10.11.2014 Views

Numerical Solution of Cauchy Problems for Elliptic ... - COMSOL.com

Numerical Solution of Cauchy Problems for Elliptic ... - COMSOL.com

Numerical Solution of Cauchy Problems for Elliptic ... - COMSOL.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

<strong>Numerical</strong> <strong>Solution</strong> <strong>of</strong> <strong>Cauchy</strong> <strong>Problems</strong> <strong>for</strong><br />

<strong>Elliptic</strong> Equations in “Rectangle-like”<br />

Geometries<br />

Fredrik Berntsson and Lars Eldén<br />

Department <strong>of</strong> Mathematics, Linköping University<br />

Oktober 2005<br />

– Femlab Conference 2005 –


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Overview<br />

• Introduction, Motivating Example<br />

• Ill–posedness, Stabilization<br />

• <strong>Numerical</strong> Test problem in FEMLAB<br />

• Trans<strong>for</strong>mation to rectangular geometry. Mapping <strong>of</strong> Normal derivatives.<br />

• <strong>Numerical</strong> solution <strong>of</strong> Test problem<br />

• Conclusions, Future Work<br />

– Femlab Conference 2005 – 1


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Motivating example: Ilmenite iron melting furnace<br />

Thermocouple<br />

Electrode<br />

Level K to<br />

level D<br />

thermocouples<br />

with level K<br />

highest<br />

Center<br />

Under<br />

electrodes<br />

Between<br />

electrodes<br />

The furnace material properties are temperature dependent.<br />

Problem: find the inner shape <strong>of</strong> the furnace.<br />

Nonlinear, and (rather) <strong>com</strong>plex geometry<br />

PhD thesis: I M Skaar, Monitoring the Lining <strong>of</strong> a Melting Furnace, NTNU, Trondheim, 2001<br />

– Femlab Conference 2005 – 2


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Irregular geometry - non-constant coefficient<br />

Map the region to a rectangle:<br />

liquid steel<br />

liquid steel<br />

<strong>Cauchy</strong> data<br />

Find lining: the interface between iron and furnace<br />

– Femlab Conference 2005 – 3


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

The <strong>Cauchy</strong> Problem <strong>for</strong> Laplace’s equation<br />

Classical ill-posed problem (Hadamard, 1900-1930)<br />

u xx + u yy = 0,<br />

u(x,0) = 0, −∞ ≤ x ≤ ∞,<br />

∂u<br />

∂x (x, 0) = 1 sin(nx), −∞ ≤ x ≤ ∞.<br />

n<br />

<strong>Solution</strong>:<br />

u(x,y) = 1 sin(nx) sinh(ny).<br />

n2 Large n: arbitrarily small data, arbitrarily large solution.<br />

The solution does not depend continuously on the data!<br />

– Femlab Conference 2005 – 4


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Ill–posed <strong>Cauchy</strong> Problem on Unit Square<br />

y<br />

1<br />

(a(u)u x ) x +(a(u)u y ) y<br />

u x =0 u x =0<br />

u=g, u y =h<br />

1 x<br />

– Femlab Conference 2005 – 5


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

By separation <strong>of</strong> variables:<br />

Fourier analysis<br />

T(x,y)=A 0 y + B 0 +<br />

∞∑<br />

(A k e kπy + B k e −kπy )cos(kπx),<br />

k=1<br />

Fourier coefficients {A k } and {B k } satisfy (<strong>for</strong> k>0):<br />

( ) ( ) ( )<br />

1 1 Ak ĝk<br />

= ,<br />

kπ −kπ B k ĥ k<br />

where {ĝ k } and {ĥk} are the Fourier–cosine coefficients <strong>of</strong> g(x) and h(x)<br />

Since e kπy → ∞ as k → ∞ the problem is severely ill–posed!<br />

– Femlab Conference 2005 – 6


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Rewrite as an Initial value problem:<br />

( ) (<br />

u 0 a<br />

=<br />

−1<br />

au y<br />

y<br />

− ∂<br />

∂x a ∂<br />

∂x<br />

0<br />

) (<br />

u<br />

au y<br />

)<br />

, 0≤y ≤1,<br />

(<br />

u(x, 0)<br />

u y (x, 0)<br />

) ( )<br />

g<br />

= .<br />

h<br />

The unbounded x-derivative makes the problem ill-posed!<br />

Approximation <strong>of</strong> derivative:<br />

∂<br />

∂x<br />

(<br />

a(u) ∂v )<br />

∂x<br />

≈ ¯D(A ¯DV )<br />

A diagonal matrix, depends on u<br />

¯D bounded differentiation matrix, spectral or otherwise<br />

Resulting stable problem is solved using standard code (ode45) in Matlab.<br />

– Femlab Conference 2005 – 7


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Approximate u(x) by a least squares cubic spline s(x).<br />

Then set u ′ (x)≈s ′ (x).<br />

α −3<br />

α −2<br />

α −1<br />

α 0<br />

α 1<br />

α 2<br />

α 3<br />

α 4<br />

α 5<br />

α 6<br />

α 7<br />

The basis functions Bj 3 (x), <strong>for</strong> j =−1,...,5.<br />

Choose a coarse grid =⇒ bounded differentiation operator.<br />

Advantage: flexible at boundaries.<br />

– Femlab Conference 2005 – 8


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

A <strong>Numerical</strong> Model Problem<br />

The Heat Equation<br />

(a(u)u x ) x + (a(u)u y ) y =0, in Ω<br />

Boundary Conditions<br />

∂u<br />

u = g,<br />

∂n = h, on L 1,<br />

∂u<br />

∂n = 0, on L 2 and L 3 ,<br />

– Femlab Conference 2005 – 9


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Test problem generated in FEMLAB<br />

Sides: insulated<br />

Upper boundary: 1450 o<br />

Lower boundary: 800 o<br />

Temperature-dependent<br />

conductivity<br />

– Femlab Conference 2005 – 10


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

18<br />

Thermal conductivity<br />

16<br />

Thermal conductivity [ W/m o C ]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0 200 400 600 800 1000 1200 1400 1600<br />

Temperature [ o C ]<br />

The thermal conductivity <strong>for</strong> magnesia brick, as a function <strong>of</strong> temperature.<br />

– Femlab Conference 2005 – 11


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Constructed solution (direct problem solved using FEMLAB):<br />

Temperature and Heat-Flux data along the lower boundary is used to<br />

identify the upper boundary!<br />

– Femlab Conference 2005 – 12


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Trans<strong>for</strong>mation <strong>of</strong> the Problem<br />

The Con<strong>for</strong>mal Mapping<br />

(x, y) = φ(ξ,η) = [x(ξ, η), y(ξ, η)]<br />

The problem is trans<strong>for</strong>med into<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

(a(v)v ξ ) ξ + (a(v)v η ) η = 0, 0


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Trans<strong>for</strong>mation <strong>of</strong> the area<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

−3 −2 −1 0 1 2 3<br />

Con<strong>for</strong>mal mapping <strong>of</strong> the auxilliary domain onto a rectangle. Actual grid<br />

is finer!<br />

– Femlab Conference 2005 – 14


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Computed flux data on the square<br />

4600<br />

4400<br />

4200<br />

4000<br />

3800<br />

3600<br />

3400<br />

3200<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2<br />

Trans<strong>for</strong>med using Con<strong>for</strong>mal mapping (blue curve). No noise added!<br />

– Femlab Conference 2005 – 15


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Computed heat-flux on original Domain<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0 1 2 3 4 5 6<br />

The Heat-Flux ∂u<br />

∂n on L 1 <strong>com</strong>puted by FEMLAB<br />

– Femlab Conference 2005 – 16


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Trans<strong>for</strong>mation <strong>of</strong> normal derivatives<br />

By the Con<strong>for</strong>mal mapping<br />

∂u<br />

∂n | L1=|(φ −1 ) ′ | ∂v (ξ, 0)<br />

∂η<br />

The Schwarz–Christ<strong>of</strong>fel mapping function φ has a singularity at every<br />

corner <strong>of</strong> the polygonal domain.<br />

The Singularities in |(φ −1 ) ′ | almost cancel out the spikes in FEMLABs<br />

normal derivative.<br />

– Femlab Conference 2005 – 17


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

<strong>Numerical</strong> <strong>Solution</strong> <strong>of</strong> the Test problem<br />

liquid steel<br />

liquid steel<br />

<strong>Cauchy</strong> data<br />

• Solve <strong>Cauchy</strong> problem. Find the isotherm v=1450 o C.<br />

• Con<strong>for</strong>mal mapping <strong>of</strong> the identified curve.<br />

– Femlab Conference 2005 – 18


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

4500<br />

Noisy flux data<br />

4000<br />

3500<br />

3000<br />

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2<br />

Normally distributed noise added. Realistic noise level!<br />

– Femlab Conference 2005 – 19


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Computed temperatures at 0.6 and 0.8<br />

1340<br />

<strong>Numerical</strong> solution at y=0.60<br />

1460<br />

<strong>Numerical</strong> solution at y=0.80<br />

1320<br />

1440<br />

1300<br />

1420<br />

1280<br />

1400<br />

Temperature [ o C ]<br />

1260<br />

1240<br />

1220<br />

Temperature [ o C ]<br />

1380<br />

1360<br />

1340<br />

1200<br />

1320<br />

1180<br />

1300<br />

1160<br />

1280<br />

1140<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

1260<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Derivatives <strong>com</strong>puted using 11 B-splines. Differential equation only valid<br />

when temperature is below 1450 o C.<br />

– Femlab Conference 2005 – 20


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Noisy data, identified boundary<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3 −2 −1 0 1 2 3<br />

Derivatives <strong>com</strong>puted using 11 B-splines.<br />

– Femlab Conference 2005 – 21


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Less regularization, temperature at 0.62 and 0.81<br />

1400<br />

<strong>Numerical</strong> solution at y=0.62<br />

1460<br />

<strong>Numerical</strong> solution at y=0.81<br />

1440<br />

1350<br />

1420<br />

1400<br />

Temperature [ o C ]<br />

1300<br />

1250<br />

Temperature [ o C ]<br />

1380<br />

1360<br />

1340<br />

1320<br />

1200<br />

1300<br />

1280<br />

1150<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

1260<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Derivatives <strong>com</strong>puted using 19 B-splines!<br />

Impossible to identify boundary when the temperature is not smooth<br />

– Femlab Conference 2005 – 22


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Conclusions<br />

• Efficient solution: replace a derivative by bounded approximation, solve<br />

<strong>Cauchy</strong> problem stably using a “method <strong>of</strong> lines”<br />

• General geometries: trans<strong>for</strong>m “rectangle-like region” to rectangle<br />

(equivalent to creating a curvilinear mesh). Solve the problem on<br />

the rectangle<br />

• Trans<strong>for</strong>mation cheap to <strong>com</strong>pute <strong>for</strong> rather general geometries<br />

(approximated by polygon)<br />

• Nonlinear problems can be solved rather easily<br />

• Stability theory: A stability estimate <strong>for</strong> a <strong>Cauchy</strong> problem <strong>for</strong> an elliptic<br />

partial differential equation, Inverse <strong>Problems</strong>, vol. 21, no 5, pp. 1643-<br />

1653, October 2005.<br />

– Femlab Conference 2005 – 23


Presented at the <strong>COMSOL</strong> Multiphysics User's Conference 2005 Boston<br />

Future Work<br />

• More detailed FEMLAB model <strong>of</strong> the Furnace. More realistic simulation<br />

<strong>of</strong> measurements.<br />

• Identify boundaries given other conditions (e.g. insulated boundary).<br />

• Applications: The Melting Furnace<br />

• Use FEMLAB to creat Test problem. Finding good test problems is very<br />

important!<br />

– Femlab Conference 2005 – 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!