay Goswami<br />

Department of Mathematics<br />

Amity University Rajasthan<br />

Jaipur (INDIA) - 302002<br />

email:pranaygoswami83@gmail.com<br />

166

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!