09.11.2014 Views

SrFeOx perovskite based thin films on silicon substrates for sensor ...

SrFeOx perovskite based thin films on silicon substrates for sensor ...

SrFeOx perovskite based thin films on silicon substrates for sensor ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>SrFeOx</str<strong>on</strong>g> <str<strong>on</strong>g>perovskite</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> <strong>on</strong><br />

silic<strong>on</strong> <strong>substrates</strong> <strong>for</strong> <strong>sensor</strong><br />

applicati<strong>on</strong>s<br />

Abdul Majid, , Jim Tunney, Steve Argue,<br />

Melissa Kunkel and Mike Post


ABSTRACT<br />

Nanostructured coatings have recently attracted increasing interest because of the<br />

possibilities of synthesizing materials with unique physical-chemical properties.<br />

Highly sophisticated surface related properties, such as optical, magnetic, electr<strong>on</strong>ic,<br />

catalytic, mechanical, chemical and tribological properties can be obtained by<br />

advanced nanostructured coatings, making them attractive <strong>for</strong> various industrial<br />

applicati<strong>on</strong>s.<br />

The nanostructuring of <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> can greatly enhance the <strong>sensor</strong> properties of metal<br />

oxide <str<strong>on</strong>g>films</str<strong>on</strong>g>. This includes dramatic enhancements in chemical sensitivity, faster<br />

resp<strong>on</strong>se times and increased chemical selectivity. Metal oxides of the <str<strong>on</strong>g>perovskite</str<strong>on</strong>g><br />

ABO3-x (A= Sr, B = Fe) class of ceramic materials have interesting mixed i<strong>on</strong>icelectr<strong>on</strong>ic<br />

c<strong>on</strong>ductivity properties which make them leading candidates as <strong>sensor</strong>,<br />

membrane and solid oxide fuel cell materials. In this presentati<strong>on</strong> we describe our<br />

ef<strong>for</strong>ts at developing methodology to grow nanostructured <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> of SrFeO~2.9,<br />

using a soluti<strong>on</strong> <str<strong>on</strong>g>based</str<strong>on</strong>g> synthesis method. Soluti<strong>on</strong>-<str<strong>on</strong>g>based</str<strong>on</strong>g> synthesis offers molecular<br />

level mixing of the starting materials, which leads to a high degree of homogeneity<br />

with minimum particle size and high surface area. The <str<strong>on</strong>g>perovskite</str<strong>on</strong>g> coating sol was<br />

prepared via a sol-gel method.<br />

May 19, 2004 4


INTRODUCTION-1<br />

NANOSTRUCTURED MATERIALS GROUP<br />

1. Nanomaterials preparati<strong>on</strong><br />

2. Nanomaterials chracterizati<strong>on</strong><br />

3. Device nanochemistry<br />

May 19, 2004 4


PEROVSKITES – MIXED TRANSITION METAL OXIDES<br />

For the past several years we have been involved with <str<strong>on</strong>g>perovskite</str<strong>on</strong>g>s<br />

which are mixed transiti<strong>on</strong> metal oxides. These type of materials<br />

show a variety of useful properties, covering a wide range of<br />

scientific areas, from electrical (ferroelectricity, superc<strong>on</strong>ductivity,<br />

i<strong>on</strong>ic, and electr<strong>on</strong>ic c<strong>on</strong>ductivity) to magnetic, optical, and catalytic<br />

properties. These properties lead to a number of applicati<strong>on</strong>s such<br />

as:<br />

Sensors: humidity, O 2 , NO x , H 2 S, HC, alcohols<br />

Catalysis: FC, destructi<strong>on</strong> of chlorinated HC, oxidati<strong>on</strong><br />

of light hydrocarb<strong>on</strong>s and decompositi<strong>on</strong> of peroxides<br />

May 19, 2004 4


PEROVSKITES – Preparati<strong>on</strong><br />

C<strong>on</strong>venti<strong>on</strong>al Method: Solid-state reacti<strong>on</strong> at high temperature<br />

Product: n<strong>on</strong>-porous, coarse, n<strong>on</strong>-uni<strong>for</strong>mity of particle size and<br />

shape, low specific surface area<br />

Wet Chemical Methods: Examples – sol-gel<br />

Advantages<br />

☞ Better homogeneity<br />

☞ Better compositi<strong>on</strong>al c<strong>on</strong>trols<br />

☞ Lower processing temperatures<br />

☞ Improved mechanical, electrical, chemical and catalytic properties<br />

of metal oxides because of nanocrystalline particle size and high<br />

surface area<br />

☞ Porosity c<strong>on</strong>trol<br />

☞ Simpler and more ec<strong>on</strong>omical <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> <strong>for</strong>mati<strong>on</strong> potential<br />

May 19, 2004 4


<str<strong>on</strong>g>SrFeOx</str<strong>on</strong>g> – 2.5≤x≤3.0<br />

☞ Recently, we have been working with SrFeO x<br />

(2.5≤x≤3.0), which is a mixed i<strong>on</strong>ic electr<strong>on</strong>ic<br />

c<strong>on</strong>ductor, in which the reversible oxygen n<strong>on</strong>stoichiometry<br />

can be exploited <strong>for</strong> gas <strong>sensor</strong><br />

applicati<strong>on</strong>s.<br />

☞ These type of materials are widely applied <strong>for</strong> gas<br />

sensing by making use of the chemical equilibrium<br />

between reducing and oxidizing species at higher<br />

temperatures.<br />

May 19, 2004 4


EXPERIMENTAL -1<br />

Materials handling: GB under Ar<br />

Calcinati<strong>on</strong>s: Box furnace with temperature programming<br />

Reacti<strong>on</strong> Progress: XRD<br />

Preparati<strong>on</strong> Methods:<br />

1.Wet method: Pechini’s modified Sol-Gel method<br />

2.Solid-state method at 1100 o C <strong>for</strong> comparis<strong>on</strong><br />

May 19, 2004 4


<str<strong>on</strong>g>SrFeOx</str<strong>on</strong>g> – Preparati<strong>on</strong><br />

Flow Chart of Sol-Gel Process <strong>for</strong> preparati<strong>on</strong> of SrFeO x<br />

Sr (NO 3 ) 2 Fe (NO 3 ) 3<br />

Add citric acid<br />

Citrates of Fe and Sr<br />

Viscous Soluti<strong>on</strong><br />

Add dilute amm<strong>on</strong>ia, pH 6-7<br />

Heat at 80°C and stirred<br />

Add ethylene glycol, c<strong>on</strong>tinue heating<br />

Precursor soluti<strong>on</strong><br />

(For Film Depositi<strong>on</strong>)<br />

Heat at 180-200°C<br />

Grey porous solid<br />

Heat at 400°C<br />

May 19, 2004 4


Typical XRD patterns of SrFeO x<br />

1200<br />

Sol-gel preparati<strong>on</strong> at 600oC<br />

800<br />

Solid-state preparati<strong>on</strong> from oxides at 900oC<br />

400<br />

Solid-state preparati<strong>on</strong> at 1100oC<br />

0<br />

20 30 40 50 60 70 80<br />

2-Theta-Scale<br />

May 19, 2004 4


Effect of calcinati<strong>on</strong> temperature<br />

<strong>on</strong> surface area of SrFeO x<br />

Specific surface area (m2/g)<br />

24<br />

20<br />

16<br />

12<br />

8<br />

4<br />

Correlati<strong>on</strong> coefficient <strong>for</strong> linear fit: 0.993<br />

Specific surface area of the sample prepared<br />

by solid-state method: 0.1m 2 /g<br />

0<br />

500 600 700 800 900<br />

Calcinati<strong>on</strong> temperature oC<br />

May 19, 2004 4


Solid-state preparati<strong>on</strong><br />

Effect of ashing time <strong>on</strong> Sr 3 Fe 2 O 6.75 impurity<br />

1000<br />

800<br />

Solid-State Preparati<strong>on</strong> from Fe2O3 and SrCO3 at 1100oC<br />

600<br />

Calcinati<strong>on</strong> Time at 1100 o C: 50 Hrs<br />

400<br />

Calcinati<strong>on</strong> time at 1100oC: 70 Hrs<br />

200<br />

0<br />

Calcinati<strong>on</strong> time at 1100oC: 170 Hrs<br />

25 27.5 30 32.5 35<br />

2-Theta-Scale<br />

May 19, 2004 4


Effect of Calcinati<strong>on</strong> Temperature <strong>on</strong><br />

Crystallite size of SrFeO x<br />

140<br />

120<br />

Correlati<strong>on</strong> coefficient <strong>for</strong> 2nd order fit: 0.967<br />

Crystallite size (nm)<br />

100<br />

80<br />

60<br />

40<br />

Crystallite size of the sample prepared<br />

by solid-state method: 512 nm<br />

20<br />

600 700 800 900<br />

Calcinati<strong>on</strong> Temperature (oC)<br />

May 19, 2004 4


Perovskite Thin Films – Objectives<br />

1. Developing methodologies <strong>for</strong> the use of these materials<br />

as crack free coatings <strong>on</strong> various <strong>substrates</strong> <strong>for</strong> selective<br />

gas sensing applicati<strong>on</strong>s. The viscosity of the sols is<br />

expected to allow the easy preparati<strong>on</strong> of <str<strong>on</strong>g>films</str<strong>on</strong>g> by dipcoating,<br />

spraying, or spin coating.<br />

2. To design and synthesize mesoporous and macroporous<br />

<str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g>, to characterize their properties at the molecular<br />

scale, and to understand the factors that influence material<br />

resp<strong>on</strong>se and selectivity.<br />

May 19, 2004 4


Perovskite Thin Films – Methodology<br />

☞ Substrate Preparati<strong>on</strong><br />

Si wafers were s<strong>on</strong>icated in CCl 4 <strong>for</strong> 15 minutes and rinsed with 2-prapanol and<br />

water. They were then s<strong>on</strong>icated in a hot piranha soluti<strong>on</strong> of c<strong>on</strong>c. H 2 SO 4 and<br />

30% H 2 O 2 (3:1) <strong>for</strong> 30 min to remove any organic matter, rinsed with copious<br />

amount of water and dried at 150 o C.<br />

☞ Film Depositi<strong>on</strong><br />

The depositi<strong>on</strong> of <str<strong>on</strong>g>films</str<strong>on</strong>g> <strong>on</strong> the Si-substrate was attempted by both spin-coating<br />

and dip-coating techniques. The coated samples were then dried and annealed<br />

at elevated temperature to <strong>for</strong>m the desired phase in the coatings.<br />

☞ Adhesi<strong>on</strong><br />

Adhesi<strong>on</strong> of the heated <str<strong>on</strong>g>films</str<strong>on</strong>g> to the <strong>substrates</strong> was poor. Unfired <str<strong>on</strong>g>films</str<strong>on</strong>g> were<br />

easily scratched and could be removed from the <strong>substrates</strong> by scraping. Films<br />

heated to a temperature around 110 o C were not removed or damaged by limited<br />

physical abrasi<strong>on</strong>. Hence it seems that many of the primary covalent b<strong>on</strong>ds to<br />

the surface are <strong>for</strong>med due to c<strong>on</strong>densati<strong>on</strong> <strong>on</strong> surface hydroxyl groups at<br />

temperatures between 25 and 110 o C.<br />

May 19, 2004 4


Perovskite Thin Films – Characterizati<strong>on</strong><br />

☞ The Phase Characterizati<strong>on</strong><br />

XRD<br />

☞ Surface Characterizati<strong>on</strong><br />

Optical Microscope, SEM, TEM<br />

☞ Compositi<strong>on</strong><br />

XPS<br />

☞ Gas Sensing Potential <strong>for</strong> O 2 , N 2 , Propane<br />

Electrical Resistance Measurements<br />

May 19, 2004 4


Perovskite Thin Films – Sensor Applicati<strong>on</strong>s<br />

‣ nanostructuring of <str<strong>on</strong>g>thin</str<strong>on</strong>g> <str<strong>on</strong>g>films</str<strong>on</strong>g> can greatly enhance the <strong>sensor</strong> properties<br />

of metal oxide <str<strong>on</strong>g>films</str<strong>on</strong>g>. This includes:<br />

1. dramatic enhancements in chemical sensitivity,<br />

2. faster resp<strong>on</strong>se times and<br />

3. increased chemical selectivity<br />

‣ Metal oxides of the <str<strong>on</strong>g>perovskite</str<strong>on</strong>g> ABO3-x (A= Sr, La; B = Fe, Co) class<br />

of ceramic materials have interesting mixed i<strong>on</strong>ic-electr<strong>on</strong>ic<br />

c<strong>on</strong>ductivity properties which make them leading candidates as <strong>sensor</strong>s<br />

‣ Based <strong>on</strong> a relati<strong>on</strong>ship between the electrical c<strong>on</strong>ductivity of the film<br />

and the partial pressure of oxygen, oxide <str<strong>on</strong>g>films</str<strong>on</strong>g> can detect the<br />

c<strong>on</strong>centrati<strong>on</strong> of oxygen in the atmosphere.<br />

‣ Metal oxide <strong>sensor</strong>s can also show resp<strong>on</strong>se to reducing and oxidizing<br />

gases and can detect impurity gases in air at elevated temperatures.<br />

May 19, 2004 4


Perovskite Thin Films – Sensor Applicati<strong>on</strong>s<br />

PRINCIPAL<br />

☞ SrFeO x , a p-type semic<strong>on</strong>ductor<br />

☞ The type of gas in c<strong>on</strong>tact with the film will determine whether<br />

there is a decrease or increase in the absorbed surface oxygen.<br />

☞ p-type <strong>sensor</strong>s show an increase in resistance <strong>on</strong> exposure to a<br />

reducing gas and a decrease <strong>on</strong> exposure to an oxidizing gas.<br />

☞ Gas detecti<strong>on</strong> works <strong>on</strong> the principle that the change in<br />

resistance is proporti<strong>on</strong>al to the c<strong>on</strong>centrati<strong>on</strong> of gas.<br />

May 19, 2004 4


Perovskite Thin Films – Sensor Applicati<strong>on</strong>s<br />

Surface Reacti<strong>on</strong>s<br />

☞ The chemisorpti<strong>on</strong> of oxygen occurring <strong>on</strong> the surface of the film is<br />

represented as:<br />

4e - + O 2 → 2 O 2- adsorbed (1)<br />

☞ Reducing gases such as carb<strong>on</strong> m<strong>on</strong>oxide or propane are adsorbed <strong>on</strong>to the<br />

surface and react with the absorbed oxygen i<strong>on</strong>s as follows:<br />

2CO + O 2 - → 2CO 2 + e - (2)<br />

☞ This reacti<strong>on</strong> injects an electr<strong>on</strong> into the semic<strong>on</strong>ductor, which then fills a<br />

hole and causes an increase in resistance, <strong>for</strong> p-type <strong>sensor</strong>s. This reacti<strong>on</strong><br />

may not result in complete combusti<strong>on</strong> and other compounds may be<br />

<strong>for</strong>med.<br />

☞ A similar reacti<strong>on</strong> occurs with an oxidizing gas; the gas is absorbed <strong>on</strong>to<br />

the surface, and extracts an electr<strong>on</strong>, <strong>for</strong> p-type <strong>sensor</strong>s. An example of a<br />

reacti<strong>on</strong> with nitrogen dioxide gas and the surface is:<br />

NO 2 + e - ↔ NO 2<br />

-<br />

(3)<br />

May 19, 2004 4


Optical Micrographs<br />

May 19, 2004 4


Optical Micrographs<br />

May 19, 2004 4


RESISTANCE MEASUREMENTS<br />

Electrical c<strong>on</strong>ductivity of the <str<strong>on</strong>g>films</str<strong>on</strong>g> was measured using a two-wire method<br />

in c<strong>on</strong>trolled envir<strong>on</strong>ment where the temperature could be varied between<br />

25 and 500°C and changing the flowing gas compositi<strong>on</strong> as required.<br />

The sample was placed in a 1-liter chamber with synthetic air (79% N 2 ,<br />

21% O 2 ) flowing at 200cm 3 /min at 300°C <strong>for</strong> 20 minutes. It was then<br />

exposed to 99.999% purity N 2 with 0.56 ppm of O 2 <strong>for</strong> 20 minutes be<strong>for</strong>e<br />

switching back to synthetic air.<br />

The resistance was measured and recorded every sec<strong>on</strong>d during the<br />

experiment.<br />

Instrument: Keithley multimeter; Software: LabView; Temperature<br />

measurement: wi<str<strong>on</strong>g>thin</str<strong>on</strong>g> ±0.2°C, recorded every sec<strong>on</strong>d<br />

Experiments were per<strong>for</strong>med at 300 °C, 400°C and 500°C with N 2 and<br />

propane (3000 ppm propane, 20.2% O 2 ) as the gas.<br />

May 19, 2004 4


RESULTS<br />

RESISTANCE AND GAS RESPONSE<br />

Preliminary test results at 300-500 o C showed that the<br />

film had gas resp<strong>on</strong>se to nitrogen and propane gas.<br />

The tests could <strong>on</strong>ly be carried out at higher<br />

temperatures because the resistance readings are out<br />

of range <strong>for</strong> the multimeter at lower temperatures.<br />

May 19, 2004 4


RESULTS<br />

Figure 1: The Resp<strong>on</strong>se <strong>for</strong> N 2<br />

Gas at 400°C<br />

100<br />

90<br />

20 minutes<br />

80<br />

% Gas Resp<strong>on</strong>se<br />

70<br />

60<br />

50<br />

40<br />

30<br />

55%<br />

20<br />

10<br />

200 ccm of AIR<br />

200 ccm of NITROGEN<br />

0<br />

500 1000 1500 2000 2500 3000<br />

Time (s)<br />

200 ccm of AIR<br />

May 19, 2004 4


RESULTS<br />

Figure 2: Temperature Dependence of Resp<strong>on</strong>se <strong>for</strong> N 2 Gas<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

% Gas Resp<strong>on</strong>se<br />

30<br />

20<br />

10<br />

200 ccm of Nitrogen Gas<br />

0<br />

250 300 350 400 450 500 550<br />

Temperature (C)<br />

May 19, 2004 4


RESULTS<br />

Figure 3: The Resp<strong>on</strong>se <strong>for</strong> Propane at 400 o C<br />

2500000<br />

3000 ppm PROPANE<br />

250<br />

2250000<br />

200<br />

2000000<br />

150<br />

Resistance (ohm)<br />

1750000<br />

1500000<br />

1250000<br />

1000000<br />

750000<br />

AIR (79% N2, 21% O2) AIR (79% N2,<br />

21% O2)<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

Propane Gas Volume (ccm)<br />

500000<br />

-150<br />

250000<br />

-200<br />

0<br />

500 1000 1500 2000 2500 3000 3500<br />

Time(s)<br />

Resistance<br />

Propane Gas Volume<br />

-250<br />

May 19, 2004 4


RESULTS<br />

Figure 4: The Variati<strong>on</strong> of Propane Gas Resp<strong>on</strong>se at 400 o C with Time<br />

100<br />

90<br />

20 minutes<br />

80<br />

80%<br />

70<br />

60<br />

50<br />

40<br />

30<br />

% Gas Resp<strong>on</strong>se<br />

20<br />

10<br />

200 ccm of AIR<br />

200 ccm of AIR<br />

200 ccm of PROPANE<br />

0<br />

0 500 1000 1500 2000 2500<br />

Time (s)<br />

May 19, 2004 4


RESULTS<br />

Figure 5: Temperature dependence of Propane Gas Resp<strong>on</strong>se at 400 o C<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

% Gas Resp<strong>on</strong>se<br />

30<br />

20<br />

10<br />

200 ccm of Propane Gas<br />

0<br />

250 300 350 400 450 500 550<br />

Temperature (C)<br />

May 19, 2004 4


CONCLUSIONS -1<br />

1. A sol-gel method <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the modified Pechini-type reacti<strong>on</strong><br />

was successfully used <strong>for</strong> the preparati<strong>on</strong> of SrFeO ~2.9 <str<strong>on</strong>g>based</str<strong>on</strong>g><br />

coatings <strong>on</strong> silic<strong>on</strong> <strong>substrates</strong>.<br />

2. The sol-gel chelating precursor approach is a simple, cost<br />

effective method <strong>for</strong> synthesizing mixed transiti<strong>on</strong> metal oxide<br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> coatings <strong>on</strong> silic<strong>on</strong> <strong>substrates</strong>.<br />

3. The X-ray diffracti<strong>on</strong> results showed that the film c<strong>on</strong>tained<br />

the correct phase with no impurities.<br />

4. The resistance values of the film were higher than expected due<br />

to the surface morphology of the film, revealed through<br />

microscope analysis and SEM.<br />

May 19, 2004 4


CONCLUSIONS -2<br />

5. The film prepared was a p-type semic<strong>on</strong>ductor and showed gas<br />

resp<strong>on</strong>se to nitrogen and propane gas at temperatures of 300°C<br />

to 500°C.<br />

6. The film showed the highest percentage gas resp<strong>on</strong>se to<br />

nitrogen at 500°C of 97%. The gas resp<strong>on</strong>se <strong>for</strong> nitrogen gas<br />

was temperature dependant.<br />

7. The highest percentage gas resp<strong>on</strong>se <strong>for</strong> propane was 84% at<br />

500°C. The gas resp<strong>on</strong>se to propane did not appear to be<br />

temperature dependant in a 20-minute gas exposure time.<br />

8. The film showed greater percentage gas resp<strong>on</strong>se to the<br />

reducing gas than to an oxygen deficient gas.<br />

May 19, 2004 4


ACKNOWLEDGEMENTS<br />

Steve DeCliff, Digital photos<br />

Jim Morges<strong>on</strong>, SEM<br />

Dashan Wang, TEM<br />

David Kingst<strong>on</strong>, XPS<br />

Dr. Pamela Whitfield, XRD<br />

Dr. Mahesh Matam, Resistance measurements

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!