11.11.2014 Views

III - The Definite Integral - SLC Home Page

III - The Definite Integral - SLC Home Page

III - The Definite Integral - SLC Home Page

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MATHEMATICS 201-203-RE<br />

<strong>Integral</strong> Calculus<br />

Martin Huard<br />

Winter 2009<br />

<strong>III</strong> - <strong>The</strong> <strong>Definite</strong> <strong>Integral</strong><br />

1. <strong>The</strong> graph of a function f is given.<br />

8<br />

Estimate ∫ f ( x ) dx using four subintervals with<br />

0<br />

a) right endpoints<br />

b) left endpoints<br />

c) midpoints<br />

4<br />

2<br />

y<br />

2 4 6<br />

8<br />

x<br />

2. <strong>The</strong> graph of a function f is given.<br />

11<br />

Estimate f ( )<br />

∫ x dx using five<br />

1<br />

subintervals with<br />

a) right endpoints<br />

b) left endpoints<br />

c) midpoints<br />

y<br />

4<br />

3<br />

2<br />

1<br />

-1<br />

-2<br />

1 2 3 4 5 6 7 8 9 10 11 x<br />

3. Evaluate each of the following definite integral using a Riemann Sum. (<strong>The</strong> answers are<br />

given using the RHE). Does the answer represent an area? Explain.<br />

2<br />

1<br />

a) ( − )<br />

∫<br />

0<br />

1 x dx<br />

3<br />

c) ( + x )( − )<br />

∫<br />

−<br />

2<br />

1 1 3<br />

x dx<br />

4<br />

e) ∫ ( 2<br />

0<br />

2<br />

+ −1)<br />

3<br />

g) ∫ ( −<br />

−1<br />

2<br />

+ 4 − 5)<br />

1<br />

3<br />

i) ∫ ( x + 1)<br />

dx<br />

−1<br />

x x dx<br />

x x dx<br />

1<br />

b) ( x + )<br />

∫<br />

−<br />

2 2 1<br />

dx<br />

3<br />

2<br />

d) ∫ ( − 4 + 3)<br />

0<br />

x x dx<br />

−1<br />

f) ( 4 − 3)( 3 + 1)<br />

∫<br />

−3<br />

x x dx<br />

5<br />

2<br />

h) ∫ ( + + 1)<br />

∫<br />

2<br />

x x dx<br />

3 2<br />

j) ( + 2)( −1)<br />

−3<br />

x x dx<br />

4. Prove the following.<br />

2 2<br />

b b − a<br />

a) ∫ x dx = . b)<br />

a 2<br />

3 3<br />

b<br />

2 b − a<br />

∫ x dx = .<br />

a 3


Math 203<br />

<strong>III</strong> – <strong>The</strong> <strong>Definite</strong> <strong>Integral</strong><br />

6<br />

6<br />

3<br />

5. If ∫ f ( t)<br />

dt = 2 and ∫ f ( t)<br />

dt = 5, find ( )<br />

1<br />

3<br />

∫ f t dt .<br />

1<br />

4<br />

1<br />

4<br />

6. If ∫ f ( x)<br />

dx = 7 and ∫ f ( x)<br />

dx = −1, find ( )<br />

−1<br />

−1<br />

∫ 5 f x dx .<br />

1<br />

7. Use the properties of integrals to verify the inequality without evaluating the integral.<br />

π<br />

π<br />

2 2<br />

12<br />

≤ ∫ sin x dx ≤<br />

π<br />

3<br />

6<br />

π<br />

8. Use the properties of integrals (along with question 3) to prove<br />

9. Evaluate the integral by interpreting it in terms of area.<br />

2<br />

a) ∫ f ( x ) dx<br />

−2<br />

5<br />

b) ∫ f ( x ) dx<br />

2<br />

4<br />

c) ∫ f ( x ) dx<br />

0<br />

5<br />

d) ∫ f ( x ) dx<br />

−2<br />

π<br />

2<br />

2<br />

π<br />

∫ xsin<br />

x dx ≤ .<br />

0<br />

8<br />

y = f ( x)<br />

10. Express the limit as a definite integral.<br />

a)<br />

lim<br />

n<br />

i<br />

6<br />

∑ b)<br />

n→∞ 7<br />

i = 1 n<br />

n πi<br />

π sin<br />

2n<br />

c) lim∑ d)<br />

n→∞ = 2n<br />

i 1<br />

n<br />

3i<br />

3 2 +<br />

n<br />

lim∑<br />

n→∞ i = 1 n<br />

n 2 2<br />

n − i<br />

lim∑<br />

n→∞ 2<br />

i = 1 n<br />

Winter 2009 Martin Huard 2


Math 203<br />

<strong>III</strong> – <strong>The</strong> <strong>Definite</strong> <strong>Integral</strong><br />

Answers<br />

1. a) 18 b) 20 c) 22<br />

2. a) 8 b) 14 c) 6<br />

( n −<br />

3. a) lim 1)<br />

9<br />

= 1 Yes b) lim = 0<br />

n→∞<br />

n<br />

n→∞<br />

n<br />

No<br />

32( n −1)(<br />

n + 1) 32<br />

− 9( n −1)<br />

c) lim = Yes d) lim = 0<br />

n→∞<br />

2 2<br />

3n<br />

3<br />

n→∞<br />

2n<br />

No<br />

2<br />

4(7n<br />

+ 8)(5n<br />

+ 2) 140<br />

2(59n<br />

− 53n<br />

+ 8)<br />

e) lim = No f) lim = 118<br />

n→∞<br />

2 2<br />

3n<br />

3<br />

n→∞<br />

n<br />

Yes<br />

2<br />

2<br />

−8(5n<br />

− 6n<br />

+ 4) 40<br />

3(35n<br />

+ 24n<br />

+ 3) 105<br />

g) lim<br />

= − No h) lim<br />

= Yes<br />

n→∞<br />

2<br />

2<br />

3n<br />

3<br />

n→∞<br />

2n<br />

2<br />

2( n +<br />

i) lim 1)<br />

12( n + 9)<br />

= 2 Yes j) lim = 12 No<br />

n→∞<br />

n<br />

n→∞<br />

n<br />

4. Use the Riemann sum<br />

5. –3<br />

6. 40<br />

7. Use the inequality 1 π π<br />

2<br />

≤ sin x ≤ 1 for x ∈⎡⎣ 6<br />

,<br />

2<br />

⎤⎦ π<br />

8. Use the inequality xsin<br />

x ≤ x for x ∈⎡⎣<br />

0,<br />

2<br />

⎤⎦<br />

9. a) 5 b) -2 c) 3 2 d) 3<br />

10. a)<br />

1<br />

x 6<br />

dx<br />

0<br />

∫ b)<br />

5<br />

∫ xdx c)<br />

2<br />

π<br />

2<br />

∫ sin x dx d)<br />

0<br />

∫<br />

1<br />

0<br />

2<br />

1−<br />

x dx<br />

Winter 2009 Martin Huard 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!