09.11.2014 Views

Neutrinos from supernovae and failed supernovae

Neutrinos from supernovae and failed supernovae

Neutrinos from supernovae and failed supernovae

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Neutrinos</strong> <strong>from</strong> <strong>supernovae</strong> <strong>and</strong> <strong>failed</strong> <strong>supernovae</strong><br />

2010.12.14 NNN10@Toyama<br />

Hideyuki Suzuki, Tokyo Univ. of Science<br />

H<br />

He CO ONeMg Fe Si<br />

Main Sequence<br />

Mass Loss<br />

Collapse<br />

M>8M<br />

Companion<br />

Neutron Star<br />

Black Hole<br />

Binary<br />

White Dwarf<br />

Type Ia Supernova<br />

Collapse-driven Supernova


1 Collapse-Driven Supernova Explosion<br />

SN Core (T ∼ 10MeV, ρ > ∼ 10 14 g/cm 3 )<br />

• τ weak ≪ τ dyn Neutrino Trapping<br />

⇒ <strong>Neutrinos</strong> are also in thermal equilibrium <strong>and</strong> in chemical equilibrium<br />

n ν ∼ n γ ∼ n e<br />

• mean free path length λ ν ≫ λ γ , λ e , λ N<br />

⇒ <strong>Neutrinos</strong> carry the energy <strong>and</strong> drive the evolution of the core<br />

⇒ SN core can be seen by neutrinos (neutrinosphere)<br />

SN as a neutrino source<br />

• source of all species (ν e ,¯ν e ,ν µ ,¯ν µ ,ν τ ,¯ν τ )<br />

• T < O(100MeV) = m µ ⇒ n e −<br />

≫ n µ , n τ : ν x ≡ ν µ , ¯ν µ , ν τ , ¯ν τ<br />

• ∫ L ν dt ∼ O(10 53 )erg ∼ 10 4 L ν⊙ τ ⊙ ∼ 10 2 L γ⊙ τ ⊙<br />

τ ∼ O(10)sec, d > O(10 18 )cm<br />

• Spectral difference: hierarchy of average energy(O(10)MeV)<br />

σ νe > σ¯νe > σ νx ⇒ 〈ω νe 〉


H<br />

He<br />

CO<br />

ONeMg<br />

Si<br />

νe<br />

Fe<br />

Fe core<br />

9−10<br />

ρ 3<br />

c =10 g/cm<br />

<strong>Neutrinos</strong>phere<br />

11<br />

ρ >10 g/cm<br />

c<br />

3<br />

ν trapping (ρ > 10 10 − 10 12 g/cm 3 )<br />

ν e <strong>from</strong> e − A −→ ν e A ′ <strong>and</strong> e − p −→ ν e n<br />

main opacity source: coherent scattering ν e A −→ ν e A<br />

cross section σ ∝ A 2 ων: 2 λ νA < λ νN<br />

(ν wave length ¯hc<br />

E<br />

E ν<br />

∼ 20fm( ν<br />

10MeV )−1 ≫ nuclear size 1.2A 1 3 fm ∼ 5fm( A 56 ) 1 3 )<br />

collapse<br />

σ∼E^2<br />

increase<br />

opaque<br />

ν<br />

trapping<br />

ν<br />

degenerate<br />

µ(ν) increase<br />

coherent<br />

scattering<br />

nuclei survive<br />

e capture suppress<br />

not so n−rich<br />

Positive feedback (Sato 1975)


νeneutronization<br />

burst<br />

shock stall<br />

ν(all)<br />

ρ c<br />

bounce<br />

14<br />

>10 g/cm<br />

3<br />

Proto<br />

Neutron<br />

Star<br />

shock wave<br />

τ(collapse)~O(10−100)ms<br />

τ (neutronization burst)


Prompt explosion (Hillebr<strong>and</strong>t, Nomoto <strong>and</strong> Wolff 1984). M MS = 9M ⊙<br />

Failed Prompt explosion (Hillebr<strong>and</strong>t 1987). M MS = 20M ⊙


Wilson’s Delayed explosion model (Colgate 1989).


shock revival<br />

νwind<br />

PNS cooling<br />

ν heating<br />

Hot Bubble<br />

t(core exp.)=O(1)s<br />

τ(PNS cooling)=O(10)s<br />

Supernova<br />

Explosion<br />

Neutron Star<br />

t(SNE)=hours−day<br />

SN1987A<br />

Crab nebula (remnant of<br />

SN1054)


Classical Simulations<br />

Totani et al., 1998<br />

early phase: hierarchy of average energy<br />

late phase: n-rich matter interacts ¯ν e <strong>and</strong><br />

ν x almost equally. degeneracy prohibits<br />

ν e interactions, too.<br />

neutrinos <strong>from</strong> protoneutron star cooling phase<br />

(Suzuki 2002)


Energetics<br />

• ∆E G =<br />

(<br />

GM<br />

2<br />

core<br />

R Fe core<br />

− GM 2 core<br />

R NS<br />

)<br />

∼ O(10 53 )erg<br />

• E kin (obs.)∼O(10 51 )erg, E rad (obs.)∼O(10 49 )erg, E GW (sim.)∼O(10 51 )erg<br />

• rest O(10 53 )erg ∼ E ν<br />

cf. E ν (SNIa) < 10 49 erg<br />

ν e ’s <strong>from</strong> neutronization of all protons<br />

26 M Fe core<br />

〈E νe 〉 ∼ 1.2 · 10 52 erg M Fe core 〈E νe 〉<br />

m Fe<br />

1.4M ⊙ 10MeV ∼ O(0.1) × E ν tot<br />

=⇒ thermal ν ≫ neutronization ν e =⇒ ν e , ¯ν e , ν x : roughly equipartiton


Neutrino Transfer<br />

distibution function f νi (t, ⃗r, ⃗p ν ) (7 independent variables)<br />

∂f ν<br />

+ d⃗r ∂f ν<br />

∂t p dt p ∂⃗r + d⃗p (<br />

ν ∂f ν ∂fν<br />

=<br />

dt p ∂⃗p ν<br />

∂t p<br />

)ν int.<br />

• Spherically symmetric case:<br />

f νi (t, r, ω ν = p ν c, µ = cos θ) (4 independent variables)<br />

⇒ Fully general relativistic Boltzmann solver<br />

(Mezzacappa, Burrows, Janka, Sumiyoshi+Yamada > ∼ 2000)<br />

• Non-spherical case: 2D/3D ν transfer in progress<br />

Neutrino Interactions (minimal st<strong>and</strong>ard: Bruenn’85)<br />

e − p ←→ ν e n e + n ←→ ¯ν e p e − A −→ ν e A ′ e + A −→ ¯ν e A ′<br />

e − e + ←→ ν¯ν plasmon ←→ ν¯ν NN −→ NNν¯ν ν e¯ν e ←→ ν x¯ν x<br />

νN −→ νN νA −→ νA νe ± −→ νe ± νν ′ −→ νν ′


Equation of States (EOS) for high density matter (T ≠ 0)<br />

• Lattimer-Swesty 1991: FORTRAN code<br />

Liquid Drop model: K s = 180, 220, 375MeV, S v = 29.3MeV<br />

E/n ∼ −B + K s (1 − n/n s ) 2 /18 + S v (1 − 2Y e ) 2 + · · ·<br />

• Shen’s EOS table (Shen et al., 1998)<br />

RMF (n,p,σ, ρ, ω) with TM1 parameter set(g ρ , · · ·) ⇐ Nuclear data including<br />

unstable nuclei<br />

ρ B , n B , Y e , T , F , U, P , S, A, Z, M ∗ , X n , X p , X α , X A , µ n , µ p<br />

grids: wide range T = 0, 0.1 ∼ 100MeV ∆ log T = 0.1<br />

Y e = 0, 0.01 ∼ 0.56 ∆ log Y e = 0.025<br />

ρ B = 10 5.1 ∼ 10 15.4 g/cm 3 ∆ log ρ B = 0.1<br />

Extension with hyperons (Ishizuka, Ohnishi), quarks (Nakazato)


Modern Simulations<br />

Light ONeMg core + CO shell(1.38M ⊙ ): weak explosion (O(10 50 )erg)<br />

(Progenitor: Nomoto 8-10M ⊙ )<br />

ν-heating + nuclear reaction ⇒ weak explosion<br />

res (prompt explosions,<br />

ups (Fryer et al. 1999).<br />

ional<br />

Fig. 1. Mass trajectories for the simulation with the W&H EoS as a<br />

function of post-bounce time (t pb ). Also plotted: shock position (thick<br />

solid line starting at time zero <strong>and</strong> rising to the upper right corner),<br />

gain radius (thin dashed line), <strong>and</strong> neutrinospheres (ν e : thick solid;<br />

¯ν e : thick dashed;ν µ , ¯ν µ ,ν τ , ¯ν τ : thick dash-dotted). In addition, the<br />

composition interfaces are plotted with different bold, labelled lines:<br />

the inner boundaries of the O-Ne-Mg layer at∼0.77 M ⊙ , of the C-O<br />

layer at∼1.26 M ⊙ , <strong>and</strong> of the He layer at 1.3769 M ⊙ . The two dotted<br />

lines represent the mass shells where the mass spacing between<br />

the plotted trajectories changes. An equidistant spacing of 5×10 −2 M ⊙<br />

was chosen up to 1.3579M ⊙ , between that value <strong>and</strong> 1.3765M ⊙ it was<br />

1.3×10 −3 M ⊙ , <strong>and</strong> 8×10 −5 M ⊙ outside.<br />

Fig. 3. Velocity profiles as functions of radius for different postbounce<br />

times for the simulation with the W&H EoS. The insert shows<br />

the velocity profile vs. enclosed mass at the end of our simulation.<br />

Kitaura et al., AAp 450(2006)345<br />

(Mezzacappa’07: 11.2M ⊙ model explodes, too)


L [10 52 erg s -1 ]<br />

4<br />

3<br />

2<br />

1<br />

L/10<br />

Accretion Phase<br />

Cooling Phase<br />

ν e<br />

ν e<br />

ν µ/τ<br />

10 0<br />

10 -1<br />

0<br />

10 -2<br />

[MeV]<br />

12<br />

10<br />

10<br />

8<br />

5<br />

0 0.05 0.1 0.15 0.2 2 4 6 8<br />

4<br />

Time after bounce [s]<br />

Neutrino luminosities <strong>and</strong> average energies at infinity for 8.8M ⊙<br />

L. Hüdepohl et al., PRL104 (2010) 251101<br />

progenitor.


Phase transition into quark matter<br />

Luminosity [10 53 erg/s]<br />

1<br />

0<br />

Luminosity [10 53 erg/s]<br />

1<br />

0<br />

0.255 0.26 0.265<br />

Time after bounce [s]<br />

rms Energy [MeV]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

0 0.1 0.2 0.3 0.4 0.5<br />

Time after bounce [s]<br />

FIG. 1: Neutrino luminosities <strong>and</strong> rms neutrino energies as<br />

functions of time after bounce, sampled at 500 km radius in<br />

the comoving frame, for a 10 M ⊙ progenitor star as modeled<br />

in [17]: ν e in solid (blue), ¯ν e in dashed (red), <strong>and</strong> ν µ/τ in<br />

dot-dashed (green). In contrast to the deleptonization burst<br />

just after bounce (t ∼ 5 ms) the second burst at t ∼ 257−261<br />

ms is associated with the QCD phase transition. The inset<br />

shows the second burst blown up.<br />

Dasgupta et al., PRD81 (2010) 103005<br />

The second shock wave merges the first shock wave leading to explosion.<br />

¯ν e > ν e in the second burst (protonization)


Modern simulations with GR 1D Boltzmann ν-transfer<br />

canonical models: no explosion<br />

Newton+O(v/c)<br />

Relativistic<br />

10 3 Time After Bounce [s]<br />

Radius [km]<br />

10 2<br />

10 1<br />

0 0.1 0.2 0.3 0.4 0.5<br />

NH 13M ⊙ , GR Boltzman, LS EOS+Si burning<br />

Liebendörfer et al., Phys.Rev. D63 (2001) 103004<br />

(astro-ph/0006418 v2) Fig.6<br />

10 4<br />

Fig. 1.—Trajectories of selected mass shells vs. time <strong>from</strong> the start of the<br />

simulation. The shells are equidistantly spaced in steps of 0.02 M ,, <strong>and</strong> the<br />

trajectories of the outer boundaries of the iron core (at 1.28 M ,) <strong>and</strong> of the<br />

silicon shell (at 1.77 M ,) are indicated by thick lines. The shock is formed<br />

at 211 ms. Its position is also marked by a thick line. The dashed curve shows<br />

the position of the gain radius.<br />

WW 15M ⊙ , M Fe = 1.28M ⊙ , NR Boltzmann<br />

(tangent-ray method), only ν e ,¯ν e , without<br />

e − e + ↔ ν ¯ν, LS EOS, Rampp et al., ApJ 539<br />

(2000) L33 Fig.1<br />

10 3<br />

radius [km]<br />

10 2<br />

10 1<br />

10 0<br />

0.0<br />

0.2<br />

0.4<br />

time [sec]<br />

15M ⊙ , Shen EOS, Sumiyoshi et al., 2005.<br />

0.6<br />

0.8<br />

1.0<br />

Fig. 5.—Radial position (in km) of selected mass shells as a function of<br />

time in our fiducial 11 M model.<br />

NR 1D Boltzmann ν-transfer, Thompson et al.,<br />

ApJ 592 (2003) 434 Fig.5


Comparison between Boltzmann solvers<br />

Fig. 5.—(a) Shock position as a function of time for model N13. The shock in VERTEX (thin line) propagates initially faster <strong>and</strong> nicely converges after its maximum<br />

expansion to the position of the shock in AGILE-BOLTZTRAN (thick line). (b) Neutrino luminosities <strong>and</strong> rms energies for model N13 are presented as functions of<br />

time. The values are sampled at a radius of 500 km in the comoving frame. The solid lines belong to electron neutrinos <strong>and</strong> the dashed lines to electron antineutrinos. The<br />

line width distinguishes between the results <strong>from</strong> AGILE-BOLTZTRAN <strong>and</strong> VERTEX in the same way as in (a). The luminosity peaks are nearly identical; the rms<br />

energies have the tendency to be larger in AGILE-BOLTZTRAN.<br />

Liebendörfer et al., ApJ620(2005)840 Fig.5


2 Failed <strong>supernovae</strong><br />

implicit GR hydrodynamics + Boltzmann ν transfer code<br />

Sumiyoshi, Yamada, Suzuki, Chiba PRL97(2006) 091101<br />

Fig. 1.—Radial trajectories of mass elements of the core of a 40 M star as a<br />

function of time after bounce in the SH model. The location of the shock wave is<br />

shown by a thick dashed line.<br />

Fig. 2.—Radial trajectories of mass elements of the core of a 40 M star as a<br />

function of time after bounce in the LS model. The location of the shock wave is<br />

shown by a thick dashed line.<br />

luminosity [erg/s]<br />

2x10 53 1<br />

0<br />

0.0<br />

0.5<br />

1.0<br />

1.5<br />

time after bounce [sec]<br />

luminosity [erg/s]<br />

2x10 53 1<br />

0<br />

0.0<br />

0.5<br />

1.0<br />

time after bounce [sec]<br />

Progenitor 40M ⊙ , left: Shen EOS, right: Lattimer-Swesty EOS 180<br />

1.5<br />

L ν increases due to<br />

matter accretion<br />

ν x < ν e , ¯ν e <strong>from</strong> accreted<br />

matter<br />

Burst duration time<br />

strongly depends on<br />

EOS!


(a)<br />

Luminosity [10 53 erg/s]<br />

rms Energy [MeV]<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

e Neutrino<br />

e Antineutrino<br />

µ/τ <strong>Neutrinos</strong><br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

Time After Bounce [s]<br />

(b)<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

Time After Bounce [s]<br />

Figure 2. Luminosities <strong>and</strong> mean energies during the post bounce phase<br />

of a core collapse simulation of a 40 M ⊙ progenitor model <strong>from</strong><br />

Woosley <strong>and</strong> Weaver (1995). Comparing eos1 (thick lines) <strong>and</strong> eos2<br />

(thin lines).<br />

Fischer et al., 2008


Failed supernova neutrinos: expected observation by SK<br />

Nakazato et al., PRD78 (2008) 083014<br />

FIG. 5: Time-integrated spectra before the neutrino oscillation for models W40S (left) <strong>and</strong> W40L (right). Solid, dashed <strong>and</strong><br />

dot-dashed lines represent the spectra of νe, ¯νe <strong>and</strong> νx, respectively.<br />

FIG. 8: Time-integrated total event number of <strong>failed</strong> supernova neutrinos for the normal mass hierarchy (left) <strong>and</strong> the inverted<br />

mass hierarchy (right). Error bars represents the upper <strong>and</strong> lower limits owing to the different nadir angles. The upper <strong>and</strong><br />

lower sets represent models W40S <strong>and</strong> W40L, respectively.<br />

θ 13 dependence for W40S vs. W40L<br />

FIG. 9 (color online). Time-integrated spectra for the total event number of <strong>failed</strong> supernova neutrinos for the normal mass hierarchy<br />

with sin 2 13 ¼ 10 8 (upper left), the normal mass hierarchy with sin 2 13 ¼ 10 2 (upper right), the inverted mass hierarchy with<br />

sin 2 13 ¼ 10 5 (lower left), <strong>and</strong> the inverted mass hierarchy with sin 2 13 ¼ 10 2 (lower right). Results obtained without the Earth<br />

effects are shown. Solid, long-dashed, short-dashed, dot-dashed, <strong>and</strong> dotted lines represent models W40S, W40L, T50S, T50L, <strong>and</strong><br />

H40L, respectively.<br />

EOS (S,L), Progenitors (W40, T50, H40)


hyperon EOS vs. soft nucleon EOS<br />

50<br />

40<br />

10 -1<br />

10 -2<br />

Λ<br />

Σ 0<br />

n<br />

p<br />

α<br />

10 -1<br />

10 -2<br />

Λ<br />

Ξ −<br />

Σ −<br />

n<br />

p<br />

α<br />

< E ν > [MeV]<br />

30<br />

20<br />

10<br />

0<br />

10 -3<br />

10 -4<br />

Ξ −<br />

10 -3<br />

10 -4<br />

Ξ 0<br />

L ν [erg/s]<br />

2x10 53 1<br />

10 -5<br />

0<br />

10 0 20x10 5<br />

Σ − Ξ 0<br />

Σ + 10<br />

20<br />

radius [km]<br />

10 -5<br />

0<br />

10 0 20x10 5<br />

Σ 0 Σ + 10<br />

20<br />

radius [km]<br />

0<br />

0.0<br />

0.5<br />

1.0<br />

time after bounce [sec]<br />

1.5<br />

Fig. 2.— Mass fractions of hyperons in model IS are shown as a function of radius at t pb =500<br />

(left) <strong>and</strong> 680 ms (right).<br />

Sumiyoshi et al., Astrophys. J. 690 (2009) L43-L46<br />

Fig. 3.— Average energies <strong>and</strong> luminosities of ν e (solid), ¯ν e (dashed) <strong>and</strong> ν µ/τ (dash-dotted)<br />

for model IS are shown as a function of time after bounce. The results for model SH <strong>and</strong> LS<br />

are shown by thin lines with the same notation.<br />

increase of degree of freedom<br />

→ Soft EOS<br />

Hyperon EOS vs. Lattimer-Swesty EOSs<br />

(LS180/220)(Nakazato et al., 2010)<br />

might be distinguishable by the time profile<br />

Good probe to properties of high density matter


3 Non-spherial explosion<br />

SN1987A observations<br />

• polarization<br />

• material mixing (large v Fe > 3000km/sec(Fe II IR line), early detection of<br />

X-ray, 847keV/1238keV 60 Co line), slow H velocity (∼ 800km/sec)<br />

• asymmetric image<br />

⇒ fluid instability, rotation, magnet field: multi-dimensional simulation<br />

HST image of SN1987A on 1994.2 <strong>and</strong> 2003.11.28


Nomoto et al., astro-ph/0308136


2D/3D Hydrodynamics + simplified ν-transfer + full/approximated GR<br />

At present, evolution of f ν (t, ⃗r, ⃗p ν ) cannot be calculated.<br />

SASI: St<strong>and</strong>ing Accretion Shock Instability Blondin et al., 2003<br />

Instability modes with l = 1, 2 grow between stalled shock wave <strong>and</strong> protoneutron<br />

star<br />

(amplifying advective-accoustic cycle)<br />

It helps neutrino heating (longer advection time) ? ⇒ successful explosion<br />

Accoustic Explosion? Burrows et al., 2006<br />

accretion → excitation of g-mode in PNS → sound wave<br />

→ dissipation behind the shock front ? → robust explosion<br />

rotation/magnetic field?<br />

Angular momentum of core might be small (Heger et al., 2005)<br />

jet-like explosion by non-spherical neutrino heating?<br />

suppresion of instability due to rotation?<br />

practically strong magnetic field ? → Magnetar (B = 10 15 G)<br />

Many groups are at work.<br />

Garching, LANL, ORNL, Basel, Princeton/Caltech,<br />

NAOJ/Waseda, Kyoto ...


Janka et al.., 2006, non-rotating 11.2M ⊙ 2D simulation<br />

⇒ weak explosion due to SASI+ν-heating<br />

Simulation for π 4 ≤ θ ≤ 3π 4<br />

does not explode, 0 ≤ θ ≤ π: explodes<br />

instability modes with l = 1, 2(SASI) evolve → kick velocity?<br />

entropy profiles: Janka et al., astro-ph/0612072<br />

Figure 4: Four stages (at postbounce times of 141.1ms, 175.2ms, 200.1ms, <strong>and</strong> 225.7ms) during the evolution<br />

of a (non-rotating), exploding two-dimensional 11.2M ⊙ model [12], visualized in terms of the entropy. The scale<br />

is in km <strong>and</strong> the entropies per nucleon vary <strong>from</strong> about 5k B (deep blue), to 10 (green), 15 (red <strong>and</strong> orange),<br />

up to more than 25k B (bright yellow). The dense neutron star is visible as low-entropy (< ∼<br />

5k B per nucleon)<br />

circle at the center. The computation was performed in spherical coordinates, assuming axial symmetry, <strong>and</strong><br />

employing the “ray-by-ray plus” variable Eddington factor technique of Refs. [41, 11] for treating ν transport in<br />

multi-dimensional supernova simulations. Equatorial symmetry is broken on large scales soon after bounce, <strong>and</strong><br />

low-mode hydrodynamic instabilities (convective overturn in combination with the SASI) begin to dominate the<br />

τ adv ↗> τ heat , wider heating region: SASI helps ν-heating


Marek et al., Astron. Astrophys. 496 (2009) 475<br />

20<br />

2•10 9<br />

20<br />

2•10 9<br />

s[kB/baryon]<br />

15<br />

10<br />

0<br />

-2•10 9<br />

vr [cm/s]<br />

s[kB/baryon]<br />

15<br />

10<br />

0<br />

-2•10 9<br />

vr [cm/s]<br />

5<br />

-4•10 9<br />

5<br />

-4•10 9<br />

180 120 60 0<br />

60 120 180<br />

r [km]<br />

180 120 60 0<br />

60 120 180<br />

r [km]<br />

s[kB/baryon]<br />

20<br />

15<br />

10<br />

5<br />

180 120 60 0<br />

60 120 180<br />

r [km]<br />

2•10 9<br />

0<br />

-2•10 9<br />

-4•10 9<br />

vr [cm/s]<br />

s[kB/baryon]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

180 120 60 0<br />

60 120 180<br />

r [km]<br />

Fig. 3. Four representative snapshots <strong>from</strong> the 2D simulation with the L&S EoS at post-bounce times of 247 ms (top left), 255 ms (top right),<br />

322 ms (bottom left), <strong>and</strong> 375 ms (bottom right). The lefth<strong>and</strong> panel of each figure shows color-coded the entropy distribution, the righth<strong>and</strong><br />

panel the radial velocity component with white <strong>and</strong> whitish hues denoting matter at or near rest; black arrows in the righth<strong>and</strong> panel indicate the<br />

direction of the velocity field in the post-shock region (arrows were plotted only in regions where the absolute values of the velocities were less<br />

than 2×10 9 cm s −1 ). The vertical axis is the symmetry axis of the 2D simulation. The plots visualize the accretion funnels <strong>and</strong> expansion flows in<br />

the SASI layer, but the chosen color maps are unable to resolve the convective shell inside the nascent neutron star.<br />

4•10 9<br />

2•10 9<br />

0<br />

-2•10 9<br />

-4•10 9<br />

vr [cm/s]<br />

Rs,max [km], Rns [km]<br />

250<br />

200<br />

150<br />

100<br />

50<br />

L&S-EoS<br />

H&W-EoS<br />

0<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

Rs [km]<br />

L&S-EoS<br />

248 ms<br />

270 ms<br />

300 ms<br />

H&W-EoS<br />

-250 -150 50 50 150 250<br />

R s [km]<br />

Fig. 4. Left: maximum shock radii (solid lines) <strong>and</strong> proto-neutron star radii (dashed lines) as functions of post-bounce time for the 2D simulations<br />

with different nuclear equations of state. The neutron star radii are determined as the locations where the rest-mass density is equal to 10 11 g cm −3 .<br />

Right: shock contours at the different post-bounce times listed in the figure. The vertical axis of the plot is the symmetry axis of the simulation.<br />

319 ms<br />

380 ms<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

Rs [km]


Marek et al., Astron. Astrophys. 496 (2009) 475<br />

100<br />

ν e<br />

100<br />

ν e<br />

L [10 51 erg/s]<br />

80<br />

60<br />

40<br />

L&S-EoS<br />

H&W-EoS<br />

L [10 51 erg/s]<br />

80<br />

60<br />

40<br />

L&S-EoS<br />

H&W-EoS<br />

20<br />

1D<br />

2D<br />

0<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

20<br />

1D<br />

2D<br />

0<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

L [10 51 erg/s]<br />

L [10 51 erg/s]<br />

80<br />

60<br />

40<br />

L&S-EoS<br />

H&W-EoS<br />

20<br />

1D<br />

2D<br />

0<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

50<br />

40<br />

30<br />

20<br />

10<br />

L&S-EoS<br />

H&W-EoS<br />

1D<br />

2D<br />

0<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

¯ν e<br />

ν x<br />

L [10 51 erg/s]<br />

L [10 51 erg/s]<br />

80<br />

60<br />

40<br />

20<br />

L&S-EoS<br />

H&W-EoS<br />

1D<br />

2D<br />

0<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

50<br />

40<br />

30<br />

20<br />

10<br />

L&S-EoS<br />

H&W-EoS<br />

1D<br />

2D<br />

0<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

Fig. 6. Isotropic equivalent luminosities of electron neutrinos (top), electron antineutrinos (middle), <strong>and</strong> one kind of heavy-lepton neutrinos (ν µ,<br />

¯ν µ,ν τ, or ¯ν τ; bottom) versus time after core bounce as measurable for a distant observer located along the polar axis of the 2D spherical coordinate<br />

grid (solid lines). The dashed lines display the radiated luminosities of the corresponding spherically symmetric (1D) simulations. The evaluation<br />

was performed at a radius of 400 km (<strong>from</strong> there the remaining gravitational redshifting to infinity is negligible) <strong>and</strong> the results are given for an<br />

observer at rest relative to the stellar center. While the left column shows the (isotropic equivalent) luminosities computed <strong>from</strong> the flux that is<br />

radiated away in an angular grid bin very close to the north pole, the right column displays the emitted (isotropic equivalent) luminosities when<br />

the neutrino fluxes are integrated over the whole northern hemisphere of the grid (see Eqs. (2) <strong>and</strong> (4), respectively).<br />

¯ν e<br />

ν x<br />

〈ǫν〉 [MeV]<br />

〈ǫν〉 [MeV]<br />

〈ǫν〉 [MeV]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

L&S-EoS<br />

ν e<br />

¯ν e<br />

ν x<br />

8<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

18<br />

16<br />

14<br />

12<br />

10<br />

ν e<br />

¯ν e<br />

ν x<br />

8<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

18<br />

16<br />

14<br />

12<br />

10<br />

L&S-EoS<br />

L&S-EoS<br />

ν e<br />

¯ν e<br />

ν x<br />

8<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

〈ǫν〉 [MeV]<br />

〈ǫν〉 [MeV]<br />

〈ǫν〉 [MeV]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

H&W-EoS<br />

ν e<br />

¯ν e<br />

ν x<br />

8<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

18<br />

16<br />

14<br />

12<br />

10<br />

H&W-EoS<br />

ν e<br />

¯ν e<br />

ν x<br />

8<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

18<br />

16<br />

14<br />

12<br />

10<br />

H&W-EoS<br />

ν e<br />

¯ν e<br />

ν x<br />

8<br />

0 100 200<br />

t pb [ms]<br />

300 400<br />

Fig. 7. Mean energies of radiated neutrinos as functions of post-bounce time for our 1D simulations (top) <strong>and</strong> 2D models (middle <strong>and</strong> bottom) with<br />

both equations of state (the lefth<strong>and</strong> panels are for the L&S EoS, the right ones for the H&W EoS). The displayed data are defined as ratios of<br />

the energy flux to the number flux <strong>and</strong> correspond to the luminosities plotted with dashed <strong>and</strong> solid lines in Fig. 6. The panels in the middle show<br />

results for a lateral grid zone near the north polar axis, the bottom panels provide results that are averaged over the whole northern hemisphere of<br />

the computational grid. In all cases the evaluation has been performed in the laboratory frame at a distance of 400 km <strong>from</strong> the stellar center.<br />

〈ω¯νe 〉 > 〈ω νx 〉 but 〈ω¯νe 〉 rms < 〈ω νx 〉 rms


Summary<br />

• state-of-the-art 1D simulation<br />

light core explodes weakly<br />

canonical cores do not explode<br />

black hole formation? explode with non-sphericity?/unknown EOS?<br />

• 2D/3D simulations are still in progress<br />

• <strong>Neutrinos</strong> <strong>from</strong> <strong>failed</strong> <strong>supernovae</strong> are good probe to high density matter<br />

Today’s Lesson:<br />

Supernova neutrinos will come to us suddenly, we must be always ready.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!