11.11.2014 Views

Unpaired electrons in DFT - VASP

Unpaired electrons in DFT - VASP

Unpaired electrons in DFT - VASP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Magnetism<br />

Martijn MARSMAN<br />

Institut für Materialphysik and Center for Computational Material Science<br />

Universität Wien, Sensengasse 8/12, A-1090 Wien, Austria<br />

b-<strong>in</strong>itio<br />

ienna<br />

ackage<br />

imulation<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 1


Outl<strong>in</strong>e<br />

(Non)coll<strong>in</strong>ear sp<strong>in</strong>-density-functional theory<br />

On site Coulomb repulsion: L(S)DA+U<br />

Sp<strong>in</strong> Orbit Interaction<br />

Sp<strong>in</strong> spiral magnetism<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 2


Sp<strong>in</strong>-density-functional theory<br />

wavefunction<br />

¡sp<strong>in</strong>or<br />

Φ ¢<br />

£¥¤<br />

Ψ § ¢<br />

Ψ ¦ ¢<br />

<br />

£<br />

<br />

<br />

¡<br />

©<br />

£<br />

£<br />

density<br />

2¨2 matrix,<br />

n<br />

r<br />

n αβ<br />

r ¥¤∑<br />

n<br />

f n<br />

Ψβn ¢<br />

r<br />

r<br />

¢ Ψαn £<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 3


¥¤<br />

σy<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

n αβ<br />

r<br />

n Tr<br />

r<br />

δ αβ<br />

m r<br />

<br />

σ αβ<br />

2<br />

m r<br />

¤∑<br />

n αβ<br />

αβ<br />

r<br />

<br />

σ αβ<br />

n Tr<br />

r Tr<br />

n αβ<br />

r<br />

α<br />

¤∑<br />

n αα<br />

r<br />

Pauli sp<strong>in</strong> matrices,<br />

σ¤<br />

σx<br />

σ z<br />

0 1<br />

0<br />

i<br />

1 0<br />

σ x¤<br />

1 0<br />

σy¤<br />

i 0<br />

σz¤<br />

0<br />

1<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 4


¢<br />

<br />

r<br />

¢<br />

¢<br />

<br />

<br />

<br />

<br />

r<br />

<br />

¢<br />

<br />

<br />

<br />

<br />

<br />

<br />

The Kohn-Sham density functional becomes<br />

E<br />

¤∑<br />

α<br />

∑<br />

n<br />

1<br />

2<br />

f n<br />

and the Kohn-Sham equations<br />

dr<br />

Ψα n <br />

¢<br />

1<br />

2 ∆<br />

dr<br />

¢ Ψαn<br />

nTr <br />

<br />

r<br />

r<br />

£drVext<br />

r<br />

nTr<br />

nTr<br />

r<br />

Exc<br />

©<br />

n<br />

r<br />

r<br />

with the ¨2 2 Hamilton matrix<br />

∑H αβ<br />

β<br />

¢ Ψβn<br />

£¥¤εnSαα<br />

¢ Ψαn £<br />

H αβ¤<br />

1<br />

2 ∆δ αβ<br />

Vext<br />

r<br />

<br />

δαβ <br />

r<br />

dr<br />

n Tr <br />

r<br />

δ αβ<br />

V αβ<br />

xc<br />

©<br />

n<br />

r<br />

r<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 5


¥¤mz<br />

<br />

¥¤<br />

©<br />

<br />

<br />

<br />

<br />

<br />

H αα<br />

V βα<br />

xc<br />

V αβ<br />

xc<br />

H ββ<br />

¢ Ψαn £<br />

¢ Ψβn £<br />

¤εn<br />

¢ Ψαn £<br />

¢ Ψβn £<br />

¢ Ψαn £<br />

and<br />

¢ Ψβn £<br />

couple over V αβ<br />

xc<br />

and V βα<br />

xc<br />

V αβ<br />

xc<br />

©<br />

n<br />

r<br />

r<br />

δE xc<br />

δn βα<br />

©<br />

n<br />

r<br />

r<br />

unfortunately, only <strong>in</strong> case m<br />

to E xc n r is known<br />

©<br />

r<br />

r n r<br />

<br />

diagonal , a reliable approximation<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 6


¦<br />

<br />

¥¤<br />

<br />

¥¤<br />

<br />

¥¤<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

¦<br />

<br />

<br />

<br />

<br />

§<br />

<br />

¥¤<br />

Uβ j<br />

¤δi j ni<br />

nβα<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

¦ <br />

<br />

¦<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

§<br />

<br />

<br />

<br />

¥¤<br />

<br />

σzU<br />

<br />

<br />

<br />

<br />

¢ <br />

density matrix can be diagonalized<br />

∑U iα<br />

αβ<br />

r<br />

r<br />

r<br />

r<br />

where U(r) are sp<strong>in</strong>-1/2 rotation matrices<br />

V αβ<br />

xc<br />

r<br />

1<br />

2<br />

δE xc<br />

δn 1<br />

r<br />

<br />

δE xc<br />

δn 2<br />

r<br />

<br />

δ αβ<br />

1<br />

2<br />

δE xc<br />

δn 1<br />

r<br />

<br />

δE xc<br />

δn 2<br />

r<br />

U<br />

<br />

r<br />

r<br />

αβ<br />

or equivalently, us<strong>in</strong>g<br />

n<br />

r<br />

1<br />

2<br />

n Tr<br />

r<br />

¢<br />

m<br />

r<br />

¢<br />

n §<br />

r<br />

1<br />

2<br />

n Tr<br />

r<br />

<br />

¢<br />

m<br />

r<br />

¢<br />

and ˆm <br />

r<br />

¢ <br />

m<br />

m<br />

r<br />

r<br />

we can write<br />

V αβ<br />

xc<br />

r<br />

1<br />

2<br />

δE xc<br />

δn<br />

r<br />

<br />

δE xc<br />

δn<br />

r<br />

<br />

δ αβ<br />

1<br />

2<br />

δE xc<br />

δn<br />

r<br />

<br />

δE xc<br />

δn<br />

r<br />

<br />

ˆm<br />

r<br />

<br />

σ αβ<br />

where<br />

E xc¤n Tr<br />

r<br />

ε xc<br />

n<br />

r<br />

n §<br />

r<br />

dr<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 7


Coll<strong>in</strong>ear (sp<strong>in</strong>s along z direction):<br />

H αα<br />

H ββ<br />

¢ Ψαn £<br />

¢ Ψβn £<br />

¤εn<br />

¢ Ψαn £<br />

¢ Ψβn £<br />

Noncoll<strong>in</strong>ear:<br />

H αα<br />

V βα<br />

xc<br />

V αβ<br />

xc<br />

H ββ<br />

¢ Ψαn £<br />

¢ Ψβn £<br />

¤εn<br />

¢ Ψαn £<br />

¢ Ψβn £<br />

In the absence of Sp<strong>in</strong> Orbit Interaction (SOI) the sp<strong>in</strong> directions are not l<strong>in</strong>ked to the<br />

crystall<strong>in</strong>e structure, i.e., the system is <strong>in</strong>variant under a general common rotation of<br />

all sp<strong>in</strong>s<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 8


YMn 2<br />

Mn sublattice coll<strong>in</strong>ear noncoll<strong>in</strong>ear<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 9


!<br />

<br />

¢<br />

<br />

r<br />

¢<br />

On site Coulomb repulsion<br />

L(S)DA fails to describe systems with localized (strongly correlated) d and f<br />

<strong>electrons</strong> ¡wrong one-electron energies<br />

Strong <strong>in</strong>tra-atomic <strong>in</strong>teraction is <strong>in</strong>troduced <strong>in</strong> a (screened) Hartree-Fock like<br />

manner ¡replac<strong>in</strong>g L(S)DA on site<br />

E HF¤<br />

1<br />

2 ∑<br />

γ<br />

" <br />

Uγ1 γ3 γ2γ4<br />

Uγ1γ3 γ4 γ2<br />

ˆn γ1 γ 2 ˆn γ3 γ 4<br />

determ<strong>in</strong>ed by the PAW on site occupancies<br />

ˆn γ1 γ 2¤<br />

Ψs2 m2 <br />

¢<br />

£m1<br />

and the (unscreened) on site electron-electron <strong>in</strong>teraction<br />

U γ1 γ 3 γ 2 γ 4¤<br />

m1 m3<br />

r<br />

1<br />

¢ ¢<br />

m2m4 £<br />

¢ Ψs1 £<br />

δ s1 s 2<br />

δ s3 s 4<br />

(<br />

¢ m £<br />

are the spherical harmonics)<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 10


¤<br />

Uγ1 γ3 γ2 γ4 given by Slater’s <strong>in</strong>tegrals F 0, F2, F4, and F 6 (f-<strong>electrons</strong>)<br />

Calculation of Slater’s <strong>in</strong>tegrals from atomic wave functions leads to a large<br />

overestimation because <strong>in</strong> solids the Coulomb <strong>in</strong>teraction is screened (especially<br />

F 0 ).<br />

In practice treated as fitt<strong>in</strong>g parameters, i.e., adjusted to reach agreement with<br />

experiment: equilibrium volume, magnetic moment, band gap, structure.<br />

Normally specified <strong>in</strong> terms of effective on site Coulomb- and exchange<br />

parameters, U and J.<br />

For 3d-<strong>electrons</strong>: U<br />

F 0 , J¤<br />

1<br />

14<br />

F2<br />

F4<br />

, and F4 0#65<br />

F 2¤<br />

U and J sometimes extracted from constra<strong>in</strong>ed-LSDA calculations.<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 11


EHF<br />

<br />

<br />

Edc<br />

<br />

Total energy and double count<strong>in</strong>g<br />

E tot<br />

n <br />

ˆn<br />

Total energy<br />

n<br />

¥¤E<strong>DFT</strong><br />

ˆn<br />

ˆn<br />

Double count<strong>in</strong>g<br />

LSDA+U<br />

E dc<br />

ˆn<br />

¥¤<br />

U<br />

2 ˆn tot<br />

ˆn tot<br />

1<br />

J<br />

2 ∑ σ ˆn σ tot<br />

ˆn σ tot<br />

1<br />

LDA+U<br />

E dc<br />

ˆn<br />

¥¤<br />

U<br />

2 ˆn tot<br />

ˆn tot<br />

1<br />

J<br />

4 ˆn tot<br />

ˆn tot<br />

2<br />

Hartree-Fock Hamiltonian can be simply added to the AE part of the PAW<br />

Hamiltonian<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 12


Orbital dependent potential that enforces Hund’ s first and second rule<br />

– maximal sp<strong>in</strong> multiplicity<br />

– highest possible azimuthal quantum number L z<br />

(when SOI <strong>in</strong>cluded)<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 13


U <br />

<br />

<br />

' <br />

$<br />

U <br />

<br />

<br />

&<br />

Dudarev’s approach to LSDA+U<br />

E LSDA U¤E LSDA<br />

J<br />

2<br />

∑<br />

σ<br />

∑<br />

m 1<br />

n σ m 1<br />

% m1<br />

∑<br />

m 1<br />

% m2 ˆnσm 1<br />

%%m2 ˆnσm 2 m1<br />

n−n 2<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

n<br />

Penalty function that forces idempotency of<br />

the onsite occupancy matrix,<br />

ˆn σ¤ˆn σ ˆn σ<br />

real matrices are only idempotent, if their<br />

eigenvalues are either 1 or 0<br />

(fully occupied or unoccupied)<br />

E LSDA U¤E LSDA<br />

ε i<br />

(<br />

J<br />

2<br />

∑<br />

σ %%m1 m2 ˆnσm 1<br />

%%m2 ˆnσm 2 m1<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 14


)<br />

An example: NiO, a Mott-Hubbard <strong>in</strong>sulator<br />

Rocksalt structure<br />

AFM order<strong>in</strong>g of Ni (111) planes<br />

Ni 3d <strong>electrons</strong> <strong>in</strong> octahedral crystal field<br />

t 2g (3d xy , 3d xz , 3d yz )<br />

e g (3d x 2<br />

y 2 , 3d z 2)<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 15


LSDA<br />

Dudarev U=8 J=0.95<br />

n(E) (states/eV atom)<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

t 2g<br />

e g<br />

n(E) (states/eV atom)<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

t 2g<br />

e g<br />

−4 −2 0 2 4 6 8 10<br />

−4 −2 0 2 4 6 8 10<br />

E(eV)<br />

E(eV)<br />

¢¢mNi<br />

= 1.15 µ B<br />

¢¢mNi<br />

= 1.71 µ B<br />

E gap = 0.44 eV E gap = 3.38 eV<br />

Experiment<br />

= 1.64 - 1.70 µ B E gap = 4.0 - 4.3 eV<br />

¢¢mNi<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 16


¤<br />

2me c<br />

%<br />

¢<br />

¢<br />

<br />

<br />

¢<br />

Sp<strong>in</strong> Orbit Interaction<br />

Relativistic effects, <strong>in</strong> pr<strong>in</strong>ciple stemm<strong>in</strong>g from 4-component Dirac equation<br />

Pseudopotential generation: Radial wave functions are solutions of the scalar<br />

relativistic radial equation, which <strong>in</strong>cludes Mass-velocity and Darw<strong>in</strong> terms<br />

Kohn-Sham equations: Sp<strong>in</strong> Orbit Interaction is added to the AE part of the PAW<br />

Hamiltonian (variational treatment of the SOI)<br />

H αβ<br />

SOI<br />

¯h 2<br />

2 ∑<br />

i j<br />

φi<br />

1<br />

r<br />

dV spher<br />

dr<br />

¢ φ j £<br />

˜p i<br />

£ <br />

σ L αβ<br />

i j<br />

˜p j<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 17


Consequences:<br />

Mix<strong>in</strong>g of up- and down sp<strong>in</strong>or components, noncoll<strong>in</strong>ear magnetism<br />

Sp<strong>in</strong> directions couple to the crystall<strong>in</strong>e structure, magneto-crystall<strong>in</strong>e anisotropy<br />

Orbital magnetic moments<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 18


¤<br />

<br />

An example: CoO<br />

Rocksalt structure<br />

AFM order<strong>in</strong>g of Co (111) planes<br />

Experiment:<br />

¢ mCo<br />

112<br />

Orbital moment <strong>in</strong> t 2g manifold of<br />

Co 2 [3d 7 ] ion not completely quenched<br />

by crystal field<br />

LDA+U (U=8 eV, J=0.95 eV) + SOI<br />

,enforce Hund’ s rules<br />

Calculations yield correct easy axis,<br />

and c/a ratio<br />

¢ mS<br />

m L<br />

µB ¢¢¤2.8<br />

-1 (magnetostriction)<br />

¢ ¤1.4 µB<br />

¢+*3.8 µB along<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 19


¦<br />

§<br />

<br />

<br />

<br />

<br />

<br />

¤<br />

¤<br />

.<br />

.<br />

)<br />

<br />

<br />

<br />

<br />

1<br />

1<br />

<br />

<br />

<br />

<br />

¦<br />

§<br />

<br />

<br />

qR<br />

qR<br />

<br />

<br />

/<br />

/<br />

Sp<strong>in</strong> spirals<br />

q<br />

m rR<br />

Generalized Bloch condition<br />

m x<br />

m x<br />

r<br />

r<br />

cos<br />

s<strong>in</strong><br />

qR<br />

qR<br />

m z<br />

r<br />

my<br />

my<br />

r s<strong>in</strong><br />

r cos<br />

Ψ<br />

Ψ<br />

k<br />

k<br />

r<br />

r<br />

e<br />

iq0R<br />

2<br />

0<br />

0 e iq 0R<br />

2<br />

Ψ<br />

Ψ<br />

k<br />

k<br />

rR<br />

rR<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 20


¦<br />

<br />

¦<br />

¢<br />

¢<br />

¡<br />

¡<br />

¡<br />

<br />

G<br />

§<br />

<br />

¢<br />

<br />

¢<br />

<br />

§<br />

)<br />

<br />

<br />

keep<strong>in</strong>g to the usual def<strong>in</strong>ition of the Bloch functions<br />

Ψ<br />

k<br />

r<br />

¥¤∑<br />

G<br />

C<br />

kG ei<br />

k G 0r 2<br />

3<br />

and<br />

Ψ<br />

k<br />

r<br />

G<br />

¤∑<br />

C<br />

kG ei<br />

k G 0r 2<br />

3<br />

the Hamiltonian changes only m<strong>in</strong>imally<br />

H αα<br />

V βα<br />

xc<br />

V αβ<br />

xc<br />

H ββ<br />

H αα Vxc αβ e<br />

Vxc βα e iq 0r Hββ<br />

iq0r<br />

where <strong>in</strong> H αα and H ββ the k<strong>in</strong>etic energy of a plane wave component changes to<br />

¢ k<br />

G<br />

2<br />

¢ k<br />

G<br />

2<br />

q<br />

2<br />

<strong>in</strong> H αα<br />

¢ k<br />

G<br />

2<br />

¢ k<br />

2<br />

q<br />

2<br />

<strong>in</strong> H ββ<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 21


¤<br />

¤E<br />

E<br />

q θ <br />

<br />

<br />

Primitive cell suffices, no need for supercell that conta<strong>in</strong>s a complete spiral period<br />

Adiabatic sp<strong>in</strong> dynamics: Magnon spectra<br />

for <strong>in</strong>stance for elementary ferromagnetic metals (bcc Fe, fcc Ni)<br />

ω<br />

q<br />

¥¤lim<br />

θ40<br />

4<br />

M<br />

∆E<br />

s<strong>in</strong> 2 θ<br />

M<br />

θ<br />

q<br />

∆E<br />

q θ <br />

<br />

q<br />

θ<br />

0<br />

θ <br />

see for <strong>in</strong>stance:<br />

“Theory of It<strong>in</strong>erant Electron Magnetism”, J. Kübler, Clarendon Press, Oxford (2000).<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 22


0<br />

<br />

<br />

<br />

<br />

<br />

Sp<strong>in</strong> spirals <strong>in</strong> fcc Fe<br />

−8.13<br />

−8.15<br />

10.45 Å 3<br />

10.63 Å 3<br />

10.72 Å 3<br />

11.44 Å 3<br />

Γ (FM) =<br />

2π<br />

q 1 =<br />

2π<br />

a 0¨<br />

X (AFM) =<br />

2π<br />

q 2 =<br />

2π<br />

a 0¨<br />

0 a0¨<br />

<br />

0<br />

0 a0¨<br />

<br />

0#15<br />

0<br />

0<br />

0<br />

0<br />

0#6<br />

1#0<br />

0<br />

1#0<br />

E [eV]<br />

−8.17<br />

−8.19<br />

−8.21<br />

Γ q 1 X q 2 W<br />

q exp¤<br />

2π<br />

0#1 a0¨<br />

<br />

#0 1<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 23


Magnetization at q 1<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 24


Some references<br />

Noncoll<strong>in</strong>ear magnetism <strong>in</strong> the PAW formalism<br />

– D. Hobbs, G. Kresse and J. Hafner, Phys. Rev. B. 62, 11 556 (2000).<br />

L(S)DA+U<br />

– I. V. Solovyev, P. H. Dederichs and V. I. Anisimov, Phys. Rev. B. 50, 16 861<br />

(1994).<br />

– A. B. Shick, A. I. Liechtenste<strong>in</strong> and W. E. Pickett, Phys. Rev. B. 60, 10 763<br />

(1999).<br />

– S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P.<br />

Sutton, Phys. Rev. B. 57, 1505 (1998).<br />

Sp<strong>in</strong> spirals<br />

– L. M. Sandratskii, J. Phys. Condens. Matter 3, 8565 (1993); J. Phys. Condens.<br />

Matter 3, 8587 (1993)<br />

M. MARSMAN, <strong>VASP</strong> WORKSHOP, VIENNA 10-15 FEBRUARY 2003. Page 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!